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Abstract

For depth of field rasterization, it is often desired to have an efficient tile versus triangle test, which can conserva-
tively compute which samples on the lens that need to execute the sample-in-triangle test. We present a novel test
for this, which is optimal in the sense that the region on the lens cannot be further reduced. Our test is based on re-
moving half-space regions of the (u,v)-space on the lens, from where the triangle definitely cannot be seen through
a tile of pixels. We find the intersection of all such regions exactly, and the resulting region can be used to reduce
the number of sample-in-triangle tests that need to be performed. Our main contribution is that the theory we
develop provides a limit for how efficient a practical tile versus defocused triangle test ever can become. To verify
our work, we also develop a conceptual implementation for depth of field rasterization based on our new theory.
We show that the number of arithmetic operations involved in the rasterization process can be reduced. More
importantly, with a tile test, multi-sampling anti-aliasing can be used which may reduce shader executions and
the related memory bandwidth usage substantially. In general, this can be translated to a performance increase

and/or power savings.

1. Introduction

During the last few years, research activity has increased in
the stochastic rasterization field [CCC87, AMMHO7, TLOS,
FLB*09, MESL10, BFH10, MCH"11]. The goal is to use
more realistic camera models, so that correct motion blur
and depth of field (DOF) is generated as a result of the visi-
bility computations. This is in contrast to the majority of cur-
rent real-time rendering engines, which use pinhole cameras
with infinitely fast shutters. In some cases, these engines use
ad-hoc approaches for a subset of these effects under con-
trolled forms. An example is to add motion blur only from
camera movement with approximate visibility.

Efficient rasterization of correct depth of field and motion
blur at the same time remains an elusive goal. We note that
rasterization of depth of field alone is a substantially sim-
pler problem, but still, specialized algorithms for this is not
a well-explored field in computer graphics. In this paper, we
therefore present a novel approach for efficient depth of field
rasterization. Our target is current and near-future real-time
rendering applications, and these will continue to contain tri-
angles of varying sizes. As a consequence, our shading is
not executed per-vertex (as done in micropolygon render-
ing), but rather on a per-pixel level. In addition, our traversal
order enables multi-sampled anti-aliasing (MSAA).

We use the notion of separating planes, which has been
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used in cell-based occlusion culling [CT97], and inspiration
from soft shadow rendering research [NN85], and apply it to
the topic of rasterization. Using several simplifications and
new insights, we are able to present the theory for an optimal
tile versus defocused triangle test. In addition, we develop a
practical depth of field rasterization algorithm based on our
new theory. It reduces the total number of arithmetic opera-
tions needed for rasterization, and it is hierarchical in that it
visits one tile of pixels at a time. In general, this traversal or-
der gives many advantages for rasterization algorithms, and
in our case, we note that it may be used to reduce the number
of shader executions and in addition, it is likely that such a
traversal order reduces texture bandwidth usage [HG97] and
depth buffer bandwidth [MCH™ 11] compared to other algo-
rithms. We believe our research is a step towards a hardware
implementation of depth of field rasterization.

2. Previous Work

In our research, we are primarily interested in rasterization-
based methods that render accurate depth of field. In the
following, we therefore avoid discussing stochastic ray
tracing based methods [CPC84] and post-processing tech-
niques [BHK*03, Dem04].

To efficiently handle triangles of varying sizes, most trian-
gle rasterization algorithms are hierarchical in nature. Such
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algorithms use triangle versus tile testing, and for static tri-
angles, this is particularly simple [MMO00, AMAOS]. How-
ever, they are not straightforward to extend to motion blur
nor depth of field rasterization.

Cook et al. [CCC87] presented the famous REYES ren-
dering architecture, which contains a stochastic rasterizer
for micropolygons capable of both motion blur and depth
of field (DOF). They use a technique called interval, which
is described in the previous work section by Fatahalian et
al. [FLB*09]. The idea for DOF is simply to split the do-
main of the lens into a number of smaller regions. For each
region, the triangle is bounded, and rasterized only to the
samples inside the region.

Fatahalian et al. [FLB*09] adapted interleaved rasteriza-
tion [KHO1], to micropolygon rendering with blur effects.
Brunhaver et al. [BFH10] later investigated the efficiency
of different hardware implementations of this technique.
However, micropolygon rasterization approaches are not di-
rectly applicable to macro-sized triangles. Due to shading
at the vertex level, all primitives must be tessellated down
to the pixel level. This increases the visibility computations
tremendously, especially with the high sampling rates re-
quired for defocus blur. In this paper, we address these short-
comings by deriving a tile vs. defocused triangle overlap test
that bounds the visible area of the lens. This test enables
a tile-based traversal order with multi-sampled anti-aliasing
(MSAA).

Recently, we developed a tile versus moving triangle
test [MCH™ 11] for hierarchical rendering of motion blurred
triangles. The tile test computed a time interval for each tile,
and only the samples inside that interval needed to be inside-
tested. Advantages of this algorithm included the possibility
to use MSAA, reduced depth buffer bandwidth usage, and
reduced number of arithmetic operations for the rasteriza-
tion procedure.

Akenine-Moller et al. [AMMHO07] rendered depth of field
with line samples on the lens, which required several passes.
In essence, motion blur rasterization was used to compute an
image with depth of field. Recently, several algorithms have
been presented for stochastic rasterization on GPU hard-
ware. For depth of field, Toth and Linder presented the first
stochastic rasterization algorithm running on GPUs [TLO8].
Recently, McGuire et al. presented an implementation of
motion blur and depth of field for current GPUs [MESL10].
A specialized method for computing the convex hull of the
triangle and a technique for robust handling of the case
where the triangle intersects with the w = 0 plane were pre-
sented. Inside testing was done using a ray-triangle intersec-
tion test, and MSAA was used to reduce shading costs. Lee
et al. [LES10] present a method where layers are constructed
using depth peeling. In a later pass, an image with DOF is
created by ray tracing through the layers on the GPU.

In parallel with our work in this paper, Laine et
al. [LAKL11] presented a new rasterization technique that

can handle both motion blur and depth of field at the same
time, which we do not handle. However, we use two types of
planes (both axis-aligned and non-axis-aligned), while they
only use the axis-aligned planes for culling. In Section 6, we
briefly compare our DOF rasterization technique to Laine et
al.’s DOF method without motion blur.

The inspiration for our algorithm comes from both oc-
clusion culling and soft shadow rendering. Coorg and
Teller [CT97] used separating and supporting planes for cell-
based visibility queries for large occluders, and we use their
notion of separating planes in our research. In addition, our
work is also related to soft shadow rendering. With modest
geometry, Nishita et al. showed that it is conceptually simple
to split a soft shadow geometrically into umbra and penum-
bra regions [NN85].

3. Motivation

In this section, we motivate the need for a tile-based traver-
sal order with a tile versus defocused triangle overlap test for
depth of field rasterization. First of all, we note that with tile-
based traversal, for a particular triangle, each pixel is visited
at most once. The resulting traversal algorithm, with a de-
focused tile test available, has several potential advantages,
such as:

1. efficient rasterization of mixed triangle sizes,

2. the possibility to use multi-sampling anti-aliasing,
3. better texture cache usage, and

4. reduced depth buffer bandwidth.

Each of these advantages are discussed below.

1. Mixed Triangle Sizes The ability to handle mixed tri-
angle sizes, and not only micropolygons, is important, since
much content today and in the near future will contain large,
medium, and small triangles. Both the interval and inter-
leaved rasterization techniques (Section 2) are primarily for
micropolygon scenes. In such contexts, inside tests are per-
formed for all samples within an axis-aligned bounding box
around each primitive. However, this becomes inefficient
(compared to a standard hierarchical rasterizer) when the tri-
angle sizes increase, as illustrated in Figure 1. It is hard to
efficiently extend the inferval approach with a hierarchical
overlap test. One approach is to compute and test against a
convex hull for each lens region, but that is rather expensive.
In contrast, interleaved rasterization can be augmented with
a hierarchical test for the triangle positioned for a lens co-
ordinate, which is a discrete position, (u;,v;), on the lens.
However, the number of different lens coordinates required
for acceptable depth-of-field quality is large (typically 64—
256, see Figure 13), which leads to many hierarchical tests.
Also, for interleaved rasterization, the number of samples a
hierarchical test can cull is low due to that the screen space
sample positions for each lens coordinate are sparsely dis-
tributed (e.g., one per 2 x 2 pixels for 64 samples per pixel,
whose lens coordinates are chosen from a set of 256). With
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Figure 1: Left: a pixel-sized triangle is positioned for a
set of sample positions over the lens. All samples within the
green bounding box will be tested. Right: a larger triangle
is positioned for a set of sample positions over the lens. For
many pixels in the upper right region, there is no overlap
with the defocused triangle, and many unnecessary visibil-
ity tests are executed. A hierarchical rasterizer could easily
discard many of these pixels.

a tile test against a defocused triangle, on the other hand, an
efficient hierarchical traversal order becomes possible.

2. MSAA To support mixed triangle sizes, we shade after
visibility at the pixel level, similar to current hardware raster-
izers. In contrast, micropolygon pipelines shade at the vertex
level and thus need to tessellate all scene geometry to pixel-
sized primitives. McGuire et al. [MESL10] have shown that
multi-sampling anti-aliasing (MSAA) can be used for both
motion blur and depth of field with substantially reduced
number of shader executions. Since interleaved rasterization
iterates over lens samples, the same screen space region will
be visited multiple times, which means that MSAA is not
trivially supported. With interval rasterization, one can shade
once per lens region. This means that the shading rate is de-
pendent on the number of regions the lens is split into (we
use 4 X 4 regions in our research in order to get good traver-
sal efficiency). In contrast, with a tile test against the de-
focused triangle, one can choose from the minimal number
(one) of shader executions up to one shader execution per
sample. For motion blur rasterization, a tile test can avoid
as many as 75 — 90% [MCH*11] of the pixel shader execu-
tions, compared to interleaved rasterization with super sam-
pled shading. Similar or better results are expected for depth
of field since more samples are needed to reduce noise in
highly defocused areas. Note that image quality may suffer
when using MSAA. However, in cases with low-frequency
shading (diffuse, ambient occlusion, etc), one shader execu-
tion per pixel is often sufficient. We simply note that with
a tile test readily available, MSAA can be used, and image
quality can be traded for rendering speed for high-frequency
shaders. It is important to note that the savings in shader ex-
ecutions often are directly translated to performance and/or
power savings.

3. Texture Cache Usage For normal rasterization, it has
been shown that a screen space tile-based traversal order is
key to getting good texture cache efficiency [HG97]. In con-
trast, the traversal order of interleaved rasterization [KHO1]

submitted to COMPUTER GRAPHICS Forum (10/2011).

may thrash the texture cache for reasonably large triangles.
With shading at the vertex level, this is not a problem, but for
shading at the pixel level, this may negatively affect the tex-
ture cache performance. For interleaved depth of field raster-
ization [FLB*09], this will happen already when the screen
space edge length of a triangle is 64 pixels for a 16 kB tex-
ture cache.” Note that when the texture cache is thrashed,
the texture bandwidth usage goes up by up to a factor of N,
where N is the number of unique lens samples. Hence, all tri-
angles that are relatively large may substantially reduce tex-
ture performance. In all fairness, Fatahalian et al.’s work on
interleaved rasterization targeted micropolygons with shad-
ing at the vertex level, which means that this argument falls
short in their research. However, for the foreseeable future,
real-time rendering will use a wide variety of triangle sizes
in the same scene, and in those cases, the traversal order of
interleaved rasterization is not optimal due to texture thrash-
ing as argued above.

4. Depth Buffer Bandwidth Usage Finally, we also note
that a tile-based traversal order may reduce depth buffer
bandwidth usage. This is the case for motion blur rasteriza-
tion [MCH* 11], and similar effects are expected for depth of
field rasterization. Again, reductions in memory bandwidth
usage will increase performance and/or reduce power usage.
In this paper, we leave such a study for future work though.

As shown in this section, our arguments for a tiled traver-
sal with a tile versus defocused triangle test are strong. The
arithmetic cost of the actual test is rather insignificant in
comparison if a substantial amount of memory bandwidth
usage can be avoided, and the number of shader executions
be reduced to, e.g., 20%, or less. Next, we present a theo-
retically optimal tile versus defocused triangle test, which is
followed by a proof-of-concept implementation and evalua-
tion.

4. Half-Space Culling on the Lens

As usual for depth of field (DOF) rendering, the lens area is
parameterized by (u,v) € Q C[—1,+1] x [—1,+1], where Q
is the aperture shape and may, for instance, be hexagonal or
circular. In general, we have n samples per pixel for stochas-
tic rasterization, where each sample consists of a spatial po-
sition, (x;,y;), and a lens position, (u;,v;). A clip-space ver-
tex of a triangle is denoted p’ = ( P, p;7 pL.pl,), and a trian-
gle is then poplpz. We call the plane with w = F, where ren-
dered geometry will appear in perfect focus, the focus plane.

T We assume 64 samples per pixel and 256 lens samples are used,
and that an access to a texel costs 4 bytes (RGBA), that bilinear
filtering (4 texel accesses) is used, and that two textures are used in
the pixel shader. With these settings, it is straighforward to verify
that the texture cache will be filled up by rasterizing a triangle for
one lens coordinate when the screen space edge length is greater or
equal to 64 pixels. For a 64 kB texture cache, this increases to 128
pixels, which still is not exceptionally large.
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Figure 2: From the red regions on the lens, it is impossible
to “see” the triangle through the tile. The separating lines
of a tile and a triangle can be used to find those regions, and
this can in turn be used to reduce the number of computa-
tions needed for stochastic rasterization. Left: a triangle is
beyond the focus plane. Right: a triangle is in front of the
focus plane. As can be seen, when a vertex beyond the fo-

cus plane is used to define the separating plane, the positive
half-space contains the tile, and vice versa.

Not that in all our figures, the pixels and tiles are illustrated
as being located exactly in the focus plane. In the text be-
low, a tile is a rectangular block of pixels, and an inside test
simply computes whether a certain sample, (x;,y;, u;,v;), is
inside the triangle being rasterized. In general, the number
of unnecessary inside tests should be minimized.

Next, we introduce the theoretical background and in-
sights needed for half-space culling, which results in an op-
timal, in the sense of conservativeness, tile versus defocused
triangle test. Then follows efficient ways of exploiting this
new theory for depth of field rasterization.

4.1. Theoretical Background

In order to describe our algorithm, we will use the notion of
separating planes [CT97]. A separating plane between two
convex polyhedral objects is formed by an edge from one
object and a vertex from the other object, and at the same
time, the objects must lie on opposite sides of the plane. An
illustration of this is shown in Figure 2 in two dimensions.

Our technique uses separating planes, derived from a tile
and triangle, to remove half-space regions on the lens from
further processing. We find regions on the lens which cannot
“see” the triangle through any point in the tile. Samples in
the tile with lens coordinates, (u;,v;), in such regions do not
need any further inside-testing. Intuitively, this can be un-
derstood from Figure 2, where the separating lines (in two
dimensions) of the tile and the triangle are used to cull re-
gions (red) on the lens.

In three dimensions, however, there are two different
types of separating planes that can be used to cull half-space
regions on the lens. These are illustrated in Figure 3. The
first set of separating planes are generated by a tile edge and
a triangle vertex. Let us denote these planes by w;, where
the positive half-space of the plane consists of all points, p,
such that ;(p) > 0. Now, consider the example to the left in
Figure 3, where the tile’s left side creates a separating plane

with the rightmost triangle vertex. This separating plane cuts
the lens area into two half-spaces. We call the dividing line
a half-space line, h;(u,v) = 0.

Note that we choose the sign of the normal (i.e., +n
or —n) of the separating plane differently depending on
whether the triangle vertex, forming the separating plane,
is in front or behind the focus plane. The rationale for this
is that we would like to cull regions where h;(u,v) < 0, in-
dependent of vertex position. For vertices behind the focus
plane, the separating plane’s normal is chosen such that its
positive half space contains the entire tile. In contrast, for
vertices in front of the focus plane, the separating plane’s
normal is such that its negative half-space contains the en-
tire tile. This is also illustrated in Figure 2. The direction
of the two-dimensional normal of the half-space line is in-
herited from the corresponding separating plane’s normal.
These two-dimensional normals are illustrated as arrows in
Figure 3. Geometrically, we can see that no point in the neg-
ative half-space on the lens can “see” the triangle through
any point in the tile.

The second set of half-space lines are generated from sep-
arating planes formed from a triangle edge and a tile corner.
An example is illustrated to the right in Figure 3. We denote
these separating planes by IT; to distinguish them from the
planes (m;) formed by tile edges and triangle vertices. The
I1; planes also generate half-space lines, which are denoted
H;(u,v)=0.

The first set of half-space lines, h;, will be either hori-
zontal or vertical, while in general, the second set of half-
space lines, H}, can have arbitrary orientation. When all tile
edges each generate a separating plane, they may form a
two-dimensional box in the plane of the lens. With such a
box, it is simple and efficient to cull large portions of the
samples in the entire tile from further processing. An exam-
ple is shown to the left in Figure 4. To the right in the same
figure, further regions on the lens have been culled away by
the H; lines. When all triangle vertices either are in front of
or behind the focus plane, the remaining active region on the
lens is defined by a convex region, where h;(u,v) > 0 and
H;(u,v) > 0. The key to our tile test is that it is only for
samples with their lens coordinates, (u;,v;), inside this ac-
tive region (green region in Figure 4) that needs to be inside-
tested.

Between a tile and a triangle, there are no more types of
separating planes, and hence, when all the 4; and all H; half-
space lines are used to compute the active region, the active
region cannot be further reduced in size on the lens. This
implies that the size of the active region is minimal, which
in turn means that it provides a limit for how efficient (in
terms of active region area) a practical defocused tile test
can become.

Note that it is not always possible to create separating
planes. This happens, for example, when a triangle cuts
through a tile, which implies that the triangle goes from
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Figure 3: Left: in this example, the rightmost vertex of the yellow triangle forms a separating plane with the leftmost tile edge.
This plane intersects the lens area, and divides it into two half-spaces: the negative half-space (red), where its points on the lens
cannot see the triangle through any point in the tile, and the positive half-space (green), whose points on the lens potentially can
see the triangle. The positive half-space is the defined by the side of the plane where the tile itself is located. Right: a separating

plane formed from a triangle edge and a tile corner.

+ hy

v v

L-u Lu H,

n, h,
Figure 4: The lens is the thick-lined square. Left: the first
four separating planes generate horizontal and vertical half-
space lines, which are defined by hi(u,v) = 0. Together, they
form a two-dimensional bounding box in the lens plane in
this example. Only the samples with lens positions in the
green area need to be further processed. As can be seen,
using only the first four planes can cull away a substantial
region of the lens. Right: the second set of half-space lines,
H;(u,v) =0, can further reduce the green region.

front- to backfacing in that tile. As a consequence, it is pos-
sible to add a half-space line, defined by the intersection of
the plane of the triangle and the lens, to cull parts of the lens
where the triangle is backfacing [MAMI11]. This could be
beneficial for triangles close to the silhouette of the object.
In practice, there is usually only a fraction of such triangles
in a scene, and as a consequence, we have not found that
using this backfacing plane test for culling pays off.

In the following two subsections, we will show how to ef-
ficiently compute the two different types of half-space lines.
In addition, these subsections will also explain how the half-
space lines are computed when the triangle intersects the
focus plane. Such situations are more complex and require
special handling, as we will see.

4.2. Efficient Computation of Half-Space Lines /;

In this subsection, we describe how we find the half-space
lines, h;, which are generated from separating planes, 7;,
through a tile edge and a triangle vertex. A straightforward
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Figure 5: Notation for computing half-space lines, h;. The
vertices, po, pl, and pz, of a triangle are projected through
the tile corners, taA,. t?, ¢, and t%, onto the lens to form the
lens coordinates, 1", where i € {a,b,c,d}, and j € {0,1,2}.
For example, the vertex p2 is projected through t’ 10 gener-
ate 1°2. This figure also shows an uv-box (green), denoted A,
in the lens plane. The area outside the green box does not
need any further inside testing.

way to determine whether a plane is separating, is to test
whether the two triangle vertices that were not used to de-
fine the plane, are both on the opposite side of the plane
compared to the tile. We will describe an efficient way of
doing this.

First, however, we present the notation used to describe
our algorithm. As before, the triangle vertices are called pO,
pl, and pz. The four corners of a tile are denoted by t*, t°,
t¢, and t¢. The projection of a vertex, P, through a tile cor-
ner, t', onto the lens will be denoted by IV = (I/,1}/). See
Figure 5 for an illustration of our notation.

In the following, we will describe how the projected
points, 1V, are computed efficiently, and how they are used
to, for example, compute areas on the lens where sample
testing is not needed. An example of this is the region out-
side the green box in Figure 5. The projection of a vertex,
p’, through a tile corner, tl, gives us the lens coordinates of
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As can be seen in the equations above, the offsets, o, and the
deltas, §, are constant when rendering a particular triangle,
and these can therefore be computed in a triangle setup. In
addition, there is only a linear dependence on the tile coordi-
nates, (1l t;) implying that they can be evaluated efficiently
using incremental updates when moving from one tile to the
next. Note that if p}, — F = 0, then the corresponding coordi-
nate can never generate a half-space line on the lens that will
cull anything. The reason is that the projections, (4/,1/),
will approach £o00, which will never help in culling on a fi-
nite lens. Hence, such vertices are always ignored for the rest
of the computations.

The half-space lines ; will be either horizontal or vertical,
so all computations can be done in two dimensions. Let us
assume that we want to determine whether a plane from one
of the triangle vertices, p/, is a separating plane through a
tile edge located at x = r.. In this case, all calculations can
be done entirely in the xw-plane. In the following, recall that
the focus plane is at w = F, and the lens is at w = 0.

To determine whether u = [,/ actually defines a half-space
line from a separating plane, we want to determine in which
half-space the other two triangle vertices are located. If they
both are not in the same half-space as the tile itself, we have
found a separating line. More specifically, this is done as
follows. We set q = pj and let r be one of the other trian-
gle vertices. A two-dimensional line equation from (gx, gw)
to (t)i?F ) is derived, and the two other triangle vertices are
inserted into the line equation. We find that the line equation
evaluated at a point, (ry,rw), is:

e(q,r) = "X(qw—F)“"IX(F—VW)‘H;(VW—‘IW)
= qu+t;chr, 2)

which is linear in 7. Note also that e(q, r) = —e(r, q), and so
for a given tile, only e(p°,p'), e(p',p?), and e(p?,p°) need
to be evaluated. In general, for u = lf,j to define a separating
line, the two other triangle vertices should be in the nega-
tive half-space when p&, > F, and in the positive half-space
when p{v < F, as can be seen in Figure 2. The case when
p{; — F =01is ignored, as described previously, because such
projections will not provide any culling.

For example, given the vertex q = po, and the leftmost tile
edge, x =17, we testif u = l,‘fo is a separating half space-line
by evaluating the line equation (Equation 2) for r = p1 and
r= pz. If it is separating, the corresponding half-space line,

triangle

\tilc

focus plane

separating planes

Figure 6: When a triangle intersects the focus plane, a tile
side can generate two separating planes as shown in this il-
lustration. Note that culling is done in the “inner” region
(red) in this case, in contrast to when the triangle does not
intersect the focus plane (see Figure 2). In this case, we gen-
erate one uv-box for the topmost green region and one for
the bottommost region on the lens.

h(u,v), is defined by:

u—1I19 when p? > F,
h(u,v) =14 a0 0
I, —u, when py, <F,

which is a vertical half-space line on the lens. Note that the
culling “direction” changes depending on whether the ver-
tex is in front of the focus plane, F, or behind it. In addition,
the py > F tests are reversed when testing against the right-
most tile edge, x = ¢ Similar equations are created for all
lens coordinates, 7,/ and [;/, which have been verified to be
real separating planes (using Equation 2). This is all that is
needed for computing the horizontal and vertical half-space
lines, h;(u,v) = 0.

3

Finally, we describe how the half-space lines are com-
bined to form, what we call, uv-boxes in the lens plane. Only
samples inside a uv-box need further processing (and can
be further culled using the H; lines). Note that we use the
term box broadly because they can extend infinitely in some
directions, as we will see. For this discussion, we split the
triangle vertices into two sets. The first set consists of all
vertices located in front of the focus plane, and the second
set consists of all vertices behind the focus plane. When one
set is empty, all triangle vertices are located on one side of
the focus plane. In these cases, it is straightforward to gener-
ate a box in the uv domain on the lens using the 4; lines. An
example is shown in Figure 5.

However, when both sets are non-empty, and there are
separating half-space lines generated from both sets, fwo
uv-boxes will be generated. This can be seen in two dimen-
sions in Figure 6. When there are two separating half-space
lines generated in one set, both these will be used to define
that set’s uv-box. This is illustrated in Figure 7, where the
uv-boxes extend infinitely in some directions because these
boxes are only generated from two half-space lines.

The uv-boxes determine active regions on the lens, and for
all pixels within the tile, only samples within these regions
need to be tested against the triangle. In the next subsec-
tion, we will show how these active regions can be further
reduced.
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focus plane

Figure 7: Visible regions for the triangle seen through the
blue tile with one triangle vertex in front of the focus plane,
and two behind. In this case, we generate two uv-boxes

(green), A and B, on the lens, and inside testing is only done
for samples with uv-coordinates in these boxes.

7/ 8 / 9
c d
5
a //b

A -

6

/v 2 3

Figure 8: The triangle edge, qr, is intersection tested
against the focus plane, which generates the intersection
point, v. The tile abcd (shown in blue) divides the fo-
cus plane into nine regions, numbered 1-9. In the example
above, the intersection point, v, lies in region 1, and there-
fore the candidate corners to form separating planes are b
and c. In this illustration, those are shown as red lines, which
form tangents between v and the tile.

4.3. Efficient Computation of Half-Space Lines H;

To find the second type of half-space lines, H;, we use an
approach, based on Coorg and Teller’s [CT97] method, for
finding separating planes from a triangle edge and tile cor-
ner. This includes two steps, namely, finding a set of can-
didate planes and then finding out whether those candidates
indeed are separating.

To find candidate planes given a triangle edge, qr, we
form the ray q +#(r — q) = q + td. Referring to Figure 8,
we compute the intersection point, v, between the ray and
the focus plane. We divide the focus plane into nine regions
and identify which region v falls into. The intersection point,
v, lies in a certain tile, whose tile coordinates can be pre-
computed and used for all subsequent computations. During
traversal, the only work needed per tile is thus a comparison
of the tile coordinate with these pre-computed tile coordi-
nates.

With v categorized into one of the nine regions, we iden-
tify the two tile corners m and n which form the largest angle
Zt"vt". These can be tabulated as follows:

submitted to COMPUTER GRAPHICS Forum (10/2011).

Figure 9: The two candidate planes, T1{ and 115, divide
space into four regions, shown as RI-R4. By construc-
tion, the triangle edge, qr, is included in both these planes.
Whether I1{ and I15 are separating depends on which region
the third triangle vertex, s, is in. If s is in region RI or R2,
I1{ is a separating plane. 115 is separating if s lies in R2 or
R3. A triangle edge, qr, can thus produce zero, one, or two
separating planes.

Region |1 2 3 4 5 6 7 8 9
m|b b d a - d a ¢ c
n|lc a a ¢ - b d d b

Using this table, we can form two candidate planes
I1§ : (q,r,t™) and IT5 : (r,q,t"). Using the sign of the dy,-
component, i.e., whether the edge, qr, points towards the
camera, we can choose plane normal directions such that
the tile is in the negative half-space of the respective plane.
For edges parallel to the focus plane (i.e., dyw = 0), we use
(dx,dy) to determine m and n and the sign of g, — F to de-
termine the normal direction. Note that there are no candi-
date planes for region five, since in this region, the edge is
pointing straight at the tile and there cannot exist any sepa-
rating planes between the edge and a tile corner. Likewise,
any edge qr where q,, = ryy, = F, cannot produce a useful
half-space line and is thus ignored.

Given two candidate planes, IT{ and IT5, it is now time to
determine whether they are separating planes. To determine
this, the third vertex of the triangle is tested against these
planes. If the vertex is in the positive half-space of a plane,
that plane is a separating plane. Each triangle edge can gen-
erate up to two separating planes, as can be seen in Figure 9.

For a given a plane, IT: n-p + ¢ = 0, the corresponding
half-space line, H, on the lens, (u,v,0), is:
H(u,v) =n-(u,v,0) +c=nu+nywv+c. 4

This equation varies non-linearly and must therefore be com-
puted for each tile. To see this, consider again the triangle
edge, qr, and a tile corner, t, in the focus plane. A plane
through these points is defined by P : n-x+ ¢ = 0, where:

n = (q-t)x(r—t)=qxr+(r—q)xt,
¢ = —n-t=—t-(qxr). Q)

Note that the normal n and ¢ change as we move in screen
space. For example, the change in ny and ny is proportional
to the difference in depth between r and q.

Finally, the normals of the planes, II;, need to be handled
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carefully when culling samples on the lens. When culling
regions from uv—box A (illustrated in Figure 7), samples in
the positive half-space of I1; can be culled. However, when
culling regions from uv-box B, samples from the negative
half-space of I1; can be culled.

5. Implementation

Section 4 reveals the theory for an exact tile vs defocused
triangle test. It is very likely that this theory can be turned
into practice in a variety of ways. In this section, we present
one such implementation as a proof of concept. However,
we believe that other implementation variants may improve
performance further.

In addition, we outline our two depth of field ras-
terizer implementations based on INTERVAL and INTER-
LEAVE [FLB*09], adapted to support mixed triangle sizes,
instead of just micropolygons. All algorithms, including
a brute-force DOF rasterizer, have been implemented in
a functional software simulator focusing on the rasteriza-
tion part of the graphics pipeline. Similar to current GPU
pipelines, we assume that shading is computed after visibil-
ity at the pixel level in all our implementations. This is in
contrast to micropolygon rasterizers, which usually shade at
the vertex level. Our simulator is missing a complete shader
system, but the important pieces are in place in order to be
able to measure DOF rasterization efficiency, which is the
objective of our research.

5.1. Our Algorithm

Up until now, the half-space lines, ; and H}, which lie in the
plane of the lens, have been computed in an exact manner.
In this subsection, we will first describe how they can be ex-
ploited to quickly cull samples for faster depth of field raster-
ization. The half-space lines are computed on a per-tile ba-
sis, and hence culling opportunities will be shared between
all the pixels in a tile. However, the process still needs to be
very efficient. As will be seen, determining which samples
lie within the active subspace of the lens can be implemented
as a rasterization process in itself.

In our conceptual implementation, we superimpose a
square grid on top of the lens shape and in an initialization
step, we create a table of the number of samples falling into
each grid cell. This is illustrated in Figure 10. These sample
distributions vary from pixel to pixel, and we use a small set
(32 x 32) of distributions that are repeated over the screen.

The half-space lines, h;, which are generated from trian-
gle vertices and tile edges, provide an easy means of culling
since they are axis-aligned. We can simply clamp them down
and up to the nearest grid cell and use the clamped rectangu-
lar extents to quickly traverse relevant samples. Additionally,
we test each sample that passes the grid-cell test against the
h; half-space lines.

Figure 10: Lens grid with corresponding storage. For each
grid cell, we store the number of samples within that cell,
and an offset pointing to the first sample in that grid cell.
With this layout, we can efficiently cull large sets of samples
against the separating half-space lines.

For the non-axis-aligned half-space lines, H;, we iterate
over all grid cells in the rectangular extents computed from
the &; lines and conservatively test for overlap between the
grid cells and the H; lines. This essentially boils down to
a micro-rasterization process for every screen space tile in
order to cull the samples. One way to optimize this is to ex-
ploit the limited resolution of the lens grid and use a pre-
computed rasterizer [KLAO4, LK10]. However, we instead
exploit the fact that two-dimensional edge equations can be
updated incrementally from one pixel to the next [Pin88],
and evaluate each H; using additions for a small grid to get
conservative micro-rasterization.

In the following pseudo-code, we outline the full al-
gorithm for rendering depth of field using half-space line
culling.

compute BBox of defocused triangle A

compute initial A, ..., i3 half-space lines

for all tiles T in BBox do

inexpensive update of hy, ..., h3
compute UVBoxes from hy, ..., 13
if any UVBox overlaps lens shape then

for all pixels p in T do
for all grid cells C in UVBoxes do

test samples in C(p)NUVBoxes against A

end for
shade pixel (multisampling)
end for
end if
end for

As a further optimization, we can also disable the H; line
test (the grey lines in the pseudo code) for highly defocused
or near axis-aligned edges. To estimate the culling efficiency
of an H; line, we use the screen space area from the axis-
aligned bounding box of the screen space projected edge.
Given the screen space projections of two triangle vertices,
(xi,yi), i € 0,1, as seen from the center of the lens, we form
Acunt = |x1 — x0l[y1 — yo|/2. If Agyy is small compared to
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the the screen space bounding box of the defocused triangle,
the Hj; test for that edge is disabled. This test is performed
in the triangle setup. For more details, please refer to Ap-
pendix A. For our test scenes, this selective H; test reduced
total arithmetic cost with up to 10% compared to always test-
ing against all ; and H; lines.

5.2. Interval DOF Rasterizer

For evaluation purposes, we have also implemented an
interval-based DOF rasterizer [FLB*09]. Here, the uv-lens
domain is divided into a grid, and we perform one DOF ras-
terization pass for each grid cell. Within each pass, the defo-
cused triangle is bounded for the active uv-grid cell, and only
the lens samples within the current cell need to be inside-
tested. We include pseudo-code for the algorithm below.

for all grid cells C do
compute BBox of defocused triangle A over C
for all tiles 7 in BBox do
for all pixels pin T do
test samples in C(p) against A
shade pixel (multisampling within C)
end for
end for
end for

The main differences between our method and interval-
based DOF rasterization are the iteration order and the lack
of a tile overlap test in the interval-based rasterizer. For the
interval-based traversal order, the same screen space tile may
be visited multiple times. With shading at the pixel level,
each pixel is shaded once for each grid cell, unless there is a
shader cache [RKLC™*11,BFM10] available. A shader cache
is a very attractive option for inexpensive shading in the fu-
ture. However, adding hardware support for depth of field in
the rasterizer may be a smaller change, and so it is likely that
happens first. A natural next step is then to add the shader
cache.

5.3. Interleave DOF Rasterizer

In the interleave-based DOF rasterizer [FLB*09], we raster-
ize the triangle at N discrete uv-lens coordinates. We perform
N rasterization passes, but in each pass, only a 1/N fraction
of the screen space sample positions are evaluated. Within
each pass, the triangle is bounded for the active lens coordi-
nate. We include pseudo-code for the algorithm below.
for all lens coordinates (u;,v;) do
compute BBox of triangle A at lens coordinate (u;,v;)
for all tiles 7 in BBox do
for all samples with (u,v) = (u;,v;) in T do
test sample against A
shade sample (supersampling)
end for
end for
end for
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Figure 11: Cumulative distribution function of the triangle
sizes in our test scenes.

Note that the iteration order is over lens coordinates, so
the same screen space region will be visited multiple times
for one defocused triangle. We have also implemented a vari-
ant of this algorithm with an overlap test for each coarse tile.
With 256 tuples and 64 samples per pixel, we execute a stan-
dard tile vs static triangle (for a particular lens coordinate)
test on 8 x 8 pixel tiles. Each test can cull up to 16 sam-
ple tests, since for a given lens coordinate, there is only one
sample per 2 x 2 pixels.

6. Results

In Figure 12, we present the four test scenes that we have
used in order to gather statistics for various depth of field
rasterization algorithms. StoneGiant has relatively large tri-
angles and a small triangle count. Heaven A has 6Xx the
number of triangles and shows a zoomed-out view with rel-
atively small triangles. Heaven B has 2x the number of tri-
angles compared to Heaven A with a close-up view. These
demos can be run with different tessellation settings, and for
this study we use the setting disabled (StoneGiant, Heaven
A) and normal (Heaven B) to reach a rich variety of trian-
gle distributions. The Museum scene contains a mix of both
many small and some large triangles and has a total of 1.5M
triangles. Figure 11 shows an overview of the triangle size
distribution in the different scenes. To find out more about
the properties about the different rasterization algorithms,
we render all test scenes with varying amounts of defocus
blur. We use the term circle of confusion (CoC) to denote
the defocus blur in pixels when the depth approaches infin-
ity.

Our results contain both a comparison of DOF rasteriza-
tion algorithms that allow for arbitrary sampling patterns,
and a comparison of DOF rasterization algorithms that use
interleaved sampling patterns [KHO1]. All these algorithms
are summarized next.

The DOF rasterization algorithms that allow for arbi-
trary sampling patterns are BRUTEFORCE, INTERVAL, and
OUR. BRUTEFORCE computes the bounding box of a trian-
gle as seen through the four corners of the square lens, and
then performs inside testing for all samples in the bound-
ing box. As described in Section 5.2, INTERVAL dices the
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StoneGiant, Courtesy of BitSquid,
65k triangles, 1280 x 720 pixels, 3.6 X overdraw

Museum, Courtesy of Alvaro L. Bautista and
Joel Anderson, 1.5M tris, 1920 x 1080 pixels, 7x overdraw

Figure 12: The test scenes that we use for our measure-
ments.

lens into a number of grid cells, and performs BRUTEFORCE-
rasterization for each grid cell’s corresponding uv-domain.
OUR algorithm is described in Section 5.1, and uses half-
space lines to cull samples for each screen space tile. Except
where otherwise mentioned, we use a grid of 4 x 4 cells on
the lens both for INTERVAL and OUR. BRUTEFORCE, INTER-
VAL, and OUR can use any type of sampling pattern, and all
use the sample access method described in Section 5.1. For
OUR, we use a tile size of 2 x 2 pixels, which was found to
generate best results. Also, unless mentioned otherwise, the
images were rendered with 64 samples per pixel.

In addition, we compare three algorithms that exploit an
interleaved sampling pattern with 256 fixed lens coordi-
nates. We choose 256 lens coordinates since the resulting
image quality is close to using 64 unique stratified samples
per pixel as shown in Figure 13. We implemented two ver-
sions of the interleaved rasterization algorithm (Section 5.3).
These are called INTERLEAVE and HINTERLEAVE, where the
latter has a tile vs. triangle test at the 8 x 8 pixel level. An in-
terleaved sampling pattern for our algorithm results in that
the per-sample test uses a standard two-dimensional edge
test instead of using four-dimensional edge equations. This
reduces the per-sample cost by 50%, but increases the trian-
gle setup cost.

6.1. Comparison with our theory

Table 1 shows the efficiency of our traversal algorithm (Sec-
tion 5.1) for various CoC radii in terms of sample tests. The

Figure 13: Quality of using interleaved sampling (with 64
and 256 lens positions) compared to 64 unique stratified
samples per pixel (right). All images were generated with
64 samples per pixel, and permuted (x,y) sample positions
for each block of 2 x 2 pixels.

| StoneGiant Heaven A Heaven B Museum
CoC=0 1.00 1.00 1.00 1.00
CoC=10 1.20 1.22 1.27 1.25
CoC=50 1.47 1.29 1.27 1.56

Table 1: Efficiency of our traversal algorithm presented in
Section 5.1. The numbers show the ratio between the number
of samples tested with our traversal algorithm and the opti-
mal number of samples that need to be tested according to
our theory presented in Section 4. The comparison is using
2 x 2 pixel tiles. Even for large blurs, we only test a modest
amount of samples with (u,v)-coordinates that cannot pos-
sibly hit the triangle within a screen space tile.

results are relative to the samples within the lens region of
the optimal tile test given by the H; and h; half-space lines.
The source of inefficiency is the quantization of the lens
into grid cells, and as a result, the region on the lens visi-
ble though a tile grows. While the exact A; half-space lines
are used for per-sample culling, the H; half-space lines are
not. Still, our implementation is reasonably close to the the-
oretical optimum, even for very large CoC radii.

6.2. Arithmetic Intensity

We have gathered results in terms of arithmetic intensity
for varying amounts of defocus blur. In our measurements,
arithmetic intensity includes the operations needed for tri-
angle setup, tile testing, and sample testing, and disregards
from operations common to all algorithms, such as near-
plane and backface culling. To reason about the general trend
of arithmetic intensity, we count instructions, such as ADD,
MADD, etc, as one operation, and exclude control logic and
simple bit manipulation. This is similar to the methodology
used by Fatahalian et al. [FLB*09]. In Figure 14, we show
a cost breakdown for the algorithms for one frame from the
Museum scene.

The arithmetic intensity results are presented in Figure 15.
We start by interpreting the results from the top row, i.e.,
for the algorithms using arbitrary sampling patterns. For this
set of test scenes, OUR is the most efficient technique for
all aperture sizes. For all scenes, the BRUTEFORCE algorithm
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Figure 15: Results in terms of arithmetic intensity for the different depth of field rasterization algorithms. All figures show the
arithmetic intensity as a function of the limit circle of confusion radius. The top row shows algorithms that can have an arbitrary
sampling pattern. The bottom row shows algorithms that rely on an interleaved sampling pattern.
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Hinterleave ‘
Interleave ® Triangle Setup
BT
Our ‘ Tile Test
Sample Test

Interval ‘ ‘

|
BruteForce
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0 100 200 300 400 500 600

Arithmetic cost (Gops)

Figure 14: Cost breakdown of the different algorithms for
the Museum scene with a circle of confusion radius of 10
pixels. The top rows (gray background) show the algorithms
using interleaved sampling, and the bottom rows show al-
gorithms with arbitrary sampling patterns. OUR (i) is OUR
algorithm with an interleaved sampling pattern.

quickly becomes very expensive. It is interesting to see that
even though Heaven B contains more than twice the num-
ber of triangles, the efficiency of OUR compared to INTER-
vaL does not change drastically. For the Museum scene, the
triangle distribution is more varied, with both many small
triangles and a set of large triangles covering many pixels.
The triangles larger than 4k pixels are very few, but still,
they represent 40% of the total coverage in this scene. As
can be seen, tile-based half-space culling is very efficient for
this workload.

In the lower row of Figure 15, we compare the algorithms
based on interleaved sampling patterns. For StoneGiant and
Museum with many large triangles, HINTERLEAVE is clearly
more efficient than INTERLEAVE, and our algorithm is com-
petitive up to a CoC radius of about 20 and 40 pixels, respec-
tively. In the Heaven scenes, most triangles are very small,
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Figure 16: Results in terms of arithmetic operations versus
the number of samples per pixel for the StoneGiant scene
with a circle of confusion radius of 20 pixels. Our algo-
rithm has a consistently lower cost than INTERVAL. With in-
terleaved sampling patterns, our algorithm scales similar to
HINTERLEAVE. For the 256 spp data point, we use a grid res-
olution of 8 X 8 for OUR, OUR (1), and INTERVAL (and 4 X 4
for all other sampling rates).

and the benefit of a tile-based overlap test is low. OURr algo-
rithm is competitive up to a CoC radius of about 20 pixels.
In all scenes, our algorithm has about half the arithmetic cost
compared to HINTERLEAVE for small defocus blurs.

In Figure 16, we show how the algorithms scale with in-
creasing number of samples per pixel (spp). For higher sam-
pling rates, the cost of our tile tests is amortized over more
samples, and the benefit of half-space culling increases. For
a small number of samples (e.g., 4 spp), half-space culling
is less beneficial. However, stochastic DOF without local re-
construction filters [SAC*11,LAC™*11] at 4 spp contains sig-
nificant noise even for modest aperture sizes.

Table 2 shows the culling efficiency obtained from the two
set of half-space lines, #; & Hj, and their combination. The
h; lines are most effective for triangles with large circle of
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None hi H; hi+Hj | INTERVAL
S Culled 0% 30% 62% 65% 27%
A Cost (Gops) 23 19 10 10 17
2 Culled 0% 19% 72%  86% 66%
A Cost (Gops) 83 24 26 18 29

Table 2: Culling efficiency (higher is better), and total ras-
terization arithmetic cost, of h;, H i and their combination.
Numbers are measured with the StoneGiant scene with two
different circle of confusion radii (R). The combination of the
two types of half-space lines efficiently reduces the number
of samples tested. Tile edge tests were not adaptively dis-
abled (Appendix A) for these measurements.

confusion compared to the triangle size, while the H; lines
are most effective on triangles with modest blur.

6.3. Comparison with Laine et al’s DOF algorithm

A similar test to our h; lines was developed independently
by Laine et al. [LAKL11]. Here we present a brief compar-
ison on a controlled scene with varying triangle sizes and
blur amount. In Figure 17, we show both arithmetic inten-
sity and sample test efficiency (STE) [FLB*09] using 2 x 2
pixel tiles and 64 spp. Our algorithm has slightly higher STE
on all scenes, with a significant difference in Scene A and C,
where the H; lines are very beneficial. The arithmetic inten-
sity is about 50% of Laine’s algorithm on all four scenes.
Our algorithm may reject entire tiles (using the H; lines)
and with the grid over lens samples, cells of samples are
quickly discarded. In contrast, Laine’s algorithm (for DOF
only) tests each individual sample against the valid lens re-
gion, and there is no early out at the tile level. For both al-
gorithms, we count a test: u < up;,, as one arithmetic op-
eration. The arithmetic intensity is dominated by the sam-
ple cost. With 2 x 2 pixel tiles, our algorithm spends 9% on
evaluating tile tests (Laine: 0.4%). With 1 x 1 pixel tiles, our
algorithm spends 20% on tile tests (Laine: 2%), and the total
instruction count increases with 9% (Laine decreases with
7%). Still, comparing Laine’s algorithm using 1 x 1 pixel
tiles with our algorithm at 2 x 2 pixel tiles, there is still a
1.9 instruction ratio in our favor when measured over all
four scene configurations.

6.4. Potential for Multi-Sampling Anti-Aliasing

In micropolygon rasterization, shading is executed per ver-
tex. With varying triangle sizes, however, per-vertex shad-
ing is too coarse, and standard GPU pipelines therefore
shade per pixel. In the presence of depth-of-field with many
stochastic visibility samples per pixel, it is critical to reduce
the number of shader evaluations in a similar way. One way
to do this is to implement a shading cache, where visibility
samples mapping to similar barycentric regions of the trian-
gle share a shaded value [RKLC*11,BFM10]. A coarser but
simpler approximation is to extend standard multi-sampling

A B C D
2 Our 0.77 16 19 37
S Laine 1.4 39 4.0 73
m Our 27% 18% 0% 26%
& Laine 18% 17% 2% 21%

A ) B SRS AR
Figure 17: A controlled test scene with 20k triangles with
varying triangle sizes and defocus blur. We report the arith-
metic intensity in Gops and the sample test efficiency (STE)
using 64 spp and 2 x 2 pixel tiles.

CoCradius: | 0 10 20 30 50
OUR 1% 2% 4% 6% 9%
INTERVAL 10% 12% 14% 16% 19%

Table 3: Number of quad shading requests (lower is better)
for the Museum scene with varying circle of confusion (CoC)
radii relative to supersampling (256 samples per 2 X 2 pixel
block at 64 samples per pixel). Even for large defocus blurs,
where fewer samples within a quad hit the same triangle,
there is still significant MSAA potential for our algorithm.

anti-aliasing (MSAA) to handle depth-of-field, where all vis-
ibility samples within a pixel from the same triangle share a
common shaded value [MESL10]. Below, we measure the
potential for MSAA in the different algorithms.

The iteration order in the traversal algorithms affects the
potential for multi-sampling substantially. INTERLEAVE and
HINTERLEAVE iterate over lens positions and this results in
supersampling. INTERVAL iterates over grid cells on the lens,
and will therefore shade (at least) once per grid cell. This
implies 16 shader executions per pixel for 4 x 4 grid cells
when the triangle is visible from all points on the lens. In
contrast, with the screen space tile iteration order in OUR al-
gorithm, we have the possibility to execute the shader only
once per pixel for a triangle. The MSAA potential in the Mu-
seum scene is presented in Table 3. Sufficient image quality
may not always be obtained by shading once per pixel in de-
focused areas. Note, however, that the shading rate could be
controlled per shader and by the amount of defocus blur for
the pixel being rasterized. For example, a diffuse shader may
need very few (even just one) shading samples, while a spec-
ular shader may need more. In addition, unless the shader is
highly view-dependent, there is little reason to super sample
shading for surfaces that lie in perfect focus or very near the
focus plane. Hence, we have made it clear that MSAA has
potential to reduce shader computations and related memory
bandwidth usage substantially for depth of field rasteriza-
tion. A thorough investigation of when and how the number
of shading samples can be reduced with retained image qual-
ity is out of the scope of our work here, and is therefore left
for future work.
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7. Conclusions and Future Work

Our new theory for the tile versus defocused triangle test
provides a limit on how efficient such a tile test ever can be.
As such, we hope that our research makes for a deeper under-
standing about depth of field rasterization. In our work, we
have also presented a conceptual implementation of depth
of field rasterization, and shown that our algorithm uses sig-
nificantly fewer arithmetic operations when arbitrary sam-
pling patterns are used. As we have seen, our algorithm also
scales better than previous algorithms with increased sam-
pling rates and our algorithm is better at handling mixed tri-
angle sizes. The arithmetic intensity reveals some properties
of the algorithms, but an additional important advantage of
our algorithm is that it visits a tile only once per triangle.
This enables multi-sampling anti-aliasing, which can reduce
shader computation and memory bandwidth usage, and this
in turn may increase performance substantially.

We want to emphasize that we have implemented only one
variant of depth of field rasterization based on the new the-
ory. However, getting closer to the bounds is surely possible,
and we believe that future research will reveal new depth of
field rasterization algorithms based on our new theory. We
also hope that our research brings us a little closer to get-
ting efficient depth of field rasterization for real-time graph-
ics. As a next step, it would be interesting to devise an effi-
cient fixed-point implementation of our algorithm. We also
believe that our theory could be used as the basis for a novel
5D rasterizer, including both motion blur and depth of field
at the same time, and this is a clear direction to continue do-
ing research in. For future work, we also want to measure
texture bandwidth usage and depth buffer bandwidth usage
since these are very likely to be reduced due to the traversal
order that our new tile test enables. In addition, it would be
interesting to investigate level-of-detail algorithms specifi-
cally for depth of field rasterization in order to improve per-
formance. This could make the advantage of our algorithm
even more pronounced.
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Appendix A: Selective Tile-Edge Culling

In this section, we present a technique to estimate the efficiency of
culling using the H; lines. When the efficiency is expected to be low,
we want to disable these tests on a per-edge basis. The motivation
for this is illustrated in Figure 18.

To achieve our goal, we derive an estimate of the amount of sam-
ples that can be culled by a half-space line H; derived from a tile
corner and an edge, Epq, between vertices p = (px, py, pz, pw) and
q4 = (qx, 9,9z, 9w)-

Depth-of-field is a shear in clip-space [RKLC*11], parameter-
ized on the lens coordinates, (u,v), and can be seen as applying the
matrix:

1 0 Au Bu
0 1 Cv Dv

Se =1y o 1 ol ©)
0O 0 O 1

to the clip space vertex positions. A, B,C, and D are constants de-
pending on the focus plane, aperture size, and the near and far plane.

A specific sample, (x,y,u,v), is culled by H; if (x,y) is outside
the edge Epq sheared by S(u,v). If (x,y) is outside the bounding
box of the triangle as seen from (u,v), it will be culled by the half-
space lines h;. Hence, it is only points within the defocused triangle

bounding box that can be culled by H;. Within this bounding box,
the screen space area outside Epq is:

Aot (1,v) = |Xq(u) —Xp(”)2||yq(v) —H()l 7 7

where (Xp,Yp) are the projected pixel coordinates of vertex p.

et (Apz+Bpw)u R7X Ry

X + = =X+ kpu,
p(u) Pw ) ) p T kpi
Cp.+Dpy)v R R
YP(V):—py+( Pt pw)vlJrl:Y;?erpv, ®
Pw 2 2

where Ry X Ry is the image resolution. The number of sam-
ples culled by Epq, assuming the samples are evenly spread over

(u,v) € Q= [—1,1] x [—1,1], and with sampling rate Ry, is thus:
Rs [0 Ayt (u,v)oudv R,
N.ramplex = Sk}é}# = IS /QAcuII(LhV)auav. (9)

To solve this integral, we take a closer look at A.,;; in Equation 7,
where the differences can be computed using Equation 8:

Xq(u) — Xp(u) = X — X9 + (kq — kp)u = a+ bu,
Yq(v) —Yp(v) = Yé) —Y£+ (mq —mp)v =c+dv,

a-+ bullc+dv
Acutt (,v) = % (10)
The integral of this expression is:
1
/ A (,7)00dv = S F(a.b)F(c.d), an
Q
where:
2|al if |a| > |b|,
Fla,b)=1 2 (12)
|“7 +b| otherwise.

With Equations 11-12, Nygppies can be computed using Equation 9.

The cost incurred by culling with Epq is proportional to the num-
ber of tiles, N5, covered by the bounding box of the defocused
triangle. The oracle thus disables the tile edge test, H;, for a partic-
ular triangle edge, Epq, if:

Nramplescsample < Ntilesctilm (13)

where Cyyppie is the sample test cost, and Gy, is the cost of testing
one H; line against a tile. The computation of A, can be simplified
by assuming that the edge’s bounding box does not become zero
(i.e., degenerate) within Q. This simplifies the expression for A,
to:

1 0 0 0 0
ACIAll:Equ_XpHYq_Yp‘7 (14)
which means that Ny pjes can be expressed as:
Ry
Nmmples = 7|X3—X3||Y£—Yg| (15)

This simplification results in a slightly underestimated culling po-
tential in areas where the potential is already low, and works well
in practice. The measurements in the paper are gathered using this
simplification.

Note that the Nygmpies computation presented in this section does
not consider the discretization of the screen into tiles, nor does it
consider the discretization of the lens into grid cells. These approx-
imations may cause the algorithm to overestimate the real culling
potential, and more refined oracle functions may give better results.
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