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Automatic Pre-Tessellation Culling
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Graphics processing units supporting tessellation of curved surfaces with displacement mapping exist today. Still, to our knowledge, culling only occurs after
tessellation, that is, after the base primitives have been tessellated into triangles. We introduce an algorithm for automatically computing tight positional and
normal bounds on the fly for a base primitive. These bounds are derived from an arbitrary vertex shader program, which may include a curved surface evaluation
and different types of displacements, for example. The obtained bounds are used for backface, view frustum, and occlusion culling before tessellation. For
highly tessellated scenes, we show that up to 80% of the vertex shader instructions can be avoided, which implies an “instruction speedup” of 5×. Our technique
can also be used for offline software rendering.

Categories and Subject Descriptors: I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Hidden line/surface removal

General Terms: Algorithms

Additional Key Words and Phrases: Rasterization, tessellation, culling, hardware

ACM Reference Format:
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1. INTRODUCTION

To provide rich surface representations for real-time rendering, it is
expected that most graphics hardware in the near future will have
support for tessellation of curved surfaces with displacement map-
ping. The Xbox 360 [Doggett 2005] and the ATI Radeon HD 2000
series [Tatarchuk et al. 2007] already have support for this. A primi-
tive with a triangular or square domain is tessellated, and barycentric
coordinates are forwarded to the vertex shader, which may compute
an arbitrary position based on these coordinates, and more. To the
best of our knowledge, these systems only perform culling after tes-
sellation using the conventional graphics pipeline. Clearly, it would
be advantageous to cull before tessellation occurs as illustrated in
Figure 1.

Over the years, culling techniques have seen many uses in both
real-time graphics and offline rendering. In general, RenderMan
implementations [Apodaca and Gritz 2000; Cook et al. 1987] use
culling on many different levels. However, the details may vary for
different implementations. View frustum and occlusion culling are
performed, often prior to tessellation, and splitting of primitives
may also occur. Backface culling is usually done after tessellation.
Wexler et al. [2005] describe a GPU-optimized implementation,
where (among other things) occlusion queries are used to accelerate
rendering. However, to bound a displaced surface in RenderMan,
the user either has to provide the renderer with a conservative upper
bound, or the displacement shader is executed on micropolygons,
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and exact bounds computed from these [Apodaca and Gritz 2000].
In this latter case, no culling occurs before tessellation.

Shirman and Abi-Ezzi [1993] use cones to bound a set of normals
on a patch, and can thus perform efficient backface culling. Kumar
and Manocha [1996] derive a different method for backface culling
of curved surfaces, and use a conservative technique to bound the
normals and then test for culling. However, neither of these tech-
niques can handle arbitrary surface evaluations automatically on the
fly. Han et al. [2005] describe an alternative GPU implementation,
where the part of the vertex shader that computes the position of a
vertex is executed first. After that follows backface culling. If the
triangle is culled then unnecessary lighting calculations are avoided.
Our goal is similar, but we want to perform culling before tessella-
tion even occurs.

There is a wealth of literature on adaptive on-the-fly tessella-
tion, and as our work can be combined with such techniques, we
only list some of them. Doggett and Hirche [2000] use a summed-
area table of the displacement map and a normal test to guide the
tessellation. A similar approach is to use interval arithmetic and in-
terval textures to focus the tessellation efforts [Moule and McCool
2002]. To provide a continuous level of detail, Moreton [2001] intro-
duces fractional tessellation where tessellation factors are specified
as floating-point numbers per triangle edge. This allows for adap-
tive tessellation across a mesh, and similar techniques are used in
modern GPUs [Tatarchuk et al. 2007].
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Fig. 1. GPUs with tessellation hardware are given a base mesh over a parameter space, (u, v), as input. In this case, the tessellator increases the number of
triangles by a factor of 16, and a vertex shader evaluates a point on a torus surface. In the lower part, we visualize the base triangles that our culling algorithm
automatically can avoid to tessellate, and where vertex shader evaluations can be avoided. We are able to cull 56% of the triangles prior to tessellation.

In contrast to the previous work described before, we focus on
presenting a single automatic solution. Our article contributes with a
novel pre-tessellation backface, view frustum, and occlusion culling
method which is:

—fully automatic, based only on arbitrary vertex shader code which
can include, for example, deformations, curved surfaces, and dis-
placement mapping;

—implemented with tightly bounded arithmetic on triangular do-
mains; and

—suitable for implementing in both hardware and software render-
ing systems.

Next, we describe our algorithm in detail.

2. TESSELLATION CULLING

The goal of our work is to efficiently avoid tessellating the majority
of surfaces which do not contribute to the final image. This occurs
when a surface is backfacing, outside the view frustum, or occluded
by previously rendered surfaces. Furthermore, we believe it is of
utmost importance that fully arbitrary vertex displacement shaders
can be handled in a completely automatic way. In this section, we
present a novel algorithm for this. Without loss of generality, we
restrict ourselves to triangular domains and tessellation.

2.1 Overview

We extend the current GPU tessellation pipeline [Tatarchuk et al.
2007] with our new culling unit as illustrated in Figure 2. Note that
this type of pipeline is also rather similar to offline rasterization
pipelines. Without our culling unit, base triangles are first injected
into the pipeline, and these can be tessellated to a desired number
of triangles by the hardware. For each created vertex, the tessellator

forwards its barycentric coordinates, (u, v), down the pipeline. The
vertex shader then computes the position, p(u, v), of each vertex as
a function of its barycentric coordinates. This may include, for ex-
ample, the evaluation of a Bézier triangle with texture displacement,
procedural noise, and transform matrices. Each term can also depend
on a time parameter in order to animate a water surface, for example.

Our culling algorithm works as outlined in Figure 3. First, we
analyze the vertex shader program and isolate all instructions that
are used to compute the vertex position. We then compute geometric
bounds for this position over an entire base triangle, and use these
bounds to perform the culling.

Recently, it has been shown [Hasselgren and Akenine-Möller
2007] that pixel shaders can be executed, bounded, and culled over
a block of pixels using interval arithmetic [Moore 1966]. In this case,
the programs used for culling are often short (terminated by a KIL
instruction). However, in our context, the shader programs are sig-
nificantly more complex, and therefore we use Taylor models [Berz
and Hoffstätter 1998] to approximate the shader function over the
triangle domain. We then use Bernstein expansion [Hungerbühler
and Garloff 1998] to compute tight bounding boxes for the Taylor
models, and use these bounding boxes for culling.

In the following, we first present some background on Taylor
models in Section 2.2. Then follows an algorithm for computing
tight polynomial bounds in Section 2.3, and our program analysis
and generation in Section 2.4. In Section 2.5, we describe how se-
lective execution of our culling can be done, and finally, the culling
algorithms are described in Section 2.6.

2.2 Taylor Arithmetic

Taylor arithmetic has seen little use in computer graphics research,
but there is a recent exception in collision detection [Zhang et al.
2007]. Interval arithmetic [Moore 1966], on the other hand, has been
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Fig. 2. To support tessellation in the GPU pipeline, a tessellation unit has recently been added. We propose to add the culling unit, which automatically
determines whether tessellation of a base primitive can be avoided.

(a) base triangle (c) Bernstein expansion(b) Taylor model (d) final bounds

Fig. 3. Algorithm overview: (a) a base triangle (seen from the side) with precomputed tessellation factors is sent to the tessellation unit; (b) by expressing the
vertex program in Taylor form (polynomial + interval remainder), a conservative estimate of the surface is obtained; (c) the Taylor polynomial is expanded in
Bernstein form for efficient range bounding (using the convex hull property); (d) finally, by adding the interval remainder term from the Taylor model to the
Bernstein bounds, conservative surface bounds (red) are obtained.

used extensively in graphics. Intervals are used in Taylor models,
and the following notation is used for an interval â.

â = [a, a] = {x | a ≤ x ≤ a} (1)

Given an n + 1 times differentiable function, f (u), where u ∈
[u0, u1], the Taylor model of f is composed of a Taylor polyno-
mial, T f , and an interval remainder term, r̂ f [Berz and Hoffstätter
1998]. An nth-order Taylor model, here denoted f̃ , over the domain
u ∈ [u0, u1] is then

f̃ (u) =
n∑

k=0

f (k)(u0)

k!
· (u − u0)k

︸ ︷︷ ︸
T f

+ [r f , r f ]︸ ︷︷ ︸
r̂ f

=
n∑

k=0

ckuk + r̂ f . (2)

This representation is called a Taylor model, and is a conservative
enclosure of the function, f over the domain u ∈ [u0, u1].

Similarly to interval arithmetic, it is also possible to define arith-
metic operators on Taylor models, where the result is a conserva-
tive enclosure (another Taylor model) as well [Berz and Hoffstätter
1998]. Addition is defined as follows: Assume that f + g shall be
computed and these functions are represented as Taylor models,
f̃ = T f + r̂ f and g̃ = Tg, r̂g . The Taylor model of the sum is
then

f̃ + g = (T f + Tg) + (r̂ f + r̂g). (3)

Note here that T f + Tg is an addition of two polynomials.
Similarly, for multiplication of a Taylor model, f̃ , by a scalar

value, λ, we get that

λ̃ · f = (λ · T f ) + (λ · r̂ f ). (4)

Multiplication between two Taylor models is more complicated.
Assume again that we want to compute f · g where f and g are rep-
resented by Taylor models. The Taylor model of the product is then

f̃ · g = T f · Tg︸ ︷︷ ︸
T f ·g

+ B
(
T f · Tg

) + B
(
T f

) · r̂g + B
(
Tg

) · r̂ f + r̂ f · r̂g︸ ︷︷ ︸
r̂ f ·g

.

(5)

The polynomial part of this equation, T f ·g is simply the multiplica-
tion of the polynomials T f and Tg , but clamped (denoted T f · Tg)
so that all terms of higher order than the Taylor model have been
removed.

The remainder has several contributing terms. First, we have
the part of the polynomial multiplication that overflows and has
terms only of higher order than the Taylor model (T f · Tg =
T f · Tg − T f · Tg). Note that we want the remainder term on interval
form, and therefore we must bound the overflow of the polynomial
multiplication over the domain (this is indicated by the bounding
operator, B()). To compute the bounds, we directly evaluate over-
flowing terms using interval arithmetic and accumulate them to the
remainder. More complex bounding computations, such as the one
presented in Section 2.3, are possible, but since multiplication is
such a frequent operation, we must ensure that it is fast to compute
its bounds. The other terms found in the remainder involve comput-
ing the bounds of T f and Tg and are treated similarly to the overflow
from the polynomial multiplication. It should be noted that one or
more of the terms in the remainder often are zero. For instance, if r̂ f
or r̂g is zero, then the corresponding terms will be zero as well. As
an optimization, we detect these cases and avoid the computations.

By using Taylor expansion and the addition and multiplica-
tion operations presented previously we can derive more complex
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Fig. 4. A comparison of the bounds for a parametric curve (px (t), py (t)) of degree 3 in t for interval aritmethic (red), affine arithmetic (blue), and Taylor
models with Bernstein bounds (green).

arithmetic operators, like sine, log, exp, reciprocal, and so on. We
refer to the work of Berz and Hoffstätter [1998] and Makino and
Berz [2003] for more details.

Motivation. The motivation for us to use Taylor models is that
curved surfaces and subdivision schemes are often based on poly-
nomials. Polynomial computations can be represented exactly by
Taylor models (provided they are of high enough order) which leads
to very tight bounds. Previous work on shader analysis [Greene and
Kass 1994; Heidrich et al. 1998; Hasselgren and Akenine-Möller
2007] have successfully used interval and affine arithmetic, which
are computationally less expensive than Taylor models. However,
note that they subdivide the domain into small tiles before evalu-
ating the bounded shader. In contrast, we must bound the shader
over the entire domain (the base triangle) in a single evaluation,
and consequently we need much tighter bounds. A side-by-side
comparison between the tightness of interval arithmetic, affine
arithmetic, and Taylor models can be found in the example in
Section 2.3.

Taylor models also provide a flexible framework since it is es-
sentially a superset of interval and affine arithmetics. It allows us to
tweak interval sharpness versus computational overhead by chang-
ing the order of the Taylor model. Orders zero and one correspond
to interval arithmetics, and generalized interval arithmetics [Hansen
1975], which is similar to affine arithmetics.

2.3 Tight Polynomial Bounds

Our approach to tessellation culling is to evaluate the vertex shader
using Taylor arithmetic as described earlier. We execute the part of
the shader that affects the position attribute using Taylor arithmetic.
This results in a Taylor model for each of the components in the
position attribute: (x, y, z, w). To find a geometrical bounding box,
one could then find local minima and maxima for each of these.
However, this requires numerical, iterative methods for polynomials
of degree n > 4, and also quickly becomes impractical due to the
dependence on the two parametric coordinates, (u, v).

Instead, we use a faster, conservative approach which still pro-
duces tight bounds. The resulting Taylor polynomials are in power
form, and the core idea is to convert these to Bernstein form. The
convex hull property of the Bernstein basis guarantees that the
actual surface or curve of the polynomial lies inside the convex
hull of the control points. Thus, we compute a bounding box by
finding the minimum and maximum control point value in each
dimension.

In practice, we obtain bivariate polynomials from the vertex
shader evaluation using Taylor arithmetic, and for a single com-
ponent (e.g., x) this can be expressed in the power basis as follows

(where we have omitted the remainder term, r̂ f , for clarity).

p(u, v) =
∑

i+ j≤n

ci j ui v j (6)

We want to transform Eq. (6) into the Bernstein basis

p(u, v) =
∑

i+ j≤n

pi j Bn
i j (u, v), (7)

where Bn
i j (u, v) = ( n

i

)( n−i
j

)
ui v j (1 − u − v)n−i− j are the Bernstein

polynomials in the bivariate case over a triangular domain. We can
convert a polynomial in the power basis form into the Bernstein form
using the following formula [Hungerbühler and Garloff 1998].

pi j =
i∑

l=0

j∑
m=0

(
i
l

)(
j

m

)
( n

l

)(
n−l
m

) clm (8)

To compute a bounding box, we simply compute the minimum and
the maximum value over all pi j for each dimension, x , y, z, and w .
This gives us a bounding box, b̂ = (b̂x , b̂y, b̂z, b̂w ), in clip space.
Next, we will give an example of the effectiveness of this technique
when compared to interval and affine arithmetic.

Example. Assume we have the following parametric curve,
p(t) = (px (t), py(t)), where t ∈ [0, 1], px (t) = 1 + 3t + 3t2 − 2t3,
and py(t) = 1 + 9t − 18t2 + 10t3. We will illustrate how inter-
val and affine arithmetic compare to our tight polynomial bounds
when computing a two-dimensional axis-aligned bounding box
of this curve over the domain, t ∈ [0, 1]. The resulting bounds
are visualized in Figure 4. Using standard interval arithmetic, we
obtain p̂x = [1, 1] + [0, 3] + [0, 3] + [−2, 0] = [−1, 7] and
p̂y = [1, 1] + [0, 9] + [−18, 0] + [0, 10] = [−17, 20], and
these two intervals represent a box with an area of 296. Simi-
larly, applying affine arithmetic [Comba and Stolfi 1993] on the
same example gives us px = 3 + 9/4ε1 + 1/2ε2 − 3/4ε3 and
py = 9/4 − 3/4ε1 − 13/4ε2 + 15/4ε3, where εi ∈ [−1, 1] are
noise symbols. The bounding box becomes p̂x = [−0.5, 6.5],
p̂y = [−5.5, 10], which represents a box with an area of 108.5.
To apply our tight polynomial bounds, we first observe that the
polynomials for px and py are essentially in Taylor form al-
ready. Our strategy is therefore to rewrite these on Bernstein form:
px (t) = 1 · (1 − t)3 + 2 · 3(1 − t)2t + 4 · 3(1 − t)t2 + 5 · t3, and
py(t) = 1 · (1 − t)3 + 4 · 3(1 − t)2t + 1 · 3(1 − t)t2 + 2 · t3, where
the control points have been typeset in boldface. The bounding box
is then found as the minimum and maximum of the control points
in x and y. This gives us p̂x = [1, 5] and p̂y = [1, 4], which has
an area of 12. The tightest fit axis-aligned box has p̂x = [1, 5] and
p̂y = [1, 2.37], with an area of 5.48.
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2.4 Program Analysis and Generation

In a graphics pipeline with a tessellation unit, the vertex shader
receives barycentric coordinates and the associated base triangle in-
formation, and then outputs a vertex position in clip space. In the
simplest vertex shader, the vertex position is computed by interpo-
lating the base triangle vertices, using the barycentric coordinates,
and transforming this position into clip space by a matrix multipli-
cation. In the general case, the vertex position is displaced using an
arbitrary function (of the barycentric coordinates) before the clip
space transform.

We want to bound this position over the entire barycentric domain,
and must therefore evaluate the vertex shader output for every pos-
sible barycentric coordinate, since this is the only input that varies
over the base triangle. To accomplish this, we reformulate the vertex
shader using Taylor models.

We represent each Taylor model as a coefficient list. Each coeffi-
cient has a scalar value and an id i , indicating that it is the coefficient
of the xi term. For example, the polynomial 4 + 3x + 0.5x2 over
the domain x ∈ [0, 1] would be represented, as a Taylor model of
order 2, by the list [{4, 0}, {3, 1}, {0.5, 2}, r̂ = 0]. It could also be
represented as a Taylor model of order one as [{4, 0}, {3, 1}, r̂ =
[0, 0.5]].

Our only varying input, the barycentric coordinates, are expressed
as two-dimensional Taylor models. Generalizing the list representa-
tion from before to two dimensions so that a polynomial term αxi y j

is represented by a coefficient {α, i, j}, we can write the barycentric
coordinates as two-dimensional Taylor models.

u = 0 + 1 · u + 0 · v = [{1, 1, 0}]
v = 0 + 0 · u + 1 · v = [{1, 0, 1}]
w = 1 − 1 · u − 1 · v = [{1, 0, 0}, {−1, 1, 0}, {−1, 0, 1}]

These are Taylor models of order 1 (i, j ≤ 1) over the domain
u ∈ [0, 1], v ∈ [0, 1]. Note that no remainder is needed.

We then proceed by evaluating all instructions using Taylor mod-
els. We will briefly exemplify the implementation of addition and
multiplication of Taylor models, as more complex operations will
be expressed in these in the end.

Addition. Addition is done by adding the polynomial part of each
Taylor model. Our internal representation of the polynomial part is
a list of nonzero coefficients. Thus, the polynomial addition es-
sentially becomes a sparse vector addition at runtime. Here is an
example.

u + w = [{1, 0, 0}, {1 − 1, 1, 0}, {−1, 0, 1}]
= [{1, 0, 0}, {−1, 0, 1}] = 1 − v . (9)

Note that we only need to perform additions for nonzero terms
existing in both u and w , as the other terms can be handled using
variable renaming. The remainder term, if nonzero, is handled using
normal interval arithmetic. A more realistic shader would include
linear interpolation between two, at compile-time unknown, posi-
tions. This requires us to work with variables rather than constants.
Thus the example becomes

p1u + p0w = [{p0, 0, 0}, {p1 − p0, 1, 0}, {−p0, 0, 1}]
= p0 + (p1 − p0)u − p0v . (10)

Multiplication. Here, we loop over the nonzero components in
one Taylor model and multiply it by all nonzero components in the
other. Thus, the runtime complexity is roughly O(a · b) multiplica-
tions, where a and b are the number of nonzero coefficients in each
of the two polynomials being multiplied. We bound the remainder

terms using interval arithmetics. This can be optimized by exploiting
that our domain is (u, v) ∈ [0, 1], as all multiplications by zero can
be omitted. For multiplication, the order of the Taylor model will
increase, so we have the choice to bound the higher-order terms and
add to the remainder, or increase the order of the model. A higher-
order Taylor model has more precision (polynomials up to the order
of the model can be represented exactly), but is also more costly
computationally. With the sparse list representation given before,
we can use a fixed order and models of lower orders will not have
any computational overhead, as only nonzero terms are stored and
used in the arithmetic operations.

Polynomial displacement shaders (Bézier surfaces) are simply a
sequence of Taylor multiplications and additions, and elementary
functions can also be bounded by Taylor models. Like standard
Taylor expansions, a higher-order representation leads to tighter
bounds. Once all arithmetic operations have been converted to Tay-
lor form, we express them using regular vertex shader code. There-
fore, we do not need to introduce any new specialized instruction
set for our bounding shader. However, the bounding shaders will be
significantly longer than the corresponding vertex shader.

Finally, our program analysis gives us a polynomial approxima-
tion of the vertex position attribute. We then compute its bounds
using the algorithm in Section 2.3. Once again, we generate the
necessary vertex shader code for this operation.

Discussion. Program analysis is done in the exact same way as
a standard implementation [Berz and Hoffstätter 1998] of Taylor
models, with the exception that we need to treat symbolic constants
(variables) rather than values, and we need to emit code rather than
executing the operations.

It should be noted that the Taylor models for the barycentric coor-
dinates are the same for all base triangles, and thus we can treat them
as constants rather than varying input. This means that the order for
all Taylor instructions can be computed statically at compile time.
Furthermore, we can do most standard optimizations (for example,
exploiting c · 0 = 0, and c + 0 = c), as well as all control flow that
is internally needed in the Taylor model computations, at compile
time. This greatly increases the runtime shader performance.

In conclusion, the complexity of each Taylor operation is highly
dependent on the “order” of the vertex shader. For instance, for a
program with only interpolation and a matrix multiplication, the
Taylor models will have no nonzero coefficients over order one. In
contrast, cubic Bézier triangle evaluation uses polynomials of degree
3, and consequently the Taylor models will have more higher-order
coefficients. The instruction ratio between the culling program and
vertex shader grows for more complex shaders (see Section 4). Note
that we can determine the number of instructions during compile
time. Thus we can compile the program, see how expensive it gets,
and only trigger culling if there is potential for performance gain.

2.4.1 Texture Mapping. Shaders using texture map lookups are
problematic, as the texture map may contain an arbitrarily complex
function. However, texture mapping is an important feature, as dis-
placement mapping is a prime use-case of a tessellation unit.

We implement texture mapping using interval-based texture
lookups [Moule and McCool 2002; Hasselgren and Akenine-Möller
2007], which computes a bounding interval for the texture in a given
region. If, for example, we want to displace a surface in the direc-
tion of an interpolated normal, then the texture interval will be used
in subsequent arithmetic computations. Therefore, we must convert
the interval to Taylor form.

A naive way of doing this is to treat the texture lookup in the in-
terval remainder term, r̂ f , of the Taylor model. However, we found
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this approach unsatisfactory, as the remainder term in Taylor mod-
els is treated using standard interval arithmetic, which causes the
bounds to grow rapidly. Instead, we treat every texture lookup as a
functional parameter. Specifically, instead of treating the shader as
a two-dimensional Taylor model

f̃ (u, v) =
∑

i+ j≤n

ci j ui v j + r̂ f , (11)

we treat it as a three-dimensional Taylor model

f̃ (u, v, a(u, v)) =
∑

i+ j+k≤n

ci jkui v j a(u, v)k + r̂ f , (12)

where a(u, v) is an unknown (texture map) function defined over
the interval domain (which we computed in the interval texture
lookup). By increasing the dimensionality of the Taylor models, we
can track correlations for arithmetic operations which depend on
texture lookups. In effect we defer the interval evaluations to the
last part of the shader, which consists of the bounds computations.
To support an arbitrary number of texture lookups, all Taylor arith-
metic, as well as the tight bounding computations of Section 2.3,
can be generalized to n-dimensional domains. For details, we re-
fer to the work by Berz and Hoffstätter [1998] and Lin and Rokne
[1996].

2.4.2 Branching and Looping. We can easily support branch-
ing and looping when the conditional expression is a value (or equiv-
alently, a zero:th order Taylor model with no remainder). In this case,
it is uniquely determined which branch we should take, or how many
iterations of a loop we should perform. A typical example would be
looping over an, at compile time unknown, number of fractal noise
octaves.

We can also handle branches with Taylor models for condi-
tional expressions. In such cases we compute quick bounds for the
Taylor model based on interval arithmetic (see multiplication in
Section 2.2). If the bounds of the condition are ambiguous, we must
execute both branches. Furthermore, if a variable is assigned a value
in both branches, we must assign it the union of those values. A union
of two Taylor models could be computed by computing the average
of their polynomial parts, and growing the rest term accordingly to
enclose both polynomials.

A construct that we cannot handle is loops with a Taylor model
as the conditional expression. One example is iterative computa-
tion on the barycentric coordinates that loops until the result has
converged. As previously explained by Hasselgren and Akenine-
Möller [2007], such computations are not guaranteed to converge
when bounded arithmetics are used, and we may get an infinite loop.
Fortunately, we can easily detect these cases and simply disable our
culling.

2.5 Selective Execution

We have observed that the bounding shaders are roughly 3–15×
more expensive than the corresponding vertex shader in terms of
instructions. Since this cost is rather significant, it makes sense to
execute the bounding shader only in regions where we are likely
to improve overall performance. A statistical analysis shows that
it is beneficial to execute the bounding shader if the following
holds:

c(cull)
c(vertex)

≤ p(cull) · n, (13)

where c(cull)
c(vertex) is the cost ratio between the cull and the vertex pro-

gram, p(cull) is the probability that a base triangle is culled, and n
is the number of vertices that will be generated during tessellation.

2.6 Culling

In this section, we will describe how the actual culling is performed.
We want to emphasize that the culling algorithm per se is not a
novel contribution. However, some details are given here for the
sake of completeness. Recall that the output from the bounding
shader program are geometrical bounds: p̃(u, v) = ( p̃x , p̃y, p̃z, p̃w ),
namely, four Taylor models. As described earlier, we use the convex
hull property of the Bernstein form to obtain a bounding box from
these Taylor models. This box is denoted b̂ = (b̂x , b̂y, b̂z, b̂w ), where
each element is an interval, for example, b̂x = [bx , bx ].

2.6.1 View Frustum Culling. For view frustum culling, we sim-
ply need to test the geometrical bounds against the planes of the
frustum. Since we have the bounding box, b̂, in homogeneous clip
space, we can perform the test in this space as well. We use the stan-
dard optimization for plane-box tests [Haines and Wallace 1994],
where only a single corner of the box is used to evaluate the plane
equation. Each plane test then amounts to an addition and a compar-
ison. For example, testing if the box is outside the left plane is done
with: bx + bw < 0. Since these tests are inexpensive, our culling
always starts with the view frustum test.

2.6.2 Backface Culling. After the vertex shader has been exe-
cuted, the vertex p is in homogeneous clip space (before division
by w). This means that the model-view transform has been applied,
so the camera position is at the origin. Now, given a point, p(u, v),
on a surface, backface culling is in general computed as

c = p(u, v) · n(u, v), (14)

where n(u, v) is the normal vector at (u, v). If c > 0, then p(u, v)
is backfacing for that particular value of (u, v). For a parameterized
surface, the unnormalized normal, n, can be computed as

n(u, v) = ∂p(u, v)

∂u
× ∂p(u, v)

∂v
. (15)

After our bounding shader has been executed, we have Taylor
models, p̃(u, v), for the position. As part of the bounding shader
program, these are differentiated as well, resulting in ∂p̃(u, v)/∂u
and ∂p̃(u, v)/∂v . Finally, the Taylor model of the normal, ñ(u, v),
is computed using these.

There are two issues with this technique which we need to solve.
The first problem arises if p̃(u, v) contains a nonzero remainder
term, r̂ p , since this must be accounted for when computing the par-
tial derivatives. We solve this by using knowledge about the tes-
sellation frequency of the base primitive. Assume that a worst-case
sawtooth tessellation pattern is generated by the remainder term, as
shown in Figure 5(a). The maximum slope for such a configuration
is ( f (x +�x)− f (x)+w)/�x , where �x is the shortest edge gen-
erated during tessellation and w is the width of the interval remain-
der term. This expression is bounded by f ′(x) + w/�x according
to the mean value theorem. Similar reasoning holds for the mini-
mum slope. Thus ∂p̃(u, v)/∂u is bounded by ∂Tp/∂u ± (rp − rp)/
�x .

It should be noted that fractional tessellation may introduce edges
that are arbitrarily short, since new vertices may be inserted at the
positions of old ones. This makes it very hard to bound the deriva-
tives of Taylor models with remainder terms, as we must assume
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q=(1-t)p
0
+tp

1

s=(1-t)q+tf(t)

f(t)

(a) (b)

Fig. 5. We must take special care of the interval remainder term when performing backface culling. Figure (a) shows a worst-case derivative of a Taylor model
with a polynomial f (x) an interval remainder term with width w . The worst-case derivative that can be introduced by the remainder term is given by the blue
sawtooth pattern, which has a period of 2�x where �x is the length of the shortest edge created during tessellation. Figure (b) shows how we alter the original
fractional tessellation algorithm to avoid problems that would arise in Figure (a) if �x is very small.

that �x = 0. We propose to modify the fractional tessellation al-
gorithm so that new vertices are inserted in a bilinearly interpolated
fashion. As shown in Figure 5(b), we find the point q(t) by linearly
interpolating between the two neighbors p0 and p1. Then we inter-
polate again between the actual position, f(t), and q(t). Given this
modification, it is possible to show that the derivative from the pre-
vious section will behave as if the minimum edge length is half of
the edge length in a corresponding uniform tessellator. This means
that we can now bound the slope.

The second issue concerns treatment of texture maps. As can be
seen in Eq. (12), a Taylor model with texture lookups will contain
terms which depend on some unknown texture function a(u, v).
When such a term is differentiated, we will obtain partial deriva-
tives ∂a(u, v)/∂u and ∂a(u, v)/∂v . Our solution is to evaluate these
terms using textures of precomputed differentials. These differen-
tial textures are treated just like the regular textures described in
Section 2.4.1, and increase the dimension of the Taylor models.
It should be noted that this increase in dimension is not computa-
tionally costly, as we rarely get more than linear dependencies of a
texture.

2.6.3 Occlusion Culling. Our occlusion culling technique is
similar to hierarchical depth buffering [Greene et al. 1993], except
that we use only a single extra level (8 × 8 pixel tiles) in the depth
buffer. The maximum depth value, ztile

max, is stored in each tile. This is
a standard technique in GPUs [Morein 2000] used when rasterizing
triangles. We project our clip-space bounding box, b̂, and visit all
tiles overlapping this axis-aligned box. At each tile, we perform the
classic occlusion culling test: zbox

min ≥ ztile
max, which indicates that the

box is occluded at the current tile if the comparison is fulfilled. The
minimum depth of the box, zbox

min is obtained from our clip-space
bounding box, and the maximum depth of the tile, ztile

max, from the
hierarchical depth buffer (which already exists in a contemporary
GPU). Note that we can terminate the testing as soon as a tile is
found to be nonoccluded, and that it is straightforward to add more
levels to the hierarchical depth buffer. Our occlusion culling test can
be seen as a very inexpensive prerasterizer of the bounding box of
the triangle to be tessellated. Since it operates on a tile basis, it is
less expensive than an occlusion query.

3. IMPLEMENTATION

We have implemented our automatic culling unit in a C++ software
framework simulating the GPU pipeline. We execute the bounding
shader program before tessellating each base primitive. We noted
that both view frustum and backface culling may be realized in the

bounding shader, and our implementation generates code for this.
The output of our bounding shader is therefore a single Boolean
indicating if the base triangle should be culled or not, and a posi-
tional bounding box. The bounding box is required for the occlusion
culling, which cannot be implemented in vertex shader code as it
includes (coarse level) rasterization operations. Occlusion culling
is implemented further down the pipeline as a quick rasterization
algorithm.

We use fourth-order Taylor models in our program analysis. This
gives us an exact representation of the position and normal for cubic
polynomial surfaces, which are frequently used. Some examples
are curved PN-triangles [Vlachos et al. 2001] and bicubic patches,
such as Loop and Shaefer’s Catmull-Clark approximation [2007].
Higher-order terms will be handled by the remainder term in the
Taylor model.

We believe that our automatic tessellation culling could be im-
plemented in a graphics hardware system at a moderate cost. For a
full implementation, we need additional hardware that enables us to
do the following:

—execute a bounding shader once per base primitive. The instruc-
tion set and program inputs are identical to the vertex shader. With
unified shader architectures, this should be fairly straightforward
to add.

—perform the occlusion culling described in Section 2.6.3.

—remove a base triangle before tessellation based on a Boolean
culling flag.

The remaining tasks can be done either in the bounding shader code
or in a preprocessing step in a driver.

A partial implementation of our automatic culling algorithm could
be realized on current hardware in two passes. First, we would exe-
cute the bounding shader program and use it to compute tessellation
factors for the subsequent rendering pass. The tessellation factor can
then be set to zero for all culled triangles.

4. RESULTS

Our test setup and results will be presented in this section. We use
the software GPU simulator described in the previous section, and
render all images in 1920 × 1280 resolution. Since, to the best of
our knowledge, no system exists that can automatically perform
culling based on vertex shader analysis, cull shader generation, and
on-the-fly execution, we decided to compare our system against an
“optimal” culling unit. This unit can, for example, backface cull
a base triangle only if all tessellated triangles are backfacing. In
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practice, such optimal culling uses too many resources and so will
not provide much (if any) speedup. However, from a scientific point
of view, it is interesting to find out how close to an optimal culling
unit our algorithm performs.

To investigate the performance of our algorithm, we use four
test scenes, two of which have recently been used in GPU tes-
sellation contexts. These are Ninja, Terrain, Figurines, and Spike
Balls, as can be seen in Table I. In addition, we decided to use
four tessellation rates, giving approximate triangle areas of 8, 4,
2, and 0.5 pixels. We motivate these rates by the fact that GPUs
were balanced for eight-pixel triangles already two years ago [Pharr
2006], and the introduction of tessellation units indicates an inten-
tion to further decrease the size. Our highest tessellation rate (0.5
pixels) is inspired by production rasterization pipelines [Apodaca
and Gritz 2000], which is another possible application of our culling
unit.

The Terrain scene is a common usage area for tessellation. A
coarse mesh is finely tessellated and displaced. The camera moves
over the landscape, and so a fair amount of view frustum culling
should be possible. This scene has the most inexpensive bound-
ing shader, which is only 2.8× as expensive as the vertex shader.
The Ninja scene uses displacement mapping along an interpolated
normal. The model is always inside the view frustum, and so only
backface and occlusion culling can occur. Furthermore, the base
mesh is highly tesselated, which makes it a rather hard case for our
algorithm. A highly tesselated base mesh will not generate as many
tesselated vertices, and hence, there is not as much to be gained by
the culling. The Figurines scene consists of a set of models using PN-
triangles [Vlachos et al. 2001], namely, cubic Bézier triangles. We
included this scene to demonstrate that render-time mesh smooth-
ing can be handled efficiently by our culling algorithm. The scene
shows a grid of meshes seen from the front and tests all three types
of culling. It has the highest number of base primitives, but also
has many more separate objects and the most complex geometry.
The final scene, Spike Balls, shows PN-triangulated spheres with
displacement mapping. This scene has the most expensive bound-
ing shader program, approximately 2400 instructions long. Since
everything is inside the view frustum, this scene only uses backface
and occlusion culling.

We present our performance figures in Table I. The culling rates
show how our culling unit compares to the optimal culling unit
described before. Note that our culling unit in some cases per-
forms better than the optimal unit at occlusion culling. This only
occurs because the occluded triangles were removed by the back-
face culling test in the optimal culling unit. For the culling rate
figures, we execute our bounding shader for every base triangle
in order to make a fair comparison to the optimal culling unit.
For the performance figures (instruction speedup), we instead ex-
ecute the bounding shader based on Eq. (13), where we chose
p(cull) = 0.5.

It should be noted that the instruction counts for bounding and
vertex shaders presented in Table I are the number of scalar in-
structions used, and not vector instructions. The motivation for this
is that modern graphics hardware architectures use scalar instruc-
tions internally, and achieve parallelism by operating on multiple
vertices or pixels instead. Note also that we counted multiplications
and additions separately for simplicity. It is, however, likely that
the bounding shader programs can be significantly shortened using
multiply-add.

It should also be noted that our performance numbers do not in-
clude the actual tessellation (i.e., generation of connected vertices)
nor execution of instructions in the vertex shader not dealing with
computing vertex position (e.g., vertex lighting, tangent space trans-

forms, etc.). In addition, our simple occlusion culling is not included
either since it has to be implemented in custom hardware, but given
its simple nature it should be very efficient. In summary, we believe
that our performance would be even better if these factors were taken
into account.

Discussion. Given that our culling is automatically derived from
a vertex shader program, we consider our culling rates very high,
compared to the optimal culling rates. Note that we have inten-
tionally avoided very simple test scenes where, for example, a de-
tailed, tessellated character is behind a wall. In such cases, our oc-
clusion culling would cull the entire character given that the wall
was rendered first. One thing we noted in particular is that backface
culling of displacement mapped surfaces is a very hard task (al-
though our algorithm handles the Ninja and Spike Balls scenes fairly
well).

We also compared our culling results with generalized interval
arithmetic (first-order Taylor models), and noted that the results
directly dropped to 0% culling for the scenes with Bézier surfaces,
namely, Figurines and Spike Balls. This clearly motivates our choice
of higher-order Taylor models as a suitable arithmetic for bounding
shaders. For the remaining test scenes, Terrain and Ninja, we get the
exact same behavior for generalized interval arithmetic and higher-
order Taylor models. This is to be expected, since our Taylor model
implementation never uses higher order than necessary. Thus, the
culling performance, and the instruction ratio between the bounding
and vertex shader, are identical for these scenes.

Our PN-triangle scenes (Figurines and Spike Balls) use third-
order surfaces, similar to the popular Catmull-Clark subdivision
schemes. We also performed initial experiments with Loop and
Schaefer’s [2007] implementation of Catmull-Clark, for the Fig-
urines scene. As the surfaces are bicubic, they contain more high-
order terms than corresponding Bézier triangles, and consequently
the bounding shader becomes more expensive (6536 instructions
bounding shader, and 159 instructions vertex shader, as compared
to 1612/126 instructions with PN-triangles). However, we only need
to execute the bounding shader once for every quad, in this case.
The culling rate was within 2% of that of the PN-triangle version.
It should be noted that shaders as long as 6536 instructions may
not fit in current instruction caches, which may harm performance.
However, we believe that future hardware will be able to handle
longer shaders.

As can be seen in Table I, the performance is very high for scenes
with view frustum culling (the Terrain and Figurines scenes). In all
scenes, we use fractional tessellation and projected edge lengths to
determine the tessellation factors for each edge of the base trian-
gles. A fundamental problem with this approach is that we cannot
conservatively determine if the edge will be visible or not without
tessellating it. Therefore, we chose tessellation factors based on pro-
jected edge lengths, without clipping the edges by the view frustum.
This leads to highly tessellated base triangles close to the (infinite)
near clipping plane, and consequently we get a substantial speedup
if we can cull these. This is a general problem in tessellation, and
not bound to our application. In fact, using our culling unit makes
it much simpler to design a tessellation heuristic, since culling is
handled automatically.

Our tessellation heuristic also includes a maximum tessellation
factor to avoid generating base triangles being too highly tessellated.
This limit is reached when the Terrain scene is rendered at high
tessellation rates. Consequently, the vertex rate of the base triangles
close to the camera (many of which we can cull) goes down, and
this explains why the performance gain (instruction speedup) for
this scene decreases when we increase the tessellation rate.
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Table I. Performance Evaluation for Our Four Test Scenes

The instructions row shows the number of scalar instructions for the vertex shader (VS), and the bounding shader (BS). The cull rate
row shows how many base primitives our algorithm can automatically cull. The bold figure is the total culling rate, and the numbers
in the parentheses are for view frustum (VF), backface (BF), and occlusion (OC) culling. The optimal cull rate row shows the best
possible culling. For each scene, we then show instruction speedup for four different tessellation rates, so that the average tessellated
triangle area is 8, 4, 2, and 0.5. These figures were computed by dividing the number of instructions to compute the vertex position
of every tessellated triangle by the sum of the instructions used by our bounding shader program and the instructions used for the
non-culled vertices.

It should be noted that our culling technique is not limited to
polynomial surfaces. Figure 1 shows an example of a vertex shader
with sines and cosines, wrapping a planar surface to a torus. Still,
we can cull 56% (60% optimal) of the triangles before tessellation.

5. CONCLUSION AND FUTURE WORK

The trend in GPU rendering is steadily continuing to close in on the
quality of rasterization-based production pipelines. Using hardware
to obtain highly tessellated objects is another step in this direction.
We are therefore excited about the recent developments in hardware
tessellation and, hopefully, our work can be used in future imple-
mentations of GPUs to accelerate rendering further. As we have
shown, this would give significantly better performance, and since
our technique is fully automatic, we believe the application devel-
opers would find more motivation to use hardware tessellation if the
culling is done for them by the system. For future work, we would
like to investigate hierarchical tessellation, so that parts of a base
primitive can be culled, or even several base primitives in a single
cull operation. In addition, we have realized that backface culling is
the most difficult type of culling when it comes to handling arbitrary

vertex shaders. Therefore, we would like to do research on novel
techniques to further increase the backface cull rate at a low cost.
Furthermore, our work can be used in a software rendering pipeline
as well, and it would be interesting to evaluate exactly what kind of
performance can be obtained in such contexts.
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