
This is an author generated version. The original publication is available at www.springerlink.com manuscript No.
(will be inserted by the editor)

Error-bounded Lossy Compression of Floating-Point Color
Buffers using Quadtree Decomposition

Jim Rasmusson · Jacob Ström · Tomas Akenine-Möller

Abstract In this paper, we present a new color buffer
compression algorithm for floating-point buffers. It can
operate in either an approximate (lossy) mode or in an
exact (lossless) mode. The approximate mode is error-
bounded and the amount of introduced accumulated er-
ror is controlled via a few parameters. The core of the
algorithm lies in an efficient representation and color
space transform, followed by a hierarchical quadtree de-
composition, and then hierarchical prediction & Golomb-
Rice encoding. We believe this is the first lossy compres-
sion algorithm for floating-point buffers, and our results
indicate significantly reduced color buffer bandwidths
and negligible visible artifacts.

Keywords Color Buffer Compression · Lossy Com-
pression · High Dynamic Range · Real-Time · Texture
Compression · Quadtree

1 Introduction

Rendering is essentially an approximative process, where
an algorithm attempts to compute an image, which
may resemble a photograph, for example. The algo-
rithm may use different techniques that simulate how

J. Rasmusson
Lund University, Department of Computer Science

and Ericsson AB
Lund, Sweden

E-mail: jim.rasmusson@cs.lth.se

· J. Ström
Ericsson AB

Stockholm, Sweden

E-mail: jacob.strom@ericsson.com
· T. Akenine-Möller

Lund University, Department of Computer Science

Lund, Sweden
E-mail: tam@cs.lth.se

photons interact with an environment, and this sim-
ulation already includes a certain measure of approx-
imation. In addition, since computers are used, there
will be small approximation errors due to that floating-
point numbers are used in the calculations, and at the
end of the rendering pipeline, these floating-point val-
ues are often quantized to eight bits per component.
Over the years, a number of lossy (i.e., approximative)
texture compression techniques have been developed
and broadly adopted in the real-time graphics indus-
try. In addition, all precomputed radiance transfer al-
gorithms [7] use some basis, e.g., spherical harmonics or
wavelets, to approximately represent functions in. Fur-
thermore, Monte Carlo rendering techniques use sam-
pling to approximatively evaluate some kind of inte-
gral. These examples make it clear that approximative
algorithms can be and are being used successfully in
rendering.

Lossy techniques have also been used for color buffer
compression and decompression [13]. However, that work
targeted only low dynamic range (LDR) buffers, where
each color component only has eight bits. More and
more rendering is done directly to floating-point buffers,
which can contain high dynamic range (HDR) content,
and still, we have not seen any color buffer compres-
sion/decompression algorithms that are lossy (approx-
imative) for such data.

Therefore, we present a new algorithm for lossy com-
pression and decompression for floating-point color buffers.
Our goals include a system where the introduced errors
are kept under strict control, with substantially lower
memory bandwidth usage, high quality of the rendered
images, and reasonably low implementation complex-
ity. This new algorithm builds on the work presented
by Ström et al. [19] and by Rasmusson et al. [13] but
contains several new additions each which significantly

2

contributes to the quality and performance of the total
buffer compression/decompression system:

1. The hierarchical quadtree decomposition has been
extended with an adaptive flatness test during the
hierarchical subdivision, which provides consistent
introduced error per pixel. In the same spirit, we
have developed a quantizer which adapts to the hi-
erarchy level. These two techniques significantly re-
duce block artifacts.

2. The combination of using a decorrelating and re-
versible color transform together with an integer
representation gives us the possibility to compress
both lossily and losslessly in the same framework,
which is important since it reduces the complexity
of the system (if one want to support both lossy and
lossless compression).

3. Hierarchical prediction.
4. Adaptive error thresholding: Detection of when high

enough accumulated error has been reached, and in
this case, subsequent compression is made to com-
press less aggressively, which improves quality and
performance.

5. Constant bit rate mode, which can be used for HDR
texture compression.

Next, we review previous work.

2 Previous Work

In this section, we present the most relevant work and
their relations to our new algorithms.

Texture compression (TC) is a technique that is
heavily used in real-time graphics today. This line of re-
search started in 1996 [1,6,22], and since then, two ma-
jor algorithms have been adopted for implementation in
graphics hardware and supported by the APIs. S3TC
(called DXTC in DirectX) is a collection of formats
targeting both OpenGL and DirectX, while ETC [17]
is used in OpenGL ES. The majority of these schemes
compress to a fixed rate per block of pixels in order
to simplify random access. Both S3TC and ETC use
4 × 4 pixel blocks and compress down to four bits per
pixel (bpp). These algorithms are therefore, by design,
lossy. It should be noted that most algorithms for TC
are highly asymmetric, which in this case means that
compression often can be done offline once, and it is
only the decompression process, which is supported in
hardware, that needs to be fast and of low complexity.
The techniques above operate on low dynamic range
(LDR) data only.

To support high dynamic range (HDR) textures,
where each color component may be represented us-
ing a floating-point number (e.g., using 16 bits), spe-

cialized algorithms for HDR texture compression were
introduced by Munkberg et al. [11] and Roimela et
al. [16]. These also operate on 4 × 4 pixel blocks, and
compress down to eight bpp. Sun et al. [20] and Wang
et al. [23] take a different approach and implement an
HDR TC algorithm using existing hardware for S3TC.
This is in contrast to the other HDR TC algorithms
which need new hardware for efficient decompression.
There have also been some recent developments to the
first algorithms, and both of these increase the image
quality [12,15].

Textures are mostly read-only, and therefore it works
well with asymmetric compression/decompression algo-
rithms where compression is slower than decompres-
sion. However, the many buffers (e.g., color, depth, sten-
cil, etc) in a real-time rendering pipeline must be treated
differently for a variety of reasons. First, during the
rendering of a triangle, compression and decompres-
sion may be applied several times, and hence these
algorithms must be more symmetric. This also means
that both compression and decompression must be sup-
ported by the hardware. See the surveys on both color
buffer compression [13] and depth buffer compression [5].
In many cases, the user may need a buffer result which
is lossless, i.e., exact. However, as argued in the intro-
duction, approximate (lossy) algorithms is an interest-
ing option. The major reason is that they offer consider-
ably higher compression ratios, and we note again that
lossy techniques are already in use in several different
places in the pipeline. Rasmusson et al. [13] propose to
use a lossy buffer compression / decompression tech-
nique where the introduced error is kept under control.
When the error grows too large, the method reverts to
using lossless (exact) compression or no compression.
That algorithm operated only on LDR data. Recently,
a lossless algorithm for color and depth buffer compres-
sion of floating-point data has been proposed by Ström
et al. [19]. Similarly to the other buffer compression
algorithms, this technique is also block-based to pro-
vide random access, and there is a fall-back to using no
compression in order to be able to guarantee an exact
result at all times. However, that work does not inves-
tigate approaches for lossy compression/decompression
of floating-point buffers, which is the topic of the re-
search presented in this paper.

Note that in principle, one can use existing lossy
floating-point image compression algorithms, such as
the B44A codec included in OpenEXR [2], for lossy
buffer compression. The B44A codec is based on delta
modulation and works in a way similar to the HDR-
texture compression method by Roimela et al. [16], and
we have included it in our results section in order to
benchmark our algorithm.

3

3 New Color Buffer Compression Algorithm

In this section, we present a new color buffer compres-
sion method. The algorithm operates on tiles, which
are typically 8 × 8 pixels. It is designed to compress
16-bit floating-point (fp16) high dynamic range (HDR)
color buffers, although adapting the algorithms to 32-
bit floaint-point numbers is straightforward. All opera-
tions related to the compression algorithm are done in
the integer domain which lowers the complexity down
to a level where it is within reach also for a mobile phone
implementation. Note that while the bandwidth is sig-
nificantly reduced due to the compression, the amount
of storage in external RAM is not affected. This is due
to that the algorithm uses variable bit rate and have
an uncompressed mode as fallback, which is used for
tiles that cannot be compressed using implemented al-
gorithms (or if the maximum allowed amount of error
is reached for this tile). See the papers by Hasselgren
& Akenine-Möller [5] and Rasmusson et al. [13] for de-
tailed descriptions on how buffer compression/decompression
systems work.

The same implementation can be configured to op-
erate in 8-bit integer low dynamic range (LDR) mode
or in 16-bit floating-point (fp16) high dynamic range
(HDR) mode. This is possible since we reinterpret the
floating-point numbers as integers and do all operations
related to the compression algorithm in the integer do-
main. It can be configured to operate in an approximate
(lossy) or exact (lossless) mode with fine-grained con-
trol to go from one mode to the other. The approximate
mode has mechanisms to automatically go from lossy to
lossless mode when certain error thresholds have been
reached. This effectively bounds the introduced errors
to configurable maximum levels.

For each tile, a high level description of our algo-
rithm is as follows:

1. Reinterpret the bit-pattern of the floating-point num-
ber of each color component as an integer, and trans-
form (losslessly) from RGB into the decorrelated
Y CoCg color space.

2. Perform hierarchial quadtree decomposition.
3. Perform hierarchical prediction, quantization, and

Golomb-Rice encoding (adaptive).

In addition, we have an error-bounded control mech-
anism to keep the introduced approximations under a
user-defined threshold.

Our new method builds upon the color buffer com-
pression methods by Ström et al. [19] and by Rasmus-
son et al. [13]. The color buffer is divided into 8 × 8
pixel tiles, and we also use a simplistic method to han-
dle destination alpha, which is assumed to be 1.0 in
the compression stage. If destination alpha 6= 1.0, or

if any fp16 value is negative for any pixel in the tile,
we simply revert to uncompressed mode. Alternative
ways of handling alpha is to let the new compression
algorithm presented in this paper also handle the alpha
component, or let any existing scheme, such as DXTC
or table-based methods [18], handle alpha compression
for tiles with alphas between 0.0 and 1.0. At this point,
we have omitted such studies since it would not ad-
vance the research field much. In addition, we leave the
investigation of negative floats for future work, mostly
due to the difficulty for us to find reasonable test scenes
with negative values.

In the following, we describe the steps (1–3 above)
in detail.

3.1 Representation and Color Space Transform

Without an excessive numbers of bits, it is impossi-
ble to represent the difference between two arbitrary
floating-point numbers in a lossless manner. For pos-
itive floating-point numbers, we can circumvent this
problem by taking the bit pattern of the floating-point
number and interpreting them as an integer [8, 19].

After R, G, and B for each pixel in a tile have been
reinterpreted as integers, we convert these into a lumi-
nance/chrominance color space. Besides decorrelation
of the RGB channels, this enables the possibility to have
different compression settings for the luminance and the
chrominance components, respectively. For example, in
a lossy mode, we typically compress the chrominance
components more aggressively than the luminance com-
ponents. This will introduce higher error levels in the
chrominance components, but since the human visual
system is less susceptible to chrominance errors than lu-
minance errors, the resulting visual artifacts are less vis-
ible. Introducing higher error levels in the chrominance
than the luminance components are common in most
image and video processing methods, such as those in
JPEG and MPEG.

The color space transform we use is the Y CoCg-
transform [9], which has some very attractive prop-
erties. It has low implementation complexity (highly
silicon-efficient), and provides good decorrelation which
in general reduces bandwidth. Note that since we oper-
ate on pixel component values that are remapped from
floating-point to integer, the behavior of this transform
will not be the same as the original Y CoCg-transform [9].
We have not done any extensive analysis of how the
decorrelation properties change after the remapping op-
eration. However, we have observed that it brings per-
formance improvements on par with what it brings in
the LDR domain (about 10% bandwidth reduction).

4

Another property important for us is that this trans-
form is reversible; transforming the Y CoCg-values back
to RGB recreates the RGB values bit-exactly (that is,
if the Y CoCg-values have not been altered). This is a
must for our lossless mode.

Transforming fromRGB to Y CoCg and back is done
as follows. Note that the R, G, and B numbers are 15-
bit integers (the sign bit is assumed to be zero), and all
operations work on integers.

Co = R−B
t = B + (Co >> 1)

Cg = G− t
Y = t+ (Cg >> 1). (1)

The reverse transforming is as simple:

t = Y − (Cg >> 1)

G = Cg + t

B = t− (Co >> 1)

R = B + Co. (2)

The Y -component has 15 bits, and the Co and Cg-
components have 16 bits respectively. The color space
transform has been used for LDR color buffer compres-
sion before [13], and the reinterpretation of floats as
integers has been used before as well [8, 19]. However,
for us, it is crucial to use a luminance and chromi-
nance divided color space since it allows us to com-
press the chrominances stronger than the luminance.
The decorrelation also improves compression perfor-
mance (in general around 10% bandwidth reduction).
Furthermore we must be able to support both lossless
and lossy compression of floating-point data. The use
of this combination is a small, albeit very useful and
practical contribution in this context.

3.2 Hierarchical Quadtree Decomposition

The next stage is a quadtree decomposition of the trans-
formed tile data. This creates a hierarchical tree struc-
ture of the 8 × 8 pixels, where “flat” (homogeneous)
regions are sub-sampled and thus represented in higher
levels in the tree, and using fewer samples than one per
pixel. As an example, only one sample per 4×4 sub-tile
may be used if that sub-tile is flat enough. For an 8× 8
pixel tile, there are at most four levels, as can be seen
in Figure 1.

However, it is important to avoid sub-sampling when
the sub-tile region is not flat, e.g., when there are edges,
as this can cause visible artifacts. We use a flatness test,
where we first calculate the average of the 2× 2 pixels
in the sub-tile. If the absolute difference between each

1 0011 0110 1010

1

0 0

1 1

0

0

1

1

0

0

1

1

Fig. 1 Left: a full hierarchical quadtree decomposition of an 8×8

pixel tile. The bottom level has full pixel resolution (8×8 pixels),

and each level above is a subsampled version of the level below.
Right: in this example, we show the hierarchical decomposition

of the 8×8 pixels (light and dark gray) at the top. Note that if a

subtile has constant color, the representation ends at that level,
and that is the reason why the tree is not full. Note also that the

associated 13-bit tree code is shown at the top, where 1’s means
that the subtile has children, and 0’s means that the node is a

leaf. Thus, the first bit (1) indicates that the root node (top) has

children, and the first two of these children do not have children
of their own (00), while the remaining two has (11), and so on.

pixel value and the average is below a configurable “flat-
ness” threshold, τflat, we assume it is reasonable to use
subsampling. This is done for all pixels in the tile in a
bottom-up fashion. We start with the individual pixels
and attempt to sub-sample each 2 × 2 pixel sub-tile,
and then move up in the hierarchy until all four lev-
els have been tested. See Figure 1. If the entire 8 × 8
pixel tile consists of a really flat region, a single value is
sufficient to represent the entire tile. This case actually
occurs surprisingly often for the chrominance compo-
nents, Co and Cg. Computer generated content often
decorrelate well by the Y CoCg-transform, and this re-
sults in a Y -channel carrying most of the information,
while the chrominances are more uniform (flat).

Quadtree decomposition is a well known image and
graphics processing technique that yields an efficient
and compact data structure. It has often been in use
for image compression [21, 24]. However, to the best of
our knowledge, we have not seen this being used in any
buffer compression and decompression algorithms.

In Figure 2, the contribution of the quadtree stage
is shown in a rate-distortion plot. As can be seen, the
addition of the quadtree mechanism to the algorithm
brings a significant improvement in terms of reducing
bandwidth while keeping the distortion reasonably low.
This clearly motivates inclusion of quadtree decompo-
sition in our system.

An associated binary tree code describes the struc-
ture of the tree in a compact way. For an 8× 8 tile, the
tree code varies between 1 and 21 bits. A full tree (where
all nodes have four children) uses 21 bits (1+4+16), and

5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 640

45

50

55

60

65

70

Bandwidth (MB)

m
PS

N
R

 (d
B)

quadtree only
quantization only
quadtree + quantization

Fig. 2 Rate distortion plots of the two lossy stages in the algo-

rithm; the quadtree stage and the quantization stage. The two
rightmost curves are showing the two stages working in isolation,

and the leftmost curve shows the combined effect. Note that the

quadtree curve’s slope is flatter while the quantization curve’s
slope is steeper when moving towards lower bandwidths. These

results were made using a near exhaustive parameter search of

the Shadows scene (see Table 1) at 1024 × 768 resolution. Note
that our algorithm uses both the quadtree and quantization.

the smallest tree uses a single bit (i.e., indicating that
the 8×8 pixel tile is sub-sampled to one value), as illus-
trated to the right in Figure 1. The tree code is stored
in the compressed data.

Note that the flatness threshold, τflat, is lower the
higher up in the hierarchy the current subtile is at. That
is, in order to sub-sample a region covering more pix-
els, “the more flat” it has to be, if the introduced errors
per pixel are to be consistent. This also reduces block
artifacts. Since a pixel in level l covers four pixels in
level l− 1, we divide τflat by four (by right-shifting two
steps) each time we move up to a higher level. Note also
that the flatness threshold for the Y -components can be
lower than the corresponding thresholds for the Co and
Cg-components. Again, the reason for this is that the
human visual system is more susceptible to errors in
the luminance components. Also, as mentioned before,
most details are often present in the luminance compo-
nent. For lossless compression, we simply set τflat = 0,
and the values in the sub-tile regions have to be exactly
the same in order to be sub-sampled. This happens suf-
ficiently often to justify the decomposition stage to be
active also in our lossless mode. The flatness threshold
is also dependent on the amount of accumulated error
present from earlier approximations in the tile. See Sec-
tion 4 for more information on the error control.

Y11 Y12

Y21

Y13 Y14

Y31

Y41

Y22 Y23 Y24

Y32 Y33 Y34

Y42 Y43 Y44

Y25 Y26 Y27

Y35 Y36 Y37

Y45 Y46 Y47

Y28

Y38

Y48

Y52 Y53 Y54

Y62 Y63 Y64

Y72 Y73 Y74

Y55 Y56 Y57

Y65 Y66 Y67

Y75 Y76 Y77

Y58

Y68

Y78

Y82 Y83 Y84 Y85 Y86 Y87 Y88

Y15 Y16 Y17 Y18

Y51

Y71

Y81

Y61

D = (B+C)/2

D

A B

C

D = B

D

A B

C

D = C

D

A B

C

or or

if abs(B-C)<t if abs(B-C)≥t,
abs(A-B)≥s & g= 0

if abs(B-C)≥t,
abs(A-C)≥s & g= 1

D

A B

C D

A B

C

or

if abs(B-C)≥t,
abs(A-B)<s & g= 0

if abs(B-C)≥t,
abs(A-C)<s & g= 1

D = (3B+A)/4 D = (A+3C)/4

Fig. 3 Arrows indicate prediction. For instance, Y12 is used to

predict Y13. Pixels marked in gray can be predicted from the
pixels to the left, to the top, and/or top-left neighbors, as shown

to the right. The correct D-value is predicted as D̂ from pixels

A, B, and C. See also Equation 4.

3.3 Prediction, Quantization, and Encoding

The next few steps are prediction, quantization, and fi-
nally encoding. These are presented together since they
often are tightly connected in an implementation.

3.3.1 Prediction

For prediction, we use a modified version of the novel
predictor used for color buffer compression [19]. A use-
ful feature of this predictor is that it avoids prediction
across edges. This is of particular importance during the
rendering of computer generated content where sharp
edged primitives (e.g. triangles) are drawn on top of
other primitives or background images. Hence, the tiles
that are to be compressed often contain high intensity
transitions due to these edges. The predictor traverses
the pixels in the tile from left to right, and in top to
bottom order. See Figure 3. If the difference between
pixels B and C is big enough, it is assumed that an
edge has been found, and an extra guide bit, g, is used
to indicate whether to predict from B or C. Otherwise,
the average of B and C is used. For the gray pixels in
Figure 3, the predictor [19] is summarized below:

D̂ =

b 1

2 (B + C)c, if |B − C| < t

B, if |B − C| ≥ t, and g = 0
C, if |B − C| ≥ t, and g = 1,

(3)

where b·c denotes rounding to the nearest lower integer,
and t is a threshold value. In our experiments, we have
found that the following modification improves perfor-
mance slightly:

D̂=

b 1
2 (B + C)c, if |B−C|< t

B, if |B−C|≥ t, |A−B|≥ s& g=0
C, if |B−C|≥ t, |A−C|≥ s& g=1

b 3
4B + 1

4Ac, if |B−C|≥ t, |A−B|< s& g=0
b 1

4A+ 3
4Cc, if |B−C|≥ t, |A−C|< s& g=1.

(4)

6

In the new predictor in Equation 4, we added an
extra test to check whether the information in pixel A
is useful in the predicton. If A is similar enough to B

and C, respectively, we include A when calculating D̂.
We have found that s = 512 works well in practice.
Note that the multiplications by 1/4 and 3/4 are done
using shifts and adds in order to reduce complexity. The
threshold t is set to 2048 (same as Ström et al. [19]).

We traverse the pixels left-to-right and top-to-bottom.
The first upper left corner pixel is always stored sepa-
rately in uncompressed form.

To indicate where a new edge is first encountered,
Ström et al. [19] use a restart value, which consists of
a pixel position inside the tile, and the value at that
pixel. The idea is that the first time a very different
value occurs, it should be possible to state that explic-
itly. For the rest of the pixels, it should be possible
to predict either from this new value or from the previ-
ous values. However, sometimes a block may
contain more than two sets of very differ-
ent values and a single restart value is not
enough, as illustrated in the figure to the
right.

To mitigate this situation, Ström et al. [19] have a
rotation mechanism which changes the pixel traversal
order, and checks if rotating the sub-tile yields a more
favorable situation for the predictor. While the rotation
helps, there are cases where it does not help and you end
up predicting across edges, resulting in large ”jumps” in
the stream of residuals. This degrades the performance
of the subsequent Golomb-Rice encoding.

We take a different approach to the use of restart
values. While Ström et al. use a single restart value
per tile and perform an exhaustive search [19] to find
the best position for it in the tile, we propose to al-
low as many restart values as it takes to accurately
represent an edge (or several edges) inside a tile. The
restart values are also detected on-the-fly in the pre-
dictor and thereby we avoid the expensive exhaustive
search method of Ström et al. [19]. Furthermore we also
skip the rotation as it requires an extra encode session
(to test if the rotated tile is better).

In order to find the restart values, we have added
an extra test in the predictor that checks if the pre-
dicted value and the current value differs with more
than τrestart (another threshold value), i.e., |D − D̂| ≥
τrestart. In practice, we have found that τrestart = 8192
works well here. If this is the case, we generate a new
restart value.

These restart values are basically random values,
and so there is no point in using a predictor on these.
Furthermore, the distribution of restart values typically
does not suit the Golomb-Rice coder, and hence we code

Fig. 4 Illustration of a few prediction cases using the example

tile from Figure 1. Note that the sub sampled values are used for
prediction. The number of predictions are defined by the quad

tree. Arrows indicate prediction (only a few cases, marked with

red circles are illustrated). Pixels marked in orange use the three
neighbor pixels (left, top, and/or top-left) and white pixels use

only one (either left or top). For some pixels, two out of the

three neighbors are the same (e.g. the dotted pixel). See also
Equation 4.

and store them separately. Pruning the restart values
from the stream of residuals also has the added benefit
that the Golomb-Rice coder performs well with a single
divisor for all residuals, see Section 3.3.3.

Note that we use the subsampled pixel values when
calculating the prediction values. Due to the adaptive
sub-sampling scheme during the quadtree creation, a
varying number of pixels needs to be predicted. See
Figure 4.

The predictor also needs to handle the odd cases
where the top-left pixel, due to the sub-sampling scheme,
is the same as the either the left or the top pixel. The
dotted pixel in Figure 4 is an example of such a case.
After subtracting the predicted values from the input
values (subsampled), we have a number of residual val-
ues. A last important thing to realize is that the pre-
dictor on the encoding side must behave in the same
way as on the decoding side. For this reason, the pixels
are at all times modified to the decoded (lossy) values
while predicting. This means that, in the predictor, we
quantize the residual, store the value for further en-
tropy encoding and then do an inverse quantization, to
get the decoded value back.

The quantizer and the entropy coding scheme are
described next.

3.3.2 Quantization

In the lossy mode, the residual values are quantized. We
use a uniform quantizer where the quantization step is
dependent on which sub-sampled area the current pixel
is in. This means that the more flat the region, the more
gentle quantization. This is done to reduce the amount
of introduced errors with the motivation that these sub-
sampled values represent more pixels, and therefore the
amount of quantization should be reduced in order to

7

be consistent. Next, the details of our quantization are
described.

We first compute the quantization step as: qstep =
(qlevel � l)� qerrorweight, where � denotes right shift,
and qlevel is the basic quantization level set by the user—
the higher value, the more loss in the compression. To
reduce block artifacts, the subsampling level, l, reduces
the amount of quantization the higher up in the hierar-
chy the sub-tile is located, and the right shift by l should
correspond to a division by the number of pixels covered
by that subtile. For example, for the top level (which
covers 8×8 pixels), the quantization level should be di-
vided by 64, i.e., l = 6. More generally, assume there are
2p × 2p pixels in the current subtile. The subsampling
level is then computed as l = 2p. The qerrorweight pa-
rameter is described in Section 4.1. Once qstep has been
computed, the residual values, r, are quantized accord-
ing to: r̂ = r � qstep. The quantized residual values, r̂,
are then subsequently entropy coded for further com-
pression. In the following, we argue that it is reasonable
to perform the quantization in the integer domain. Re-
call that the float-to-integer conversion is monotonic,
and neighboring positive floats are converted to neigh-
boring positive integers. Thus, converting a float to an
integer, and quantizing the integer (ie., slightly perturb-
ing the integer), is equivalent to a slight perturbation of
the original floating-point value. Hence, it is clear that
we can quantize in the integer domain, with expected
results.

3.3.3 Encoding

We use the standard Golomb-Rice technique [4, 14] for
entropy encoding. When the predictor generates resid-
ual values whose distribution has higher density around
zero, good compression ratios can be expected since
fewer bits are spent on smaller values in Golomb-Rice.
A further advantage is that the implementation is of
reasonably low complexity.

For clarity, we briefly recap how the Golomb-Rice
code works, and refer to recent papers [13, 19] for a
detailed explanation. Each residual value is divided by
a divisor, 2k, which creates a quotient and a remainder.
The quotient is encoded using unary encoding and the
remainder is coded using binary encoding. A zero is
used to separate the two. We have found that a single
divisor per tile yields the smallest bandwidth. This is
possible due to that we store the first upper left corner
value and the restart values separately, which makes
the stream of residuals “pruned” and better suited for
the Golomb-Rice coder.

To find the best k-value, we use a method [19], where
the the bit position, p, of the most significant bit of the

Fig. 5 In these images, we visaualize the error computed on

the luminance channel using the HDR visual difference predic-

tor (VDP). Green pixels are those where a human has a 75%
chance of detecting the artifact, and red pixels have 95%. In the

left image, no error control has been used, while in the right im-

age the compression was error-bounded using our algorithm. All
other parameters were the same. Clearly, there is a need for error

control.

largest residual value is calculated. We then test the
interval [p− 4, p] for the best k-value.

After this, the entire encoding is finished, and can
be written over the bus to external memory.

4 Error Control

For lossy buffer compression, it is of utmost importance
to have some sort of error control that prevents the ac-
cumulated error to grow out of reasonable proportions.
The reason why this is needed is that compression can
be applied many times to a tile (due to that many tri-
angles can render to the same tile at different times),
and if an error is introduced when the first triangle is
rendered, then this error may grow when the second
triangle is rendered, and the tile is compressed again.
This is often called tandem compression. The differ-
ence between using and not using an error-bounded al-
gorithm can be seen in Figure 5, where visible errors
are visualized using the HDR visual difference predic-
tor (VDP) [10].

We use an error control mechanism similar to the
one proposed by Rasmusson et al. [13]. This algorithm
gauges the introduced errors, and a decision is taken to
use approximative compression if the newly introduced
error and the previously accumulated error together are
below a predetermined error threshold. If this condi-
tion is not met, then we revert to the lossless mode
instead. The error metric we used is the mean square
error (MSE) between the decoded RGB and the input
RGB values. See Rasmusson et al’s paper for more de-
tails.

4.1 Graceful Parameter Adaptation

We now present an improvement of the previous error
control mechanism. A simple observation here is that

8

the compression algorithm should revert to lossless en-
coding as seldom as possible. To that end, we introduce
graceful parameter adaptation, so that the higher the
accumulated error is in the tile, the lower is the flatness
threshold and also the quantization step. This allows
us to use lossy compression more often and it allows
us to use more aggressive compression for tiles that are
compressed only a few times.

The net effect is that the newly introduced approx-
imation errors will be smaller and smaller the closer
to the error threshold we get. More importantly, the
algorithm can continue to introduce small errors, with-
out having to revert to the much more expensive (in
terms of number of bytes) lossless mode. In our cur-
rent implementation, we detect when the accumulated
error level has reached 50% of the error threshold, and
in those cases, we divide τflat by a factor of two and
change qerrorweight (used in Section 3.3) from 0 to 1 .
This could be extended so that when the accumulated
error has reached 75% of the error threshold, the divi-
sion factor is four instead of two and set qerrorweight = 2,
and so on. A further extension would be to use the full
“1/x”-behavior.

In general, this mechanism gives an improvement
of 0.5 − 2 dB in mPSNR, while the bandwidth usage
remains constant or is even reduced by up to three per-
cent. However, for certain tiles the bandwidth may go
up. Intuitively, this may happen when the τflat is low-
ered due to that we reach the 50% threshold, and then
nothing more is rendered to that tile, which means that
there was no use in lowering the threshold. It should be
noted that for those tiles, the image quality is increased
though.

For our lossy mode, we also quantize the restart
pixel values (not the position) to 8 bits each, but when
we reach the 50% error level, quantization is instead
changed to 12 bits.

5 Implementation

Our algorithm evaluation (see Section 6) was done in
a software-based simulation framework implementing a
tiled rasterizer with a modern color buffer architecture,
programmable shading, texture caching, Z-culling, and
more. We have used a a color buffer cache of 1 kB, and
256 bits for a tile table cache to store the tile table bits
that indicate which compression mode is used (uncom-
pressed, tile clear, compression mode 1 or compression
mode 2).

In order for us to better understand the introduced
error levels, we have used mean-square (MSE) errors
between the incoming (original) tile and the same tile

being encoded and decoded for the error control mecha-
nism. This correlates well with established error metrics
(e.g., mPSNR [11]) when we measure error on the re-
sulting final image. However, for a hardware realization,
methods of lower complexity could be developed. For
example, error gauging can be made on-the-fly directly
inside the quadtree decomposition stage and the pre-
dicton stage. Less expensive error metrics (in terms of
complexity) such as sum-of-absolute-differences (SAD)
may be used instead of MSE. This would need further
analysis, and therefore, we leave this for future work.

While the properties of an algorithm, and its per-
formance in terms of image quality and compression
ratios can be evaluated using a software simulation, it
is also important to investigate whether a hardware im-
plementation is feasible. The different processing blocks
have been designed with low complexity in mind. The
Y CoCg-transform consists solely of integer adders, sub-
tracters and bit shifters and will incur a tiny cost in sil-
icon. In order to reduce latency, many transform blocks
can be executed in parallell. The quadtree decomposi-
tion method is also low complexity and highly paral-
lelizable. In our predictor, a majority of the operations
are bit shifters, adders and subtractors, and hence the
complexity is relatively small.

We believe the total complexity of a combined com-
pressor and decompressor will be low enough even for a
silicon implementation in embedded battery-driven de-
vices like mobile phones. This is supported in a Master
thesis report by Caglar and Ojani [3] showing results
from a silicon implementation of the lossless mode of
the algorithm by Rasmusson et al. [13], including the
rather complex variable bit rate parts. The resulting
size of the compression and decompression blocks was
well below 0.1 mm2 in 65nm technology. That imple-
mentation operated on 8 × 8 pixel tiles, but only on
8-bit integer color (i.e., LDR), while we need to use 16-
bit integers. Since mostly adders and shifts are used in
our algorithm, we believe that an implementation in sil-
icon will scale up in a decent way.So, while we have not
implemented our algorithm in hardware exactly, the ar-
guments above support that this will be feasible at a low
cost considering that we are dealing with HDR colors.

6 Results

In Section 5, we describe the software simulation frame-
work that we have used for algorithm evaluation. We
emphasize the fact that the testing includes the full,
incremental rasterization process of these scenes. This
is in contrast to regular image compression, where only
the final image is being compressed.

9

The test scenes are Water, Shadows, and Reflec-
tions, and all render targets are fp16 color buffers. To
make certain that a large interval of the dynamic range
is used, all scenes use fp16 texture maps and cube maps.
In addition, the Shadows scene renders shadows us-
ing shadow mapping, and Reflections renders an fp16
cube map every frame. The sphere in the center of the
scene is rendered using reflections with this dynamic
cube map. Screenshots from these scenes can be seen
in Table 1. Note that these screenshots have been tone
mapped from fp16 RGBA down to 8 bit RGBA. This
means that if a region in the screenshot appears to be
simple to compress (e.g., a white or black area), this
may not at all be so because the raw fp16 data can
contain a lot of information even in those areas. Since
we cannot know beforehand how the tone mapping op-
erator works, we need to be able to compress even these
areas with high quality.

In order to evaluate the error/quality of the final
rendered images, we use HDR-VDP [10], logRGB, and
mPSNR [11]. The HDR-VDP numbers presented in Ta-
ble 1 are given after a manual adjustment using the
multiply-lum command increasing the luminance level
to 300 cd/m2.

6.1 Contender Codecs for Benchmarking

We have compared our lossy compression algorithm
against OpenEXR’s B44A mode (described in Appendix A),
both in terms of compression performance and quality.
B44A is a lossy compressor, and it is the one that we
found most amenable for hardware implementation. We
have modified the B44A algorithm to include our error
control mechanism. In addition, as a benchmark for our
lossless method, we have used a modified version of the
method from Ström et al. [19]. The original method op-
erates on 8 × 8-blocks, but divides this into four 4 × 4
blocks in order to enable parallel encoding. This has
a negative impact on the compression efficiency, and
in order to provide a fair comparison, we have imple-
mented an 8× 8 version. It works in the same way, but
only one base value and one restart value per 8×8 block
are now used. Note that the image error/quality mea-
sures are only relevant for the B44A lossy compressor
and our lossy compressor.

6.2 Block Artifact Reduction

Since we are working with lossy compression of 8 × 8
pixel tiles, there is a risk for block artifacts. For this
reason, we have designed block artifact reduction tech-
niques in two places in the algorithm. The first place is

Fig. 6 Crops from the shadow scene at 1024×768. Left: block ar-

tifact reduction methods disabled. Right: block artifact reduction

methods enabled. In this case, mPSNR is about 4 dB higher with
block artifact reduction enabled when the parameters are tuned

for equal memory bandwidth usage. To clearly see the block ar-
tifacts in the left image, it may be necessary to zoom in the pdf.

512 1024 1536 2048 2560 3072 3584 4096
0

0.5

1

1.5

2

2.5

3

3.5

4

 Modified B44a
Ström et al. 2008 8x8
Our Lossless
Our Lossy

N
or

m
al

iz
ed

 #
 o

f t
ile

s

Compressed size (bits)

Fig. 7 A normalized histogram of the number of tiles that are

compressed to a given size (256 bits bins), using different algo-
rithms. We use 8 × 8 pixel tiles, which means that 4096 bits in-

dicate uncompressed tiles. The histogram is based on an average

over all our test scenes.

in the quadtree decomposition stage where the flatness
thresholds are decreased by a factor of four for each
higher level up in the quadtree. In the same spirit, the
quantization stage is designed to lower the quantization
step and apply milder compression the more subsam-
pled a residual value is. See Section 3 for more details.
In Figure 6, the effect of the block artifact reduction
methods are shown.

6.3 Target Memory System

Since we do not know the target memory system, it is
hard to predict what burst sizes are better than oth-
ers. The memory system of a graphics card for a PC
is dramatically different compared to that of a mobile
phone. For this reason, the bandwidths and associated
compression ratios shown in Table 1 are given without
burst size limitations. It should be noted that these are
unrealistically high. In order to present feasible burst
sizes in a more memory system agnostic way, we use a
histogram to show how often a particular “bit size bin”
is used (vs bin sizes). See Figure 7.

10

Uncompr
0

1:1

2:1

3:1

4:1

5:1

6:1

7:1

8:1

9:1

C
om

pr
es

si
on

 ra
tio

 (h
ig

he
r i

s
be

tte
r)

Our LosslessStröm et al.
2008 8x8

Our Lossy Modified
B44a

without burst size limitations
with burst size limitations

Fig. 8 Compression ratios with an optimal memory system (blue

bars) and a more realistic example memory system (red bars)

using a minimum burst size of 256 bits, with three tile bits (un-
compressed, cleared, 256, 1024, 1536, 1792, 2048, 2560 bits). The

diagram is based on an average over all our test scenes.

In our tile table, we may use two bits to indicate
compression mode (uncompressed, tile clear, and two
different compression modes) or we may use three tilebits
(uncompressed, clear and six compression modes). With
detailed histogram data, it is possible to analyze what
compression modes would be appropriate for a partic-
ular target memory system. If you have, for example, a
mobile phone system, with a 32-bit data bus and mo-
bile DDRAM, burst sizes of n times 256 bits (8 × 32
bit words) typically make sense. With three tile bits,
you have 6 compression modes to choose from. Ana-
lyzing the histogram data will give the six best burst
sizes. The resulting compression ratios for this example
is shown in Figure 8 (shown together with the compres-
sion ratios without burst size limitations).

6.4 Performance and Image Quality Evaluation

Table 1 shows the color bandwidth figures and the im-
age quality/error measures for the the three scenes ren-
dered at 320 × 240 and 1024 × 768 resolutions. Note
that we have tuned the thresholds of our algorithm so
that the image quality/error measures are about the
same for both the B44A (a lossy compressor) and our
lossy compressor. As can be seen, our algorithm always
outperforms the B44A algorithm. Our research in this
paper has not focused on lossless compression, but our
compressor can be configured as a lossless compressor
by setting τflat = 0, and the error threshold to zero as
well. This was done for the columns C in Table 1, and as
can be seen, our results are about the same as the loss-
less compressor presented by Ström et al. [19]. It can
be seen that the image error/quality measures of the
rendered images have high quality overall, and hence,
we believe that our algorithms make a significant con-

Bandwidth mPSNR

(MB/frame) (dB)

H.264 16 × 16 0.397 49.1

Our 16 × 16 0.385 49.5

Our 8 × 8 0.295 49.5

Table 2 A comparison with the H.264 codec.

tribution, since the compression factors are also rather
high.

6.5 Comparison with H.264

In addition to comparing to B44A, we have also in-
cluded a comparison against H.264. Although we guess
that H.264 is too complex to be used for color buffer
compression, we think that it is interesting to see how
our codec fares against a highly optimized state-of-the-
art method. For this comparison, we had to move to
16× 16 rasterization (see Appendix B for details), and
therefore we believe that these results are best pre-
sented in isolation. The result of the comparison can be
seen in Table 2, which is an average for the three scenes
rendered at 320× 240. As can be seen, our 16× 16 al-
gorithm uses slightly less bandwidth and the quality is
slightly better. On the face of it, it may seem as if the
two 16× 16 methods are more or less on par. However,
the H.264 codec enjoys two advantages: First and most
importantly, our 16× 16 method is not allowed to pre-
dict across the 8×8 pixel boundaries within the 16×16
blocks (see Appendix B). This turned out very difficult
to disable in the H.264 codec, and was thus allowed
for the H.264 codec. Such prediction is highly valuable,
and is generally regarded to be one of the major rea-
sons why H.264 works so well not only as a video codec
but also as a still-image codec. Second, the employed
H.264 encoder uses rate-distortion optimization, effec-
tively recoding the block multiple times and choosing
the best trade-off between bit rate and quality. Such
coding is computationally expensive, but performs well
in terms of coding efficiency. Thus, given that our codec
does not enjoy these two advantages, we find it notable
to see that we are still getting slightly better results,
and we think that our comparison shows that our tech-
nique is rather competitive against H.264 compression
in the color buffer compression context. In the table,
we have also included our 8 × 8 results, and as can be
seen, this variant of our algorithm performs a further
bit better. This is due to the fact that a system with
16× 16 tiles will read and write several pixels that are
never processed.

11

Scene Water Shadows Reflections

triangles 44 6468 60336
A B C D E A B C D E A B C D E

Resolution 320× 240
Color BW 1.6 0.56 0.57 0.19 0.53 3.8 1.0 0.92 0.43 1.6 4.9 1.5 1.7 0.7 2.8
mPSNR (dB) - - - 64.6 59.4 - - - 55.3 54.8 - - - 54.3 51.2
logERR[RGB] - - - 0.026 0.029 - - - 0.029 0.032 - - - 0.028 0.038
HDR VDP - - - 0.00 0.00 - - - 0.00 0.01 - - - 0.00 0.01

Compr factor 1.0 2.9 2.9 8.7 3.1 1.0 3.8 4.1 8.8 2.3 1.0 3.3 2.9 6.8 1.7

Resolution 1024× 768
Color BW 14.8 4.1 4.2 1.4 4.8 29.7 6.9 6.1 3.0 9.9 29.2 7.7 8.7 2.9 14.9
mPSNR (dB) - - - 68.8 62.1 - - - 60.8 59.0 - - - 55.7 54.1
logERR[RGB] - - - 0.021 0.023 - - - 0.015 0.019 - - - 0.024 0.027
HDR VDP - - - 0.00 0.00 - - - 0.00 0.01 - - - 0.01 0.06

Compr factor 1.0 3.6 3.5 10.5 3.1 1.0 4.3 4.8 9.8 3.0 1.0 3.8 3.4 10.1 2.0

Table 1 Performance evaluation. The different columns are: A = uncompressed, B = Ström2008, C = our lossless, D = our lossy,

E = OpenEXR B44A. The color buffer bandwidth (BW) is measured in MB/frame. Note that the parameters of our algorithm have

been tuned so that the quality/error measures are approximately the same for column D and E. Since the quality is about the same,
the compression factors can easily be compared. The HDR VDP rows show percentage of pixels where a human has a 75% chance of

detecting an error. In general, one strives after a high mPSNR and low values on logRGB and HDR VDP.

6.6 Texture Compression using Buffer Compression

Most existing HDR texture compression schemes com-
press down to 8 bits per pixel, i.e., at a constant bit
rate (CBR) per pixel. Out of curiosity, we experimented
with the idea of using our lossy buffer compression algo-
rithm for HDR texture compression at 8 bits per pixel
as a final, smaller test. The performance in terms of
quality was benchmarked against three state-of-art tex-
ture compression methods [12,15,20]. While our CBR-
decompressor is exactly the same as before, the com-
pressor needed some minor modifications to enable a
CBR mode. Our approach is simple, and the core is a
basic iterative search method to find one of 32 pos-
sible parameter sets, where a parameter set consists
of seven parameters; flatness thresholds and quantiza-
tion levels for each of the Y , Co and Cg-components,
and a restart quantization level. Parameter set 0 repre-
sents the mildest compression setting (highest quality,
highest number of bits) with increasingly stronger com-
pression settings as we move up towards parameter set
31, which represents the strongest compression setting
(lowest quality, lowest number of bits). The chosen pa-
rameter set is signalled with five extra bits in the com-
pressed tile data. The stopping criteria for the iterative
search method is to test if the number of generated bits
is within the range 512−τclose and 512. 512 is the num-
ber of bits of an 8×8 pixel tile at 8 bits per pixel. τclose

is configurable and we used a value of 32 in our test.
As an additional stopping criteria, there is a maximum
iterations counter which was set to 6 in our experiment.

The search method works as follows: in the first iter-
ation, the tile is encoded using the mid parameter set
15, which is the center of the range 0 to 31. If the first
stop criteria is met, we stop and parameter set 15 is
chosen. In the second iteration the next candidate pa-
rameter set is 23 (half way between 15 and 31) if the
compressed tile size was above 512 bits, or 7 (halfway
between 0 and 15) if it was below 512 − τclose. Since
we in the following iterations have at least two previ-
ous attempts, the remaining candidate parameter sets
(3rd, 4th, 5th..) are calculated as the linear interpola-
tion of the last two. The candidate parameter sets are
clamped to be within the range 0−31. If we cannot find
a parameter set that reach the stop range 512− τclose,
the maximum iteration counter halt the search. The
chosen parameter set is then the best candidate (clos-
est to, but below 512 bits) of the earlier attempts. For
the test images in our experiment, the average num-
ber of iterations was around four. With this configura-
tion, the execution time of our CBR-encoder was three
orders of magnitude faster than that of Munkberg et
al. [12]. Both implementations were written in non-
optimzed C++. While our algorithm is almost symmet-
rical in terms of complexity, the algorithm proposed by
Munkberg et al. represents a typical highly asymmeri-
cal algorithm.

The results can be seen in Table 3, and our algo-
rithm performs quite well also as an HDR texture com-
pressor. It should be noted, however, that this compar-
ison is a bit unfair in that our algorithm operates on
8× 8 pixel tiles, while the other algorithms operate on

12

Textures mPSNR (dB)

Our Sun Munkberg Roimela
2008 2008 2008

BigFogMap 50.8 51.0 51.9 50.4

Cathedral 37.5 39.7 40.0 34.3

Memorial 44.3 46.8 46.5 41.7

Room 46.9 48.1 48.6 44.0

Desk 39.7 41.5 40.3 28.4

Tubes 32.2 35.7 35.7 27.0

Table 3 Our algorithm used as a texture compres-
sor/decompressor. Benchmarked against three state-of-the-art

texture compression algorithms [12, 15, 20] for objective quality.

Note that the values in this table for the three other codecs
are copied from the paper by Sun et al. [20]. We have left

out logRGB and HDR-VDP results since they indicate similar
relations between the contenders. The images cann be found in

Munkberg et al’s paper [12].

smaller 4× 4 tiles. For one thing, this triggers the high
performance two-dimensional predictor for more pixels
in the tile (49 out of 64 pixels (76.5%) for 8 × 8 com-
pared to 9 out of 16 (56.2%) for the 4 × 4 methods).
On the other hand, our algorithm was not designed as
a texture compressor, but we thought it would be in-
teresting to find out whether a single codec could work
for both texture and buffer compression, and we believe
that our experiment indicates that this is so.

7 Conclusions and Future Work

In this paper, we have presented the first lossy floating-
point buffer compression algorithm, with results indi-
cating virtually lossless image quality. The compression
factors were between 2 − 3 times larger than state-of-
the-art lossless color buffer compression algorithms. If
a bit more loss of image quality can be accepted, the
compression gain can be much larger. Due to that com-
putation capability continues to grow at a much faster
pace than memory bandwidth and latency, we believe
that our work can influence the overall performance
substantially for future GPUs. We therefore hope our
work will spur a renewed interest in high-dynamic range
color buffer and texture compression.

As computations become less and less expensive in
relation to memory bandwidth usage, it would be in-
teresting to investigate computationally (very) expen-
sive compression/decompression algorithms with better
compression ratios and image quality. This is left for fu-
ture work.

8 Supplementary Material: Animated content

In order to inspect that the lossy algorithm does not
introduce additional artifacts during motion, an ani-

mated scene have been put together in a video. The
video shows the uncompressed sequence of frames to
the left and the lossy compression to the right. These
frames have been rendered using the Shadow scene us-
ing the same compression parameter settings as the re-
sults in Table 1 but at 640× 480 resolution. The color
buffer bandwidth is thus about a factor of 9 lower than
uncompressed mode (the left video) and about a factor
of 2 lower than our algorithm in lossless mode.

Acknowledgements We acknowledge support from the Swedish

Foundation for Strategic Research and Vinnova. Thanks to Rickard

and Clinton from Ericsson Research for Python script hacking,
and to Jon Hasselgren for coding help and reviewing. In addition,

Tomas Akenine-Möller is a Royal Swedish Academy of Sciences

Research Fellow supported by a grant from the Knut and Alice
Wallenberg Foundation.

References

1. A.C. Beers, M. Agrawala, and Navin Chadda. Rendering

from Compressed Textures. In Proceedings of ACM SIG-

GRAPH 96, pages 373–378, 1996.

2. R. Bogart, F. Kainz, and D. Hess. OpenEXR Image File For-
mat. In ACM SIGGRAPH Sketches & Applications, 2003.

3. Ahmet Caglar and Amin Ojani. Evaluation and Hardware
Implementation of Real-Time Color Buffer Compression Al-

gorithms. Master’s thesis, Linköping University, 11 2008.

4. Solomon W. Golomb. Run-Length Encodings. IEEE Trans-

actions on Information Theory, (July):399–401, 1966.

5. Jon Hasselgren and Tomas Akenine-Möller. Efficient Depth
Buffer Compression. In Graphics Hardware, pages 103–110,

2006.

6. Günter Knittel, Andreas G. Schilling, Anders Kugler, and

Wolfgang Straßer. Hardware for Superior Texture Perfor-
mance. Computers & Graphics,, 20(4):475–481, 1996.

7. Jaakko Lehtinen. A Framework for Precomputed and Cap-
tured Light Transport. ACM Transactions on Graphics,,

26(4):13, 2007.

8. P. Lindstrom and M. Isenburg. Fast and Efficient Compres-

sion of Floating-Point Data. IEEE Transactions on Visual-
isation and Computer Graphics,, 12(5):1245–1250, 2006.

9. Henrique Malvar and Gary Sullivan. YCoCg-R: A Color

Space with RGB Reversibility and Low Dynamic Range. In

JVT-I014r3, 2003.

10. Rafa l Mantiuk, Scott Daly, Karol Myszkowski, and Hans-
Peter Seidel. Predicting Visible Differences in High Dynamic
Range Images – Model and its Calibration. In Human Vision

and Electronic Imaging X, pages 204–214, 2005.

11. Jacob Munkberg, Petrik Clarberg, Jon Hasselgren, and
Tomas Akenine-Möller. High Dynamic Range Texture Com-
pression for Graphics Hardware. ACM Transactions on

Graphics,, 25(3):698–706, 2006.

12. Jacob Munkberg, Petrik Clarberg, Jon Hasselgren, and

Tomas Akenine-Möller. Practical HDR Texture Compres-
sion. Computer Graphics Forum, 27(6):1664–1676, 2008.

13. Jim Rasmusson, Jon Hasselgren, and Tomas Akenine-Möller.

Exact and Error-bounded Approximate Color Buffer Com-

pression and Decompression. In Graphics Hardware, pages
41–48, 2007.

14. Robert F. Rice. Some Practical Universal Noiseless Coding

Techniques. Technical Report 22, Jet Propulsion Lab, 1979.

13

15. K. Roimela, T. Aarnio, and J. Itäranta. Efficient High Dy-
namic Range Texture Compression. Symposium on Interac-

tive 3D Graphics and Games, pages 207–214, 2008.

16. Kimmo Roimela, Tomi Aarnio, and Joonas Itäranta. High

Dynamic Range Texture Compression. ACM Transactions
on Graphics,, 25(3):707–712, 2006.

17. Jacob Ström and Tomas Akenine-Möller. iPACKMAN: High-
Quality, Low-Complexity Texture Compression for Mobile

Phones. In Graphics Hardware, pages 63–70, 2005.

18. Jacob Ström and Per Wennersten. Low-Bitrate Table-Based

Alpha Compression. In to appear in Eurographics, 2009.

19. Jacob Ström, Per Wennersten, Jim Rasmusson, Jon Hassel-

gren, Jacob Munkberg, Petrik Clarberg, and Tomas Akenine-
Möller. Floating-Point Buffer Compression in a Unified

Codec Architecture. In Graphics Hardware, pages 96–101,

2008.

20. Wen Sun, Yan Lu, Feng Wu, and Shipeng Li. DHTC: an

effective DXTC-based HDR texture compression scheme. In
Graphics Hardware, pages 85–94, 2008.

21. J. Teuhola. Fast Image Compression by Quadtree Predic-

tion. Real-Time Imaging, (4):299–308, 1998.

22. Jay Torborg and Jim Kajiya. Talisman: Commodity Real-

time 3D Graphics for the PC. In Proceedings of SIGGRAPH,

pages 353–364, 1996.

23. Lvdi Wang, Xi Wang, Peter-Pike Sloan, Li-Yi Wei, Xin Tong,

and Baining Guo. Rendering from Compressed High Dy-
namic Range Textures on Programmable Graphics Hard-

ware. In Symposium on Interactive 3D Graphics and Games,
pages 17–24, 2007.

24. Roland Wilson. Quad-tree predictive coding: A new class
of image data compression algorithms. IEEE International

Conference on Acoustics, Speech and Signal Processing,

9:527–530, 1984.

9 Appendix

A OpenEXR B44A Lossy Compressor

The B44A encoder is implemented in OpenEXR, and is loosely

based on the work by Roimela et al. [16]. In Section 6, we use
this algorithm for our lossy compression comparisons, and hence

include a more detailed description of the algorithm here. The

B44A algorithm operates on the individual color channels of 4×4
blocks. The bit patterns are treated as integers, and the top left

value is first stored in full 16 bits. Each pixel is then predicted

from its left neighbor, except for the first pixel on each row, which
is predicted from its upper neighbor. The prediction errors be-

tween the original and the predicted values are then formed. If

all of these prediction errors are in the interval [−32, 31], they are
stored using six bits each. If not, the original values are divided

by 2k and rounded (starting with k = 1), and the prediction er-
rors are formed again. If they still do not fit the [−32, 31] interval,

the process repeats, etc. For some k, the prediction errors will be

small enough so that six bits is sufficient, and the block is then
successfully compressed. After compression each channel contains

the first value (16 bits), the k-value (6 bits) and the prediction

errors (15 6-bit values), all in all 112 bits (14 bytes). However,
using six bits to store the k-value allows for a division of 263,

which will never be needed on a 16-bit number. Thus, the B44A

encoder reserves this value for the case when the entire block is
constant. In this case, only the first value (16 bits) and the shift

value (6-bits) are needed, giving 22 bits or 3 bytes. Our version

of the B44A encoder always assumes that the alpha component
is 1.0, and hence only compresses 3 channels. Also, it compresses

8× 8 blocks by concatenating the output from four 4× 4 blocks.
The resulting bit rate is therefore between 4 · 3 · 3 = 36 bytes and

4 · 14 · 3 = 168 bytes.

B H.264

H.264 is a state-of-the-art video codec that can also be used for
compressing still images. While there exists no profile that can

handle 15-bit color component depths, there is a 14-bit version.

We have created a lossy coder based on H.264 by right-shifting
our 15-bit data one step to 14 bits, basically destroying the least

significant bit. The resulting 14-bit data is then compressed using

the JM (v14.2) reference implementation of H.264 using the High
4:4:4 profile.

The smallest image size H.264 can handle is 16 × 16 pixels.

It would have been possible to modify the H.264 codec so that it

could compress 8× 8 tiles (like the other algorithms in our com-
parison), but given the size and complexity of the H.264 code,

we refrained from that option. Instead, we have chosen to change

the rasterization block size from 8 × 8 to 16 × 16 for this com-
parison only, and hence the H.264 codec can be used unaltered.

Our proposed algorithm is adapted to 16 × 16 pixels by calling

our 8 × 8 compression function four times, which implies that
no prediction is done between the four 8 × 8 blocks. The H.264

encoder, on the other hand, will make prediction across the 8× 8

borders inside a 16 × 16 block, which gives the H.264 code an
advantage.

We configured the H.264 codec to work in 4:4:4 mode, which

means that no subsampling is used. The reason for this is that

subsampling the chrominances gave highly disturbing artifacts
along triangle edges. This is a consequence of the fact that H.264

does not have a special mode for prediction across edges.

Jim Rasmusson received his M.Sc. in Elec-
trical Engineering from Lund University in 1989.

Since 1990 he has been working in the mobile

phone industry. Since 2007 he is part time pur-
suing a Ph.D. Thesis in 3D graphics in Tomas

Akenine-Möller’s group at Lund University. He

also works for Ericsson Research. His main re-
search interests are graphics, image and video

processing for mobile phones.

Jacob Ström received his M.Sc. in Computer Science and

Engineering from Lund University in 1995. In 1998 he received
a Fulbright grant and spent one year at

the MIT Media Lab in Boston as a visit-
ing Ph.D. student. He received his Ph.D.
in image coding from Linköping University

in 2002, and is currently a Senior Specialist
in Graphics and Image Processing at Erics-

son Research in Stockholm, Sweden. Jacob

has worked with mobile graphics, and to-
gether with Tomas Akenine-Möller he wrote
the first SIGGRAPH publication on mobile

graphics in 2003. Current interests include compression tech-
niques for graphics, and he and Tomas received the best paper
award at Graphics Hardware 2005 for the ETC texture compres-
sion scheme, which is now part of the OpenGL ES API.

Tomas Akenine-Möller received his M.Sc. in Computer

Science and Engineering from Lund University in 1995, and a

14

Ph.D. in graphics from Chalmers Uni-

versity of Technology in 1998. He has
worked on shadow generation, mobile

graphics, wavelets, high-quality render-

ing, collision detection, and more. Tomas
has several papers published at the ACM

SIGGRAPH conference, and his first

SIGGRAPH paper was on the pioneer-
ing topic of mobile graphics together
with Jacob Ström in 2003. He co-authored the Real-Time Ren-
dering book with Eric Haines and Naty Hoffman, and received

the best paper award at Graphics Hardware 2005 with Jacob

Ström for the ETC texture compression scheme, which is now
part of the OpenGL ES API. Current research interests are in

graphics hardware both for mobile devices and desktops, new

computing architectures, collision detection, high-quality rapid
rendering techniques, and many-core rendering.

