
Graphics Hardware (2008)
David Luebke and John D. Owens (Editors)

Floating-Point Buffer Compression in a
Unified Codec Architecture

Jacob Ström1, Per Wennersten1, Jim Rasmusson1,2, Jon Hasselgren2, Jacob Munkberg2, Petrik Clarberg2,

and Tomas Akenine-Möller2

1Ericsson Research 2Lund University

Abstract
This paper presents what we believe are the first (public) algorithms for floating-point (fp) color and fp depth
buffer compression. The depth codec is also available in an integer version. The codecs are harmonized, meaning
that they share basic technology, making it easier to use the same hardware unit for both types of compression. We
further suggest to use these codecs in a unified codec architecture, meaning that compression/decompression units
previously only used for color- and depth buffer compression can be used also during texture accesses. Finally,
we investigate the bandwidth implication of using this in a unified cache architecture. The proposed fp16 color
buffer codec compresses data down to 40% of the original, and the fp16 depth codec allows compression down to
4.5 bpp, compared to 5.3 for the state-of-the-art int24 depth compression method. If used in a unified codec and
cache architecture, bandwidth reductions of about 50% are possible, which is significant.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture -
Graphics processors; E.4 [Data]: Coding and Information Theory - Data compaction and compression;

1. Introduction

To increase performance for graphics processing units
(GPUs), bandwidth reduction techniques continue to be
important [AMN03]. This is especially so, since the
yearly performance growth rate for computing capability
is much larger than that for bandwidth and latency for
DRAM [Owe05]. The effect of this can already be seen in
current GPUs, such as the GeForce 8800 architecture from
NVIDIA, where there are about 14 scalar operations per
texel fetch [NVI06]. Algorithms can often be transformed
into using more computations instead of memory fetches
(e.g., instead of evaluating, say, sin(x2 +y2) as a lookup in a
precomputed texture, this expression could simply be eval-
uated by executing the relevant instructions). However, at
some point, the computation needs are likely to be satisfied,
and then the GPU will be idle waiting for memory access
requests. Also, the brute force approach of duplicating the
number of memory banks and accessing these by using more
pins on the chip may not be possible in the long run. Hence,
we argue that memory bandwidth reduction algorithms is a
field of research worthy of more attention.

There are many types of bandwidth reduction techniques,
but here we will focus mostly on algorithms related to
some form of compression on the pixel or fragment level.

Other techniques are mentioned in Section 3. The two ma-
jor compression techniques for GPUs are buffer compres-
sion [HAM06, RHAM07] and texture compression, intro-
duced in 1996 [BAC96,KSKS96,TK96]. Since buffers, such
as color, depth, and stencil, are created during rendering us-
ing both reads and writes, these algorithms must be rather
symmetric in that compression and decompression are per-
formed in similar amounts of clock cycles. Furthermore, the
majority of these algorithms are exact, i.e., lossless, even
if there are exceptions for error-bounded color buffer com-
pression [RHAM07]. For lossless buffer compression, there
must always be a fallback to sending uncompressed data so
that all blocks can be processed in the system. Since random
access is required, these algorithms do not reduce storage,
only bandwidth usage is reduced when transmitting buffer
data. One or a few bits are stored on-chip or in a cache to
indicate whether the block is compressed or not, and this
memory is called the tile table. In recent papers, there are
new buffer compression algorithms and surveys for depth
buffer compression [HAM06] and for color buffer compres-
sion [RHAM07]. As a special mode in buffer compression
techniques, it is also possible to implement a fast clear op-
eration [Mor00], which is a type of compression. When a
buffer clear is requested, each block of pixels can flag (in
the tile table) that the block has been cleared. When such

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

a block needs to be accessed, the flag is first checked, and
it is discovered that the block is cleared, and hence there is
no need to read the block from external memory. Instead, all
the pixels in the block are simply set to a “clear”-value. This
makes buffer clears inexpensive.

The two most widely adopted texture compression
schemes are S3TC, also known as DXTC [MB98], which
has seen widespread adoption both for OpenGL and Di-
rectX, and ETC [SAM05], which has been adopted in the
OpenGL ES API, targeting mobile devices. In contrast to
buffer compression techniques, texture compression algo-
rithms can be asymmetric so that the compression phase can
take much longer than the decompression. The reason for
this is that textures usually are read-only data, and hence,
compression can be done in a preprocess. It is only when
the GPU accesses the texels that decompression needs to be
done, and hardware for this must be fast and of relatively
low complexity. To simplify random access, most texture
compression schemes compress to a fixed rate, e.g., 4 bits
per pixel. Note that texture compression actually reduces
the storage needs as well as the bandwidth usage. An ex-
ception to the fixed rate rule is presented by Inada and Mc-
Cool [IM06] who use B-tree indices to implement a lossless
variable bit rate texture compression system. Rendering to
such textures would be possible, which should mean that the
algorithm could be used for buffer compression as well.

Overview In this paper, we present two new codecs for fp
color buffer compression and fp depth buffer compression.
We have not seen any previous work in either of these two
fields before. Whereas these two new algorithms give rise to
bandwidth savings in their own right, the paper also investi-
gates how different types of hardware architectures influence
these savings.

OpenEXR [Ope08] is a format for fp image compression,
and while it cannot be used for buffer compression as is,
we have created a modified version of one of its codecs to
benchmark our fp color buffer compression algorithm.

In OpenGL, the framebuffer object extension
EXT_framebuffer_object allows render-to-texture
to be performed without data being copied. For instance,
it is possible to create a shadow map by rendering to a
depth buffer, and later render from that depth buffer without
having to first copy the data to a texture. If depth buffer
compression is used, and the texturing unit cannot decode
the compressed shadow map, it is necessary to first decom-
press the data before texturing takes place, which may be
as costly as copying the data. Alternatively, compression of
the shadow map can be turned off, which is approximately
equally bad. Therefore, the natural next step is to allow
rendering from textures irrespectively of what compression
format the data is stored in. This paper refers to this as a
unified codec architecture.

If any buffer/texture can use any compression format, it
helps if the different formats are based on the same basic

techniques, so that a hardware unit can decompress several
formats with little extra logic. Such compression formats are
denoted harmonized codecs in this paper.

In CPU architectures, there are systems which have sep-
arate data and instruction caches, while other systems use
unified caches. Sometimes, the L1 caches are separate and
the L2 cache unified. Separate caches have the advantage
that instruction caches, being read-only, can be made sim-
pler than data caches, which are read-modify-write. Unified
caches, on the other hand, have the advantage that a large
part of the cache can be used for instructions if instruction
traffic is high and data traffic low, and vice versa. In this pa-
per, we investigate what happens to memory bandwidth us-
age if the texture caches (read-only) and the buffer caches
(read-modify-write) in a graphics architecture are unified.
This paper denotes this a unified cache graphics architecture.

Next, we will describe our new floating point codecs, fol-
lowed by a description on what type of architecture they are
tested in.

2. Compressing RGBA half Data

To the best of our knowledge, no (published) attempts
have been made at color buffer compression for floating-
point RGBA data, even though there are works in
nearby fields such as texture compression of HDR tex-
tures [MCHAM06, RAI06], floating point data compres-
sion (not for buffers) [LI06], integer RGBA color buffer
compression [RHAM07] and lossless fp image compres-
sion [Ope08].

Our method builds on the work of Rasmusson et
al. [RHAM07]. We first divide the image into 8× 8 blocks,
and each block is given two bits in the tile table to indicate
whether it is fast-color-cleared, uncompressed, compressed
to 50% (2048 bits) of original size or compressed to 25%
(1024 bits) of original size. Often, the destination alpha is
not used, and therefore we assume it is 1.0 during compres-
sion. We also assume that the color components are positive,
storing only the last 15 bits of the half. If a block violates
either of these two assumptions, the uncompressed mode is
used instead. The 8×8 block is further subdivided into four
4× 4 sub-blocks. The idea is to first encode the red compo-
nent separately, and then encode the difference between the
green and red, and finally the difference between blue and
green. This is a simple but efficient way of exploiting the cor-
relation between the color channels, and hence an expensive
YUV transformation is avoided, which lowers complexity.

The first pixel of the red component R11 (see left part of
Figure 1) is stored directly using 15 bits. The rest of the pix-
els in the first row and column are predicted from the pre-
vious pixel as indicated by the arrows. For instance, R12
is predicted using R̂12 = R11, and instead of storing R12 di-
rectly, the prediction error R̃12 = R12− R̂12 = R12−R11 is
calculated and stored. Hopefully, R̃12 should be smaller and

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

0 1 2 3 4 5 6 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

A jump from 1.875 to 7.5 represents...

... a step size of 5.625 which is not representable.

but in the integer domain it can easily be represented using “add 16”.

�oat
interpretation

integer
interpretation

R12 R12

R12~

Figure 2: Lossless prediction in the floating-point domain can be tricky, since differences between two representable floating-
point numbers may not be representable. In the example, both the prediction R̂12 = 1.875 and the target R12 = 7.5 are repre-
sentable, but the difference R̃12 = 5.625 is not. Doing the prediction in the integer domain instead solves this problem.

D = (B+C)/2

D

A B

C

D = B

D

A B

C

D = C

D

A B

C

or or

if abs(B-C)<2048 if abs(B-C)≥2048
and guidebit= 0

if abs(B-C)≥2048
and guidebit= 1R11 R12

R21

R13 R14

R31

R41

R22 R23 R24

R32 R33 R34

R42 R43 R44

Figure 1: Left: Arrows indicate prediction. For instance, R12
is used to predict R13. Pixels marked in green can be pre-
dicted from one or two pixels, as shown to the right.

simpler to code than R12. However, the floating-point nature
of halfs leads to problems. Since the density of floating-point
numbers is not uniform (see Figure 2), the difference, R̃12,
between two floats may not be representable (red line). This
problem is solved in the seemingly counter-intuitive but well
documented way [LI06] of treating the halfs as integers. Due
to the clever way floating-point numbers are defined, neigh-
boring halfs will be interpreted as neigbhoring integers, as
can be seen below the axis in the figure. Note that this trick
works because we only compress positive halfs as described
above. Following the green arrow, adding the difference 16
to the prediction 15 gives the correct result 31, or 7.5 if in-
terpreted as a float. Doing the arithmetics in this “integer do-
main” also avoids costly floating-point operations, and since
the compression is lossless, we will also get a correct han-
dling of NaNs, Infs and denorms.

For the values marked with green in Figure 1, we can pre-
dict using the values that we already have encoded above and
to the left of the pixel. As seen to the right in Figure 1, we
can predict the value D using A, B and C. Color buffer com-
pression differs from other image compression in that there
may be an unnaturally sharp color discontinuity between a
rendered triangle and pixels belonging to the background or
to a previously rendered triangle of a very different color.
In order to avoid doing prediction across such discontinu-
ity edges, we propose the use of guide bits. If the differ-
ence between B and C is larger than a threshold, one bit is
used to indicate whether we will predict from B or C. If the
difference is smaller than the threshold, the prediction will
be b(B +C)/2c (where b·c denotes rounding to the nearest
lower integer), and no guide bits will be used. We found that

1 0

1 0

1

Figure 3: Left: The restart value is marked with a box.
Note how the guide bits make sure no prediction is made
across the discontinuity. Middle: Sometimes a pixel (marked
with dots) can only choose from two erroneous predictors.
This is alleviated by rotating the block 90 degrees counter-
clockwise, as shown to the right.

this simple predictor works better than the standard Wein-
berger predictor [WSS96], even when accounting for the
cost of the guide bits. Our predictor uses abs(B−C) < t,
where we found that t = 2048 works well for half data. The
predictor is also illustrated in Figure 1,

The leftmost block in Figure 3 shows an example of a
block with such a discontinuity edge. Traversing the pixels
in scan-line order, the boxed pixel will be the first different
value, and we call this the restart value. Its position in the
block (4 bits) and its value (15 bits) will be stored explic-
itly. We have used exhaustive search among all 15 positions
to find the best restart value, but faster heuristic approaches
can also be used. We describe one such heuristic for depth
values in Figure 4 . Note how the five guide bits in Figure 3
make sure that prediction is never done across the discon-
tinuity. In some cases, as shown in the dotted pixel in the
middle illustration, neither the top nor the left pixel will give
a good prediction. Therefore, we have introduced a bit to
indicate whether the block is rotated or not. After rotation,
the same pixel has a better chance to choose a good predic-
tor, although there are still degenerate cases when this is not
possible.

Next, the prediction errors R̃xy are stored. Since these
are differences between 15-bit numbers, they are 16-bits
signed integers. The first step is to make them positive
so that a Golomb-Rice coder can be used. By apply-
ing the function n(x) = −2x to negative numbers and
p(x) = 2x− 1 to positive ones, the new arrangement will
be {0,1,−1,2,−2,3,−3 . . .}, which means that numbers

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

of small magnitudes will have a small value. Each value
will then be Golomb-Rice encoded: First, it is divided by
2k, creating a quotient and a remainder. The quotient is
encoded using unary encoding
according to the table to the right.
Values larger than 31 are encoded
using 0xffff followed by the
16 bits of the value. The k bits
of the remainder are then stored.
Four pixels in a 2× 2 group share
the same k-value, which is stored

Code Value
0b 0
10b 1
110b 2
1110b 3
11110b 4
. . .

before the quotient and remainder data. An exhaustive
search between 0 and 15 is used to find the best k for the
group. In practice, though, the search can be made smaller
by looking at the bit position p of the most significant bit of
the largest value. The best k is almost always found in the
interval [p−4, p].

Whereas the red component is encoded independently of
the other data, the green component is encoded relative to
the red one. First, the difference between the green and the
red component is calculated for each pixel, again treating the
fp data as 15-bit integers. Then this difference is encoded in
the same way as the red component was above, with two
changes. First, the restart value and the top left value are not
treated separately, but are fed into the Golomb-Rice encod-
ing just as the other values are, but without prediction. Sec-
ond, the prediction pattern from the red component is used
again, meaning that no extra guide bits need to be sent. After
this, the difference between the blue and the green compo-
nent is encoded in the same way as the difference between
green and red.

Many blocks have uniform data, and for them it may be
unnecessary to encode a restart value. Therefore we reserve
one bit to indicate whether we use the restart value or not.
The total data structure is as follows: restart bit (1 bit), restart
pos (4/0 bits), restart value (15/0 bits), rotate bit (1 bit), start
value (15 bits), k-values (16 bits), guide bits (variable), and
Golomb-Rice bits (variable).

2.1. Compressing Depth Data

The fp depth buffer compression algorithm, which is the first
method of its kind to the best of our knowledge, is built using
the same techniques as the color buffer compression system.
In this way, a single hardware unit can handle both depth
and color with little extra hardware. Hence, the data is also
predicted, and the prediction error is encoded using Golomb-
Rice. However, the way the prediction is carried out is dif-
ferent.

We use the complementary-Z representation of Lapidous
and Jiao [LJ99] with no sign bit, three bits of exponent and
13 bits of mantissa, which is sometimes an alternative to 24
bit integer depth buffers. Since this move from 24 bits to 16
bits is in itself a data reduction by 2/3, it gives us a head start

101 102

11 103

103 104

104 105

12 10

13 11

8 6

9 7

0 1

90 2

2 3

3 4

89 91

88 90

93 95

92 94

0 0

1 0

0 0

0 0

1 1

1 1

1 1

1 1

Figure 4: The position of the restart value ZR is calculated
as follows: First the absolute difference to element Z11 is cal-
culated (middle). The element most different from Z11, called
Zdiff, is found (marked with green). Then each pixel that is
closer to Z11 than to Zdiff is allotted a restart pixel of value
of 0, else 1 (right). The restart position is the first pixel in
traversal order of value 1 (purple).

against 24 bit integer based depth buffer compression tech-
niques. Note that most integer depth compression algorithm
rely on the fact that the depths of a plane (e.g., from a tri-
angle) are coplanar (up to rounding accuracy) in the depth
buffer. However, for floating-point depths, this may not be
true, especially when the exponents differ. However, for val-
ues of the same exponent, they are still coplanar, so a pla-
nar prediction still produces good results, and the remaining
deviations can be handled by the Golomb-Rice encoding.
However, planar prediction requires more pixels to predict
from compared to the RGBA case.

The algorithm is intended to be able to handle two dif-
ferent planes per 4×4 sub-block. The top left pixel belongs
per definition to plane 0, and its value Z11 will be stored. For
cleared blocks, Z11 will be equal to the Zfar-value, hence one
bit is used to signal whether this is the case or if it should be
stored explicitly using 16 bits. The value of
the first encountered pixel of plane 1, which
we call the restart value or ZR for short, will
also be stored explicitly. A bit mask telling
which plane each pixel belongs to is also
stored. The figure to the right shows all the

A

F

B

CE D

pixels that can be used to predict the value D. However, it
can only predict from values that belong to the same plane
as D. If A, B and C belongs to the same plane as D, it will
use the prediction D̂ = B+C−A. Else, if B and F belong to
the same plane as D, it will use D̂ = 2B−F . Else, it will try
D̂ = 2C−E. If this also fails, but B and C both belong to the
same plane as D, one extra guide bit will be sent to choose
between the predictions D̂ = B and D̂ = C. If only one of
them share planes with D, that one will be used and no extra
guide bit will be spent. Finally, if none of these pixels are of
the same plane as D, it will use the value of the first encoun-
tered pixel of that plane. For plane 0, this means D̂ = Z11,
and for plane 1, this means D̂ = ZR. If any of the pixels A,
B, C, E and F are outside the block, they are treated as not
belonging to the same plane as D.

The position for the restart value, ZR, is determined as
shown in Figure 4. First, the pixel is found that differs the
most from Z11. This is done by calculating the absolute value

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

|Zxy − Z11| for each pixel position (x,y), as shown in the
middle diagram. This pixel, which is green in the figure,
is called Zdiff. Then a restart bit is given to each pixel: if
|Zxy−Z11|< |Zxy−Zdiff| it will be 0, otherwise 1. The restart
bits are then traversed in the prediction order, and the po-
sition of the first ’1’ will define the position of the restart
value, marked with purple. The restart bits are only used for
determining the restart value during compression, and are
not stored. One could use the restart bits for the guide bits,
but it turns out to be better to select the guide bits during
compression; both ’0’ and ’1’ are tried for each guide bit,
and the choice giving the best prediction will be selected.
If this method of encoding two separate planes is not bene-
ficial, the entire block can be compressed as a single plane
instead. One bit is used to indicate which method was used.

The differences between the predicted and the actual val-
ues are encoded using Golomb-Rice encoding just as in the
color buffer compression scheme, with one important differ-
ence. Only values predicted using two or more values, such
as D̂ = B+C−A, D̂ = 2B−F and D̂ = 2C−E, use the nor-
mal k value indicated for the 2× 2 block. Values predicted
from just one other pixel, i.e., using the predictions D̂ = B
and D̂ = C, will use k2 = bk/2c+ 10. The reason for this is
that the errors are much larger in this case, and would force
too big a k value to be used if not compensated for in this
way. These values can be seen as the encoding of the slope
of the plane, whereas the values predicted from two values
are merely the deviations from the plane, which should be
small. We have tried encoding the k-values independently
from each other, but this gave very little coding gain over
the simple k2 = bk/2c+10 formula. This is fortunate, since
the search space for the best k becomes much smaller. In ad-
dition, due to very small errors within a plane, k = 0 is a very
common case, so using only one bit to indicate wether k = 0
leads to further gains.

The depth scheme uses two modes, where the first is 192
bits and the second 768 bits. Many 8× 8 blocks consist of
pixels from only one plane, and for those it is unnecessary
to store several starting values for the 4×4 sub-blocks. The
guide bits will also be unnecessary, since the entire block
is only one plane. Therefore, the 192-bit mode uses just
one 8× 8 block instead of four 4× 4 blocks. Also, in the
8× 8 case, no guide bits or restart value are stored, and k-
values are selected for 4× 4 blocks instead of 2× 2 blocks.
In summary, the bits are as follows, for each 4× 4 sub-
block of the the 768-bit mode: Z11 = Zfar (1 bit), Z11 (16/0
bits), two-plane mode (1 bit), guide bits (15/0 bits), restart
value ZR (16/0 bits, k (4× 6/1 bits), extra guide bits (vari-
able), Golomb-Rice bits (variable). For the 192-bit mode,
Z11 = Zfar (1 bit), Z11 16/0 bits), k (4×6/1 bits), extra guide
bits (variable), Golomb-Rice bits (variable). As a reference,
we have also created a 24-bit integer version of the algo-
rithm. It is exactly the same, except for the fact that the start-
ing and restart values are stored with 24 bits instead of 16
bits.

Rasterization Texture & Fragment
Processing

Compression Units

z-compare
and blend

unified cache tile table
cache

texture-, z- and c- codecs

Memory Partition

DRAM DRAM DRAMDRAM

Fully
Unified

Architecture

Rasterization Texture & Fragment
Processing

Data cachesRasterization pipeline

z-compare
and blend

texture
cache

tile table
cache

c-buffer
cache

z-buffer
cache

texture
decompression

c-buffer
codec

z-buffer
codec

Memory Partition

DRAM DRAM DRAMDRAM

Conventional
Architecture

Figure 5: Conventional vs unified cache architecture. In the
bottom part, both the cache and the codecs are unified.

Codecs can be put together in many ways, especially
when it comes to details. However, we hope to have showed
that some overall strategies are useful, such as not predicting
across discontinuities.

3. Implementation

In order to evaluate our compression algorithms, and their
impact on different architectures, we have built a software-
based simulation framework, which can be configured
to emulate a host of different architectures. All config-
urations use Zmax-culling [GKM93, Mor00] and Zmin-
culling [AMS03] to avoid unnecessary fragment accesses.
Pixels are rendered tile-by-tile in order to maximize data lo-
cality, and the tile size is 8×8 pixels. Fast Z-clears [Mor00]
are also used. In all our tests, we use HDR texture compres-
sion (8 bits per texel) [MCHAM06], and normal map com-
pression (8 bits per normal) when possible. The caches for
all configurations store decompressed data, are fully associa-
tive and use a least recently used replacement policy.

The first configuration, A, is a conventional architec-
ture [KF05] (shown on the top of Figure 5), with separate
caches for textures and buffers (a non-unified cache), and
where it is not possible to render from textures compressed
with buffer compression schemes (a non-unified codec struc-
ture). Furthermore, no fp color buffer compression is used,
however 24-bit integer depth buffer compression is em-
ployed. We have used a texture cache [HG97, IEH99] of 13
kB, a color buffer cache of 1 kB and a depth buffer cache
of 512 bits. The texture cache is rather large, and the reason
for this is that we use floating-point data throughout, which
increases storage needs. We also use 256 bits for a tile table
cache to store the tile table bits for the depth buffer.

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

Configuration B is equal to A except that it includes fp
color buffer compression. It thus shows the benefit of adding
the proposed fp color buffer compression scheme to a tradi-
tional architecture.

Configuration C equals B except that it also implements
unified codecs, meaning that compressed color and depth
buffers can be recast as textures without any need for de-
compression. However, since different caches are used, the
cache must be flushed before the recast takes place.

Finally, configuration D utilizes both fp color buffer com-
pression, unified coders and unified caches, as shown in the
bottom part of Figure 5. The unified cache is of 14 kB for
texture, color buffer and depth buffer, and a common tile ta-
ble cache of 768 bits. Thus the configuration D is given equal
amounts of cache memory as compared to A, B and C.

Example To highlight the differences between configu-
ration A and D, consider the case of shadow mapping. The
shadow map is created by rendering a depth buffer, which is
used as a texture (the “shadow map”). When rendering the
final image, the shadow map is used as lookup data to de-
termine if a fragment is in shadow or not. In configuration
A, depth buffer compression can be used in the first shadow
map generation pass. However, when it is time to cast the
depth buffer to a texture it has to be decompressed and when
it is subsequently used as a texture in the later passes it
can only be used in uncompressed form. In configuration
D, due to the unified cache architecture, the depth buffer
can use the entire cache during the creation of the shadow
map, increasing hit rate and lowering bandwidth usage. Fur-
thermore, the cache does not need to be flushed when re-
casting the shadow map from a buffer to a texture. Due to
the unified codec architecture, no bandwidth-consuming de-
compression is needed during recasting. In the final pass, the
shadow map is accessed in compressed form, which further
reduces bandwidth.

We use three test scenes; Water, Shadows, and Reflections,
where all render to fp16 color buffers. HDR textures in cube
maps and object textures make sure that the dynamic range
of the floating-point color buffer is used. Note that the fi-
nal fp color buffers are tone mapped before display, so even
though a screenshot may seem simple to compress (e.g.,
large bright area), this is very seldom true since tone map-
ping is a non-linear operator with clamping at the end, and
this hides details in the fp colors. Water is a rather regular
scene, without any render-to-texture, which means that the
unified codec architectures cannot exploit the important fea-
ture of reusing codecs for render-to-textures, when accessing
these as textures. Still, we included this simple example in
order to show that bandwidth can still be saved under those
conditions. The second scene is called Shadows, and since it
contains a shadow map, it is designed to highlight the bene-
fits of the proposed system. Reflections renders to a dynamic
floating-point cube map every frame, and a sphere reflects
the surrounding objects using the cube map.

160x120 320x240 640x480 1600x12001280x960

12

10

 8

 2

 6

 4

bi
ts

 p
er

 p
ix

el

Hasselgren and Akenine−Möller int24
proposed depth compression int24
proposed depth compression fp16

resolution

Figure 6: Depth compression results for the “Shadows”
scene for different resolutions. Note how our proposed
fp16 depth buffer (dashed red circles) has a significantly
lower rate than the state-of-the-art int24 system (blue tri-
angles). Our proposed int24 system (solid red circles)
outperforms the state-of-the-art for high-complexity (low-
resolution) scenes.

4. Results

In this section, we present the results from our simulations.
Performance numbers for the fp16/int24 depth buffer com-
pression and the fp16 color buffer compression are presented
first, followed by overall performance results.

The diagram in Figure 6 shows the performance of the
proposed depth buffer compression schemes (Section 2).
We have rendered the Shadows scene in resolutions rang-
ing from 160× 120 to 1600× 1200, and plotted the rate for
our fp16 depth buffer compression algorithm (dashed red
circles). Since there is no previous fp16 depth buffer algo-
rithm to compare to, we plot it against the int24 algorithm of
Hasselgren and Akenine-Möller [HAM06] (blue triangles),
which we believe is state-of-the-art. As can be seen, our new
technique has a substantially lower rate. However, the results
are not directly comparable, since the original data is fp16
and not int24. Therefore, we also show the result of our pro-
posed int24 technique, which outperforms the state-of-the-
art at lower resolutions. The reason the state-of-the-art en-
coder does well for large resolutions is that it can compress
an 8×8 block down to 128 bits if it is a single triangle cov-
ering the block, whereas the proposed algorithms will need
192 bits. For very high resolutions, this will happen more
and more frequently. Note however that this means very big
triangles with respect to the pixel size. Already at the cut-
over resolution of 1280× 960, we have an average size of
507 pixels per triangle. We argue that the lower resolutions,
which are equivalent to a higher scene complexity/smaller
triangles, are more important, and here both proposed meth-
ods are better than the state-of-the-art.

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

The proposed fp16 color buffer codec algorithm is shown
in Figure 7 with green crosses. There is no previous fp color
buffer compression method to compare to. As a compar-
ison, both the HDR texture compression algorithms from
Munkberg et al. [MCHAM06] and Roimela et al. [RAI06]
use 8 bpp (blue squares in Figure 7), whereas our buffer
compression method goes down to about 25 bpp. Note how-
ever, that the methods used for HDR texture compression
are lossy, and therefore not amenable to color buffer com-
pression. In fact, being lossy is a huge gain; as a comparison,
lossy JPEG codecs typically operate at around 2 bpp whereas
lossless PNG codecs manage around 12 bpp. Nor is it a
good idea to use our fp color buffer compression method for
texture compression; too many simultaneous textures could
thrash the tile table cache, resulting in abysmal performance.
The extra latency needed in order to first fetch the tile table
data before knowing how many bytes to read from memory
is manageable if the number of such textures is small so that
the tile table data is mostly in the cache. While a scene would
typically contain just a few render-to-textures (no thrashing),
it would most likely have several ordinary textures even per
pixel (risk of thrashing). In its current form, we would there-
fore recommend not using our fp color buffer compression
for all regular fp16 textures, but definitely use it for fp16
render-to-textures. Note also that the proposed method re-
duces bandwidth down to 40% of the original size—a sig-
nificant compression. Results for the Water and Reflections
scenes are similar at about 43%. Admittedly, much of this
compression comes from demanding that destination alpha
equals 1.0. However, even if it was assumed that the origi-
nal color buffer was RGB and not RGBA, the compression
would still reduce the size to 53%–60%.

We also compare our method to the fp image compres-
sion scheme in OpenEXR [Ope08] (black triangles in Fig-
ure 7). Since it is not intended for buffer compression, we
have made a number of changes to make the comparison.
OpenEXR uses several codecs, of which the PIZ-codec is the
one best suited for RGBA data. It performs a Haar wavelet
transform and then stores the resulting symbols using run
length encoded Huffman symbols. A PIZ-encoded block in-
cludes a header of 20 bytes which can most likely be made
much smaller—we have therefore removed 20 bytes from
the calculated byte-size of each PIZ-encoded block. More-
over, the PIZ-codec is created for RGBA textures, whereas
our algorithm assumes that alpha is 1.0 everywhere. This
gives the PIZ-codec an unfair disadvantage. In order to com-
pensate for that, we compressed an RGBA image of 16×16
pixels with the PIZ-encoder where R=2.0, G=3.0, B=4.0 and
A=1.0 everywhere, which resulted in 33 bytes, of which 20
bytes was header. We have therefore removed another 13
bytes from the output of the PIZ-encoder to give it a fair
comparison (in total we have removed 33 bytes). Note that
the PIZ-codec is designed for large images where the cost
of the Huffman table can be amortized over many pixels. It

PIZ-codec modi�ed for bu�er compression

proposed fp16 color bu�er compression
fp16 texture compression

160x120 320x240 640x480 1280x960
resolution

45

40

35

30

25

20

15

10

5

50

55

bi
ts

 p
er

 p
ix

el

Figure 7: Fp16 color buffer compression results for the
“Shadows” scene for different resolution. Black triangles:
The PIZ-codec from OpenEXR, modified to be used for buffer
compression, as a benchmark. Note that the PIZ-codec is de-
signed for larger images without discontinuities, but it is in-
cluded here for completeness. Green crosses: the proposed
fp16 compression scheme. Blue squares: The HDR texture
compression methods of Munkberg et al. and Roimela et al.,
which cannot be used for buffer compression.

is also designed for natural images without discontinuities.
However, we have included it here for completeness.

Using the PIZ-codec on 8×8 data gives no data reduction;
compressed blocks are almost always bigger than 100% of
the original data. Therefore, 16× 16 blocks have been used
for the PIZ-codec. We have also doubled the size of the color
buffer cache in the PIZ-codec case so that a full block can fit.
For the proposed method, we have instead halved the cache
size, so that both methods can store exactly one block in the
cache, to avoid that any possible cache thrashing influences
the comparison.

All scenes have been rendered twice in the 640×480 res-
olution, first with the proposed 8×8 algorithm and then with
the 16× 16 algorithm based on the PIZ-codec. Bandwidth
usage is reported in the table below:

Proposed PIZ factor
Ocean 2.82 MB 5.56 MB 2.0×

Shadow 5.38 MB 13.66 MB 2.5×
Reflections 8.28 MB 28.18 MB 3.4×

This looks favorable for the proposed algorithm, with more
than a factor of two difference on average. However, it
should be noted that moving from 8× 8 to 16× 16 tiles
in itself increases bandwidth usage even if no compres-
sion is used, since many pixels that are never used will be
read/written. Therefore, we have also compared the band-
width usage against uncompressed 8× 8 and 16× 16 ren-
dering:

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

Proposed as % of PIZ as % of factor
original 8×8 original 16×16

Ocean 46% 84% 1.8×
Shadow 40% 68% 1.7×
Reflect. 43% 71% 1.7×

Thus, the improvement ratio is reduced down to around
1.7×. Hence, even without the bandwidth gains of an 8× 8
system, there is still a substantial compression advantage of
the proposed algorithm compared to PIZ.

At first it may seem a bit counter-intuitive that the differ-
ence between the two algorithms is so large. One important
factor here is that many blocks generated during rendering
are not completely filled by a single triangle, but have pieces
of the background or pieces of another triangle in the block.
This yields significantly better compression for the proposed
method as the following simple test will show:

When compressing blocks that are 100% full of image
data (i.e., no background), the two algorithms are very sim-
ilar to each other in terms of compression ratio. However,
when turning several pixels to the background color (e.g.,
black), we see a clear difference in the behavior of the two
systems. If the majority of the pixels are black, it is easier to
code the block for both systems. However, for the 25% mode
to kick in for the PIZ-encoder, only about 8 out of 256 pix-
els can be non-black, whereas for the proposed compressor,
about 20 out of 64 pixels can be non-black. This means that
the 25% mode almost never kicks in for the PIZ-encoder,
which we have also seen in the simulation results. At the
same time, it is no surprise that the proposed method is bet-
ter at these discontinuities, since it was designed to handle
exactly this common case.

For this reason, the PIZ-codec works better with block
sizes of 50% and 75% instead of 25% and 50%. (Block sizes
of 75% and 50% are just as burst-friendly as 25% and 50%.)
As an example, this lowers bandwidth for the Shadow scene
from 68% to 63% of the original. Hence we use 50% and
75% blocks for the PIZ-codec in Figure 7. It is likely that
performance would increase further if these block sizes were
optimized, but we have not performed this optimization nei-
ther for the proposed algorithm nor for the PIZ-encoder. It is
also clear that introducing more possible block sizes would
benefit both algorithms. Therefore, to make sure that the rel-
ative superiority of the proposed algorithm is not only due to
bad choices of block sizes, we have made a final test where
all block sizes are allowed, which gives the rate equivalent
to allowing full variable bit lengths. In this comparison we
have also used 16× 16 tiles for both methods (by storing
four 8× 8-blocks together for the proposed encoder) to re-
move any possible dependencies on block size. This yields
the following results:

proposed 16×16 PIZ 16×16
as % of original BW as % of original BW

(any block size) (any block size)
Ocean 33% 57%

Shadow 28% 39%
Reflec. 28% 46%

We see that our algorithm is better than the PIZ-codec by
an average factor of 1.6×, which is substantial. Note further
that 8×8 blocks are much to prefer over 16×16 blocks, not
only because of the extra bandwidth usage associated with
16× 16 blocks as described above, but also since a larger
number of pixels with data dependencies take more clock
cycles to compress/decompress. This is the reason why we
use four 4× 4 blocks inside the 8× 8 block—these can be
compressed in parallel given enough hardware resources. We
have also tried an 8× 8 version of our algorithm, which
reduces the bandwidth by another four percentage units,
but this does not give the same support for parallel hard-
ware compression. So for fp color buffer compression, we
have shown that our proposed algorithm performs better than
OpenEXR’s PIZ algorithm. In addition, we want to mention
that PIZ also needs to create a unique Huffman table per tile
when compressing a tile, and this is expected to be rather
expensive.

Next, we evaluate our entire architecture with the new
compression algorithms, unified cache, and unified codecs.
Table 1 shows the bandwidth figures for the the three scenes
rendered at 1024× 768 for the different configurations. For
the Water scene, configuration A through D are as described
above. Since there is no render-to-texture taking place, B and
C are in fact equivalent.

For the Shadows scene, configuration A and B are slightly
different in that we do not to compress the depth buffer dur-
ing the creation of the shadow map. This is due to the fact
that we want to be able to render from it later, and the textur-
ing unit in a traditional architecture cannot read data com-
pressed with the depth compression method. An alternative
would be to create the shadow map with compression turned
on, and then uncompress it when it is moved to a texture,
but we found this to use slightly more bandwidth for this
scene. The final depth buffer is compressed, however. In the
Reflections scene, an HDR environment map is rendered as
background, and a dynamic HDR cube map is created every
frame, so that a reflection can be rendered in the sphere in
the center. The numbers for depth buffer bandwidth include
rendering from the camera as well as to the six faces of the
cube for the environment.

Comparing columns A and B in the BW ratio row, we see
that substantial gains are made over a traditional architecture
just by adding the floating point color buffer compression. To
ensure pixel exactness, we have used the int24 version of the
depth buffer compression. Depth buffer bandwidth would be
decreased by about 14% further if fp16 were used. Column
C uses the proposed unified codec architecture, and we see
that bandwidth is further lowered to about 60% of the orig-

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

Scene Water Shadows Reflections

triangles 44 6468 60336
1024×768

A B C D A B C D A B C D
Color BW 15.0 6.4 6.4 6.5 30.0 11.8 11.8 11.1 32.6 14.1 14.1 10.4
Depth BW 1.1 1.1 1.1 1.1 3.4 3.4 3.4 2.7 14.0 14.0 14.0 9.6
Shadow/Cube n/a n/a n/a n/a 5.9 5.9 2.0 1.5 52.3 52.3 24.4 21.9
Texture BW 17.0 17.0 17.0 16.1 12.5 12.5 12.5 11.6 7.3 7.3 7.3 7.6
Total BW 33.1 24.5 24.5 23.7 51.8 33.6 29.6 27.0 106.2 87.7 59.7 49.4
BW ratio 100 % 74.1% 74.1% 71.5% 100 % 64.8% 57.2% 52.0% 100 % 82.5% 56.2% 46.5%

320×240
BW ratio 100 % 83.9% 83.9% 77.4% 100 % 78.9% 56.5% 48.8% 100 % 95.2% 59.8% 50.1%

1600×1200
BW ratio 100 % 69.6% 69.6% 68.1% 100 % 59.8% 54.6% 50.9% 100 % 75.5% 54.4% 47.2%

Table 1: Performance figures in MB/frame for our three test scenes. Configuration A is a traditional architecture, with depth
compression. In the Shadows scene, depth compression is turned off during creation of the shadow map. Configuration B is
equal to A, but with fp color buffer compression turned on. Configuration C uses unified codecs, i.e., render-to-texture textures
can be created and rendered from in compressed form. Configuration D shows results for a unified cache architecture. Note
how color BW goes down substantially between A and B, and how overall bandwidth is reduced significantly for C and D.

inal. The reason for this is that the shadow map (Shadows
scene) and cube map (Reflections scene) textures can be cre-
ated and rendered from with compression turned on. Finally,
on a system with a unified cache for all the buffers, band-
width can be reduced down to below 50% for the Reflections
scene. Detailed figures are provided for the 1024× 768 res-
olution. For 320×240 and 1600×1200, we have presented
BW ratio figures showing similar results.

5. Discussion

A unified codec architecture is certainly simpler if most
codecs are harmonized. We have presented two such al-
gorithms but it would be interesting to have more. Fp32
color and depth buffers could be compressed with the pro-
posed methods, although we have not tried. The 8-bit color
buffer by Rasmusson [RHAM07] could be made even more
similar to our work. We have even tried naive adaptations
of our fp16 color for vertex data and (lossy) texture com-
pression, with premature but promising results. That said,
full codec harmonization remains a hard goal. For instance,
S3TC/DXTC is hard to replace for RGBA8 textures.

Although a unified cache architecture seems competitive
in this evaluation, it should be noted that there may be po-
tential implementation problems that are not discovered at
this level of simulation. There is no way of finding out short
of actually implementing a unified cache, which is out of the
scope of this paper.

Even though some measures have been taken to lower
compression/decompression latency in this paper (such as
using four 4×4 tiles instead of one 8×8), a proper latency
analysis would require more detailed work.

6. Conclusion

We have proposed two new algorithms for fp buffer com-
pression, one for color and one for depth data, which are the
first published algorithms on these topics. An int24 version
of the depth codec has been shown to be competitive against
state-of-the-art. Finally, we have demonstrated how these
algorithms behave in architectures with varying degrees of
unification, reaching bandwidth reductions down to 50%.

Acknowledgements
We acknowledge support from the Swedish Foundation for Strategic
Research and Vinnova.

References

[AMN03] AILA T., MIETTINEN V., NORDLUND P.: De-
lay Streams for Graphics Hardware. ACM Transactions
on Graphics, 22, 3 (2003), 792–800.

[AMS03] AKENINE-MÖLLER T., STRÖM J.: Graphics
for the Masses: A Hardware Rasterization Architecture
for Mobile Phones. ACM Transactions on Graphics 22,
3 (2003), 801–808.

c© The Eurographics Association 2008.

Jacob Ström et al. / Floating-Point Buffer Compression in a Unified Codec Architecture

[BAC96] BEERS A., AGRAWALA M., CHADDA N.: Ren-
dering from Compressed Textures. In Proceedings of
ACM SIGGRAPH 96 (1996), pp. 373–378.

[GKM93] GREENE N., KASS M., MILLER G.: Hierar-
chical Z-Buffer Visibility. In Proceedings of ACM SIG-
GRAPH 93 (August 1993), pp. 231–238.

[HAM06] HASSELGREN J., AKENINE-MÖLLER T.: Effi-
cient Depth Buffer Compression. In Graphics Hardware
(2006), pp. 103–110.

[HG97] HAKURA Z. S., GUPTA A.: The Design and
Analysis of a Cache Architecture for Texture Mapping.
In 24th International Symposium of Computer Architec-
ture (1997), pp. 108–120.

[IEH99] IGEHY H., ELDRIDGE M., HANRAHAN P.: Par-
allel Texture Caching. In Graphics Hardware (1999),
pp. 95–106.

[IM06] INADA T., MCCOOL M. D.: Compressed Loss-
less Texture Representation and Caching. In Graphics
Hardware (2006), pp. 111–120.

[KF05] KILGARIFF E., FERNANDO R.: The GeForce 6
Series GPU Architecture. In GPU Gems 2. Addison-
Wesley, 2005, pp. 471–491.

[KSKS96] KNITTEL G., SCHILLING A. G., KUGLER A.,
STRASSER W.: Hardware for Superior Texture Perfor-
mance. Computers & Graphics, 20, 4 (1996), 475–481.

[LI06] LINDSTROM P., ISENBURG M.: Fast and Efficient
Compression of Floating-Point Data. IEEE Transactions
on Visualization and Computer Graphics, 12, 5 (2006),
1245–1250.

[LJ99] LAPIDOUS E., JIAO G.: Optimal Depth Buffer
for Low-Cost Graphics Hardware. In Graphics Hardware
(1999), pp. 67–73.

[MB98] MCCABE D., BROTHERS J.: DirectX 6 Tex-
ture Map Compression. Game Developer Magazine 5, 8
(1998), 42–46.

[MCHAM06] MUNKBERG J., CLARBERG P., HASSEL-
GREN J., AKENINE-MÖLLER T.: High Dynamic Range
Texture Compression for Graphics Hardware. ACM
Transactions on Graphics, 25, 3 (2006), 698–706.

[Mor00] MOREIN S.: ATI Radeon HyperZ Technology.
In Workshop on Graphics Hardware, Hot3D Proceedings
(August 2000), ACM SIGGRAPH/Eurographics.

[NVI06] NVIDIA: GeForce 8800 GPU Architecture
Overview. Tech. rep., TB-02787-001_v01, 2006.

[Ope08] OPENEXR: www.openexr.com/about.html. web
site, 2008.

[Owe05] OWENS J. D.: Streaming Architectures and
Technology Trends. In GPU Gems 2. Addison-Wesley,
2005, pp. 457–470.

[RAI06] ROIMELA K., AARNIO T., ITÄRANTA J.: High

Dynamic Range Texture Compression. ACM Transac-
tions on Graphics, 25, 3 (2006), 707–712.

[RHAM07] RASMUSSON J., HASSELGREN J.,
AKENINE-MÖLLER T.: Exact and Error-bounded
Approximate Color Buffer Compression and Decompres-
sion. In Graphics Hardware (2007), pp. 41–48.

[SAM05] STRÖM J., AKENINE-MÖLLER T.: iPACK-
MAN: High-Quality, Low-Complexity Texture Compres-
sion for Mobile Phones. In Graphics Hardware (2005),
pp. 63–70.

[TK96] TORBORG J., KAJIYA J.: Talisman: Commodity
Real-time 3D Graphics for the PC. In Proceedings of SIG-
GRAPH (1996), pp. 353–364.

[WSS96] WEINBERGER M. J., SEROUSSI G., SAPIRO

G.: LOCO-I: A Low Complexity, Context-Based, Loss-
less Image Compression Algorithm. In In Data Compres-
sion Conference (1996), pp. 140–149.

c© The Eurographics Association 2008.

