
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

Practical Product Importance Sampling
for Direct Illumination

Petrik Clarberg and Tomas Akenine-Möller†

Lund University

Abstract

We present a practical algorithm for sampling the product of environment map lighting and surface reflectance.
Our method builds on wavelet-based importance sampling, but has a number of important advantages over pre-
vious methods. Most importantly, we avoid using precomputed reflectance functions by sampling the BRDF on-
the-fly. Hence, all types of materials can be handled, including anisotropic and spatially varying BRDFs, as well
as procedural shaders. This also opens up for using very high resolution, uncompressed, environment maps. Our
results show that this gives a significant reduction of variance compared to using lower resolution approxima-
tions. In addition, we study the wavelet product, and present a faster algorithm geared for sampling purposes.
For our application, the computations are reduced to a simple quadtree-based multiplication. We build the BRDF
approximation and evaluate the product in a single tree traversal, which makes the algorithm both faster and more
flexible than previous methods.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Probabilistic algo-
rithms (including Monte Carlo) I.3.7 [Computer Graphics]: Raytracing

1. Introduction

Despite more than thirty years of research, faster and more
flexible methods for solving the rendering equation [Kaj86]
are needed to meet the demands of the industry. For high
quality images, the interaction of light and materials must be
accurately simulated. To obtain realistic results, the incident
lighting at a real set can be captured in a high-dynamic range
image, and used for lighting the scene [Deb98]. Although
many different methods have been proposed, high quality
rendering under environment map lighting is still a difficult
problem, especially in scenes with realistic materials.

We focus on computing direct illumination using Monte
Carlo integration, i.e., the integral of the rendering equa-
tion is estimated using stochastic point sampling. The in-
tegral involves a product over incident lighting, surface re-
flectance, and visibility. Too few samples or a poor sam-
pling distribution results in undesired noise. With impor-
tance sampling, noise is reduced by sampling important di-

† {petrik|tam}@cs.lth.se

rections more densely. This is, however, difficult as some
parts of the integrand are unknown.

Recently, several methods for sampling according to the
product of lighting and BRDF have been proposed. Clar-
berg et al. [CJAMJ05] presented a general framework for
wavelet-based importance sampling of products. Our algo-
rithm is inspired by their work, but we remove most of its
limitations. In two stage importance sampling [CETC06],
heuristics are used to build a BRDF approximation per pixel.
In the same spirit, we draw samples samples from the BRDF
and build a hierarchical representation on-the-fly, and ef-
fectively avoid storing tabulated BRDFs. This is important,
as many real world materials exhibit spatially varying re-
flectance (see Figure 1), and in the industry, complex pro-
cedural shaders and shading models with many parameters
are common. The high dimensionality makes these materials
expensive to precompute and store.

Importance sampling using hierarchical warping only re-
quires the scaling coefficients, or local averages, of the prod-
uct. Therefore, we first simplify the wavelet product to di-
rectly compute the product averages from the individual

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

wavelet coefficients. Then, we show that in our application,
we can further reduce the complexity. We build the BRDF
approximation hierarchically, and at the same time, com-
pute the product by multiplying leaf nodes and propagate
the results up. Both these steps are performed in a single tree
traversal, which makes our algorithm very fast.

By sampling in world space, it is sufficient to use a sin-
gle two-dimensional environment map, which is stored as a
mipmap hierarchy [Wil83]. This enables very high resolu-
tion, uncompressed, lighting (e.g., 4k×4k resolution), with
practically no precomputation. The key contributions are:

? We build a hierarchical approximation of the BRDF per
pixel, based on a small number of point samples. Any
shader that supports BRDF importance sampling can be
used, as we do not rely on heuristics [CETC06].

? A fast quadtree-based method for computing the prod-
uct is presented. Compared to wavelet importance sam-
pling [CJAMJ05], our algorithm is faster, avoids precom-
putation, and supports high resolution lighting.

? We also present an optimized wavelet product, which can
be useful in many other applications.

? Our prototype implementation compares favorably to pre-
vious state-of-the-art methods, and presents a viable alter-
native for production rendering, where precomputation of
BRDFs is infeasible.

2. Related Work

At a high level, most algorithms for photo-realistic render-
ing can be classified as either deterministic, stochastic, or a
combination of the two. For a general overview, we refer to
popular books on the subject [PH04,DBB06]. Veach [Vea97]
gives an excellent overview of Monte Carlo methods for
light transport problems. In the following, we limit our dis-
cussion to methods for computing the direct illumination.

Importance sampling reduces the variance by taking
known information about the integrand into account to guide
the sampling efforts. High-intensity regions have a larger im-
pact on the result, and hence more samples should be placed
here. There are several algorithms that sample according to
only one of the involved functions, e.g., environment map
sampling [ARBJ03, ODJ04], and BRDF importance sam-
pling [Shi91, War92, AS00, Mat03, CPB03, LRR04]. Work
has also been done on linearly combining estimators from
multiple importance functions [VG95].

Recent methods have approached the problem of sam-
pling the product of lighting and surface reflectance. One
approach is to first draw samples from only one of the terms,
and then adjust these samples to (approximately) follow the
product distribution. This can be done by importance resam-
pling [BGH05, TCE05], where the initial samples are as-
signed weights and resampled into a smaller set, or by re-
jection sampling [BGH05], where unimportant samples are
discarded. Similar to our algorithm, these methods supports

Figure 1: Examples of procedural shaders with varying dif-
fuse, specular, and shininess coefficients, rendered with our
algorithm. Methods using precomputed BRDFs cannot eas-
ily handle these types of materials, as the high dimensional-
ity would lead to long precomputation times and excessive
memory usage. Our method samples the BRDF and builds
the importance function on-the-fly, thus supporting all kinds
of spatially varying materials without precomputation.

spatially varying BRDFs. However, they may be inefficient
when both the lighting and material have complex high-
frequency features, since many samples will be useless.

In wavelet importance sampling [CJAMJ05], the lighting
and BRDF are stored as sparse Haar wavelets, and multiplied
on-the-fly using the wavelet product [NRH04]. The product
is sampled by hierarchically transforming a uniform point
set (e.g., Halton points) into the desired distribution, using
a warping process. The resulting samples are of high qual-
ity, but due to memory constraints, their method is limited to
relatively low resolution lighting. In addition, the use of tab-
ulated materials is a severe restriction in many applications.
Cline et al. [CETC06] remove some of the limitations by hi-
erarchically splitting the environment map based on peaks in
the BRDF. The product is approximated using summed area
tables, and sampled with the previously mentioned warping.

A number of other methods exist, which are not directly
based on importance sampling. Ghosh and Heidrich [GH06]
exploit visibility information to lower the variance. They use
bidirectional importance sampling to find partially occluded
pixels, and then apply Metropolis-Hastings mutations to re-
duce the noise in these regions. Donikian et al. [DWB∗06]
use adaptive importance sampling. The image is divided into
small blocks, and for each block, the sampling density and
a pixel estimate are updated until convergence is achieved.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

The lightcuts framework [WFA∗05,WABG06] splits the ren-
dering integrals into sets of gather points and light points.
A product traversal of these sets together with conserva-
tive termination criteria make for efficient rendering. In the
same spirit, Hašan et al. [HPB07] formulate the problem as a
many-light problem. They sparsely sample the transfer ma-
trix on the GPU, and obtain impressive results.

3. Algorithmic Overview

The outgoing radiance, Lo, in a direction ωo at a point in the
scene, is given by the integral over all incident directions, ω,
as follows [Kaj86]:

Lo(ωo) =
Z

L(ω)B(ωo,ω)V (ω)dω, (1)

where L is the incident illumination by an environment map,
B is the reflectance function (see Equation 13), and V is a
binary visibility term. The unbiased Monte Carlo estimator,
L̂o, is given by:

L̂o =
1
N

N

∑
i=1

L(ωi)B(ωi)V (ωi)
p(ωi)

, (2)

where N is the number of samples, and ωi the sampling di-
rections. For clarity, we have omitted ωo.

In our algorithm, we build a piecewise constant approxi-
mation, B̃, of the reflectance function on-the-fly, and use the
product with the exact lighting, L · B̃, as our importance func-
tion. Thus, the probability density function is equal to:

p(ω) =
L(ω)B̃(ω)

Lns
, (3)

where Lns =
R

L(ω)B̃(ω)dω. The normalization by Lns is
necessary since, per definition,

R
p(ω)dω = 1. The value of

Lns is given by the root node in hierarchy of the product L · B̃.
When working with wavelets, this is equal to the first scaling
coefficient of the wavelet product. Combining Equations 2
and 3, we arrive at:

L̂o =
Lns

N

N

∑
i=1

B(ωi)V (ωi)
B̃(ωi)

, (4)

As we can see, the only remaining variance comes from the
visibility, and the relative inaccuracy of our BRDF approxi-
mation, B(ω)/B̃(ω). The main difference to wavelet impor-
tance sampling [CJAMJ05], is that we use the exact lighting
instead of a wavelet approximation, L̃. Hence, we avoid the
variance introduced by L(ω)/L̃(ω), which can be significant
with high-resolution environment maps. We also build B̃ on-
the-fly, thereby removing the requirement of precomputed
materials.

Equation 4 assumes all functions are scalar-valued. In
practice, the lighting and the reflectance are usually in RGB
color. We perform all computations on the three color chan-
nels, but use the luminance of the result as importance func-
tion. This is standard practice, but it should be noted that it
adds some chrominance noise.

3 4

2
3 4

2170%

57%

33% 67%

43%

30%

{
{

{{

{ {
1

Figure 2: The sample warping algorithm by Clarberg
et al. [CJAMJ05]. A uniform point set (left) is split accord-
ing to the relative intensity of each sub-quad, and the points
rescaled into the desired distribution (right). When repeated
hierarchically, we get a simple algorithm for sampling any
importance function with a quadtree structure.

4. Fast Product Evaluation and Sampling

In wavelet importance sampling [CJAMJ05], the individ-
ual importance functions are stored as compressed Haar
wavelets, and multiplied in the wavelet domain [NRH04].
However, for importance sampling using sample warping
(Figure 2), all we need are the averages of the quadtree
nodes of the product. It is unnecessary to first compute the
wavelet coefficients, and then reconstruct the averages.

This is a key observation, which we exploit to make the
computations faster. We introduce two novel algorithms; an
optimized wavelet product (Section 4.1) and a quadtree-
based product (Section 4.2). All results were generated using
the latter, so the reader may want to skim through the next
section. Please refer to Appendix A and B for an introduc-
tion to wavelets and an overview of the terminology.

4.1. Fast Wavelet Product

Let q=〈l,u,v〉 be a quad in an image F(x),
as illustrated on the right. We want to com-
pute the average over q, when F is a product
of two images: F = G ·H. We call this value
the parent sum of F , or psumF (q) for short,
following the convention of Ng et al. [NRH04]. The terms
psum and “average” are used interchangeably, as they repre-
sent the same thing.

The psum of a node at 〈l,u,v〉 is the sum of the coefficients
of all overlapping basis functions at strictly coarser scales,
k < l, scaled by±2k. The sign depends on in which quadrant
of the basis function that 〈l,u,v〉 lies. We note that psumF (q)
can also be computed by integrating over G ·H restricted
to q. We define the restricted basis, Ψ

〈q〉, of a node q as:

Ψ
〈q〉 =

{
φ

l
uv,ψk1 , . . . ,ψkN

}
, (5)

where k is the set of indices of all wavelet basis functions
that are under the support of q, and exist at the same or finer
scales. The basis Ψ

〈q〉 is orthonormal due to the properties
of the Haar basis, and represents a subtree of basis functions

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

Figure 3: On the left, a complete 1D wavelet basis tree, and
on the right, a restricted basis consisting of a subtree of basis
functions plus a scaling function. In two dimensions, each
node has three basis functions and four children.

with an extra scaling function appended to its root, see Fig-
ure 3. The expansion of an image F(x) in the basis Ψ

〈q〉

represents the restriction of F to q:

F|q = ∑
i

f 〈q〉i Ψ
〈q〉
i (x) =

{
F(x), if x ∈ q,
0, if x /∈ q,

(6)

f 〈q〉 =
{

2−l psumF (q), fk1 , . . . , fkN

}
, (7)

where the scaling coefficient is equal to the node average
(psum) scaled by 2−l , and the detail coefficients are the same
as the corresponding coefficients of the complete wavelet de-
composition (Equation 16).

When F is a product of two functions, i.e., F = G ·H,
we can compute the average over q by integrating over the
restrictions of G and H, and obtain the following:

psumF (q) =
1

Aq

Z
G|q ·H|q dx

=
1

Aq

Z (
∑

i
g〈q〉i Ψ

〈q〉
i

)(
∑

j
h〈q〉j Ψ

〈q〉
j

)
dx

=
1

Aq
∑

i
∑

j
g〈q〉i h〈q〉j

Z
Ψ
〈q〉
i Ψ

〈q〉
j dx

=
1

Aq
∑

j
g〈q〉j h〈q〉j , (8)

due to orthonormality. By inserting the area of q, which is
Aq = 2−2l , and the coefficients (Equation 7), we arrive at:

psumF (q) = psumG(q) · psumH(q)+22l
N

∑
i=1

gki hki︸ ︷︷ ︸
csumGH (q)

(9)

Here, we have introduced the notation csumGH(q) for the
sum of the product of all coefficients in G and H, for which
the wavelet functions are identical and exist under the sup-
port of q, at the same or finer scales. We call this the children
sum of the product G ·H.

From a practical point of view, Equation 9 greatly simpli-
fies the evaluation of the wavelet product. Given two wavelet
trees, we can traverse them in parallel and precompute all
csum values in a single tree traversal. As only coefficients for

identical basis functions contribute, the recursion is termi-
nated whenever a leaf node is found in one of the two trees.
After computing a tree of csum values, importance sampling
is reduced to hierarchically evaluating Equation 9 and warp-
ing the samples according to the intensities at each level.

4.2. Bottom-up Quadtree Product

In this section, we look at the problem of multiplying two
quadtree representations, G and H. That is, the psum values
are known, but not the wavelet coefficients. Our application
presented in Section 5 is an important example of a case
where this is useful. We build a quadtree approximation of
the BRDF on-the-fly, and we wish to multiply it with an en-
vironment mipmap hierarchy, in order to sample the result.

First, we note that for all leaf nodes in G and H, we can
compute the product average by simply multiplying the in-
dividual averages, as follows:

psumF (q) = psumG(q) · psumH(q), (10)

where q is a leaf node in G and/or H. This follows from
the fact that a quadtree leaf node is per definition constant.
Hence, all its wavelet coefficients under the support of q are
zero, and we can drop the csumGH term in Equation 9. Simi-
larly, in all of H’s children nodes, qc, under the support of a
leaf node q in G, the product is given by:

psumF (qc) = psumG(q) · psumH(qc), (11)

and vice versa. Thus, we can multiply a leaf node with any
other node under its support, to get the corresponding prod-
uct average.

For interior nodes, Equation 10 does not hold. However,
the product average of a node, q, can always be expressed
as the average of its four immediate children nodes in the
product tree, as follows:

psumF (q) =
1
4

4

∑
i=1

psumF (q+ i), (12)

where we assume q + i denotes the ith child of q. This leads
to a simple bottom-up algorithm for computing the product
quadtree. We traverse the trees of G and H in parallel, and
for all leaves, we compute the product using Equation 10,
and then propagate the result up using Equation 12. This can
be done in a single depth-first traversal.

Once the product tree is setup, we sample it using hierar-
chical sample warping [CJAMJ05], starting at its root. When
a leaf is reached, we proceed by evaluating Equation 11 only
for the nodes where it is needed, i.e., for nodes with one or
more samples. This algorithm gives an efficient way to sam-
ple the product of two quadtree representations, and in ad-
dition, we completely avoid the added complexity of using
wavelets. Pseudo-code and more details on our application
are given in the following section.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

5. Implementation

Next, we discuss the implementation of our algorithm for
direct illumination under environment map lighting.

5.1. Sampling in World Space

A fundamental limitation of the wavelet product and the
quadtree product, is that the functions must be defined over
the same domain. Environment map lighting is given in
world space, while a general BRDF is a 4D function in lo-
cal space. Re-parameterization to world space gives a 7D
function (or 6D for isotropic materials), which is clearly im-
practical. Clarberg et al. [CJAMJ05] solve the problem by
pre-rotating the lighting into local space for a dense set of
directions. This limits their algorithm to low resolution light-
ing, e.g., 1282 or 2562 (∼1GB compressed).

Using a low resolution approximation of the lighting to
guide the sampling, introduces a substantial amount of noise
when a higher resolution environment map is used, as we
will see in Section 6. For realistic high-frequency lighting,
environment maps of 1k×1k to 4k×4k resolution are com-
mon. As pre-rotation of such large maps is currently infeasi-
ble due to memory usage and precomputation time, impor-
tance sampling must be performed directly in world space.
This also requires the BRDF to be in world space.

One option is to rotate a 2D slice of the BRDF into world
space on-the-fly using wavelet rotation matrices [WNLH06].
This can be made fast enough by exploiting the sparsity of
the matrices and the BRDF, but the memory is still a lim-
iting factor. For example, with 642 distinct rotations, and a
source and target resolution of 642, the rotation matrices re-
quire about 2GB. We have tried this approach, but the re-
sults were satisfactory only for diffuse materials. For glossy
BRDFs, the misalignment of the specular peak due to the
discretization introduces a large amount of noise.

The solution we settled for, is instead to build a BRDF
approximation in world space on-the-fly, based on a small
number of point samples. The approximation is multiplied
by the environment map using the fast quadtree-based prod-
uct, and the result is sampled using warping.

5.2. Environment Map

The environment map is stored as a single uncompressed
high resolution image, together with its mipmap hierarchy.
Each pixel in the hierarchy stores the average over its four
immediate children pixels. With the quadtree-based product
(Section 4.2), we do not need to store the wavelet coeffi-
cients. Hence, the memory requirement is only 33% larger
than the environment map itself. As we do not rely on tabu-
lated materials, the total setup time is reduced to computing
a single mipmap hierarchy. For a 4k×4k map, this takes less
than one second.

To represent directions on the sphere, we use a mapping

Figure 4: Based on a set of point samples mapped onto the
unit square (left), we build a quadtree approximation of the
reflectance function by recursively subdividing the set until
only one sample per node remains (right).

from the sphere to a single quad, which is based on the octa-
hedral map [PH03], but with an area-preserving parameteri-
zation. The details are given in Appendix C.

5.3. BRDF Approximation

For a specific viewing direction, ωo, the bidirectional re-
flectance distribution function (BRDF) is a two-dimensional
function over all incident directions, ω. We define the local
reflectance function, B, as the BRDF, fr, times the cosine
term in world space, as follows:

B(ω) =

{
fr(ωo,ω)(ω ·n), ω ·n > 0,

0, ω ·n≤ 0,
(13)

where n is the surface normal. Assume we have a set of
point samples, S = {B(ω1), . . . ,B(ωN)}, taken from the re-
flectance function. In the next section, we will describe how
S is chosen. The problem is to reconstruct a continuous sur-
face, B̃, which is a reasonable approximation to B. This is a
scattered data interpolation problem, and ideally, we would
like to use higher-order techniques. However, in our frame-
work, we are limited to a piecewise constant quadtree ap-
proximation.

We build a quadtree by recursively dividing the set of sam-
ples, S, until only one sample per node remains. This is il-
lustrated in Figure 4. Each internal node stores the average
(brdf_psum) of its four children, and empty leaf nodes are
assigned the value of their nearest parent. We also augment
our quadtree nodes with a field storing the product average
(prod_psum) over the node, as follows:

struct node
brdf_psum : BRDF parent sum (average)
prod_psum : product parent sum (average)
ch[4] : children pointers

end

Pseudo-code for building the BRDF approximation and
computing the product tree is given in Algorithm 1. Input to
the algorithm is the set of all BRDF samples, S ={B(ωi)},
and the root node of the tree, located at q = 〈0,0,0〉.

5.4. Obtaining the BRDF Samples

The quality of B̃ naturally depends on how the samples, S,
are chosen. Dense sampling results in a finer subdivision,

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

1 function BUILDPRODUCT(quad q, node n, samples S)
2 if size(S) = 1 then
3 n.brdf_psum = S[1].value
4 n.prod_psum = S[1].value×L.psum(q)
5 else
6 n.ch[1..4] = new node() // initialized to null
7 Split S into bin[1..4] based on S[i].position
8 j = indices of non-empty bins
9 for i ∈ j

10 BUILDPRODUCT(q+i, n.ch[i], bin[i])
11 n.brdf_psum = avg(n.ch[j].brdf_psum)
12 for i /∈ j
13 n.ch[i].brdf_psum = n.brdf_psum
14 n.ch[i].prod_psum = n.brdf_psum ×
15 L.psum(q+i)
16 n.prod_psum = avg(n.ch[1..4].prod_psum)

Algorithm 1: Recursive function for building the approxi-
mation, B̃, based on a set of point samples, S, while simul-
taneously computing all product averages in a single tree
traversal. The mipmap hierarchy of the environment map is
denoted L, and the avg() function computes the average of
the supplied values. The current node is identified by q, and
q+i is assumed to identify the ith child of q.

and the area of each leaf node is approximately proportional
to the inverse of the local sampling density. We assume the
samples are drawn from some probability density pB(ω).

Uniform sampling works well for diffuse materials. How-
ever, for more specular BRDFs, we would likely miss high-
frequency features. Therefore, we adopt an importance sam-
pling strategy. The error in the reconstruction, ε, is equal
to the difference between the original and the approximated
function. Since B̃ will be used as an importance function, it
is desirable to distribute the approximation error evenly. It is
likely that ε is larger in high-intensity regions than in regions
with low intensity. Hence, ideally, we want the sampling
density to be proportional to the reflectance function, i.e.,
pB(ω) ∝ B(ω). This way, we get higher precision around
important features, such as bright specular peaks, and less
resolution in smoother regions.

However, for many analytical reflectance models, sam-
pling according to the BRDF times the cosine term is non-
trivial. We often have to choose pB(ω)∝ fr(ωo,ω). The ex-
act choice of sampling density is not critical as it does not
affect the correctness of our algorithm, but only the quality
of the resulting importance function. As the sampling is done
on-the-fly, it is in many cases preferable to choose a slightly
inferior, but faster, sampling strategy.

Some examples of BRDFs for which analytical sampling
is well known include the modified Phong model [LW94],
and the anisotropic Ward and Ashikhmin models [War92,
AS00] among others. Many of these sampling strategies are
already implemented in existing rendering packages. This

is a great advantage, as it makes the implementation of our
algorithm a relatively easy task.

For measured materials, a number of sampling meth-
ods exist. We can use, for example, wavelet-based meth-
ods [Lal97, Mat03, CPB03] or factorization [LRR04]. Also
note that the BRDF sampling step can be precomputed for
all materials that are not spatially varying. We discretize the
outgoing direction, and for each direction, a set of samples
in local space is computed. At runtime, the samples are ro-
tated into world space, which is very fast. We have found that
a few hundred point samples is enough to build a quadtree
approximation with a quality equivalent to, or better than,
wavelet-compressed tabulated BRDFs [CJAMJ05].

1 function WARPPRODUCT(points P, quad q, node n)
2 if q.level = max_level then
3 Compute probability density for each P[i]
4 Store P in sample array
5 return
6
7 for i = 1 to 4
8 if is_leaf(n) then
9 w[i] = intensity(n.brdf_psum×L.psum(q+i))

10 else
11 w[i] = intensity(n.ch[i].prod_psum)
12 Compute splitting planes based on w[1..4]
13 Warp P into bin[1..4]
14
15 for i = 1 to 4
16 if size(bin[i]) > 0 then
17 if is_leaf(n) then
18 WARPPRODUCT(bin[i], q+i, n)
19 else
20 WARPPRODUCT(bin[i], q+i, n.ch[i])
21 return
Algorithm 2: Recursive algorithm for warping an initially
uniform point set, P, according to the product quadtree.
When a leaf node is reached, the sampling continues accord-
ing to the environment map, L, up to its full resolution. The
intensity() function computes the luminance of an RGB color.

5.5. Product Sampling

After computing the product quadtree (Algorithm 1), we
proceed by sampling it using sample warping [CJAMJ05].
At each level, a horizontal and two vertical splitting planes
are computed based on the product averages of the four im-
mediate children, and the samples are rescaled accordingly,
as illustrated in Figure 2.

When a leaf node in the product tree is reached, the sam-
pling continues according to the environment mipmap hier-
archy. Thus, although the BRDF approximation is of limited
resolution, the sample warping is not terminated until the full
resolution of the environment map is reached. Pseudo-code
is given in Algorithm 2.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

6. Results

We have implemented the algorithm described in Section 5
in a custom ray tracer loosely based on pbrt [PH04].
All images are unbiased and were rendered on a Mac-
Book Pro with Intel Core 2 Duo 2.40GHz (using only one
core). The current implementation does not use any SIMD-
optimizations. However, this would be fairly straightforward
to add, since many of our operations are performed on four
children nodes in parallel. For all tests, the BRDFs were
sampled on-the-fly, but it should be noted that precomputed
samples (Section 5.4) can be used to further improve the per-
formance in many cases.

Low-discrepancy points with good spectral properties
are essential for lowering the variance in any Monte
Carlo technique. We use the method of Dunbar and
Humphreys [DH06] to quickly generate Poisson-disk points
that are fed to the sampling algorithm.

Figure 7 compares our algorithm with two state-of-the-art
methods for product importance sampling: wavelet impor-
tance sampling (WIS) by Clarberg et al. [CJAMJ05], us-
ing the unbiased version of their algorithm, and Cline et
al.’s [CETC06] two stage importance sampling. Both these
methods are based on sampling the product of lighting and
BRDF. The scene is lit by a 1k×1k light probe featuring a
small strong light source: the sun. The dragon uses a Phong
shader, and the ground plane is purely diffuse. For sampling
the BRDFs, 256 point samples each were used for the diffuse
and specular lobes. The rendering times at 1024×768 pix-
els resolution, using one primary ray per pixel and varying
number of visibility samples, were (min:sec):

#samples Cline et al. Clarberg et al. Our algorithm
10 1:00 2:40 1:39
30 2:22 3:16 2:15

100 7:22 5:12 4:09
300 19:13 10:15 9:14

This scene presents a major challenge for WIS, which
is limited to a low resolution wavelet approximation of the
lighting (e.g., 1282 or 2562). The error introduced by the
approximation, i.e., L(ω)/L̃(ω), significantly increases the
variance, especially in unoccluded regions. In addition, their
method shows banding in noisy regions, which comes from
the varying accuracy of the importance function due to bilin-
ear interpolation of the wavelet terms. We completely avoid
these problems by sampling in world space.

Two stage importance sampling handles this scene much
better, and similar to our algorithm, it supports spatially
varying reflectance functions. However, for equal variance,
our algorithm gives a 1.5×−2.7× reduction in the number of
visibility samples, as shown by the plot in Figure 7. It should
be noted that a direct comparison of the results is difficult,
as the rendering systems differ slightly and the exact speed
depends on what type of shaders are used. The reported tim-
ings suggest that our ray tracer is faster than Cline et al.’s,

Figure 5: Two images rendered in equal time (28 seconds)
using two stage importance sampling (left) [CETC06], and
our algorithm (right). The noise is significantly reduced.

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

N
um

be
r o

f V
is

ib
ilit

y
Sa

m
pl

es

Number of BRDF samples
0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10−3

Va
ria

nc
e

(M
SE

)

Figure 6: Equal-time comparison for different sample al-
locations using the scene in Figure 7. The green line shows
the variance for different numbers of BRDF samples (x-axis)
and visibility samples (blue line). In this example, the best re-
sults are obtained with approximately 100–500 BRDF sam-
ples. This shows that our algorithm is robust with respect to
the choice of sampling rates, and a reasonable default value
(e.g., 256 BRDF samples) works well in most cases.

although the acceleration data structure is the same (pbrt).
Figure 5 shows an equal-time comparison for a simple scene
lit by the “kitchen” light probe.

Our algorithm is essentially a two step method. First, the
shader is sampled, and then the product is computed and
sampled. An important consideration is the allocation of
samples between the two steps. In Figure 6, we have var-
ied the number of BRDF samples (specular+diffuse), while
keeping the rendering time constant by adjusting the number
of visibility samples. The optimal ratio is, of course, deter-
mined by the relative speed of BRDF evaluations versus ray
tracing. In our implementation, peak performance is reached
with about 100–500 BRDF samples. Interestingly, Figure 6
also shows that the cost of constructing and sampling the
importance function grows only linearly with the number of
point samples used for approximating the material.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

7. Discussion

We have presented several practical improvements to wave-
let importance sampling [CJAMJ05]. To avoid the limita-
tions of tabulated materials, we build a BRDF approximation
on-the-fly. We also replace the wavelet product with a sim-
pler quadtree-based product, computed in a single traversal,
and thus effectively avoid wavelets altogether. The precom-
putation is reduced to a creation of a mipmap hierarchy for
the lighting, and the memory requirements are very modest.

The proposed algorithm has much in common with Cline
et al.’s method [CETC06]. The main differences are the eval-
uation of the product (quadtree vs summed area table) and
the construction of the BRDF approximation. We rely on
BRDF importance sampling, while Cline et al. use heuristics
specifically designed for each supported BRDF. Their ap-
proach does not require importance sampling of the shader,
which is a big advantage, but finding good heuristics for gen-
eral materials can be tedious. On the other hand, our algo-
rithm may be difficult to use with some complex shaders,
for which none or only poor sampling strategies exist.

The two methods produce comparable results, although
the noise in occluded regions is lower with our algorithm.
This indicates that our quadtree-based BRDF approxima-
tion is slightly more accurate. In production rendering, the
main bottleneck is currently the shading. Methods for creat-
ing good BRDF approximations based on a minimal number
of shader evaluations are needed. We hope our work will
stimulate research in that direction.

Acknowledgements
We would like to thank the anonymous reviewers for their valuable
feedback, Jacob Munkberg for the scene in Figure 5, and the people
in our lab for their support. This work was supported by the Swedish
Foundation for Strategic Research and by Intel Corporation.

References

[ARBJ03] AGARWAL S., RAMAMOORTHI R., BELONGIE S.,
JENSEN H. W.: Structured Importance Sampling of Environment
Maps. ACM Transactions on Graphics, 22, 3 (2003), 605–612.

[AS00] ASHIKHMIN M., SHIRLEY P.: An Anisotropic Phong
BRDF Model. Journal of Graphics Tools, 5, 2 (2000), 25–32.

[BBS94] BERMAN D. F., BARTELL J. T., SALESIN D. H.: Mul-
tiresolution Painting and Compositing. In Proceedings of ACM
SIGGRAPH (1994), pp. 85–90.

[BGH05] BURKE D., GHOSH A., HEIDRICH W.: Bidirectional
Importance Sampling for Direct Illumination. In Eurographics
Symposium on Rendering (2005), pp. 147–156.

[CETC06] CLINE D., EGBERT P. K., TALBOT J. F., CARDON

D. L.: Two Stage Importance Sampling for Direct Lighting. In
Eurographics Symposium on Rendering (2006), pp. 103–113.

[CJAMJ05] CLARBERG P., JAROSZ W., AKENINE-MÖLLER T.,
JENSEN H. W.: Wavelet Importance Sampling: Efficiently Eval-
uating Products of Complex Functions. ACM Transactions on
Graphics, 24, 3 (2005), 1166–1175.

[CPB03] CLAUSTRES L., PAULIN M., BOUCHER Y.: BRDF
Measurement Modelling using Wavelets for Efficient Path Trac-
ing. Computer Graphics Forum, 22, 4 (2003), 701–716.

[DBB06] DUTRÉ P., BEKAERT P., BALA K.: Advanced Global
Illumination, second ed. A K Peters, 2006.

[Deb98] DEBEVEC P.: Rendering Synthetic Objects into Real
Scenes: Bridging Traditional and Image-Based Graphics with
Global Illumination and High Dynamic Range Photography. In
Proceedings of ACM SIGGRAPH (1998), pp. 189–198.

[DH06] DUNBAR D., HUMPHREYS G.: A Spatial Data Structure
for Fast Poisson-disk Sample Generation. ACM Transactions on
Graphics, 25, 3 (2006), 503–508.

[DWB∗06] DONIKIAN M., WALTER B., BALA K., FERNANDEZ

S., GREENBERG D. P.: Accurate Direct Illumination Using It-
erative Adaptive Sampling. IEEE Transactions on Visualization
and Computer Graphics, 12, 3 (2006), 353–364.

[GH06] GHOSH A., HEIDRICH W.: Correlated Visibility Sam-
pling for Direct Illumination. The Visual Computer, 22, 9 (2006),
693–701.

[HPB07] HAŠAN M., PELLACINI F., BALA K.: Matrix Row-
Column Sampling for the Many-Light Problem. ACM Transac-
tions on Graphics, 26, 3 (2007), 26.

[Kaj86] KAJIYA J. T.: The Rendering Equation. Computer
Graphics (Proceedings of ACM SIGGRAPH), 20, 4 (1986), 143–
150.

[Lal97] LALONDE P.: Representations and Uses of Light Distri-
bution Functions. PhD thesis, University of British Columbia,
1997.

[LRR04] LAWRENCE J., RUSINKIEWICZ S., RAMAMOORTHI

R.: Efficient BRDF Importance Sampling using a Factored Rep-
resentation. ACM Transactions on Graphics, 23, 3 (2004), 496–
505.

[LW94] LAFORTUNE E. P., WILLEMS Y. D.: Using the Modi-
fied Phong BRDF for Physically Based Rendering. Tech. Rep.
CW197, Katholieke Universiteit Leuven, 1994.

[Mat03] MATUSIK W.: A Data-Driven Reflectance Model. PhD
thesis, MIT, 2003.

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple
Product Wavelet Integrals for All-Frequency Relighting. ACM
Transactions on Graphics, 23, 3 (2004), 477–487.

[ODJ04] OSTROMOUKHOV V., DONOHUE C., JODOIN P.-M.:
Fast Hierarchical Importance Sampling with Blue Noise Proper-
ties. ACM Transactions on Graphics, 23, 3 (2004), 488–495.

[PH03] PRAUN E., HOPPE H.: Spherical Parametrization and
Remeshing. ACM Transactions on Graphics, 22, 3 (2003), 340–
349.

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann, 2004.

[SC97] SHIRLEY P., CHIU K.: A Low Distortion Map between
Disk and Square. Journal of Graphics Tools, 2, 3 (1997), 45–52.

[SDS96] STOLLNITZ E. J., DEROSE T. D., SALESIN D. H.:
Wavelets for Computer Graphics: Theory and Applications. Mor-
gan Kaufmann, 1996.

[Shi91] SHIRLEY P. S.: Physically Based Lighting Calculations

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

10 30 100 300 1000
10−6

10−5

10−4

10−3

10−2

10−1

100

101

Number of Visibility Samples

Va
ria

nc
e

(M
SE

)

Clarberg et al. 2005
Cline et al. 2006
Our algorithm

C
la

rb
er

g
et

al
.2

00
5

C
lin

e
et

al
.2

00
6

O
ur

al
go

ri
th

m

10 samples 30 samples 100 samples 10 samples 30 samples 100 samples

Figure 7: We compare our method (bottom row) with wavelet importance sampling (top row) [CJAMJ05], and two stage
importance sampling (middle row) [CETC06], using 10, 30, and 100 visibility samples/pixel. For this test, we used 256 BRDF
samples for the diffuse floor, and 512 BRDF samples for the glossy green material. All images are unbiased, and ground truth is
shown on the top left. Clarberg et al.’s method is noisy in unoccluded areas, as their low-resolution lighting approximation fails
to capture the precise location of the small bright light (the sun). Cline et al.’s method gives better results, but exhibits more
noise than our algorithm in shadow regions due to their more crudely approximated importance functions. For equal variance,
our method gives a 1.5×−2.7× reduction in the number of visibility samples compared to their method. The variance was
measured on the rendered HDR images before tone-mapping. The light probe is courtesy of Paul Debevec.

for Computer Graphics. PhD thesis, University of Illinois at
Urbana-Champaign, 1991.

[SM06] SUN W., MUKHERJEE A.: Generalized Wavelet Product
Integral for Rendering Dynamic Glossy Objects. ACM Transac-
tions on Graphics, 25, 3 (2006), 955–966.

[TCE05] TALBOT J., CLINE D., EGBERT P.: Importance Re-
sampling for Global Illumination. In Eurographics Symposium
on Rendering (2005), pp. 139–146.

[Vea97] VEACH E.: Robust Monte Carlo Methods for Light

Transport Simulation. PhD thesis, Stanford University, 1997.

[VG95] VEACH E., GUIBAS L. J.: Optimally Combining Sam-
pling Techniques for Monte Carlo Rendering. In Proceedings of
ACM SIGGRAPH (1995), pp. 419–428.

[WABG06] WALTER B., ARBREE A., BALA K., GREENBERG

D. P.: Multidimensional Lightcuts. ACM Transactions on
Graphics, 25, 3 (2006), 1081–1088.

[War92] WARD G. J.: Measuring and Modeling Anisotropic Re-
flection. Computer Graphics (Proceedings of ACM SIGGRAPH),

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Clarberg & T. Akenine-Möller / Practical Product Importance Sampling

26, 2 (1992), 265–272.

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA

K., DONIKIAN M., GREENBERG D. P.: Lightcuts: A Scalable
Approach to Illumination. ACM Transactions on Graphics, 24, 3
(2005), 1098–1107.

[Wil83] WILLIAMS L.: Pyramidal Parametrics. Computer
Graphics (Proceedings of ACM SIGGRAPH), 17, 3 (1983), 1–
11.

[WNLH06] WANG R., NG R., LUEBKE D., HUMPHREYS G.:
Efficient Wavelet Rotation for Environment Map Rendering. In
Eurographics Symposium on Rendering (2006), pp. 173–182.

Appendix A: Wavelet Primer: The 2D Haar Basis

The two-dimensional (nonstandard) Haar basis is an orthonormal
basis made up of translations and dilations of mother basis functions
defined over the unit square. The normalized scaling basis functions
and wavelet basis functions are defined as [SDS96]:

φ
l
uv(x,y) = 2l

φ(2lx−u,2ly− v), (14)

ψM
l
uv(x,y) = 2l

ψM(2lx−u,2ly− v), (15)

where u,v are integer translations in [0,2l − 1], and l is a posi-
tive integer representing the scale, which goes from coarse to fine.
The mother wavelet functions, ψM , are defined in Figure 8, and the
mother scaling function is φ(x,y)= 1 for x,y ∈ [0,1]2, and 0 else-
where. A two-dimensional image, F , with 2k×2k elements can be
exactly represented in the basis consisting of the first scaling func-
tion and all wavelet functions up to scale k−1. For convenience, we
denote this basis Ψ = {φ0,ψ1, . . . ,ψN}, where φ0 = φ0

0,0 and ψ j are
the wavelet functions, sequentially numbered. The expansion of F
can be written:

F =
N

∑
i=0

fiΨi, (16)

where the wavelet coefficients, fi, are given by the inner product:
fi =

R
F(x,y)Ψi(x,y)dxdy. We call f0 the scaling coefficient, and

the rest detail coefficients.

Appendix B: Quadtree Encoding and Wavelet Products

The scale and translation of a basis function uniquely identifies the
wavelet square in which it resides. We use 〈l,u,v〉 to denote a square
at scale l and offset u,v. All squares at the same level are disjoint,
and each has an area of A = 2−2l . Since a square has four children,
it is natural to encode 2D wavelet coefficients in a quadtree struc-
ture [BBS94, SM06]. With sparse wavelet representations, one or
more of the coefficients and/or children of a node may be missing.
Hence, empty interior nodes are possible.

The product of two 2D images, F =G ·H, can be efficiently com-
puted directly in the wavelet basis [NRH04]. The theory has later
been generalized to higher dimensions [CJAMJ05], and to include
multiple terms [SM06]. The quadtree structure of the Haar basis is
essential for reducing the cost. Sun and Mukherjee [SM06] showed
that the product can be described as directed paths through the tree
of basis functions. In the same spirit, we exploit the structure to op-
timize the sampling of wavelet products.

Figure 8: The two-dimensional Haar mother wavelet basis
functions, ψM , are defined over the unit square with the val-
ues +1 where red, −1 where blue, and 0 elsewhere.

Appendix C: Area-Preserving Mapping of the Sphere

To simplify the sampling, we need an area-preserving mapping
that, ideally, maps a single square to the sphere, with low distor-
tion and fast analytical forward and inverse transforms. We combine
the octahedral map [PH03] with the parametrization of Shirley and
Chiu [SC97] to obtain a mapping with all the desired properties,
as illustrated in Figure 9. As the mapping is an important practical
aspect of our implementation, we repeat the formulas here.

The “inner” quad (rotated by 45◦) maps to the northern hemi-
sphere, while the outer four triangles are folded down to cover the
southern hemisphere. Shirley and Chiu map a square to the unit disk,
and then to the hemisphere, to obtain an area-preserving mapping.
Figure 10 illustrates the square-to-disk mapping for the inner tri-
angle of the first quadrant. Given a point (u,v) in the triangle, the
lengths of a and b are a = (u + v)/

√
2 and b =

√
2v. The mapping

to the disk is:

r =
√

2a = u + v,

φ =
π

4
b
a

=
π

2
v

u + v
. (17)

Similar transforms apply to the other quadrants. The point (r,φ) is
then projected onto the northern hemisphere, while preserving frac-
tional area, as follows [SC97]:

(x,y, z) = (r
√

2− r2 cosφ, r
√

2− r2 sinφ, 1− r2). (18)

This mapping uses the same number of trigonometric operations
as the cylindrical equal-area projection, but the distortion is much
more well-behaved. The inverse transform is well-defined and fast
to compute. Interpolation across the seams is also easy due to the
boundary symmetry of the octahedral map [PH03].

Figure 9: The square is divided into n×n pixels, which are
mapped to the same number of irregularly shaped quads
with equal area on the sphere.

(0,1)

(1,0)(0,0)
u

v

{{
a

b

{ {{v

u v

φ{r

Figure 10: The mapping of the first quadrant to the disk.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

