
Graphics Hardware (2008)
David Luebke and John D. Owens (Editors)

Non-Uniform Fractional Tessellation

Jacob Munkberg Jon Hasselgren Tomas Akenine-Möller†

Lund University, Sweden

Abstract

We present a technique that modifies the tessellator in current graphics hardware so that the result is a more uni-
formly distributed tessellation in screen space. For increased flexibility, vertex tessellation weights are introduced.
Our results show that the tessellation quality is improved at a moderate cost.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture-
Graphic Processors I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Curve, surface,
solid, and object representations

1. Introduction

Recent graphics processors [Dog05,TOM∗07] include a tes-
sellation unit, allowing data amplification by tessellating
base triangles to many smaller triangles in the graphics hard-
ware. This helps lowering the bus traffic from the host com-
puter to the graphics processor, by sending higher level sur-
face representations instead of finely tessellated geometry.

Surface tessellation is a vast area of research, and we
will limit the discussion here to work directly related to our
approach. The REYES architecture [CCC87] splits the in-
put primitives in eye-space iteratively until they have a size
smaller than a certain threshold. Then, these smaller primi-
tives are diced into pixel-sized bilinear patches called micro-
polygons. The tessellation rate is determined by the pro-
jected screen-space size of each primitive. This results in an
approximately uniform tessellation in screen space. Notice
that dicing is performed prior to displacement shading, so
there is no guarantee for fully uniform screen-space tessel-
lation, which is similar to the approach we will present.

On current graphics hardware, an input primitive (line,
triangle or quad) is tessellated in parameter space and the
vertex positions in the generated mesh are determined by
a vertex/evaluation shader. This allows approximations of
higher order surfaces, such as Beziér patches and subdivi-
sion surfaces [LS07]. It is hard to adapt the tessellation to
the final projection on-screen before the evaluation shader,
as the shader may move the vertex position arbitrarily. How-

† {jacob|jon|tam}@cs.lth.se

Regular Our technique

equal number
of triangles

Figure 1: Comparison between tessellation on a PN-
displaced triangle [VPBM01]. Our algorithm places more
vertices (non-uniformly) closer to the camera, which results
in more uniform screen-space triangle areas.

ever, micro-triangles closer to the camera should generally
be smaller than micro-triangles far away.

To allow for continuous level-of-detail (LOD) without vi-
sual “popping” and T-junctions, a tessellation scheme, here-
after called regular fractional tessellation [Mor01], can be
used, where a floating point tessellation factor per edge is
provided. An overview of this approach is provided in Sec-
tion 2.

In this paper, we present a modification of regular frac-
tional tessellation. By using perspective-correct interpola-
tion [Bli91, HM91] and complementary vertex weights, we
obtain an almost uniform tessellation in screen space. We
warp the parametric coordinates of each tessellated mesh
vertex before the evaluation shader so that the screen-space
projection of the tessellation pattern has triangles with as
uniform areas as possible. The only assumption is that
the evaluation/vertex shader contains a perspective projec-

c© The Eurographics Association 2008.

Jacob Munkberg & Jon Hasselgren & Tomas Akenine-Möller / Non-Uniform Fractional Tessellation

f=1.0 f=1.1

f=1.5 f=2.0

f1=4.3

f2=1.6f3=2.9

Figure 2: Left: Four regular fractional tessellation exam-
ples are shown with a common tessellation factor (f) on all
edges, from f=1.0 up to f=2.0. As can be seen in the lower
left triangle, for each inner triangle, the number of vertices
decreases with two per edge. Right: Each edge of a triangle
can also have a unique tessellation factor

.
tion transform. There are many published adaptive tessel-
lation techniques that use information of the tessellated sur-
face after surface evaluation [BAD∗01,CK01,CK03], which
achieve higher quality, but with a substantially higher com-
putational cost. Given a graphics card with regular fractional
tessellation, our algorithm can be implemented directly as a
first step in a vertex/evaluation shader.

For a base triangle with an edge along the view vector,
regular fractional tessellation adapts poorly. We adjust the
scheme to better distribute the vertices over the triangle,
while retaining many its strong advantages. Figure 1 shows
an example of our technique.

2. Regular Fractional Tessellation

Regular fractional tessellation is a continuous tessellation
scheme where floating point weights are assigned to each
edge of a triangle. The description in this section is heavily
influenced by the original presentation by Moreton [Mor01],
but is included here for clarity. To allow for a continuous
level of detail, new vertices emerge symmetrically from the
center of each edge. Furthermore, vertices must move con-
tinuously with respect to the tessellation factors. The scheme
consists of one inner, regular part, and a transitional part (the
outermost edges). An example of the continuous introduc-
tion of new vertices is shown in Figure 2. Each outer edge
is divided in two for symmetry, and each half-edge can be
treated independently. Given an edge with tessellation fac-
tor f , first compute the integer part of f : n = b f c. Then step
n times with a step size 1/ f (assuming an half-edge length
of one), and finally, connect the current vertex with the mid-
point of the edge. This allows for efficient surface evaluation
schemes, such as forward differencing, which need uniform
step sizes. The other half-edge is tessellated symmetrically,
resulting in two smaller distances close to the mid-point.

2.1. Edge tessellation factors

In the uniform case, the edges of a sub-triangle have two
vertices fewer than the triangle edges one level further out

(see Figure 2). In the case of equal tessellation weights f
on all three edges, we obtain a regular inner triangle with
tessellation factors f −1.

In the general setting, each edge has a unique tessellation
factor. With different tessellation factors, the symmetric inte-
rior and the outermost edges can be connected by a stitching
state-machine based on Bresenham’s line drawing algorithm
(see Moreton’s paper [Mor01] for details). Figure 2 illus-
trates an example triangle with three different edge tessel-
lation factors, fi. The tessellation factor for the interior part
can, for example, be chosen as maxi(fi)−1.

The edge tessellation factors can be computed by, for ex-
ample, projecting each triangle edge on the image plane and
computing their screen-space lengths, giving larger weights
to edges closer to the camera. This is reasonable, as one
strives for having equal area of each generated triangle. For
displacement-mapped surfaces, local characteristics of the
displacement map, as heights and normal variations, can also
be exploited to determine the tessellation rate [DH00].

2.2. Fractional Tessellation on Current GPUs

Recent graphics hardware from AMD/ATI supports regular
fractional tessellation. In their implementation, the tessel-
lation unit takes vertices and edge tessellation factors of a
base triangle as inputs, and generates a set of new vertices.
The tessellation unit computes the barycentric coordinates
for every created vertex, and executes a vertex or evaluation
shader. The task of this shader is to compute the position of
a vertex as a function of its barycentric coordinates and the
three vertices of the base triangle.

The edge tessellation factors can be computed either on
the CPU, or by adding an additional pass on the GPU and us-
ing “render to vertex buffer” capabilities to execute a shader
program that computes the factor for each edge.

3. Non-Uniform Fractional Tessellation

A disadvantage of the regular fractional tessellation algo-
rithm is that vertices along an edge are distributed uniformly
(except locally around the center, where new vertices are
introduced). If an edge is parallel to the view direction, a
uniform tessellation along this edge is far from optimal.
Our goal is to create a tessellation pattern that preserves
the qualities of regular fractional tessellation, such as con-
tinuous level of detail and introduction of new vertices at
an existing vertex. In addition, we strive for uniform micro-
triangle sizes in screen space before the evaluation shader
is executed, similar to what is done in the REYES architec-
ture [CCC87].

Given a base triangle, we first tessellate using the regular
fractional tessellation algorithm as described in Section 2.
We then modify the barycentric coordinate of each vertex
in the generated tessellation so that its projection in screen

c© The Eurographics Association 2008.

Jacob Munkberg & Jon Hasselgren & Tomas Akenine-Möller / Non-Uniform Fractional Tessellation

t’
tz

y

(Y0,Z0)

(Y(t),Z(t))

(Y1,Z1)

Figure 3: Perspective-correct interpolation.

space results in uniform micro-triangle sizes. This achieved
by using reverse projection, as described in the following
section.

3.1. Reverse Projection

We start with a simple example in two dimensions. Figure 3
shows a line l = (1− t′)(Y0,Z0)+ t′(Y1,Z1) in perspective.
Let t′ denote a parameter along the line in camera space and
t a parameter along the projection of the line in screen space.
Using similar triangles and linear interpolation in t and t′, we
can derive a relationship between them as:

t′ =
t/Z1

t/Z1 +(1− t)/Z0
. (1)

Now, assume we have a uniform distribution of points in t.
Figure 4 shows the corresponding distributions in t′ for vari-
ous depth values Z0 and Z1. The bigger the depth difference,
the more non-uniform distribution in t′. All the distributions
t′ from Figure 4 will project back to a uniform distribution
in screen-space, by construction.

Z0=1 Z1=1

Z0=1 Z1=2

Z0=1 Z1=4

Figure 4: Perspective remapping of a uniform edge for three
different combinations of vertex depths.

Next, this is generalized to two dimensions. Denote the
barycentric coordinates of the triangle (u′,v′), and the pro-
jected barycentric coordinates in screen space as: (u,v).
Regular fractional tessellation will create a uniform pat-
tern in the plane of the triangle, but when projected on-
screen, this will no longer be uniform. However, assume
we have a regular fractional tessellation in screen space,
and reverse-project the pattern out on the triangle in cam-
era space. If we know the vertex depths in camera space
of our base triangle, we can generalize the derivation from
the two-dimensional example above to form the standard
perspective-correct barycentric coordinates [Bli91, HM91]
for triangles:

u′ =
u/Z1

(1−u− v)/Z0 +u/Z1 + v/Z2
,

v′ =
v/Z2

(1−u− v)/Z0 +u/Z1 + v/Z2
. (2)

These are the barycentric coordinates in camera space that
project to a uniform tessellation in screen space. This can
also be seen an a function that adjust the barycentric coor-
dinates of the triangle (u′,v′) before projection so that they
create a uniform distribution of (u,v) in screen space, using
three vertex weights, {Zi}.

In the GPU-pipeline, the evaluation shader receives
barycentric coordinates before projection as input, and by
simply applying Equation 2 to these barycentric coordinates
as a first step in the evaluation shader, the pattern will be
roughly uniform in screen-space after projection. Note that
we need the depth values (in camera space) for each vertex
of the base triangle. One approach is to compute these ver-
tex weights in a shader in a preceding pass, similar to how
edge tessellation factors are handled in current hardware so-
lutions (see Section 2.2). Another possibility is to compute
the depth values in the evaluation shader (a dot product),
just before we perform the reverse projection. This solution
avoids sending data between different passes, but performs
redundant work.

The same correction technique works for quad primitives
by using generalized barycentric coordinates. For example,
mean value coordinates works as generalized barycentric co-
ordinates for quads. Please refer to Hormann and Tarini’s
work on quad rendering [HT04] for details.

Discussion Note that reverse projection gives a (roughly)
constant triangle area tessellation in screen space only if the
base triangle is not undergoing any transformations other
than the projection. In practice, this is not true as subdivi-
sion surfaces and displacement mapping are the most com-
mon applications of tessellation. However, the resulting tes-
sellation quality is more likely to be better if we start with a
uniform tessellation in screen space, even when an arbitrary
vertex shader follows.

3.2. Clipping
Our reverse projection is based on perspective-correct in-
terpolation, which means that problems occur when part
of a triangle is behind the camera (straddling triangles).
The mathematics of the perspective-correct interpolation
breaks down as the projected triangle “wraps around” infin-
ity. In most settings, this problem is avoided, as triangles are
clipped to the near-plane of the view-frustum. Our algorithm
is executed prior to clipping, and must handle this case.

A further complication is that triangles with one or two
vertices in front of the near plane, but outside the view frus-
tum will get an unnecessary concentration of vertices outside
the view frustum, as shown in the left part of Figure 5.

A proposed solution is to clip the base triangles against the
view frustum (we use Cohen-Sutherland clipping [NS79]),
and split the straddling triangles in smaller triangles entirely
on either side of the clip volume. For triangles outside the
frustum, we compute new weights so that the interpolation

c© The Eurographics Association 2008.

Jacob Munkberg & Jon Hasselgren & Tomas Akenine-Möller / Non-Uniform Fractional Tessellation

Figure 5: Left: for triangles that straddle the view frustum,
uniform tessellation can be better than our corrected ver-
sion. Right: By clipping the base primitives to the frustum,
we alleviate this situation.

distributes triangles closer to the frustum edge. The right
part of Figure 5 shows this. This approach simply updates
the vertex weights for each base primitive in the clipping
pass, and no detection is needed in the evaluation shader.
Although the clipping is costly, it is only performed on the
coarser base geometry in a preceding shader pass.

We want to stress that the evaluation (vertex) shader is not
known, and that it may displace the tessellated vertices ar-
bitrarily. For instance, it may move a vertex over the near
clipping plane, thereby making it visible. Our mirrored pro-
jection is well motivated in that it distributes many vertices
around the intersection with the view frustum. Under the as-
sumption that the vertex displacement is local, it is more
likely that a vertex close to a frustum border is moved in
front of it, than a vertex further away.

4. Implementation

Our algorithm can be implemented in hardware, as well as
in shader code. Current fractional tessellation hardware al-
ready feeds barycentric coordinates to the evaluation shader.
We can essentially just insert code for our reverse projec-
tion algorithm in the beginning of the evaluation shader to
compute new barycentric coordinates. These coordinates can
then be fed to the remainder of the evaluation shader, which
may differ depending on the application.

In our implementation, we perform regular fractional tes-
sellation on the CPU. This could have been done by recent
GPUs, but currently there are no public APIs for using the
tessellation unit. Our reverse projection is implemented in a
vertex shader, inspired by the evaluation shader approach by
AMD [Dog05,TOM∗07]. The inputs to the vertex shader are
the positions of all three vertices of the base triangle, as well
as the barycentric coordinates of the current tessellated ver-
tex. Given this setup, our reverse projection code compiles to
11 vertex shader assembly instructions. By comparison, an
extremely simple evaluation shader that interpolates a single
position attribute and transforms it to clip space, compiles to
10 instructions. Thus, our overhead here is very small. Our
frustum clipping is considerably more expensive, but must
only be performed on the original base triangles in a preced-
ing pass.

5. Results and Conclusions

Figure 6 shows regular fractional tessellation and the pro-
posed technique for a displaced brick road. For our tech-
nique, the triangle density is more uniformly spread out in
screen space, and the close-up detail is better preserved. This
can especially be seen in the center of the images where the
bricks have a smoother look with our tessellation, and in
the far back where more triangles are gathered for regular
fractional tessellation. Similar effects are shown in Figure 1,
where a Bézier-triangle has been generated in an evaluation
shader. These images use exactly the same number of micro-
triangles. However, as can be seen, the micro-triangles are
more uniform in terms of projected micro-triangle area with
our technique, which was our goal.

One potential problem is vertex “swimming” during an-
imation, as we warp the parametric space. However, this is
true for any scheme using fractional tessellation with tessel-
lation weights computed per frame. In practice, we found
that our scheme shows about the same or less swimming ar-
tifacts compared to regular adaptive fractional tessellation.
The accompanying video compares these artifacts during an-
imation.

The warping technique presented here must not be lim-
ited to perspective-correction, but could be seen as a more
general approach to achieve better control over surface tes-
sellation. As future work, it would be interesting to test other
warping functions, allowing each edge to have an indepen-
dent warping function and investigating more elaborate LOD
measures for the vertex weights. We hope that this paper will
stimulate further research in the field.

Acknowledgements

We acknowledge support from the Swedish Foundation for
Strategic Research, Intel Corporation and an AMD Fellow-
ship.

References

[BAD∗01] BÓO M., AMOR M., DOGGETT M., HIRCHE J.,
STRASSER W.: Hardware support for adaptive subdivision sur-
face rendering. In Graphics Hardware (2001), pp. 33–40.

[Bli91] BLINN J.: Hyperbolic Interpolation. IEEE Computer
Graphics and Applications, 11, 1 (1991), 89–94.

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of ACM SIGGRAPH 87) (1987), pp. 96–102.

[CK01] CHHUGANI J., KUMAR S.: View-dependent adaptive
tessellation of spline surfaces. In Symposium on Interactive 3D
graphics (2001), pp. 59–62.

[CK03] CHUNG K., KIM L.-S.: Adaptive Tessellation of PN Tri-
angle with Modified Bresenham Algorithm. In SOC Design Con-
ference (2003), pp. 102–113.

c© The Eurographics Association 2008.

Jacob Munkberg & Jon Hasselgren & Tomas Akenine-Möller / Non-Uniform Fractional Tessellation

Reference Regular Our technique

Figure 6: Brick road test scene. We use low tessellation to stress the algorithms.

[DH00] DOGGETT M., HIRCHE J.: Adaptive View Dependent
Tessellation of Displacement Maps. In Graphics Hardware
(2000), pp. 59–66.

[Dog05] DOGGETT M.: Xenos: XBOX 360 GPU. Eurographics
presentation, September 2005.

[HM91] HECKBERT P. S., MORETON H.: Interpolation for Poly-
gon Texture Mapping and Shading. In State of the Art in Com-
puter Graphics: Visualization and Modeling (1991), pp. 101–
111.

[HT04] HORMANN K., TARINI M.: A Quadrilateral Rendering
Primitive. In Graphics Hardware (2004), pp. 7–14.

[LS07] LOOP C., SCHAEFER S.: Approximating Catmull-Clark
Subdivision Surfaces with Bicubic Patches. Tech. rep., MSR-TR-
2007-44, Microsoft Research, 2007.

[Mor01] MORETON H.: Watertight Tessellation using Forward
Differencing. In Graphics Hardware (2001), pp. 25–32.

[NS79] NEWMAN W., SPROULL R.: Principles of Interactive
Computer Graphics, 2nd ed. New York: McGraw-Hill, 1979.

[TOM∗07] TATARCHUK N., OAT C., MITCHELL J. L., GREEN

C., ANDERSSON J., MITTRING M., DRONE S., GALOPPO N.:
Advanced Real-Time Rendering in 3D Graphics and Games.
SIGGRAPH course, 2007.

[VPBM01] VLACHOS A., PETERS J., BOYD C., MITCHELL

J. L.: Curved PN triangles. In Symposium on Interactive 3D
graphics (2001), pp. 159–166.

c© The Eurographics Association 2008.

