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Graphics Processing Units
for Handhelds
In handheld devices that display 3-D images, lower-power consumption

for graphics hardware can be achieved by algorithms that reduce bus

traffic with system memory and provide more efficient rendering.

By Tomas Akenine-Möller and Jacob Ström

ABSTRACT | During the past few years, mobile phones and other

handheld devices have gone from only handling dull text-based

menu systems to, on an increasing number of models, being able

to render high-quality three-dimensional graphics at high frame

rates. This paper is a survey of the special considerations that

must be taken when designing graphics processing units (GPUs)

on such devices. Starting off by introducing desktop GPUs as a

reference, the paper discusses how mobile GPUs are designed,

often with power consumption rather than performance as the

primary goal. Lowering the bus traffic between the GPU and the

memory is an efficient way of reducing power consumption, and

therefore some high-level algorithms for bandwidth reduction

are presented. In addition, an overview of the different APIs that

are used in the handheldmarket to handle both two-dimensional

and three-dimensional graphics is provided. Finally, we present

our outlook for the future and discuss directions of future

research on handheld GPUs.

KEYWORDS | Computer graphics; graphics processing units;

mobile devices; rasterization

I . INTRODUCTION

In 2006, about 800 million mobile phones were sold all

over the world; according to World Cellular Information

Service, this figure was expected to grow to more than
1 billion during 2007. The mobile phone has evolved into a

powerful tool that can be used not only as a phone but also

as a music and video player, calendar, TV, radio, and still-

image and video camera, as well as for gaming and surfing

the Internet. In particular, the display technology has

changed dramatically over the past ten years, and today
resolutions of 320 � 240 are common (and increasing)

with 65 thousand to 16.8 million possible colors per pixel.

Hence the mobile phone can be considered the most

widespread device with graphics capabilities [1]. Today,

the visual content and its quality is a key differentiating

factor for mobiles, and it is therefore of uttermost

importance to do this part of the platform well in order

to create a successful mobile phone. To create three-
dimensional graphics, specialized hardware called graphics
processing units (GPUs) are used to render high-quality

images. Most phones today do not yet have a GPU, but we

are in the middle of a major change in which more and

more phones are being equipped with them. We believe

that the most important application will be to increase the

experience in user interfaces (UIs) and games. User

interfaces can indeed be the killer application. This is
illustrated by devices such as the iPhone, where advanced

graphics have been included mostly for the user interface.

See Fig. 1 for an example of user interfaces for mobile

phones.

It should also be noted that the Android platform,

managed by Google, for mobile devices also has

extensive support for graphics, with support for OpenGL

ES 1.0. Other examples of possible applications are
navigation in three-dimensional maps (e.g., Google

Earth), E-commerce (to look at products from different

viewpoints), screen savers, augmented reality, avatars,

messaging, and advertising. For professional users such

as firefighters and rescue workers, there could be further

applications in visualization such as three-dimensional

blueprints of buildings, three-dimensional maps with

overlay graphics, etc.
This survey will investigate the implications of graphics

rendering when using these limited devices and present a

high-level overview of algorithmic improvements for

Manuscript received June 5, 2007; revised November 20, 2007.
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graphics hardware designed primarily for battery-driven

platforms.

II . CONCEPTUAL OVERVIEW OF
GPU ARCHITECTURE

In this section, we will give a quick overview of a GPU for a
desktop PC, i.e., a GPU that has not been developed for a

mobile phone. First, we note that the memory subsystem is

a massive design and provides enormous amounts of

bandwidth to different memories. This is illustrated in

Fig. 2. As can be seen, there is a dedicated graphics

memory and also a separate system memory, which both

the CPU and the GPU can use. In the GeForce 8800, which

is a recent GPU from NVIDIA, the peak bandwidth to the
graphics memory is 86.4 gigabytes per second (GB/s) [20].

Originally, GPUs were designed only to render triangles,

lines, and points. This has changed, and they are now used

for general-purpose computations for performance-critical

algorithms that can be efficiently expressed in the streaming

nature of the GPU architecture. Here, the focus will be

mostly on the graphics aspect of GPUs, with concentration

on rendering triangles, which are the Brendering atoms[ of

real-time graphics. A conceptual overview of the rendering

pipeline when drawing triangles is shown in Fig. 3.

An application, for example, a game, is running on the

CPU and feeds the GPU with triangles to be rendered and
states indicating where, and how, these should be

rendered. To transform the vertices of a triangle into the

desired positions, the vertices are processed in a unit called

BVertex Processing.[ Here, different types of per-vertex

computations are performed. Then a unit called Bsetup[
assembles triangles from three vertices and computes data

that are constant over the triangle. After that, the pixels

that are inside the triangle are found, and for each such
pixel, per-pixel processing commences. This includes

computing the color of the pixel using a variety of

techniques to obtain the desired visual result. At the end of

the GPU processing, different types of frame buffer

operations take place. This includes resolving visibility

(making sure that the triangles closest to the viewer are

visible) and blending, for example. Finally, the result (if

any) may be written to memory. From a general-purpose
computation perspective, the rendering of a triangle can be

seen as an implicit for-loop over the pixels inside the

triangle. For more details about GPU architectures, we

refer to Kilgariff and Fernando [15].

Both the vertex processing and pixel processing stages

are fully programmable using high-level C-like languages.

One such example is the Cg language [18]. These programs

running on the GPU are often called shaders. The
instruction sets for vertex processing and pixel processing

have converged over the years and are now identical.

Hence, the conceptual diagram above can be implemented

in a unified shader architecture. This includes recent

graphics cards, such as the Geforce 8800 series [20] and

the Xbox 360 from AMD. It should be noted that there are

also geometry shaders [5], which can Bcreate[ new

Fig. 1. Examples of possible user interfaces for mobile phones. The UI to the right uses three-dimensional graphics to be able to fit more

icons on screen. (Images courtesy of TAT AB, http://www.tat.se.)

Fig. 2. A typical memory architecture for a nonmobile GPU, where the

buses between the units have capabilities ofmany tens or hundreds of

gigabytes per second. (Illustration after Kilgariff and Fernando [15].)
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geometry inside the GPU. The idea of unified shader

architectures is to duplicate many (e.g., 128) unified
shader units, which can execute vertex, pixel, and

geometry shader programs, within the GPU. As illustrated

in Fig. 4, a single unified shader core can execute any type

of shader and forward the result to another shader core (or

even to itself), until the entire chain of shaders has been

executed.

An important feature of unified shader architectures is

that they provide load balancing. For example, a highly
detailed character composed of tiny triangles with simple

lighting may utilize the full computing resources of the

GPU by allocating more shader units for vertex processing

and fewer for per-pixel processing.

It is interesting to compare the computing peak

performance of CPUs and GPUs. The NVDIA GeForce

8800 GT provides 346/520 Gflops [20], which should be

compared to a quad-core Intel Xeon at 3 GHz with SSE2,
providing a peak performance of 96 Gflops. It should be

noted that GPUs for desktops make heavy use of both

caching and compression techniques.

III . LIMITATIONS AND CONSIDERATIONS
OF MOBILE PHONES

On a functional level, GPUs for mobile devices are very

similar to GPUs for desktops, in general. However, under

the hood, many differences can be found. One example is

shown in Fig. 5. The physical size of the mobile phones
limits how much technology can fit in the device. The key

differencing factors for a mobile phone are that they:

1) are powered by batteries;

2) have limited CPU instruction set;

3) use a low clock frequency;

4) have limited memory and memory bandwidth;

5) do not have fans or other cooling technology.

In the following, we discuss these a bit more in detail.
A mobile device is by definition powered with batteries

and is also small in order to be portable. Most or all

limitations stem from these two constraints: battery-driven

and small size. To provide long use-time on the battery, it

is important to make sure that the system of the mobile

phone uses as little energy as possible. There are many

power-reduction techniques for this, some of which will be

discussed in this paper. The increase in storage capacity
per unit volume for batteries is increasing at a relatively

slow rate of about 5–10% per year [21], [25], which

further increases the difficulty of the situation. Even if

batteries would suddenly become much more powerful,

power consumption could not be increased infinitely since

the small size of the mobile phone means that it would

need to dissipate large amounts of heat from a small area,

and thus become too hot to handle [21]. The instruction set
for the CPU is often reduced. For example, sometimes the

division instruction is missing, and often floating-point

support is not available. The power consumption is an

increasing function of the clock frequency, and hence it is

kept rather low as well.

In many systems for mobile phones, the memory ar-

chitecture is quite different from that of desktop systems, as

can be seen in Fig. 6. A flash memory is often used as a Bhard

Fig. 4. A nonunified architecture versus a unified shader architecture.

The advantage of unified approach is that one can have several

shader coresanduse themforany typeof shader (I–IV in thisexample).

This gives better load balancing. IB and OB are input and

output buffers.

Fig. 3. Conceptual overview of the rendering pipeline. The application is running on the CPU and is responsible for sending, for example,

triangles to be rendered to the GPU. The GPU first processes the vertices of the triangles by executing a user-supplied program (aka shader)

for each vertex. Then the setup unit gathers vertices to form a triangle and computes various constants used for rasterization. For each pixel

inside the triangle, a program is executed in the pixel processing unit. The major task of this program is to compute the color of the pixel.

Several different frame buffer operations may then be performed, and finally, pixel data may be written to memory.
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disk[ in USB sticks, for example, but also in mobile phones.

This type of memory is nonvolatile (it does not go away

when you turn the power off), but it is not a disk per se. In
addition, there is a rather small system RAM that is located

Boff chip.[ Since reading from flash memory in general is

much faster than writing, music, video, executables, etc., are

often stored there and loaded into the RAM when needed.

The mobile GPU can be located either on the same chip as

the CPU or in a separate circuit. In many cases, there is no

dedicated graphics memory and no separate bus for
graphics-related memory accesses. In addition, the width

of the bus can be as small as 16 bits; however the trend is

towards wider buses such as 32 or perhaps even 64 bits. In

order to save power consumption, the transistors that make

Fig. 5. The small physical size of a mobile device creates limitations that are not present for desktops.
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up the CPU and the GPU are created using low-power

processes, which make them leak very little energy.

However, in order to access off-chip memory (such as
system RAM), one needs to drive high capacitances for the

buses, and this costs a lot in terms of energy. Hence,

memory accesses are very expensive in terms of energy

compared to computation [10], and this observation will be
used for a variety of algorithms later in this paper.

The resolution of mobile phone displays has increased

steadily in recent years. Fig. 7 plots a diagram for a set of

models from Sony Ericsson (T68m, T610, K600, K800i,

and W880i), where the angle between two pixels to one

point on the retina is plotted against the year the handset

was first sold. PlayStation Portable (PSP), iPod Video

(leftmost Apple data point) and the iPhone (rightmost
Apple data point) are also shown. A viewing distance of

30 cm was used for all portable units, and 60 cm was used

for the 24-in desktop display of 1920 � 1200. As can be

seen in the diagram, while at first mobile phones had vastly

inferior resolution, they are now starting to surpass that of

desktop displays. Naturally, it is not meaningful to increase

resolution further than the resolution of the eye. While the

resolution of the eye depends on contrast and viewing
conditions, it is on the order of 1 arc minute (one-sixtieth

of a degree, plotted in the diagram in dashed black) [8].

It should be noted that the display is a major power

consumer in a mobile device, and it has been reported that

about 30% of the power in a laptop is consumed by the display

[17], mainly because inefficient backlighting is needed.

Exactly how much is consumed by graphics-intensive

applications, such as games, is not well known, but it can
be expected to be a high percentage of the remaining

Fig. 6. Thememory system in amobile phone is quite different froma

desktop PC system (compare to Fig. 2). Here, it may be the case that

both the CPU and the GPU and other hardware share the same chip

(though these can be separate chips as well). In addition, there is

usually a limited amount of system RAM and some kind of flash

memory (e.g., NAND flash), which is used as a ‘‘hard drive.’’ Note

that an L2 cache is seldom seen in today’s mobile devices but is

something that will be incorporated in the near future.

Fig. 7. The resolutionofmobile phonedisplayshas increased rapidly, and their corresponding retinal anglehas surpassedor is onparwith that of

large desktop displays, even considering the fact that they are viewed at half the distance.
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consumption. In this paper, we do not consider algorithms or
technology for reducing power consumption in the display.

However, it should be noted that using light-emitting diodes

(LEDs) offers promise for highly energy-efficient displays.

Each pixel would then Bconsist[ of several LEDs, and the

issue of backlighting would be avoided altogether. Examples

include organic LEDs [26] and nano-LEDs [3].

In the following, we will first discuss application

programming interfaces (APIs) specifically developed for
mobile devices, and why this is so. Then we will discuss

high-level algorithmic improvements for handheld GPUs.

IV. APIs SPECIFICALLY FOR
MOBILE DEVICES

In the desktop world, APIs for three-dimensional real-time

graphics are dominated by DirectX and OpenGL. Inter-
estingly, these APIs are used more and more to accelerate

the rendering of the windows manager in Mac OS X and in

Windows Vista, and can also be used to accelerate

rendering of PDF files.

When three-dimensional graphics entered the mobile

market, a plethora of proprietary APIs surfaced. However,

to reduce market fragmentation, there was a need for

standardized APIs, both for the Java and the native level.
This need was met by the Java standard Mobile 3D Graphics
(M3G), standardized by JCP, and the native standard

OpenGL ES (ES is short for embedded system), standard-

ized by Khronos. On the native side, OpenGL ES 1.0 was

more or less created as a subset of OpenGL 1.3, where parts

that were not useful for mobile phones were removed,

such as computer-aided design support. On the Java side,

one major constraint has been the speed at which Java code
can be executed. Writing scene manipulation structures

such as a scene graph in Java code would thus be very

inefficient. Therefore, a scene graph is included in M3G so

that its functions can be implemented in fast native code,

using just a few Java calls. However, low-level manipula-

tion of rendering primitives is also possible in M3G,

making it both a high- and low-level API. In contrast,

OpenGL ES is a purely low-level API, and the application
writers usually write their own scene-manipulating

structures. Since these can be adapted to the problem at

hand (a scene-manipulating structure for a car game may

be quite different from that of a fighting game, say), they

can be more efficient than a general scene graph. The

mobile APIs have been playing a rapid catchup game with

the desktop APIs. Whereas version 1.0 of OpenGL ES was

mostly intended for software renderers, 1.1 targeted
hardware renderers, and the latest version, 2.0, allows

for programmable shaders. A programmable version of

M3G 2.0 is also under way. OpenGL ES is also used outside

the mobile world; Sony uses a variant of OpenGL ES 2.0 in

their PlayStation 3 game console.

Both M3G and OpenGL ES are APIs for three-

dimensional graphics. However, two-dimensional vector

graphics is being revived for mobile devices. The major
advantage of vector graphics over traditional bitmap, or

raster, graphics is that it is scalable. In bitmapped graphics,

an image is defined by specifying the color for a number of

pixels directly. Zooming in a bitmapped image thus means

interpolating values between pixels, and edges will not stay

sharp. In contrast, in vector graphics, the content is

defined by specifying the colors of geometrical primitives

such as lines, curves, and polygons. An image can then be
rendered from any distance, and thus turned into pixel

colors. A zoomed-in vector graphics image can thus pre-

serve sharp edges, which is why it is called Bscalable.[ This

means that a user interface, for example, can be made only

once and then rendered at different display resolutions

with nice appearance. With bitmap graphics, one bitmap

per resolution would be required. Applications of vector

graphics include graphical user interfaces, animated
messages, simple games, high-quality text (e.g., for reading

books), and two-dimensional maps. See the tiger in Fig. 8

for a clear example of the usefulness of scalable two-

dimensional graphics.

In the desktop world, there is no standardized

hardware accelerated API for two-dimensional vector

graphics similar to Direct3D or OpenGL. One reason for

this may be that software implementations of, for instance,
the Flash player are considered fast enough even if run on

a CPU. On a mobile device with a weaker CPU, software

implementations may not be fast enough. Furthermore, a

hardware implementation is not only faster but also more

Fig. 8. A tiger rendered with OpenVG at two different scales. Notice

that details becomes visible at the larger scale. This model contains

Bézier curves, color ramps, etc. Rendered with Hybrid Graphics’

OpenVG reference implementation.
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efficient in terms of power consumption. Therefore,
Khronos developed OpenVG, which is a hardware-friendly

low-level API of the same kind that OpenGL ES is for

three-dimensional graphics. Higher level APIs are also

available; Flash Light is the mobile version of the desktop

Flash standard, and SVG Tiny is ditto for SVG. A high-level

API such as SVG could be implemented on top of a low-

level one, such as OpenVG. The APIs typically support

antialiased polygons, lines, curves, and strokes. They also
include effects such as color gradients, textures, and text

rendering. The major difference compared to three-

dimensional APIs is the support for curved primtives,

such as Bézier curves. This enables zooming on a curve

without any tessellation artifacts.

It is possible to use a graphics architecture created for

three-dimensional graphics to accelerate vector graphics

such as OpenVG. The two-dimensional primitives are then
tessellated to triangles before being rendered. This can be

an attractive solution if there is a need for both three-

dimensional and two-dimensional vector graphics. How-

ever, on systems that only require vector graphics, the

graphics hardware can be made smaller in terms of surface

area and be made to consume less power. It should be

noted that many of the enticing Bthree-dimensional[
effects used in user interfaces, such as warping the image
to make it Bfly away[ from the screen, can be realized

using two-dimensional APIs such as OpenVG. If no true

three-dimensional effects are needed, such as objects that

occlude each other in complex ways, it is possible to create

a low-power small-surface-area system using OpenVG-

only-capable hardware.

Whereas native applications are standard on desktops,

most phones sold today (denoted Bfeature phones[) do not
have the capability for the user to install new native

software. Instead, these phones rely on Java for down-

loadable applications. Lately, the number of Bsmart

phones,[ i.e., phones that allow the user to install new

native software, has been soaring. This has created a need

for standardizing part of the native interface, so that

applications can be ported more easily between different

models of mobile phones. Khronos’ OpenKODE standard
is a response to this need, standardizing file system, data

types, etc., as well as the interaction between other media

APIs such as OpenGL ES and OpenVG.

V. TECHNIQUES FOR MOBILE GPU
ARCHITECTURES

There are several ways on the circuit level in which power
consumption can be lowered in a mobile GPU. In the first

category, we find, for example, clock gating, which means

temporarily shutting down parts of the chip that are cur-

rently not used. It is also common to use low-power pro-

cesses when designing the chip, which means that

transistors will leak less power than on desktop GPUs.

Both clock gating and the use of low-power processes are

standard practices on mobile phone chips. Clearly, there
are many more low-level energy conservation techniques.

This includes, for example, energy-efficient arithmetic

units and voltage scaling techniques. Such techniques are

out of the scope of this paper, as they are not directly

related to graphics.

Another important way to reduce power consumption

has to do with high-level algorithmic changes in the GPU.

As argued before, memory accesses are expensive in terms
of power, and therefore there is a significant amount of

research dealing with ways to lower memory bandwidth

usage. On desktops, memory bandwidth-saving techniques

have mostly been used to increase the performance for a

certain level of memory traffic. On mobile phones, how-

ever, it may be equally important to reduce the bandwidth

(and hence the power consumption) for a certain level of

performance. Using high-level algorithmic changes in the
GPU, bandwidth can often be traded for computation. In

the next sections, we will discuss three such techniques:

tiling architectures, buffer compression, and texture

compression. However, computation also carries a power

cost, and Moore points out that transistor leakage is

increasing at a very rapid pace [19]. This implies that the

number of transistors should be kept down, since this will

reduce leaking. Also in the case of reducing computation,
high-level algorithmic changes in the GPU can provide

substantial savings. As an example to this, the recently

introduced programmable culling unit (PCU) [14] can

reduce the number of pixel shader instructions to be

executed by down to 50%.

A. Tiling Architectures
We have already observed that there are several major

differences between GPUs on handhelds and for desktops.

In terms of architectures for GPUs, there is yet another

difference. On handhelds, there is a particular type of

GPU, which we will call a tiling architecture. The first

example of this is the Pixel-Planes 5 graphics system [9],

and some architectures like this have existed even for the

desktop market. At the moment, however, there is no

tiling architecture on the desktop market, but there are
several targeting handhelds.

As a high-level overview of Bstandard[ rendering, a

triangle is first transformed to its correct position, and per-

vertex computations take place. Then the triangle is sent

down the graphics pipeline for further per-pixel proces-

sing. A tiling architecture, on the other hand, renders only

to one tile at a time. A tile is typically a rectangular block of

pixels, say, 16 � 16 pixels. These architectures need to
send all the geometry of the entire frame to the graphics

card, which then sorts the triangles into lists. The entire

rendering area is divided into tiles, and for each tile that

a triangle overlaps after transformations, a pointer to that

triangle is stored. Hence, after this has been done for all

triangles, each tile has a list with all the triangles that

overlap that particular tile.
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At this point, rendering of the first tile commences.
The triangles of that tile are thus rendered into this first

tile. The major advantage is that the depth and color

buffers and other buffers only need to be as big as the tile,

for example, 16 � 16 pixels. This amounts to a small piece

of memory, and this can be stored on-chip. We call this the

tile buffer. Therefore, off-chip memory accesses to external

(off-chip) memory are avoided to a large extent. When all

triangles for that tile have been rendered, the buffers can
be written out to external buffers. Another useful feature is

that once the sorting has been done, per-pixel rendering to

different tiles can be done in parallel. However, this

requires multiple hardware units for per-pixel processing.

For antialiasing on tiling architectures, there is an

advantage that is of particular interest on mobile devices.

Assume that an antialiasing scheme uses four samples per

pixel. For a conventional architecture, the frame buffer
(including, e.g., color and depth) needs to be four times as

large, and this buffer is stored in system RAM or video

RAM. For a tiling architecture, either the on-chip memory

for a tile buffer needs to be four times as large or the tile

size is reduced to a fourth of the initial tile size (e.g., going

from 16 � 16 pixels to 8 � 8 pixels). In the latter case, the

on-chip requirements do not increase but the tile size

decreases, and so more tile lists are needed and four times
as many tiles need to be processed. In the former case, only

the on-chip memory requirements increase, which may be

reasonable in some cases.

There is a clear advantage for tiling architectures since

off-chip accesses can be avoided in many cases. However,

the memory bandwidth increases in other places in the

pipeline. For example, the triangle/tile sorting needs to be

done, and creating the triangle lists increases bandwidth
usage a bit. At this point, there is an ongoing debate on

which architecture is the best, and we simply note that this

is clearly scene-dependent. This means that there will be

three-dimensional scenes where a tiling architecture per-

forms much better than a standard architecture, but the

opposite is also true. Unfortunately, there is no academic

study analyzing the advantages and disadvantages in terms
of hardware implementation and memory bandwidth

usage. The currently available information can be found

on company Web sites with tiling architecture products,

but we avoid citing those documents as there is no descrip-

tion of how the comparisons were made.

Examples of existing tiling architectures for handhelds

are the Mali series from ARM and the MBX and SGX

architectures from Imagination Technologies.

B. Compression and Decompression Techniques
One way to reduce the number of memory accesses is

to compress the data. In Fig. 9, a high-level rendering

architecture is illustrated to the left. Standard components

in such a system include a depth buffer, which handles

occlusion by storing the distance from the viewer for each

rendered pixel, and textures, which are images that are
glued onto surfaces in order to make them appear more

realistic. The textures and the depth buffer are stored in

memory, and in order to render a scene, the GPU must

access this data over the bus. For instance, in order to

render one pixel using standard quality filtering (called

trilinear mipmapping), the GPU must read eight texels

(texture pixels) from the texture. Caches certainly help to

lower the number of bus accesses, but even with efficient
caching, memory bandwidth is usually a performance-

limiting and/or power-consuming factor.

Buffer Compression: To lower the bus bandwidth usage,

one can deploy buffer compression. The buffer, such as the

depth buffer, is then compressed and stored in memory in

compressed form. When accessed by the GPU, the com-

pressed data are transferred over the bus and decom-
pressed in real-time in the GPU. This is shown to the right

in Fig. 9. If the data need to be written, such as in the case

with the depth buffer, it must be compressed on-the-fly

before being transferred to the memory.

For some buffers, such as the depth buffer, it is important

that the compression not destroy the data; the compression

Fig. 9. Left: the bus traffic is intensive between the memory, where geometry, textures and the depth buffer are stored, and the GPU.

Right: by compressing textures and buffers, and decompressing them on-the-fly, bus traffic can be greatly reduced.
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must be lossless. In that case it is not always possible to
compress the data at all. Therefore, depth compression

algorithms reserve the same amount of memory as if the data

were not compressed at all, e.g., 384 bits per 4 � 4 block.

The GPU keeps a bit on-chip to indicate whether the block

was compressed. If compressed, only a few of the 384 bits

are transferred, and decompression takes place in the GPU.

Otherwise, all bits are transferred, and the decompression is

bypassed. Thus depth buffer compression does not save
memory space, only bus bandwidth. It should be noted that

the same algorithms for buffer compression can be used for

mobile devices and for desktop GPUs. For surveys on depth

buffer compression and color buffer compression, we refer

to Hasselgren and Akenine-Möller’s paper [13] and

Rasmusson et al.’s paper [23]. Finally, we note that there is

no substantial difference in buffer compression algorithms

between handheld GPUs and desktop GPUs, except that the
implementation should be kept to a minimum on the

handheld.

Texture Compression: Textures form a special case of

accessing memory, since they are usually not written to

during rendering. This means that they can be compressed

off-line when the application is created, and therefore the

compression does not need to be fast. Decompression

however must happen on-the-fly during rendering and still

needs to be fast. Moreover, the slight degradation in image
quality obtained by lossy compression is usually not possible

for the human visual system to detect, and due to this fact, it

is possible to compress the textures more efficiently than if

lossless compression was used. Since the texels in a texture

can be accessed in an arbitrary order, it is important that the

GPU can easily calculate where in memory a certain texel

resides. One way to solve this is to divide the texture into

blocks of, say, 4 � 4 pixels and compress each block to a
fixed number of bits, normally 64 bits. On desktop

machines, DXTC is the de facto standard in texture

compression [16]. However, on mobile phones, Ericsson

Texture Compression (ETC) [27] is becoming popular since

it is standardized in OpenGL ES. ETC works by specifying a

color per 2 � 4 pixel area and then modulating the

luminance in every pixel additively, as shown in Fig. 10.

VI. OUTLOOK

Hopefully, it is clear from this paper that there are many

similarities between desktop GPUs and mobile GPUs. How-
ever, with the introduction of mobile three-dimensional

graphics, many new algorithms have been invented by

necessity due to the limitations of the device. It is likely that

this type of development would not have happened in the

absence of mobile graphics. The major reason to use a GPU

compared to doing all the rendering on the CPU is that the

GPU can be made much more energy-efficient.

To reach better power utilization, we believe that
approximate rendering will become more important. Cur-

rently, there are lossy algorithms in many units and algo-

rithms in graphics. This includes all work where functions

are represented using wavelets or spherical harmonics,

where only the most important coefficients are stored and

used for computing lighting. Texture compression is by

design also lossy. However, all buffers are currently com-

pressed without loss. Note that for television, we put up with
pretty poor quality, and so it makes sense to compress with

loss even for color buffers, for example. In such a case, the

error must be under precise control so that it does not grow

too big. At this point, some initial research has been done on

lossy color buffer compression [23]. In addition, there has

been recent work [14] on avoiding pixel shader executions.

The idea is to conservatively estimate per tile whether the

contribution of pixel shader executions inside the tile gives a
contribution greater than zero. If so, per-pixel executions

follows. Otherwise, pixel shader executions can be avoided.

This can be extended into a lossy approach: if the contri-

bution is less than a small threshold, we avoid the work. If a

slight degradation in image quality comes with a longer use

time on the battery, we believe that these types of algorithms

can have great impact for mobile GPUs. However, it is

probably best if the user of the phone gets access to turn the
Bknob[ of image quality versus battery time.

Another approach would be to adapt the concept of

frameless rendering [4], [7] to GPUs. This means that only a

subset of the pixels on the display are written to every

frame. For example, we can decide to write to only every

fourth pixel, and hence the pixels would be divided into

four pseudorandom subsets that together include all pixels.

Fig. 10. ETC works by specifying a color in every 2 � 4 pixel area and then modifying the luminance in every pixel.
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Therefore, if nothing is moving, then the image will con-

verge after four frames. When objects are moving, we will

get a poor motion blur effect. Preferably, the rendering
pattern should be pseudorandom to hide artifacts as much

as possible. There are also possibilities to save bandwidth

from the frame buffer to the display, since only 25% of the

buffer changes per frame, and only this part needs to be

sent to the display. The display controller needs some logic

to handle this though. However, there is quite a bit of

research to be done before this type of algorithm will make

it to GPUs. Some initial work on stochastic rasterization
has been done [2], where a moving triangle is sampled

stochastically within a frame. This can be used to render

motion blur, depth of field, or glossy reflections. In

general, motion blur is used to hide jerkyness for feature-

film rendering, and it may be possible that a lower frame

rate can be used on the handheld with this type of algo-

rithm in place. We note that this could be another Bknob[
for the user.

If autostereoscopic displays, i.e., displays where the user

can see stereo without any extra peripherals, break through in

terms of usage, then efficient rendering to these displays may

become a hot research topic. There has been some initial

research on this topic [11], but the target was not GPUs. More

recently, it has been shown that a lot of the contents in a

texture cache can be exploited for all views given a specialized
rasterization order [12]. It is clear that there is a lot of inherent

coherency in the left and right images for stereo, and it may be

possible to utilize that in a novel architecture.

There is much to be said about rendering on handhelds, but

one thing is certain: mobile graphics will affect all of our daily

lives, and soon every handheld is likely to have specialized

hardware for two-dimensional and/or three-dimensional

graphics. See Figs. 11 and 12 on what to expect. h
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