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Abstract
We present a novel algorithm for stochastic rasterization which can rasterize triangles with attributes depending
on a parameter, t, varying continuously from t = 0 to t = 1 inside a single frame. These primitives are called time-
continuous triangles, and can be used to render motion blur. We develop efficient techniques for rasterizing time-
continuous triangles, and specialized sampling and filtering algorithms for improved image quality. Our algorithm
needs some new hardware mechanisms implemented on top of today’s graphics hardware pipelines. However, our
algorithm can leverage much of the already existing hardware units in contemporary GPUs, which makes the
implementation fairly inexpensive. We introduce time-dependent textures, and show that motion blurred shadows
and motion blurred reflections can be handled in our framework. In addition, we also present new techniques for
efficient rendering of depth of field and glossy planar reflections using our stochastic rasterizer.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architec-
tureGraphics processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and RealismAnimation, Color,
shading, shadowing, and texture, Hidden line/surface removal;

1. Introduction
If objects in the field of view of the camera, or the camera
itself move, and the shutter of the camera is open for a finite
amount of time, an image with motion blur is obtained. Real
photographs and video often contain motion blur, and there-
fore, this effect is commonly and heavily used in the movie
industry using offline rendering tools. In contrast, most real-
time graphics applications assume the shutter is open only
for an infinitesimal amount of time, which means that mo-
tion blur is absent. However, it is our impression that motion
blur is a highly desirable feature even for real-time games.

Rendering motion blur is a hard problem to attack since
it involves solving visibility in the spatio-temporal domain,
i.e., both in screen space and in time. Currently there ex-
ists only a few algorithms capable of rendering this effect
in real time. However, they usually only solve the problem
for a limited domain, e.g., only the textures of the objects
are blurred and not the geometrical objects themselves, and
consequently, visibility is solved incorrectly.

Cook et al. [CPC84] concluded the following on render-
ing correct motion blur, and this appear to hold true even
today:

“Point sampling seems to be the only approach that
offers any promise of solving the motion blur problem.”

Therefore, we introduce an algorithm for rasterization-based
point sampling in time using a time-continuous triangle rep-
resentation. This makes it possible to render motion blurred
images with sufficient quality for real-time graphics at only
four samples per pixel. Since current GPUs already sup-
port spatial supersampling with that amount of samples, we

can integrate our algorithm into an existing GPU without
increasing the number of samples. In addition, some parts
of our algorithm can be executed using geometry and pixel
shaders. Only a small portion of our algorithm needs new
hardware mechanisms on top of the existing units already
available in contemporary GPUs.

This introduction and the entire description of our our al-
gorithms (Section 3) focus on rendering the motion blur ef-
fect only. The reason for this is that it greatly simplifies the
presentation. However, in our results (Section 4), we show
that the exact same framework can be used to render depth
of field and glossy reflections as well.

2. Previous Work
An excellent overview of previous work in motion blur re-
search is presented by Sung et al. [SPW02]. In the follow-
ing, we will review related work that is of particular interest
to our research. This means, for example, that we avoid dis-
cussing algorithms that produce motion blur only as a post-
process, as these cannot solve the problem properly.

Several analytical models for motion blur have been de-
veloped [KB83, Cat84, Gra85] for scanline renderers. Due
to the evolution of the GPUs into stream processors, these
algorithms are not directly well suited for hardware imple-
mentation in their current state, since they require a sorting
pass to resolve time-space visibility per pixel.

Rendering motion blur using graphics hardware can
be done by rendering n images at different points in
time, and then averaging these using an accumulation
buffer [DWS∗88,HA90]. It should be noted that strobing ar-
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tifacts appear unless many images are used. However, the
final image converges to the correct result when more im-
ages are added. These algorithms are expensive in terms of
geometry processing, since the entire scene needs to be sent
to the graphics pipeline n times. A variant of these accu-
mulation buffer techniques is practically frameless render-
ing (PFR) [WZM95], which is a rasterization-based version
of the original frameless rendering algorithm for ray trac-
ing [BFMZ94]. In PFR, less than one sample per pixel is
generated per frame. For example, one can choose to ren-
der to only one fourth of the pixels every frame. After four
frames, a complete image has been rendered. A variant of
this, called temporal anti-aliasing, is supported by some ATI
graphics cards [ATI04].

In the REYES rendering architecture [CCC87], primitives
are diced until they reach subpixel size, then shading is com-
puted, and finally the primitives are sampled. This is basi-
cally a high-quality rasterization engine. However, motion
blurred shading cannot be handled correctly since shading
is done before sampling. Furthermore, in this original ap-
proach, shadows appear to lack motion blur.

For offline high-quality rendering, Wexler et
al. [WGER05] conclude that accumulation buffering
works well when many images are used, and so they use
that approach in their Gelato renderer. However, they also
investigate whether a specialized shader can be used to
sample stochastically in time. This approach degrades
more gracefully than uniform sampling when decreasing
the number of samples. They abandon this technique due
to inefficient rasterization and because early Z-culling
cannot be used, since they write to the depth buffer in the
shader. Our work was inspired by Wexler et al’s stochastic
sampling, but instead of focusing on using only existing
hardware, we also develop new hardware mechanisms
suitable for implementation on top of today’s pipelines for
potentially much higher performance.

The remaining motion blur algorithms which we will de-
scribe are targeted for real-time graphics. A common disad-
vantage for these is that the rendered images do not con-
verge to the correct result even if more computations or
more samples are used. Some algorithms compute the sil-
houette of motion, extend the silhouette geometry in the di-
rection of motion and then render semi-transparent primi-
tives [WZ96, JK01]. These algorithms cannot correctly han-
dle shaded and textured objects, and so in practice, they
are not very useful. In contrast, Loviscach [Lov05] has pre-
sented an algorithm that deals with motion blurred textures.
However, blurring takes place only in texture space, and
hence spatio-temporal visibility is not solved at all. Another
approach is to render an object once into a texture, and
at the same time create a vector field of the per-pixel mo-
tion [SSC03]. In a final pass, the texture is blurred according
to the vector field. Again, spatio-temporal visibility is not
handled correctly.

Depth of field (DOF) is the effect in which objects out-
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Figure 1: A time-continuous triangle (TCT) defined by a
starting triangle, ∆q0q1q2, at t = 0, and an ending trian-
gle, ∆r0r1r2, at t = 1. The TCT is simply the continuous set
of linearly interpolated triangles between t = 0 and t = 1.

side some distance range appear out of focus. A good sur-
vey of techniques to simulate DOF is presented by De-
mers [Dem04]. Correct DOF can be rendered by distributing
rays stochastically over the camera lens, rather than shooting
a ray from a single point, or equivalently, render the scene
from multiple cameras and accumulate the results. However,
for acceptable quality, these approaches require many rays
or render passes and are currently too costly for real-time
graphics. Faster methods using depth layers, point splatting
and variable blur kernels exist, but they cannot resolve visi-
bility correctly.

3. Stochastic Rasterization
In this section, we present our algorithm for stochastic ras-
terization. As a high-level overview, we rasterize one time-
continuous triangle (TCT) at a time, and sample it both
spatially and in time on a per-tile basis. The design choice
of processing one TCT at a time was simple as we would
otherwise break the feed-forward principle of contemporary
GPUs. Note again that our presentation focuses on render-
ing motion blur, however in Section 4, we will show that the
same algorithm can be used to render other effects, such as
depth of field and glossy reflections.

We assume that a TCT is defined at two different instants,
t = 0 and t = 1. See Figure 1. This basically adds another
“dimension” to a triangle. If the instants are interpreted as
different times at a beginning and end of a frame, we can
render images with motion blur, for example. The vertices
in homogeneous clip space, i.e., after application of the pro-
jection matrix (but before division by w), at t = 0 are denoted
qk, and at t = 1 they are denoted rk, k ∈ {0,1,2}. Further-
more, we assume that the vertices are interpolated linearly
in this space,† which is equivalent to linear interpolation in
world space. For a certain instant, t ∈ [0,1), the vertices are:
pk(t) = (1− t)qk + trk. This is illustrated in Figure 1. All
vertex attributes are linearly interpolated as well for differ-
ent values of t. A major advantage of the TCT is that we
only need to perform geometry processing once, which en-
ables sampling of a triangle at arbitrary t-values, t ∈ [0,1).

† This is in contrast to the approach taken by Sung et al. [SPW02],
where interpolation takes place in screen space. As a consequence,
they cannot handle perspective foreshortening of moving primitives
correctly.
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3.1. Overview
The basic algorithm works as follows for each time-
continuous triangle (with respect to Figure 1), where each
pixel is sampled at n different times, ti, i ∈ {0, . . . ,n−1}:

1. Find tight bounding volume (BV) of time-continuous tri-
angle (Section 3.3.1).

2. Compute time-dependent edge functions (Section 3.3.2).
3. For each quad (2× 2 pixels) that overlaps the BV, fetch

(or compute) the times, ti, for the samples in that quad.
4. For each time, ti, compute edge functions for the triangle

∆p0(ti)p1(ti)p2(ti) using the time-dependent edge func-
tions. Check whether the quad overlaps this triangle.

5. If overlap from previous step, linearly interpolate vertex
attributes using ti, and execute the pixel shader for the
current quad.

Next, we present the details of our algorithm. We start by de-
scribing an inexpensive sampling strategy, and continue by
developing robust and efficient rasterization of a TCT with
Zmin/Zmax-culling. Finally, we introduce time-dependent
textures, which can be used for shadow mapping, for exam-
ple.

3.2. Sampling Strategy
In this section, we will describe our sampling strategy that
makes it possible to use as few as four samples per pixel to
get usable motion blur. However, our algorithm is not limited
by this, and can be generalized to using more samples per
pixel. Today, most GPUs have spatial antialiasing schemes
with 4–8 samples per pixel or more, and each sample can
even execute the pixel shader separately for higher quality.
To keep the cost low, we simply want to add the time dimen-
sion to each of the samples for such hardware.

Our approach is to use n spatio-temporal samples, si =
(xi,yi, ti), i ∈ {0,n− 1} per pixel, where (xi,yi) is the spa-
tial position and ti is the sample time. Contemporary GPUs
always rasterize one quad, i.e., 2× 2 pixels, at a time, since
the GPU then can compute derivatives based on differences
in x and y. Our algorithm clearly needs to comply with that
requirement. Therefore, a certain time sample, ti, must occur
in each of the 2× 2 pixels in a quad. Adjacent quads may
preferably have a different set of times. Note that each sam-
ple has its own depth value, just as in super/multi-sampling.

All our spatio-temporal sampling patterns are completely
deterministic, and do not change from frame to frame. In
general, if a pixel uses n samples, we let each sample use
a predetermined random time, such that ti ∈ Ti, where Ti is
the interval

[
i
n , i+1

n

)
and i ∈ {0, . . . ,n−1}. This set will be

used in one quad and gives us jittered sampling in time. For
an adjacent quad, a new set of time samples t′i ∈ Ti is used.

Virtually all contemporary GPUs have some form of ro-
tated grid supersampling (RGSS) implemented. This scheme
fulfils the N-rooks requirement [Shi90], and it is illustrated
in Figure 2. It is generally accepted that it gives good qual-
ity at a cost of only four samples per pixel. In the following,
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Figure 2: 3× 3 pixels with RGSS sampling. One spatio-
temporal sample lies in each colored subpixel. For the lower
left quad (outlined in purple), the time samples, t0, t1, t2, and
t3, all appear once in each pixel. This gives rise to a unde-
sired quad-sized “pixelation” effect. Notice that all samples
that belong to the same time interval, Ti, have the same color.
For example, all samples in T0 are light blue.

we describe an example of our sampling scheme that uses
RGSS. Note that our algorithm is not at all limited to this
particular pattern, nor the number of samples. We focus in-
stead on temporal sampling, while allowing different spatial
sampling schemes. When adding time to each of these sam-
ples, the quad requirement makes the samples share four dif-
ferent times in each quad, and this basically means that the
“pixels in time” will appear to have a size of 2×2 instead of
the ideal case of 1×1 pixel.

To avoid this problem, we offset the quads depending on
which time interval, Ti, the sample belong to. See Figure 3.
For all samples within the time interval T0, we use the stan-
dard quads, but for T1 we offset the quad by one pixel to the
right. For samples in T2, we offset the quad one pixel up-
wards, and finally, and for T3, the quad is offset one pixel to
the right, and one pixel upwards. As can be seen, this guar-
antees that the set of time samples inside a pixel is different
from neighboring pixels, which reduces the previously men-
tioned pixelation effect.

A common strategy to improve the quality of spatial an-
tialiasing is to use larger filter kernels when computing the
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Figure 3: By offsetting the quads (purple) for the different
samples in time, we obtain a sampling scheme where neigh-
boring pixels have different sets of times.
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Figure 4: We have redistributed the time samples inside the
quads in order to avoid two samples with same color (i.e.,
belonging to the same time interval, Ti) being on the same
subpixel column or row. To the right, this is clearly so for
the samples inside the gray filter kernel. Note that only one
quad is shown, while they in reality repeat over the entire
pixel grid. Furthermore, the spatial sampling pattern repeats
after 2×2 pixels, but the times of the samples have a longer
period (typically, a 32×32 random table is used).

final color of a pixel. When increasing the kernel for spatio-
temporal filtering, we would ideally like to include samples
with times different from the times inside the pixel, in order
to improve the sampling resolution in the time dimension.
In the following, we extend RGSS so that another four sam-
ples are used in the filter kernel, and we simply choose the
four spatially closest samples. Note that our reasoning ap-
plies with minor modifications to any number of samples.

Assume we want to compute the final pixel color of the
center pixel in Figure 3 by weighting together the samples
with these times: t0, t1, t2, t3, t′0, t′′1 , t′′2 , and t′3. From the fig-
ure, we notice that t0 ∈ T0 shares subpixel row with t′0 ∈ T0,
and t1 ∈ T1 shares subpixel column with t′′1 ∈ T1, and so on.
This is not ideal, at least not from an N-rooks perspective.

To remove this disadvantage, and thus improve sampling
and filtering quality, we have devised a solution, which is
shown in Figure 4. It is a straightforward task to verify that
our sampling scheme gives eight different times for the eight
spatio-temporal samples used for computing the final color
of a pixel. As a final improvement of the time samples, con-
sider two time samples belonging to the same time interval,
Ti, inside the filter kernel. An example consists of t0 and
t′′0 (Figure 4), which both belong to the time interval T0 =
[0,0.25). To further improve the sampling quality, we make
certain that t0 ∈ T−

0 and t′′0 ∈ T+
0 , where T−

0 = [0,0.125) and
T+

0 = [0.125,0.25). In general, we split Ti in the middle into
T−

i and T+
i . This can be ensured when the sampling pattern

is generated. The result is a sampling scheme with four gen-
erating samples per pixel, and with the larger filter kernel
we obtain eight jittered time samples per pixel. Compared
to RGSS, the added cost is essentially only more expensive
filtering, which is done only once per pixel when the image
has been rendered.

Note that the actual spatial positions can easily be redis-
tributed to form another pattern. For example, we could use
the pattern, inspired by Laine and Aila [LA06], shown to

the right instead. In our experience, the spa-
tial anti-aliasing would change a little bit com-
pared to RGSS, but the temporal anti-aliasing
remains very close to constant due to that we
still get eight jittered time samples. Recall that the focus of
our paper is not on the spatial sampling pattern.

Next, we describe how the filtering of the samples is done.
Assume the colors of the samples inside a pixel are de-
noted, c0

l , where l ∈ {0,1,2,3}, and the colors of the four
closest samples in the neighboring pixels by c1

l , again with
l ∈ {0,1,2,3}. We use a low-pass filter to compute the final
pixel color:

C = w0

3

∑
l=0

c0
l +w1

3

∑
l=0

c1
l (1)

For all our tests, we use w0 = 5/32 and w1 = 3/32. This
gives a good trade-off between spatial and temporal blurring.
Naturally, it is simple to change the weights according to the
purpose. We attempted to use another four samples from the
neighboring pixels, but this did not give much of an effect
on the quality.

It should be noted that the spatial positions can be
jittered inside the subpixel using, for example, multi-
jittering [Nie87]. By using a smaller grid of such spatial
samples, we basically get a spatial interleaved sampling
scheme [KH01]. Extending the ideas of this subsection to
schemes with more samples per pixel is straightforward, and
is therefore omitted.

3.3. Traversal of Time-Continuous Triangles
In this section, we describe how a time-continuous triangle
(TCT) can be traversed, i.e., how the pixels inside a TCT
can be found efficiently. Notice that the quadrilateral sides
of a TCT are, in general, bilinear patches, and hence not
necessarily planar. This makes clipping a TCT against the
canonical view volume a complex procedure. Instead we de-
cided to use edge functions [Pin88] derived directly from the
homogeneous coordinates [OG97,MWM02], qk and rk with
k∈{0,1,2}, of the TCT. This avoids clipping altogether. Us-
ing the two-dimensional axis-aligned bounding box of the
TCT to limit the rasterization can make the traversal algo-
rithm visit an excessive amount of pixels that are outside the
TCT [WGER05].

Therefore, we propose a two-level algorithm for effi-
cient rasterization of a TCT. First, a tight three-dimensional
oriented bounding box (OBB) around the TCT is raster-
ized (Section 3.3.1). Second, for fragments inside the OBB,
per-pixel evaluation of time-dependent edge functions (Sec-
tion 3.3.2) follows. For samples inside the time-dependent
edge functions, the pixel shader is executed.

3.3.1. OBB Traversal
We decided to use oriented bounding boxes (OBBs) around
our TCTs to limit the number of pixels visited during traver-
sal. To robustly handle cases where a TCT moves from in
front of the viewer to behind the viewer, we rasterize only
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the backfaces of the OBB without any depth testing (which
is done in the next stage of our algorithm). This is simi-
lar to how shadow volume rendering [Cro77] handles the
case when the viewer is inside a shadow volume and when
a shadow volume intersects the near plane. For pixels cov-
ered by the OBB backfaces, we proceed to testing with time-
dependent edge functions (next section).

Our method for computing a tight OBB is simple and
gives very good results in the majority of all cases. All com-
putations are done before division by w, and so we use the
(x,y,w)-coordinates of the vertices of the TCT. The major
axis of the OBB is computed as the difference between the
center of the starting and ending triangle of the TCT. If this
vector is near zero, an axis-aligned bounding box (AABB)
is computed instead. Otherwise, we project the edges of the
TCT onto the plane whose normal is the major axis. For the
second axis of the OBB, we use the longest projected edge.
Again, if there is no such non-zero vector, we revert to using
an AABB. The third axis is obtained with a cross product.
This algorithm can be implemented in a geometry shader.

Discussion Several different possibilities for this stage of
the algorithm were explored. We tried using the convex hull
of the homogeneous coordinates of the TCT, and we de-
vised a hardware-friendly algorithm for this. However, it is
very difficult to obtain a robust algorithm without handling
a large set of special cases. In addition, the starting triangle
of the TCT may be behind the camera, and in such situa-
tions, it is not even clear what the definition of the convex
hull using homogeneous edge functions is. Another possi-
bility is to use bounding prisms (BP) as used for caustic
primitives [EAMJ05], for example. The construction algo-
rithm for BPs works well for typical caustic rendering, but
for more general settings, we have found that BPs with infi-
nite size can result. In addition, the computation of BPs was
more costly than OBBs. Hence, using OBBs is a good trade-
off in terms of robustness, speed, and simplicity.

3.3.2. Time-Dependent Edge Functions
Due to the traversal from the previous section, we know that
a quad overlaps with the OBB of the TCT. Now, we need
to determine whether the samples, si (see beginning of Sec-
tion 3.2 for the definition of samples), overlaps with the TCT.
To be able to do this efficiently, we introduce time-dependent
edge functions.

First, recall that the vertices, qk and rk, k ∈ {0,1,2},
are in homogeneous clip space after application of the pro-
jection matrix (but before division by w), and that the
camera is located in (0,0,0). Furthermore, let us intro-
duce a “truncated” variant of a vector v as v̂ = (vx,vy,vw).
This simply means that we create a three-dimensional vec-
tor from a four-dimensional by skipping the z-coordinate.‡

‡ Note that due to the projection matrix (e.g., OpenGL or DirectX),
this vector is in a scaled and translated camera space. This can be
verified by examining the elements of the projection matrix.

The edge function through two vertices, say p̂0 and p̂1, is
then [OG97, MWM02]:

e(x,y,w) = (p̂1 × p̂0) · (x,y,w) = ax +by+ cw, (2)

where (p̂1× p̂0) = (a,b,c). Now, since the vertices are func-
tions of time, p̂k(t) = (1−t)q̂k +t r̂k, we simplify the expres-
sion for the edge function parameters:
(a,b,c) = (p̂1 × p̂0) = ((1− t)q̂1 + t r̂1)× ((1− t)q̂0 + t r̂0)

= t2 f̂+ tĝ+ ĥ,
(3)where:

m̂ = q̂1 × r̂0 + r̂1 × q̂0

ĥ = q̂1 × q̂0,

f̂ = ĥ− m̂+ r̂1 × r̂0,

ĝ = −2ĥ+ m̂, (4)

This means that we have simple expressions for all the edge
function parameters, (a,b,c). For example, we have: a(t) =
fxt2 + gxt + hx. Note that f̂, ĝ, and ĥ can be computed in
the triangle setup. For a specific time, ti, and spatial sample
position, (xi,yi), we now arrive at the time-dependent edge
function:

e(si) = e(xi,yi, ti) = a(ti)xi +b(ti)yi + c(ti), (5)

where w = 1 since we now are dealing with screen space
(x,y)-coordinates.

Once the three edge functions, e j(si), have been com-
puted, we can determine whether a sample, si, is inside the
TCT at time ti. If this is true, we linearly interpolate the ver-
tex attributes of the starting and ending triangle of the TCT
with respect to ti, and pass them on downwards the pipeline.

Note that since each time-dependent edge function is de-
fined by four vertices, cracks “in time” between two TCTs
sharing an edge can be avoided using a simple tie-breaker
rule [MWM02]. However, to avoid small numerical inac-
curacies when evaluating the expressions in Equation 4, we
also make sure that two TCTs sharing an edge always com-
pute the parameters f̂, ĝ, ĥ in exactly the same way. This is
done by swapping q1 and q0 so that the first point is always
the one with smallest x-value before calculation of the para-
meters starts. If the x’s are equal, testing continues with y,
and so on.

Discussion Another possible solution would be to inter-
polate edge functions in screen space. Consider one edge
function, e0(x,y) = a0x + b0y + c0, for the first triangle,
∆q0q1q2, and the corresponding edge function, e1(x,y) =
a1x + b1y + c1 for triangle ∆r0r1r2. To find the edge func-
tion for a specific time, t ∈ [0,1), one could interpolate the
edge functions parameters, e.g., a(t) = (1− t)a0 + ta1, and
so on. However, this does not take perspective foreshorten-
ing into account, and in addition, it requires the TCT to be
clipped, which we also want to avoid.

For simplicity, we have limited ourselves to linear inter-
polation of vertex positions and attributes. To get curved mo-
tion blur, we can use our technique together with an accumu-
lation buffer for faster performance. Higher-order interpola-
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tion, such as quadratic or cubic Bézier curves, is of course
also possible. Besides the actual interpolation, only the OBB
computation need to be altered, since more vertices need to
be processed.

3.4. Zmin/Zmax-Culling
Zmin- and Zmax-culling [AMS03, Mor00] are crucial for
good depth buffer and texture access performance. There-
fore, one of our goals has been to make stochastic rasteriza-
tion work with this type of algorithms. Hence, a conservative
estimate of minimum and maximum depth inside a tile (of-
ten 8×8 pixels) for a time-dependent triangle is needed.

We limit our discussion here to Zmax-culling, where a
conservative estimate of the minimum depth value, denoted
ztri

min, of a triangle inside a tile is needed. The maximum of
the depth values inside a tile is denoted zmax. If ztri

min > zmax
we can avoid processing the triangle in that tile. Extending
this to Zmin-culling is straightforward.

A conservative estimate of the minimum depth value of a
triangle inside a tile is simply the minimum of the vertices of
the triangle being rendered. Let us denote this value by zv

min,
where the superscript indicates vertices. However, this can
become overly conservative, for example, when rendering a
large triangle with a normal almost perpendicular to the view
direction. To improve this, one can also compute the depth
at the tile corners using the plane equation of the triangle,
and computing the minimum of these. Let us call this value
zc

min, where the superscript indicates corners. An improved
estimate of the minimum depth of the triangle inside a tile is
then:

ztri
min = max(zv

min,z
c
min). (6)

This is a commonly used technique. In the case of render-
ing a TCT, we again evaluate Equation 6, but the compu-
tation of the terms in the max-function becomes a bit more
complex. The value zv

min is computed using the six vertices
of the TCT, and zc

min is computed using the plane equations
of the starting and the ending triangles of the TCT. This is
conservatively correct as long as the orientations of the start-
ing and ending triangle are the same. When this is not true,
you may not always get a correct conservative value. One
reason for this, is that the depth at the corners of a tile can
become unbounded when the orientation of a TCT changes
from, for example, backfacing to frontfacing. An example is
illustrated in Figure 5.

However, there is a straightforward solution to this. If
there is no change in orientation, we compute ztri

min using
Equation 6. In the case of a change in orientation, we simply
use the minimum of the depths at the vertices of the starting
and ending triangles, i.e., ztri

min = zv
min.

Discussion In the description above, we have assumed that
we store one zmax-value per tile for all different times of the
sample inside a tile. An alternative would be to store, for ex-
ample, four values per tile: zi

max, i ∈ {0,1,2,3}, where zi
max

is the max-value of the depths belonging to the time interval,

q0

q1

r1

r0
zmin

czmin
v

z

triangle at t=0

tile

triangle at t=1
interpolated triangle
at t=0.375

Figure 5: A time continuous triangle (TCT) defined by a
starting triangle, ∆q0q1q2, and an ending triangle, ∆r0r1r2,
here shown in two dimensions. Due to that these triangles do
not have the same orientation, problems in Zmax-culling can
occur. Normally, we compute ztri

min = max(zv
min,z

c
min). In this

case, this is not correct, since at, e.g., t = 0.375, the true
depth at the tile corner (blue square) is smaller than zc

min
which is computed using the plane equations of the two tri-
angles of the TCT. Our solution is simply to use ztri

min = zv
min

when the orientation of the triangles changes. This gives a
conservative estimate.

Ti. In a sense, the low-resolution depth buffer that contains
zmax-values, is extended in the time dimension. While this
is clearly possible and would provide more efficient culling,
we have decided to leave this for future work, since it does
not fit well with contemporary GPUs as they store only one
zmax-value per tile.

3.5. Time-Dependent Textures
Motion blurred geometry without motion blurred shadows
spoils the entire concept, almost. Hence, we would like
to support motion blurred shadows in our spatio-temporal
framework. Shadow mapping [Wil78] is a commonly used
technique for (static) shadow generation. Lokovic and
Veach [LV00] introduce deep shadow maps, where motion
blur is handled by associating a random time with every
shadow map sample within a texel. The time samples are
averaged together, which means that the time dimension is
reduced to a single blurred value. As a consequence, the au-
thors concluded that this approach will be correct only for
static shadow receivers as seen from the light source.

We alleviate this problem by introducing time-dependent
textures, which holds a set of time samples per texel and sup-
port time-dependent reads and writes. When generating the
shadow map, we use the sampling strategy of Section 3.2 and
store n depth values per texel, each associated with a unique
time, ts. When rendering from the camera, the visible sample
will be associated with a time ti. During time-dependent tex-
ture lookup, we ensure that the screen space sample, ti ∈ Ti,
access the shadow map sample with time ts also in Ti. This
will reduce self-shadowing artifacts for cases with moving
receivers. With n jittered time samples per texel in screen
and light space, our approach guarantees that |ti− ts|< 1/n.
If more time samples are added per pixel, the result con-
verges towards the correct image. With uniform time sam-
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pling, ti = ts, the images instead contain apparent strobing
artifacts.

In general, time-dependent textures are useful as render
targets for dynamically generated effects, where we need to
store time-dependent depth or color values. A simple tech-
nique for generating reflections for curved geometry is to
first render a cube map from the position of the object, and
then access this map with the reflection vectors during ren-
dering of reflecting objects. If we use time-dependent tex-
tures for cube map generation and lookups, we can handle
correct motion blurred reflections, even when both the re-
flection vector and the cube map changes over time. See Fig-
ure 8 for an example.

4. Results
We have implemented a subset of OpenGL 2.0 in a func-
tional simulator in C++. Currently, there are two ways to
specify vertex positions. For the first method, you set all your
transforms (model + view + projection), and then ask the
API to “remember” the composite matrix. This is the trans-
form matrix for t = 0. After that you set the all the matrices
again (this time for t = 1), and then render your objects. The
other method simply specifies a double set of vertex posi-
tions. We call one such rendering an SR pass.

Note that we use the abbreviation ABT for accumulation
buffering of static images. However, we can also accumulate
images rendered with SR. We call this stochastic rasteriza-
tion accumulation (SRA).

We emphasize the fact that still images only reveal a small
part of the perceived image quality. Since our target is real-
time rendering, we refer the reader to the videos of this sub-
mission in order to judge the quality of our motion blur,
depth of field, and glossy reflections.

For Zmax-culling, we have not gathered statistical results.
We note that if the geometry is static, the algorithm works
as well as the old Zmax-algorithm. For moving geometry,
culling will occur when possible, but there is really no algo-
rithm to compare to, so this has been omitted for now.

In the following, we report our results for motion blur,
depth of field, and glossy planar reflections. It should be
noted that our framework can only handle one extra dimen-
sion at a time, and therefore only one effect at a time. For ex-
ample, we cannot handle DOF and motion blur in the same
image and pass.

4.1. Motion Blur
For our motion blur rendering results, we use only a single
SR pass with four samples per pixel, except where otherwise
mentioned.

Cook et al. [CPC84] point out a number of hard cases of
motion blur: specular highlights, intersecting objects, shad-
ows and reflections. As seen in Figure 6A and B, our algo-
rithm handles these cases due to its stochastic nature. The
chain elements intersect, and have complex motion, and the

staircase scene shows specular highlights and blurred shad-
ows using time-dependent shadow maps. Note that these
images were rendered using only four samples per pixel.
As the algorithm allows sampling at arbitrary times within
the frame, strobing artifacts are replaced by (less notice-
able) noise without increasing the sampling cost. It should
be noted that the algorithm correctly handles scenes where
both the camera and geometry are animated as the total mo-
tion simply becomes composite transform matrices applied
at t = 0 and t = 1.

In Figure 7, a simple model of a textured wheel is shown.
The model is translated and its texture coordinates rotated,
which means that motion blur is both obtained due to the
translation and rotation. This kind of effect is not handled
correctly by methods where a static image is rendered first,
and then that image is blurred according to motion vec-
tors [SSC03]. This example clearly shows the flexibility and
power of our method, and indicates that the quality con-
verges towards the reference solution (bottom row in Fig-
ure 7) in this case, which is a major advantage.

An example of blurred reflections from moving objects
using a time-dependent cube map is shown in Figure 8.

Since the TCT uses linear interpolation, the algorithm
cannot render higher order movement directly. For example,
a rotating sphere gets a blurry edge where the relative motion
is largest, and a fast circular arc movement of, say, a sword
will get a triangular motion trail. Artifacts from such non-
linear motion can be found in our video. These situations
can be improved using an SRA technique, and generating
TCTs for uniform subintervals of the time inside a frame.
Our video shows that stochastic rasterization quickly resem-
bles the ground truth, while accumulation buffering tech-
niques suffer severely from strobing artifacts in these cases.

In Figure 9, we compare motion blur renderings with 4
samples per pixel against 8 samples per pixel in a single pass.
Naturally, the quality is higher the more samples being used.

Blurred shadow maps inherit the shadow bias problem
from standard shadow maps, which is somewhat enhanced
by the added uncertainty in time. However, already with four
jittered time shadow samples per pixel, we can render nice-
looking, blurred shadows suitable for real-time content.

4.2. Depth of Field
Computing images with depth of field (DOF) is computa-

tionally expensive. Haeberli and Akeley [HA90] render DOF
using an accumulation buffer with point sampling on the
aperture of the camera lens, which is illus-
trated as a light green area to the right. In this
example, we use 32 uniform random points.
For DOF with our algorithm, we use an SRA
approach, i.e., we accumulate several images
from SR passes. With our SR algorithm, we
can instead sample an entire line on the lens
area in a single pass. This is illustrated to the
right with four horizontal and four vertical
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lines. Doing this, is a simple matter of setting the camera
matrix for the start point of the line, then ask the API to
“remember” the composite matrix, and then set the camera
matrix for the end point of the line. This gives a DOF-effect
in the direction of the line. For example, if we use a hor-
izontal line, the DOF-effect will only be horizontal, but it
will be stochastically sampled, i.e., with good quality. Us-
ing a multi-pass technique, we can average the results from
a number of “line samples.”

Using the line sample scheme above, it is
quite clear that banding artifacts can appear,
both horizontally and vertically. For best re-
sults, we need to sample using as long lines as
possible, while also maximizing the number of angles of the
lines. One such sampling pattern is shown to the right. How-
ever, this scheme has increased sample density the closer to
the center you get. Our solution is to redistribute the sample
times, ti, which is illustrated by the circles. Theoretically,
this should be done with a

√
t-like function being reflected

around (0.5,0.5). In practice, we do it with a smoothstep-
function, si = t2

i (3− 2ti), which is accurate enough. When
this transform has been applied, the time-dependent edge
functions use si (instead of ti) for inclusion testing as usual.

To the best of our knowledge, we have not seen any DOF
algorithm using line samples on the lens aperture. In our
experience, this works really well already using only eight
lines, i.e., eight passes, with four samples per pixel. This
should be compared to grid point sampling the lens, which
can require more than 100 samples to get stable results dur-
ing animation [HAM06a]. In our experience, however, sim-
ilar results to ours can be obtained with uniform random
sampling over the lens using 32 image passes. Again, note
that such an approach requires the scene geometry to be
processed 32 times. See Figure 6C for an example of DOF
rendering using our algorithm.

4.3. Glossy Reflections
For rendering planar glossy reflections, Diefenbach and

Badler [DB97] suggested that the reflected object is sheared
in the x- and z-directions, with increased shearing effect
the smaller y gets. This is illustrated
for shearing in x to the right. Render-
ing the scene many times with differ-
ent amounts of shear gives glossy re-
flections in the accumulated image. Our
stochastic rasterizer can again be used
to advantage even in this case, using an

x
y

z

SRA approach, as shown in the bottom right illustration. By
using the concept of line samples from the previous subsec-
tion, we realize that a shearing pass in x is done as a line
sample, where the outer vertex points are sheared the maxi-
mum amount in both directions. In practice, the shearing ef-
fect can be computed in the vertex shader. Figure 6D shows
this effect using stochastic rasterization in the x-direction,
and only four passes in z. As shown in the animation, no
banding artifacts are noticeable.

4.4. Bandwidth Analysis
One can easily imagine that the random nature of our algo-
rithm can break several of the features in a modern GPU,
which exploits coherency in the rendering. This includes
buffer compression and texture cache performance, for ex-
ample.

The two scenes with most motion on textured objects are
the Sponza DOF (Figure 6C), and the rotating/translating
wheel (Figure 7). For all our tests, we used a single 6 kB
texture cache, which is perfectly reasonable (for compari-
son, a Geforce 8800 has 8 kB per multi-processor). Also,
our algorithm used four samples per pixel, while ABT used
four passes, which also gives four samples per pixel. In the
wheel scene, our algorithm used 225 MB of off-chip texture
bandwidth, while ABT used 314 MB. For Sponza DOF, the
advantage of our algorithm becomes more pronounced: ABT
used 2314 MB, while our algorithm used only 1056 MB. In
addition to this improvement, we believe that a texture cache
coherent rasterization order can improve our numbers fur-
ther. This is left for future work at this point.

For the depth buffer, we implemented depth offset com-
pression (DOC) [HAM06b]. When using this on the chain
scene (Figure 6A), the depth is compressed down to 62.5%.
Hasselgren and Akenine-Möller report compression rates of
about 60% on a set of static scenes [HAM06b]. This gives
an indication that depth buffer compression can work quite
well. However, we believe that clever new algorithms can be
implemented to further increase compression. For example,
using four layers in DOC could help quite a bit. An interest-
ing avenue for future work would be to compress all sam-
ples in each time subinterval separately. For example, we
can compress all samples inside the time interval [0.0,0.25)
separately. This would increase the coherence, and improve
compression. We note that this is important, and we would
like to investigate buffer compression for SR in the future.

5. Discussion
Our algorithm for stochastic rasterization (SR) should be
seen as a complement to standard rasterization. It is a feature
that the programmer can turn on exactly when needed. For
parts of a scene with little or no relative motion, standard ras-
terization can be used together with multi-sampling.§ This
gives spatial antialiasing at a low cost. However, for parts
with faster relative motion, the more expensive stochastic
rasterization can be activated with supersampling to ob-
tain spatio-temporal antialiasing. Thus, the rendering can be
seen as a combination of multi-sampling and supersampling.
Note that for motion-blurred regions, the spatial positions of
the samples do not matter that much. Instead, it is the tem-
poral distribution of the samples that determine quality. For

§ We use the following terminology: for multi-sampling, the pixel
shader is executed only once per pixel, while for supersampling, the
pixel shader is executed once per sample.
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static parts, we get the same quality as using spatial anti-
aliasing only, and our algorithm is not directly dependent on
any particular scheme. We choose RGSS because it gives
good spatial antialiasing, and is accepted in the industry.

We also want to emphasize a few very important features
of using stochastic rasterization. First, if stochastic rasteriza-
tion use n samples per pixel, we can compare this to accumu-
lation buffering techniques (ABT) rendered with n passes,
where each pass renders a static image. Our video clearly
shows that the strobing artifacts of ABT are more notice-
able. However, there is also a significant advantage in terms
of sending geometry over the bus and geometry process-
ing. With stochastic rasterization we only send the geome-
try once, and transform that geometry twice in the geometry
shader (using different matrices for t = 0 and t = 1). In con-
trast, ABT would send the geometry n times over the bus,
and process the geometry n times. This makes for a substan-
tial improvement already at four samples per pixel.

Note that ABT (as defined in the previous paragraph) con-
verges to a correct result the more static images that are ac-
cumulated. Our SR algorithm can render n images and ac-
cumulate them as well, but in our case convergence will be
much quicker due to the stochastic nature of our algorithm.
Furthermore, SR degrades more gracefully than ABT, which
makes SR useable over a wider range of sampling rates.

A further use of SR is “practically frameless render-
ing” [WZM95], which is described briefly in Section 2. As-
suming that it is possible to disable writing to a specific set
of pixels or samples, we can use SR to render motion blurred
triangles into, say, only every 4th pixel. This would give bet-
ter image quality compared to the original approach, since
SR can provide stochastic sampling of the geometry in each
rendering pass.

Direct hardware support of our stochastic rasterization al-
gorithm would require rather moderate additions since we
could leverage on existing supersampling and multisampling
hardware in contemporary GPUs. Transforming and setting
up a time-continuous triangle can be done in the geometry
shader, as well as computing an OBB. For a full implemen-
tation, our sampling/filtering, Zmin/Zmax-culling, and time-
dependent texture lookups would require some small hard-
ware modifications. We did a partial implementation of the
“inner loop” of our algorithm in a fragment program. The
time of the sample is computed through a texture lookup,
and we interpolate the time-dependent edge functions based
on that time, evaluate the interpolated edge functions based
on spatial coordinates, and finally compute the perspective-
correct barycentric coordinates for the sample. We assumed
that the edge-function setup was done in a previous step,
and used uniform parameters to pass per-triangle data in
lack of better alternatives. By analyzing this program using
a shader performance tool, nvshaderperf, we found that
this shader program took 11 clock cycles to execute on a
GeForce7800, with an expected fillrate of 872.73 Mpixels/s.
This kind of performance can fill the screen eight times in

100 fps at 1024× 1024. With a GeForce 8800, this would
be much higher, but nvshaderperf did not support this
card when we did our tests. Our conclusion is that we need
native hardware support for time-dependent edge functions
and interpolation using these to reach higher performance. In
our current implementation, we practically perform inside-
outside test and interpolation twice (first using native hard-
ware, and then in the pixel shader), and it would be nice to
avoid that.

For the pseudo-random time pattern, we use a fixed time
table of 32× 32 random numbers in the interval [0,1), as
described in Section 3.2. We have not seen any visual differ-
ence between a 128×128 and a 32×32 table. Smaller tables
start to alter the image quality. Due to our sampling strategy
with the interval [0,1) split into eight subintervals, and ran-
dom sampling done inside each such subinterval, we already
have three bits of the random number implicitly. Empirically,
we found that adding another three bits is enough per x and y
for the sampling locations. This means that we need a table
of 32×32×6 bits constant pseudo-random numbers. In our
experience, such fixed tables can be realized with very few
gates.

6. Conclusion and Future Work
One could argue that all we do in this paper is to imple-
ment “stochastic rasterization” (SR)—a 20-year old tech-
nique [Coo86,CCC87]. However, we contribute with several
techniques well-suited for GPUs. We develop tight-fitting
robust OBBs around moving triangles, and introduce time-
dependent edge functions for efficient inside-test and in-
terpolation. In addition, we construct a clever scheme us-
ing only four samples per pixel, which gives eight sam-
ples (perfectly jittered in time) for pixel reconstruction, and
still comply to using 2× 2 quads. Furthermore, we create
a Zmin/Zmax-culling variant, which is crucial to good per-
formance today. We show that SR can be used for depth-
of-field, glossy reflections, and motion blur with shadows,
highlights, & reflections. In conclusion, we strongly believe
our research advances the field of rasterization.

Even though we think that rasterization and ray tracing
are somewhat complementary techniques, there is an ongo-
ing debate about which is the preferred rendering algorithm.
We have showed that SR is a powerful alternative for motion
blur, since we can sample the moving triangles at any par-
ticular time. For ray tracing, spatial data structures need to
be partly rebuilt for every instant of time where we want to
sample the geometry, and this is expensive and impractical.

For future work, we want to investigate how texture-cache
coherent rasterization order can be adapted to the case of SR,
and work on depth and color buffer compression. Further-
more, we want to combine SR with delay streams [AMN03]
for better culling. It would also be important to analyze
shader branch efficiency. Also, when motion blur is used, the
acceptable frame rate can, in general, be lower compared to
not using motion blur. It would be interesting to see whether
this can be used to conserve energy in mobile devices.
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A B C D

Figure 6: Our stochastic rasterization algorithm can render images with a variety of effects. A+B: motion blur with only four
samples per pixel. Notice the motion blurred reflections in A, and the motion blurred shadows and highlights in B. C: depth of
field rendered with only eight passes with four samples per pixel. D: glossy planar reflections using four passes. Note that the
target is real-time graphics, and so to be fair, the quality is best judged from our video.
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Figure 7: Motion blur caused by both translation and rota-
tion. Note the strobing artifacts obtained using four samples
per pixel with uniform sampling, i.e., similar to Wexler et
al’s method [2005]. The left column shows a slow motion,
while the right shows a five times faster motion.

A B C
Figure 8: A moving blue ball and a static red ball are re-
flected in a chrome sphere using cube mapping. A. Static
camera. Notice the blurred blue ball and the sharp red ball.
B. The camera is moving in the same path as the blue ball so
that there is no relative motion between them. With a stan-
dard cube map, both balls appear blurred. C. With a time-
dependent cube map, the reflected blue ball approaches the
correct result, which is a sharp reflection. Four samples per
pixel are used in all these examples.

Figure 9: Motion blur rendering in a single pass. Left: 4
samples per pixel. Right: 8 samples per pixel. Note that the
motion is about 100 pixels wide in the fastest moving region.
Recall that to halve the variance, we need to quadruple (4×)
the number of samples.
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