
Deep Coherent Ray Tracing

Erik Månsson∗

Lund University/TAT AB

Jacob Munkberg†

Lund University

Tomas Akenine-Möller‡

Lund University

fairy sponza oldTree newTree dragon

Figure 1: The example scenes used for evaluating our reordering heuristics and coherence measures. All materials in the scenes are reflective
in order to study the behavior of secondary rays. Fairy is an example of the ”teapot in a stadium” problem with a small detailed model in a simple
large environment. Sponza is a standard benchmark model. Two tree-scenes with and without leaves (newtree and oldtree respectively) ensure
complex traversal paths for secondary rays. Dragon is a scene with four reflective Stanford Dragons in a Cornell box.

ABSTRACT

Tracing secondary rays, such as reflection, refraction and shadow
rays, can often be the most costly step in a modern real-time ray
tracer. In this paper, we examine this problem by using suitable
ray coherence measures and present a thorough evaluation of dif-
ferent reordering heuristics for secondary rays. We also present a
simple system design for more coherent scene traversal by caching
secondary rays and using sorted packet-tracing. Although the re-
sults are only slightly incremental to current research, we believe
this study is an interesting contribution for further research in the
field.

Index Terms: I.3.7 [Three-Dimensional Graphics and Realism
]: Raytracing; I.3.6 [Methodology and Technique]: Graphics data
structures and data types

1 INTRODUCTION

Current research on real-time ray tracing has been very biased to-
ward optimizing primary and shadow rays. The results are im-
pressive, approaching frame rates of rasterization-based techniques.
However, one major motivation of using ray tracing instead of a
GPU renderer is the natural extension to secondary rays, giving true
reflections, refraction and global illumination effects.

A key to ray tracing performance is grouping bundles of rays
in coherent packets, and testing these packets against the three-
dimensional scene instead of testing each ray individually. Coher-
ent rays here means rays with similar directions and origins. Sec-
tion 3 will present more formal coherence definitions. For primary
rays, sorting rays into coherent packets is straightforward, as all
rays has a common origin (the camera/eye), and we can easily cre-
ate packets by grouping the rays of nearby pixels. For secondary
rays, however, we no longer have a common origin, nor coherent di-
rections. Imagine a packet of coherent primary rays traced towards

∗e-mail: erik.mansson@tat.se
†e-mail: jacob@cs.lth.se
‡e-mail: tam@cs.lth.se

a reflective ball. If the ball is small enough, the rays will diverge
in nearly all directions, and some rays of the packet might even
miss the ball. The packet will lose its coherent properties already
after one bounce, making it useless for further packet-traversal, as
the generated secondary rays will take substantially different paths
through the scene.

In this paper, we will investigate techniques for increased co-
herence for secondary rays and evaluate them in a modern packet-
based ray tracer. The rest of the paper is structured as follows:

Section 2 presents previous work in this area, while Section 3
introduces more formal definitions of ray coherence. Section 4 dis-
cusses our system design and sorting approaches, which are evalu-
ated in Section 5. Finally, we offer a discussion with some thoughts
on future work in Section 6.

2 PREVIOUS WORK

Fast ray tracing has been an active area of research for more than
two decades. In this section, we will summarize the research most
related to our work.

The idea behind breadth-first ray tracing [12] is to form a set of
rays and compare each object in turn against this set. First, all pri-
mary rays are traced, followed by all shadow rays from the primary
intersections, and then all reflection and refraction rays. Each ray
type on each level forms a set that is compared to the geometry.

By tracing packets of coherent rays together, interactive ray trac-
ing has been achieved on standard desktop computers using highly
optimized kd-trees [18, 20]. The resulting performance is impres-
sive for primary rays and coherent shadow rays, but the algorithms
are not easily extendable to secondary rays.

Interactive distribution ray tracing [5] uses ray packets for dis-
tributed ray tracing to simulate depth of field, motion blur and soft
shadows. Secondary rays are grouped in coherent packets accord-
ing to ray type (shadow packets, reflection packets and refraction
packets), similar to breath-first tracing, but locally, as it is applied
to the secondary rays generated from one packet. By carefully iden-
tifying and controlling the parameters that causes divergent sec-
ondary rays, they argue that some coherence can be obtained for
secondary rays too. Recently, performance improvements of about
2×, compared to single ray tracing, was reported [6].

A survey of algorithms where ray direction information is used

to accelerate ray tracing is presented by Arvo and Kirk [2]. The
light buffer algorithm [9] optimizes shadow rays by associating ob-
jects to each cell of a direction cube around a light source. A more
recent extension uses rasterized orthogonal views created from a set
of angles [8]. A more general approach to this problem is to parti-
tion secondary rays in coherent voxels, as in the ray classification
algorithm [1]. Here, a 5D BSP-tree with three dimensions for ray
origins and two for ray directions, is used. Each split will generate
25 sub-nodes, so the tree grows rapidly. Effective culling can be
performed, but the memory requirements for storing a 5D-tree of
rays in a complex scene are huge. A recent variant of this approach
is described in the ray engine [7], where an octree is used for geom-
etry and a 5D tree for rays. This configuration is used to efficiently
find and trace coherent packets of rays on a GPU. As rays are gen-
erated, they are added to a cache, which collects them into buckets
of rays with coherent origins and directions.

Pharr et al. [16] introduce memory coherent ray tracing of com-
plex scenes by grouping rays and geometry into a spatial scheduling
voxel grid. The voxels are processed one at a time, by tracing the
contained rays against the contained geometry. Voxels with geom-
etry currently in the cache have priority. By carefully designing
ray-, geometry- and texture caches, they argue that rendering times
can be substantially improved. They also proposes a ray grouping
approach, where rays are first clustered by position and then sorted
by direction. However, they discarded this approach, as it worked
only for rays with similar origins, but failed to exploit coherence
for rays whose origins were not close together. Navrátil et al. [13]
extend the scheduling algorithm and use a simulator to prove that
they can dramatically reduce the amount of geometry brought into
the caches. The sorting approaches from Pharr et al. [16] has been
applied to photon mapping and global illumination [10, 11, 19].

Another approach to handle secondary rays is omnidirectional
ray tracing [17], where packet-based kd-tree traversal is relaxed to
handle packets with more divergent ray directions.

Many approaches exist, but there is still no general algorithm for
efficient packet tracing of secondary rays in terms of both reduced
memory bandwidth and frame rates. We will borrow ideas from
the work described above and evaluate techniques for coherent sec-
ondary ray tracing.

3 COHERENCE MEASURES

By inspecting frame rates alone, we risk getting biased results from
the underlying system, including the compiler, processor and mem-
ory architecture. For a more general discussion of performance,
we have chosen to include ray coherence measures alongside actual
frame rates. For clarity, we present our measures with regards to a
kd-tree acceleration data structure (ADS), but it is straightforward
to adapt these concepts to other data structures, such as bounding
volume hierarchies and grids.

The ray coherence theorem [2, 15] can be used to compute a
bound on the directions of rays which originate at one object and
then hit another. However, it is not straightforward to adapt this to
a global coherence measure in complex scenes with arbitrary ge-
ometry. For a given scene and ray tracing engine, we can easily
extract two measures: the number of traversal steps in the ADS
and the number of ray-triangle intersection tests. In the case of a
kd-tree, the traversal steps is the sum of split-plane intersections
over all rays, and the intersection tests are the total number of ray-
triangle intersection tests. We can also measure unique traversal
steps, which is the number of split planes in the kd-tree touched
by any ray. Unique intersection tests are defined analogously. Note
that traversal steps and intersection tests are not independent of each
other. By adjusting ADS construction parameters, one can trade be-
tween them to some extent.

As suggested by Benthin [3], we define traversal coherence
(ct) as the the sum of traversal steps (st) divided by the number

of unique traversal steps (su):

ct =
∑st

∑su
. (1)

The interpretation is: if many rays traverse the ADS in similar
paths, ct will be high, because the number of unique traversal steps
will be relatively low. This means that there is coherence to exploit.
Conversely, if each ray takes a unique path in the ADS, the traversal
coherence will be close to one, and there is no coherence to exploit.
We define intersection coherence, (ci) similarly, as the sum of in-
tersection tests (it) divided by the sum of unique intersection tests
(iu):

ci =
∑ it

∑ iu
. (2)

We include these measures as they are good indicators of the
amount of available ray coherence in a certain scene.

3.1 Packet Coherence

The goal of this project is to examine how different ray sorting tech-
niques exploit the available coherence. In order to measure that, we
introduce packet coherence.

For a packet-based ray tracer, we define packet traversal steps
(spacket) as the sum of the split-plane intersections for ray pack-
ets, and packet intersection tests (ipacket), which is the number of
packet-triangle intersections. Denote the ray traversal steps as srays.
The traversal packet coherence (pt) is defined as:

pt =
∑srays

∑spacket
. (3)

This measure can be interpreted as the average number of active
rays per traversal step, and is a number between one and the packet
size. A high number indicates that the bundle exploits the available
coherence better.

In an analogue way, we define intersection packet coherence
(pi) as:

pi =
∑ irays

∑ ipacket
. (4)

As a demonstration of these measures, we will look at traversal
coherence and traversal packet coherence for the test scenes of Fig-
ure 1 as a function of the ray depth. Intuitively, one expect a drastic
decrease in coherence when we allow rays to bounce around in the
scene. Figure 2 confirms this, but also indicates that some scenes
have a slight increase in traversal coherence for higher ray depths,
presumably because some rays get stuck and bounce back and forth
between parallel planes. In the lower part of Figure 2, we show the
traversal packet coherence for a standard, packet-based, ray tracer,
and we can see that it fails to exploit the increase in traversal co-
herence. In the next section, we will discuss a technique that can
handle this situation.

4 DEEP COHERENT TRACING

The traversal unit in a ray tracer benefits from a coherent packet,
with respect to both ray origins and ray directions, in order to ef-
fectively cull parts of the three-dimensional geometry. The stan-
dard technique to achieve this is to create coherent subgroups in the
packet by masking out incoherent rays [3]. The same packet will
thus be sent several times to the traversal unit, each time with a dif-
ferent mask of active rays. Inspired by previous work [5, 7, 16], we
suggest grouping coherent rays together earlier in the system, in or-
der to reduce the number of calls to the traversal unit, thus reducing
the number of packets and bypass the masking procedure.

Figure 2: Traversal coherence and traversal packet coherence for
specular rays. Rays are grouped in packets of 16 rays in this exam-
ple. The traversal packet coherence drops exponentially, but several
scenes show an increasing traversal coherence, indicating that there
is coherence to exploit.

4.1 Implementation

In a scene with glossy reflections, multiple bounces and soft shad-
ows, the primary rays only represent a fraction of the total number
of rays. To improve coherence for secondary rays, we use a sys-
tem as outlined in Figure 3. In the following, we will describe the
functionality of each unit.

Ray Cache This unit holds spawned secondary rays waiting
to be ray traced. To improve coherency, secondary rays are sorted
using some heuristic, as will be further described in Section 4.3.

When a cell in the cache is filled, the sorted ray packet is sent
to a FIFO queue, ready to be traced by the traversal unit. We al-
ternate between sending primary packets and coherent packets of
secondary rays until the entire image is rendered. Ray tracing fin-
ishes when there are no more primary rays to trace and no more
rays waiting in the cache. Please note that all levels of secondary
rays will write into the cache, so a packet can be a combination
of secondary rays of many different depths and types. Some logic
has to be added in order not to overflow the FIFO and to empty the
cache of remaining rays. For example, a packet of primary rays can
generate a large number of secondary rays, all of which, in turn,
spawns new rays. Dequeuing and tracing one packet from the FIFO
may generate a large number of new FIFO entries. We can avoid
this situation by tracing a tile of primary rays and all its generated
packets before proceeding to the next tile. To empty the cache of
remaining rays, a sweep at the end forces these rays into the FIFO.
A certain ray path can take arbitrary time (within one frame/tile),
as a ray will not be moved to the FIFO queue until the associated
cache cell is full.

Traversal Unit The input is either a primary packet or a ray
packet from the FIFO, consisting of a set of N coherent secondary
rays, which are traced through the scene with the help of a suitable
acceleration data structure.

Shader Unit This unit executes a shader program for a set of
rays and is divided in two parts:

Primary Secondary Shadow

Ray Generator Ray Cache Ray Cache

FIFO FIFO

Traversal Unit and ADS

Pre-shading Post-Shading

Frame buffer

Figure 3: A high level illustration of our ray tracing system. All
spawned secondary rays are added to a ray cache, and are sorted
before sent to the traversal unit. Primary rays can be sorted when
generated, and do not need to be cached.

– Pre-shading. Here, one or more output rays are generated and
added to the ray cache. Each spawned ray gets an updated
weight, which is the weight of the incoming ray multiplied
with the shader value at the intersection point. It also inherits
the pixel address of the incoming ray. In this way, a ray holds
its accumulated shading (all shading in the ray tree starting
from the camera ray up to the current ray), as well as the pixel
position it affects.

– Post-shading. Outputs color values that are added to the out-
put buffer. In practice, post-shading is handled by shadow
rays. If a shadow ray does not hit an occluder, its accumu-
lated weight is added to the corresponding pixel in the output
buffer.

4.2 Iterative Ray Tracing

To allow for ray sorting and cacing as described above, the classic,
recursive ray tracing algorithm is not suitable. However, by adding
a weight and a pixel address to every ray [16], we can reformulate
the ray tracing algorithm iteratively, and we do not need to keep
track of any ray trees to compute the final shading.

This model is based on the assumption that the shader can be
split into a linear combination of weighted ray contributions. That
is, we must be able to assign a weight to each ray before it is traced,
so we can discard the ray tree which generated it. Shaders involving
adaptive sampling based on intermediary results can therefore not
directly be rewritten iteratively. The weights can be computed using
information from the intersection points, including incoming and
outgoing ray directions and all material properties, so most shaders
are compatible, including analytical and measured BRDFs.

Another drawback is the higher resolution of the frame buffer.
As each ray will directly write back its contribution, a higher color
bit depth is needed. 1000 shadow rays, each with weight 0.001, will
add up to one, but if added thousand times to a frame buffer with
standard eight bit resolution, information will inevitably get lost
due to quantization. We do not consider this to be a serious problem
as a good rendering system would store each color component using
at least a 16-bit floating point value, in order to handle, for example,
high dynamic range light probes. We expect that all real-time ray
tracers will have this capability in the future.

The number of frame buffer accesses will also increase as every
(shadow) ray segment will write back a value, instead of as in the
recursive case, where a ray tree only writes back the final color
once.

Figure 4: Secondary rays can diverge fast even if the primary rays
(and their intersection points) are coherent.

4.3 Regrouping Algorithms

After the first intersections of a packet of primary rays has been
found, new rays may be spawned by the surface shaders. These
new rays should be sorted in a way that exploits the coherency in
the three-dimensional scene. This sorting could be naturally inte-
grated in some shaders. An ambient occlusion shader could, for ex-
ample, output coherent packets of rays, clustered by direction over
the hemisphere. We strive for a more general approach, where we
only assume that the shader returns a set of rays with correspond-
ing weights. Given a coherent packet of primary rays, the primary
intersections will still be relatively coherent as they intersect the
base geometry. These intersections become origins for secondary
rays. The directions of the secondary rays can be more or less ran-
domized, as normal maps, displacement maps or other techniques
modify the local geometry and normal vectors as shown in Figure 4.
This observation is important when designing a ray sorting strategy.

Many ray sorting approaches exist, ranging from a full 5D-ray
tree [2], to sorting by ray directions and or positions [10, 11, 16,
19]. We want to combine these ray grouping techniques with packet
tracing for real-time rendering.

Keep in mind that we compete with tracing single rays. If we
only care about core tracing speed, this relation can be formulated
as: tsorting + tpacket tracing < tsingle tracing. In order to improve core
tracing speed, we need both a fast sorting step and a substantially
faster packet tracing step.

We have tested the following heuristics for sorting rays:

none Rays are not regrouped. Rays are masked out as they exit the
scene. Secondary packets may be partially filled, and the con-
tained rays might not be coherent. An active mask is updated
before each traversal call to ensure that a coherent subset (with
respect to ray direction) of the rays are active for that traver-
sal call. To find all intersections, the same packet might be
sent several times to the traversal unit, each time with a dif-
ferent active subset or rays. This is the “standard” approach
in packet-based ray tracers [3].

dir Eight packets are filled in parallel, each corresponding to one
direction/sign configuration, sorting the ray direction into oc-
tants (−,−,−),(−,−,+), . . . ,(+,+,+). Packets that are sent
to the traversal/intersection unit will be completely filled as
long as more rays are available.

mdir(x) Extension of dir that split the ray directions in x cells of
equal size over a direction cube [2] . A higher value x means
that each direction cell covers a smaller solid angle.

fastpos The scene bounding box is split into octants. All rays
with origins in an octant will be added to a corresponding ray
packet. This gives a coarse but fast position sorting approach.

pos(x) A list of packets is maintained. Each packet is assigned a
origin po. A ray with origin ro searches for the closest packet

0 1 2 3 4 5
0

1

2

3

4

5

Recursion Depth

Fr
am

e
ra

te

sponza
fairy
dragon
oldtree
newtree

Figure 5: Frame rate as a function of ray depth for the none heuristic,
using 16 rays per packet. The frame rates are drastically lower for
higher ray depths for all scenes. Measured on a 3.0GHz Pentium-4
with hyperthreading.

where ‖ro − po‖2 < x, where x is the search radius. If no
packet is close enough, a new packet is created with po = ro.

opos All rays are sorted into lists depending on their direction sign,
but packet creation is delayed until no more rays are available.
Then the first ray is extracted and the list is searched for other
rays with closest origin. These rays will form a packet. This
algorithm is too slow for real-time ray tracing, but is included
as a reference sorting approach.

5 RESULTS

In order to design a system that efficiently traces secondary rays, we
have studied the performance of secondary rays in a modern, SIMD
optimized packet based ray tracer [3], using an SAH-optimized kd-
tree as acceleration data structure. We use standard test scenes
of but with added reflective materials and we have also designed
scenes to stress the performance of secondary rays. See Figure 1
and Appendix A for scene details.

To increase the number of secondary rays in the evaluation, we
use a fixed ray depth and do not discard rays because of a too small
color contribution. We have rewritten the tracing kernel according
to Section 4.1 so that secondary rays are sorted in coherent packets
before traversal, and we propagate ray weights forward so each ray
directly can write back a value once it is traced and shaded.

5.1 Heuristics and frame rates

When using higher recursion depths for our scenes, Figure 5 shows
how the frame rates drastically decrease for higher ray depths when
we using the standard way (none) for tracing secondary rays. Can
a better sorting heuristic help in this situation?

heuristic none dir fastpos mdir(96) pos(1.0)
fps 1.9 1.8 1.7 1.7 1.8

Table 1: Performance for different heuristics in the dragon scene.
The recursion depth is one and each packet contains sixteen rays.
Measured on a 3.0GHz Pentium 4 with hyperthreading.

In our implementation, the answer is unfortunately no. By us-
ing the heuristics from Section 3, we get similar or slightly lower
frame rates, as seen in Table 1. Boulos et al. [6] report speed-ups of
2× compared to single tracing, but as the none heuristic is already
used for secondary rays in a state-of-the art real-time ray tracer [4],
and described as a way of tracing secondary rays in a modern kd-
tree packet tracer [3], we use this as the base line. Our goal with
this system is to exploit more coherence than available in the rays
generated from intersections of one packet.

2 4 6 8
10

15

20

25

30

35

Recursion depth

Tr
av

e
rs

al
 c

o
h

e
re

n
ce

2 4 6 8
1

2

3

4

5

6

7

8

Recursion depth

Tr
av

e
rs

al
 p

ac
ke

t
co

h
e

re
n

ce

none

dir

opos

2 4 6 8
20

40

60

80

100

120

Recursion depth

Tr
av

e
rs

al
 c

o
h

e
re

n
ce

2 4 6 8
4

5

6

7

8

9

Recursion depth

Tr
av

e
rs

al
 p

ac
ke

t
co

h
e

re
n

ce

none

dir

opos

Figure 6: Traversal coherence and traversal packet coherence for the
test scenes Newtree (above) and Fairy (below). To the right, three
different sorting heuristics are compared. All heuristics use a packet
size of 16 rays in this example.

We have seen performance increases using dir and mdir in
scenes where many secondary rays are generated from one inter-
section point, e.g. ambient occlusion shaders or diffuse reflections,
but as it is relatively simple to output coherent packets locally di-
rectly from those shaders, we have not included such test cases in
our evaluation.

One “problem” is that the none heuristic performs quite well.
Packets with different direction signs will traverse the acceleration
structure from the top several times, once for each sign configura-
tion. This is actually quite inexpensive, because split planes and
triangles that are accessed by rays during the first traversal steps are
likely to be in the memory cache if they also are accessed during
the other trace passes, and will therefore not degrade performance
as much as the ray coherence predicts. In addition, all kinds of ray
sorting, although simple, add overhead as well.

All measurements have been made while rendering a 640×480
pixel large image with texture mapping and phong shading. Each
intersection spawns one shadow ray and higher order rays until a
fixed recursion depth has been reached. We have used recursion
depth one unless otherwise stated.

5.2 Coherence Analysis

However, as we will show in this section, interesting and useful
information inherited in “deep” ray tracing can be extracted using
our coherence measures.

Lets consider how the sorting heuristics affects the coherence
measures of Section 3. Note that we allow rays from different lev-
els, e.g., secondary rays from any depth, to be part of same packet
and therefore represent measures from all secondary rays up to a
specified recursion depth. Newtree is a typical scene where the
traversal coherence declines exponentially and the window of op-
portunity for good re-orderings slips away. The packet coherence
drops for all heuristics, and dir has only slightly better values than
none. The upper row of Figure 6 shows this behavior.

The Fairy scene shows a different behavior. In the lower row
of Figure 6, we see how the traversal ray coherence increases al-
most linearly with increasing ray depth. The traversal packet coher-
ence from the opos heuristic is almost constant and the dir heuristic

performs worse than none. The explanation for this behavior can
be found in the backdrop of the scene which is constructed from
three transparent layers. Most rays will miss the scene after a few
bounces since it is open, and the only rays that bounce nine times
are the rays stuck between the layers of the backdrop. This “extra”
scene coherence was captured by our measures, but could not be
exploited by the simpler sorting heuristics.

Table 4 presents coherence measures for all five test scenes for
the sorting heuristics at recursion level 1, 2 and 3. The table shows
that the sorting heuristics succeeds in exploiting the inherent co-
herence of the scene, but the differences are relatively small. The
results also indicates that the direction-based heuristics performs
better overall. These results by themselves will not justify rewrit-
ing the ray tracing kernel on a current CPU, as the none approach is
competitive, but the analysis is still interesting for future ray tracing
research.

5.3 Packet Size Statistics

In this section, we study the packet size influence. We have seen
earlier that the none algorithm performs surprisingly well, partly
because many packets are half-filled due to masking, with smaller
frustums. Therefore, we have studied performance and coherence
for various sizes of secondary ray packets. Generally, smaller pack-
ets means that we fill coherent packets faster (and more locally), but
also that we can not exploit as much coherence as a bigger packet.
Figure 7 shows how the packet size affects the frame rate for the
dragon scene. Looking at Table 2, which lists packet coherence for
different packet sizes, we see highest numbers for small packets.
However, when looking at the total frame rate, packets with 8 or 16
rays perform best for our current implementation.

0 1 2 3 4 5
0

1

2

3

4

5

Recursion depth

Fr
am

e
 r

at
e

4
8
16
32
64
128

Figure 7: Varying packet sizes for the dragon scene plotted in a frame
rate versus ray depth chart for the none heuristic. Measured on a
3.0GHz Pentium4 with HT.

5.4 Other Traversal Schemes

Interval ray tracing [18] uses extremal properties of the ray packet,
which results in fewer instructions in the inner traversal loop since
we do not need to inspect every ray for each step through the kd-
tree. For primary rays, we note how the packet coherence drops,
but each traversal step is faster. In our implementation, interval ray
tracing without Entry Point Search [18] is on par with the none
algorithm. Interval ray tracing will visit more nodes than what is
strictly needed. Before intersecting with the triangles of a leaf, we
therefore intersect the rays with the bounding box of that leaf to
avoid unnecessary primitive tests. Consequently, we perform the
same number of intersection tests as when doing standard packet
tracing. Secondary packets, however, diverge far too much for in-
terval ray tracing to be feasible; the packet coherence drops below
one, which means that the traversal scheme visits many nodes that
would not be touched during standard (single-)ray tracing.

scene coherence packet size
type 4 8 16 32 64

dragon ct 17.8 18.8 18.8 18.8 18.8
pt 2.6 3.9 5.5 7.0 8.8
pt/size 0.65 0.49 0.44 0.14 0.14

fairy ct 37.0 39.1 39.1 39.1 39.1
pt 3.1 5.1 7.9 11.2 15.0
pt/size 0.78 0.64 0.49 0.35 0.23

newtree ct 31.6 33.1 33.1 33.1 33.1
pt 2.9 4.5 6.8 9.2 12.4
pt/size 0.72 0.56 0.43 0.28 0.19

oldtree ct 8.3 9.0 9.0 9.0 9.0
pt 2.0 2.7 3.5 4.1 4.8
pt/size 0.5 0.34 0.22 0.13 0.075

sponza ct 33.1 36.6 36.6 36.6 36.6
pt 2.7 4.3 6.7 9.0 12.5
pt/size 0.68 0.54 0.42 0.28 0.20

Table 2: Traversal coherence analysis for different packet sizes at re-
cursion level 1, using the standard none heuristic. We list traversal
coherence (ct), traversal packet coherence (pt) and packet coher-
ence divided by the packet size. (pt/size)

primary secondary
scene type ct pt ct pt

newtree none 32.2 9.0 33.1 6.8
interval 32.2 5.0 33.1 0.087
omni 32.2 9.2 33.1 7.3

oldtree none 58.8 10.1 9.0 3.5
interval 58.8 8.2 9.0 0.058
omni 58.8 10.2 9.0 3.9

Table 3: Traversal coherence (ct) and traversal packet coherence (pt)
for different traversal algorithms with 16 rays per bundle. The recur-
sion depth is one.

When using none packet tracing, we can only trace one di-
rection/sign configuration at a time, which force us to trace each
packet several times, but with different elements masked out. Omni-
directional Ray Tracing [18] borrows some ideas from how Bound-
ing Volume Hierarchies can be traversed, which allows packets with
different direction/sign configurations to be traced as one packet,
without masking. The cost is a somewhat slower inner traversal
loop and reversed traversal order for some rays, i.e. some rays will
not visit nodes in distance from origin order.

In Table 3, we see how omni-directional ray tracing gives a slight
increase in packet coherence, but we did not succeed in making
an implementation that is faster (in terms of frame rates) than our
none-tracer.

6 DISCUSSION AND FUTURE WORK

Although there is clearly coherence among secondary rays in the
scenes to exploit, it is hard to design a heuristic that is both simple,
fast and significantly better than the standard approach using mask-
ing. More elaborate ray sorting heuristics can be suggested, but
the performance bound set by tracing the secondary rays by mask-
ing techniques is hard to beat. In our implementation, the results
obtained do not justify a rewriting of the ray tracing kernel (from a
frame rate perspective), but are still interesting for future ray tracing
research.

For future work, we would like to implement our system in hard-
ware, as we believe these concepts might be more important there,
and the overhead of the ray caching system might be more accept-
able. In addition, a CUDA [14] implementation might prove to be

an interesting avenue of future research.
We would also like to extend the system with a shader cache, that

analogously sorts the shader calls for increased shading coherence
and simplified batch shading.

REFERENCES

[1] J. Arvo and D. Kirk. Fast Ray Tracing by Ray Classification. Com-
puter Graphics (Proceedings of SIGGRAPH ’87), 21(4):55–64, 1987.

[2] J. Arvo and D. Kirk. An Introduction To Ray Tracing - A survey of Ray
Tracing Acceleration Techniques. Academic Press, 1989.

[3] C. Benthin. Realtime Ray Tracing on current CPU Architectures. PhD
thesis, Saarland University, 2006.

[4] J. Bikker. Arauna Ray Tracer. Website/forum
”http://ompf.org/forum/viewtopic.php?p=2072#2072”, 2007.

[5] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,
and I. Wald. Interactive Distribution Ray Tracing. Technical Report
UUSCI-2006-022, SCI Institute, University of Utah, 2006.

[6] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,
and I. Wald. Packet-based Whitted and Distribution Ray Tracing. In
Graphics Interface, pages 177–184, May 2007.

[7] N. A. Carr, J. D. Hall, and J. C. Hart. The Ray Engine. In Graphics
Hardware, pages 37–46, 2002.

[8] T. Hachisuka. GPU GEMS 2 - High Quality Global Illumination Ren-
dering Using Rasterization. Addison-Wesley, 2005.

[9] E. A. Haines and D. P. Greenberg. The Light Buffer: A Ray Tracer
Shadow Testing Accelerator. IEEE Computer Graphics and Applica-
tions,, 6(9):6–16, 1986.

[10] V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel. Ray Maps for
Global Illumination. In Eurographics Symposium on Rendering, pages
43–54, 2005.

[11] V. Havran, R. Herzog, and H.-P. Seidel. Fast Final Gathering via Re-
verse Photon Mapping. Computer Graphics Forum (Proceedings of
Eurographics 2005), 24(3):323–333, 2005.

[12] K. Nakamaru and Y. Ohno. Breath-First Ray Tracing Utilizing Uni-
form Spatial Subdivision. IEEE Transactions on Visualization and
Computer Graphics, 3(4):316–328, 1997.

[13] P. A. Navrátil, D. S. Fussell, and C. Lin. Dynamic ray scheduling
for improved system performance. Technical Report TR-07-19, The
University of Texas at Austin, April 12 2007.

[14] NVIDIA. CUDA, Compute Unified Device Architecture, Program-
ming Guide. Technical report, Version 1.0, 2007.

[15] M. Ohta and M. Maekawa. Ray Coherence Theorem and Constant
Time Ray Tracing Algorithm. In Computer Graphics International,
pages 303–314, 1987.

[16] M. Pharr, C. Kolb, R. Gerbstein, and P. Hanrahan. Rendering Complex
Scenes with Memory-Coherent Ray Tracing. In Computer Graphics
(Proceedings of SIGGRAPH ’97), pages 101–108, 1997.

[17] A. Reshetov. Omnidirectional Ray Tracing Traversal Algorithm for
kd-trees. In IEEE Symposium on Interactive Ray Tracing, pages 57–
60, 2006.

[18] A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing
Algorithm. ACM Transaction on Graphics, 24(3):1176–1185, 2005.

[19] J. Steinhurst, G. Coombe, and A. Lastra. Reordering for Cache Con-
scious Photon Mapping. In Graphics Interface, pages 97–104, 2005.

[20] I. Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

A SCENE DETAILS

Dragon Four instances of the Stanford Dragon in a Cornell box. 61k triangles. Source:

Stanford 3D Scanning Repository.

Fairy Scene with a Teapot in a stadium problem featuring one fairy and one dragonfly,

both highly tessellated, in an a forest scene. 173k triangles. Source: Utah 3D Anima-

tion Repository, Ingo Wald.

Newtree This scene is similar to the Tree scene, but has fewer leaves and more

branches with complex shadowing. 56k triangles.

Oldtree The camera looks at a reflective wall with complex geometry. Secondary rays

are reflected into a tree with near random distribution of leaves. 410k triangles.

Sponza Standard architecture scene. Features many large polygons and some curved

elements. 42k triangles. Source: Marko Dabrovic.

recursion level 1 recursion level 2 recursion level 3
t i t i t i

scene heuristic ct pt ci pi ct pt ci pi ct pt ci pi

dragon none 18.1 5.2 20.2 3.2 16.3 4.0 17.7 2.8 14.1 3.3 14.8 2.5
dir 5.6 3.2 4.3 2.8 3.5 2.5
mdir(96) 5.2 3.1 4.2 2.8 3.5 2.5
fastpos 4.9 3.1 3.6 2.6 2.9 2.3
pos(1.0) 5.0 3.1 3.9 2.8 3.3 2.5
opos 5.9 3.4 4.9 3.0 4.2 2.7

fairy none 39.1 7.9 16.8 4.4 45.3 6.8 26.3 4.6 49.1 6.2 33.8 4.8
dir 8.1 4.3 6.4 4.4 5.8 4.3
mdir(96) 7.9 4.4 6.5 4.5 6.0 4.6
fastpos 7.0 4.0 5.5 3.9 4.9 3.9
pos(1.0) 7.2 4.1 5.7 4.1 5.2 4.0
opos 8.3 4.4 7.7 4.9 7.4 5.2

newtree none 33.0 6.8 23.2 4.0 21.4 4.3 16.5 2.9 16.3 3.1 12.6 2.3
dir 7.0 4.0 4.7 2.9 3.4 2.3
mdir(96) 6.5 3.8 4.7 3.0 3.4 2.4
fastpos 6.5 3.9 4.1 2.7 3.0 2.2
pos(1.0) 6.8 4.0 4.2 2.8 3.0 2.2
opos 7.4 4.2 5.4 3.3 4.2 2.7

oldtree none 9.0 3.5 6.2 2.1 7.4 2.4 5.1 1.7 6.6 2.0 4.4 1.5
dir 3.7 2.1 2.6 1.7 2.1 1.5
mdir(96) 3.7 2.1 2.6 1.7 2.1 1.5
fastpos 3.3 2.0 2.3 1.6 1.8 1.4
pos(1.0) 3.4 2.0 2.4 1.6 2.0 1.5
opos 4.0 2.2 2.9 1.8 2.4 1.6

sponza none 36.6 6.7 16.8 3.3 30.5 5.2 14.2 2.8 26.0 4.2 12.1 2.4
dir 7.3 3.3 5.6 2.7 4.4 2.4
mdir(96) 7.5 3.3 5.9 2.8 4.7 2.5
fastpos 6.6 3.3 4.3 2.5 3.5 2.2
pos(1.0) 6.5 3.2 5.0 2.7 4.0 2.4
opos 7.8 3.4 6.7 3.0 5.7 2.7

Table 4: Coherence measurements for secondary rays with different reordering heuristics at recursion level 1,2 and 3. All heuristics use a
packet size of 16 rays. For each heuristic, traversal coherence (ct), traversal packet coherence (pt), intersection coherence (ci) and intersection
packet coherence (pi) are given. Better sorting techniques gives slightly increased packet coherence for all scenes, more notably in the traversal
measures than in the intersection measures.

