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Abstract
In this paper, we first present a survey of existing color buffer compression algorithms. After that, we introduce
a new scheme based on an exactly reversible color transform, simple prediction, and Golomb-Rice encoding. In
addition to this, we introduce an error control mechanism, which can be used for approximate (lossy) color buffer
compression. In this way, the introduced error is kept under strict control. To the best of our knowledge, this has
not been explored before in the literature. Our results indicate superior compression ratios compared to existing
algorithms, and we believe that approximate compression can be important for mobile GPUs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Image Generation; frame
buffer operations

1. Introduction

The expected yearly performance increase in terms of band-
width and latency of DRAM is about 25% and 5%, respec-
tively. At the same time, the expected increase in computing
capability of a processor is about 71% every year [Owe05].
Due to this, the gap between memory speeds and compu-
tational resources is steadily increasing. For desktop com-
puter GPUs this is mitigated to some extent by wider and
wider DRAM buses, a "luxury" that is basically not available
for mobile devices. Hence, compression techniques aimed at
saving memory bandwidth for GPUs are becoming increas-
ingly important, especially for mobile GPUs. Examples in-
clude vertex compression, texture compression, depth buffer
compression, and color buffer compression.

In this paper, we focus on color buffer compression and
decompression. The purpose of our work is to provide the
reader with a state-of-the-art report of existing algorithms,
which are currently only available in the form of patents,
and to introduce new algorithms.

In terms of new algorithms, we start by introducing a
new exact algorithm, which first uses a reversible color
transform, and then applies Golomb-Rice coding after us-
ing a simple predictor. Second, we experiment with approx-
imate color buffer compression. The motivation here is that
we can accept, for example, lossy video compression (e.g.,
MPEG), and approximate rendering using precomputed ra-
diance transfer with spherical harmonics or wavelets. Even
just after executing the pixel shader, conversion from float-
ing point to 8-bit integers is done, and this is actually a type
of lossy compression (truncation). In addition, most texture

compression schemes are also lossy. Hence, one could ask
whether and how this can be applied to color buffers as well.

This may sound dangerous, but we show that it is possi-
ble by developing error-bounded algorithms to keep the vi-
sual artifacts under precise control, and to avoid so called
tandem compression artifacts, which may arise due to sev-
eral passes of sequential lossy compression. We emphasize
that approximate, i.e., lossy, color buffer compression is not
always desired. For example, in GPGPU computations for
fluid simulation, exact results is of uttermost importance,
and in such cases, we suggest that the programmer can turn
off this feature. However, for a GPU in a mobile phone,
where it is important to reduce memory accesses over ex-
ternal buses [AMS03], it can be very convenient to enable
approximate compression as this can increase the use time
on a battery charge at a cost of slight image degradation. The
major advantage of approximate compression is that higher
compression can be obtained, which reduces memory band-
width usage compared to lossless, i.e., exact, color buffer
compression.

2. State-of-the-art Color Buffer Compression
In this section we summarize the color buffer compression
algorithms we have found in patent databases. A summary of
existing depth buffer compression schemes is already avail-
able [HAM06]. The reader is referred to Section 2 of this pa-
per for an overview of the depth buffer architecture, which is
almost identical to the color buffer architecture. This paper
describes the general methodology for selecting and tracking
what compressor to use for a specific tile, and how to handle
tiles that cannot be compressed.
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Pixel Deltas: 12 bits (R4G4B4)
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: 24 bits (R8G8B8)
dx: 12 bits (R4G4B4)
dy: 14 bits (R5G5B4)
Pixel Deltas: 15 bits (R5G5B5)
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Figure 1: Color plane compression. For this example, two
samples (gray circles) per pixel are used, and these are col-
lapsed (black circles). Each tile of 2× 4 pixels are encoded
together. A prediction plane is computed from the three refer-
ence pixels (indicated by p, dx, and dy), and the remaining
pixels are stored as deltas between the prediction from the
reference plane and the actual color of the pixel. The tables
to the right show two suggested bit-allocations.

2.1. Multi-Sampling Compression
In this section, we present an algorithm for compression of
color buffers with multi-sampling. In the following, we as-
sume that n samples are used per pixel.

Elder explains that due to multi-sampling, samples inside
a pixel often share the exact same color, and this is an oppor-
tunity for compression [Eld06]. If all samples inside a pixel
share the same color, then it suffices to flag this mode, and
store only one color instead of n colors. Another common
case is when a triangle edge cuts through a pixel. In such a
case, we can store two colors, and a one-bit index per sample
to “point” at one of these colors. Elder also suggests that this
compressed format is used inside the GPU as well. This has
a number of benefits, such as using fewer operations when
blending and during reconstruction of the final pixel color.

The RealityEngine [Ake00] used a similar coverage mask
approach internally in their fragment pipelines. However, the
depth and color-values were decompressed prior to frame
buffer operations, and consequently some of the perfor-
mance benefits were lost.

2.2. Color Plane Compression
Another example of exploiting multi-sampling color redun-
dancy is the method described by Molnar et al. [MSM∗04].
In a first step, they collapse pixels with identical sample col-
ors, similarly to Elder’s work [Eld06]. When using four sam-
ples per pixel, this by itself gives sufficient compression to
reach their predetermined bit-budget. However, in the case
of two samples per pixel, they need to compress the data by
an additional factor of two.

To this end, they introduce a plane compression mode. A
predictor plane is computed from three collapsed reference

cmin cmax{ {

Representable range Representable range

Figure 2: Color offset compression, when using the min and
max colors as references. Note that the width of the repre-
sentable color intervals vary with the number of bits allo-
cated for the per pixel offsets.

pixels, as shown in Figure 1. This plane is stored with vary-
ing accuracy, and the remaining pixels are stored as differ-
ences between the actual pixel value, and the value predicted
by the plane at that pixel. Bit allocations for the plane and
delta values are detailed in Figure 1. The observant reader
may note that these allocations only use 127 bits. The re-
maining bit is used to flag that a tile is in cleared state, which
saves some bandwidth when clearing the color buffer.

2.3. Offset Compression
Some of the methods targeting depth buffer compression can
also be used for color buffer compression. A good example
of this is the offset compression method proposed by Morein
and Natale [MN03].

The method compresses a tile by identifying a number
of reference values. All pixels in the tile are then coded as
an index to a reference value, and componentwise color off-
sets from that reference value. A typical implementation is
to chose the minimum and maximum colors as reference val-
ues, similarly to depth offset compression. We can then rep-
resent the color range shown in Figure 2.

It should be noted that depth offset compression has one
advantage over color offset compression, which is that the
min and max depth values are already stored in on-chip
memory for Zmax- and Zmin-culling, so we do not have to
store the reference values explicitly. This makes offset com-
pression slightly less efficient for color data than for depth
data.

2.4. Entropy Coded Pixel Differences
Van Hook suggests compression schemes based on entropy
coding of pixel differences [Hoo06]. First, he computes the
componentwise pixel differences. Although the exact proce-
dure is not specified, the patent indicates that different traver-
sal orders may affect the magnitude of the pixel differences
(and in the end the efficiency of the algorithm). This indi-
cates that the pixel differences actually are the differences
between the current pixel and the previously traversed pixel.
The suggested implementation uses either horizontal or ver-
tical scanline traversal of the tile, based on what gives the
best compression.

It is well known that differences between adjacent pixels
often have small magnitudes due to the continuous nature of
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images. Van Hook therefore proposes a variable bit length
coding of the differences, which he refers to as exponent en-
coding. The general idea is to represent a value as s(2x− y),
where y ∈ [0,2x−1− 1], and s is a sign bit. In order to com-
press this value, x+1 is stored using unary encoding, which
simply amounts to storing x + 1 bits set to one followed by
a terminating zero-bit. For example, x + 1 = 4 is encoded
as 11110b. Normal binary encoding is used for s and y. The
reason for encoding x+1 instead of x is that the encoding is
not capable of representing a zero value. This special case is
flagged when x +1 is set to zero.

To illustrate the exponent coding with an example, assume
we want to encode the value ±5 = ±(23 − 3). The unary
encoding of x + 1 is again 11110b. The y-value will be in
the range [0,22− 1], so it can be represented using two bits
with binary encoding, which gives us 11b. Finally, we need
to store the sign bit s in one bit. The final encoded value
therefore becomes 11110s11b.

Exponent coding requires a very large amount of bits for
values with large magnitudes. Van Hook therefore suggests
using exponent coding only for difference values in the range
[−32,32], remaining values are encoded using 16 bits, the
first 8 bits must be set to 11111110b to separate the exponent
coded, and binary coded values. The full encoding is shown
in the following table.

Code Representable value
0b 0
10sb ±1
110sb ±2
1110sxb ±[3,4]
11110sxxb ±[5,8]
111110sxxxb ±[9,16]
1111110sxxxxb ±[17,32]
11111110xxxxxxxxb 8-bit absolute value

A strong feature of this scheme is that it allows for adap-
tive bit rate inside a tile.

3. A New Exact Color Buffer Compression Algorithm
In this section, we present a new exact, i.e., lossless, color
buffer compression method. The algorithm operates on tiles,
which are typically 8×8 pixels.

Note that the color buffer needs to be sent to the dis-
play in uncompressed form. Hence, there is a direct bene-
fit from having color buffer decompression implemented in
the display controller, or in any of the hardware processing
blocks prior the display controller. For example, most mo-
bile phones already have some type of display processing
block which provides features like scaling, overlay, color
depth transform, etc. A color buffer decompressor would fit
there as well.

3.1. Reversible Color Transforms
Our new algorithms share the fact that they operate in a
luminance-chrominance color space instead of the standard

Predictor
Color 

Transform
EncoderPixels Compressed Stream

x x̂ ε

Figure 3: Overview of our compression algorithm.

RGB color space. It is well-known in image and video com-
pression that this typically enables more efficient compres-
sion due to the decorrelation of the RGB channels.

In addition, it also enables the use of slightly different
compression schemes for the luminance and the chromi-
nance components [Per99]. This could potentially be useful
since rendered gaming scenes often provide most details and
dynamics in the luminance component.

Since we need lossless compression, the color space trans-
form needs to be exactly reversible. We have chosen the re-
versible color transform RGB to Y cocg introduced by Mal-
var and Sullivan [MS03]. Transforming from RGB to Y cocg
is done as shown below:

co = R−B

t = B+(co >> 1)

cg = G− t

Y = t +(cg >> 1). (1)

Transforming back is as simple:

t = Y − (cg >> 1)

G = cg + t

B = t− (co >> 1)

R = B+ co. (2)

Note that if the RGB-components are stored using n bits
each, the Y -component will require n bits, and the chromi-
nance components n + 1 bits. So the price to pay for having
a lossless reversible color transform is a small data expan-
sion of two bits. Malvar and Sullivan also showed that this
transform in certain video contexts can provide better com-
pression ratios compared to RGB and Y crcb. Note also that
the commonly used standard Y crcb transform is not, in gen-
eral, reversible without loss.

An alternative color transform to Y cocg would be the ex-
actly reversible component transformation (RCT) from the
JPEG2000 standardization [JPE00]. We have empirically
concluded that, for our algorithm, these color transforms are
roughly equal in terms of efficiency. Our experiments also
showed that the use of these color transforms improved the
compression rate of our algorithm by about 10% compared
to an implementation in RGB space. We therefore think that
using a color transform is well motivated.

3.2. The Algorithm

Our lossless compression algorithm is inspired by the
LOCO-I algorithm [WSS96]. In our implementation, we
work on 8× 8 pixel tiles, but it should be straightforward
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to apply it to other tile sizes as well. The flow of our algo-
rithm is illustrated in Figure 3. In a first step, we predict the
color of each pixel based on neighbors which will be de-
compressed prior to the current pixel. The predicted colors
are then subtracted from the actual colors to produce error
residuals. Just like the differences used by Van Hook, these
residuals are generally of small magnitude, and we entropy
encode them using Golomb-Rice coding. Next, we describe
the details of these steps.

We use the same predictor as Wein-
berger et. al [WSS96]. The color, x̂, of a pixel
is predicted as specified by Equation 3 below,
and based on the colors of its three neighbors

x1

x3 x2

x̂

shown in the figure to the right. Note that the two first
cases of the equation perform a very limited form of edge
detection, in which case the color is predicted based on just
one of the neighbors.

x̂ =


min(x1,x2), x3 ≥ max(x1,x2)
max(x1,x2), x3 ≤ min(x1,x2)
x1 + x2− x3, otherwise.

(3)

For the pixels along the lower and left edge of a tile, we
only have access to one of the neighbors. In that case, we
simply use the color of that neighbor as the predicted color.
In addition, we use the constant zero to predict the value of
the lower left pixel in the tile. The effect is that the first error
residual will be given the same value as the lower left pixel.

Given these predicted values, we compute error residuals
and wish to encode them using as few bits as possible. The
residuals are generally of small magnitude, mixed with rel-
atively unfrequent large values. These latter values are typ-
ically found for discontinuity edges, or where the behavior
of the predictor does not match the structure of the image.
We encode the residuals using a Golomb-Rice [Ric79] coder,
which is a variable bit-rate coding method similar to the ex-
ponent coding described in Section 2.4.

In Golomb-Rice encoding, we encode a residual value,
ε = x− x̂, by dividing it with a constant 2k. The result is a
quotient q and a remainder r. The quotient q is stored using
unary coding, and the remainder r is stored using normal,
binary coding using k bits. To illustrate with an example, let
us assume that we want to encode the values 3,0,9,1 and as-
sume we have selected the constant k = 1. After the division
we get the following (q,r)-pairs: (1,1),(0,0),(4,1),(0,1).
As mentioned in Section 2.4, unary coding represents a value
by as many ones as the magnitude of the value followed by
a terminating zero. The encoded values therefore becomes
(10b,1b),(0b,0b),(11110b,1b),(0b,1b) which is 13 bits in
total.

In our compression algorithm, we compute the optimal
Golomb-Rice parameter k for each 2×2 pixel sub-tile using
an exhaustive search. We also detect the special case, when
the quotients of all values in the sub-tile is zero. This gives us

the opportunity of removing the terminating zero-bit, which
would otherwise be introduced by the unary coding.

We empirically examined the frequencies of different val-
ues of k, and when the special case was used. Our results
indicate that k is relatively evenly distributed in the range
[0,6] while the special mode was almost only used in the
case k = 0, which is equivalent to that the whole sub-tile
consists only of zero values. With this in mind, we encode
each 2× 2 sub-tile as a 3-bit header in which we store the
value of k. If k = 7 the whole sub-tile is zero and we store
no more data, and in the other cases the header is followed
by the Golomb-Rice coded componentwise residuals.

We present the results of our lossless compression algo-
rithm in Section 5.

Discussion Using exhaustive search to find the best Golomb
parameter may seem too expensive for a real-time com-
pression algorithm. However, we want to point out that the
search is limited to 8 unique cases that can be evaluated in
parallel. Furthermore, it is very inexpensive to evaluate the
size of a value after it has been Golomb encoded. This re-
quires just one shift and one addition.

One might also argue that the cost of a variable bit rate
compressor is too high for practical use, but we believe it is
realizable. Trying to encode a full 2048 bit vector in a single
cycle is too expensive, but if we limit ourselves to compress-
ing one sub-tile per cycle we get a more manageable 0-128
bits to write. A tile would then take a total of 16 clock cycles
to compress, a delay that could most likely be hidden using
pre-fetching [IEP98]. To put this figure in perspective, the
expected memory latency reported in the CUDA program-
ming guide [NVI] is 200-300 cycles.

4. Error-bounded Approximate Compression
The obvious reason to use lossy (approximate) compression
algorithms is that you are allowed to throw away informa-
tion in the compressed signal, and this can make for sub-
stantially higher compression ratios. If done well, the visual
impact can be marginal. Since a rather big amount of power
is required to drive the capacitances of the buses to off-chip
memory, battery-driven mobile devices, in particular, will
benefit from lossy buffer compression. It should be noted
that for both mobile devices and for desktop GPUs, we may
also get higher performance due to better utilization of the
memory bandwidth resources.

As argued in the introduction, lossy techniques are used
in many different algorithms for graphics, video, and imag-
ing. The prime example is probably digital TV, where we
put up with pretty poor approximations in the encoded video
stream. It is therefore a bit surprising that there has been no
documented attempts to use approximate compression for
the color buffer.

The reason for this might be that it is possible to get un-
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bounded† errors. This can occur when lossy compression
(LC) is applied several times, e.g., once per triangle written
to a tile. See Figure 4, where the concept of tandem com-
pression is illustrated. To counteract this, we need an error-
bounded algorithm with precise control of the accumulated
error. This is the topic of the next subsection.

Note that buffer compression & decompression must be
symmetric, i.e., execute in about the same amount of time,
since these procedures run in real time inside the GPU. This
means that the majority of all (lossy) texture compression
schemes immediately disqualify, since compression often
takes several seconds or even minutes.

4.1. The Error Control Mechanisms

To guarantee that the introduced error stays within bounds,
we need to gauge and track the accumulated error in the im-
age being rendered.

Our approach is to calculate
and update an accumulated error
measure, τaccum, per tile, as
illustrated to the right. As an
example, we could use the accu-
mulated mean square error. This
measure is stored together with
the compressed tile parameters.
For even more precise control,
more than one error measure
can be tracked and stored. For
example, it may make sense to
track and store a maximum error
level, which is normally a more
conservative error metric than the
mean square error metric. When
the accumulated tile error mea-
sure has reached a configurable
upper limit (threshold), τthresh,
the compression stage reverts to
lossless compression only in the
following compression steps.

τ new   

τ thresh  ? Yes

No

Calculate 
τ new

Read 
τ accum

For each tile:

Lossy
compress

Lossless
compress

τ accum  +=
τ new

Store new
τ accum

τ accum +
>

This can be done by having a conditional lossy compres-
sion stage, meaning that each time an error is about to be in-
troduced, e.g., due to when sub-sampling or quantization, we
test if the updated accumulated error measure exceeds a con-
figurable threshold τthresh. If it is still less than the threshold,
we use the approximation. Otherwise, we revert to lossless
compression (and do not update τaccum).

Note also that if we have reverted to lossless compression,

† Here, we used the term “unbounded” to indicate a maximum error
in a value. Assuming eight bits, this happens when an original value
of 255 is compressed into 0, for example.

c LC c~ LC ĉ

Figure 4: Illustration of tandem compression. Left to right:
first a triangle is written to a tile. For one pixel, we track its
original color, c. After lossy compression (LC), we obtain an
approximation, c̃. However, when a second triangle is writ-
ten to the tile, c̃ may be compressed again, with another loss
of information, so we get yet another color, ĉ.

we can go back to lossy compression if all pixels are written
to inside a tile.

Our approach is conservative, in that the error (in the error
metric used) never grows larger than the thresholds. Hence,
the introduced errors are bounded, which effectively reduces
the visual quality impact (given the configured error thresh-
olds are low enough).

4.2. A Lossy Algorithm

We have chosen to track and store the accumulated root
mean square error (RMSE) error per tile, τ

rmse
accum. This mea-

sure is quantized to 16 levels and stored together with the
compressed parameters as 4 bits per tile. Note that the choice
of this error metric also bounds the maximum error in a tile.
Assume the threshold is τ

rmse
thresh, and that we have n pixels in

a tile. Some simple calculations gives:

τ
max
thresh =

√
n× τ

rmse
thresh. (4)

As an example, if τ
rmse
thresh = 2 with 8× 8 pixel tiles, we have

τ
max
thresh = 8× 2 = 16. In a practical implementation it may

make more sense to use MSE instead of RMSE, since this
avoids the expensive square root. However, that also doubles
the number of bits for the accumulated error. Another useful
error metric is the sum of absolute differences (SAD).

When it comes to the actual approximation, we have taken
a gentle approach and use only (conditional) 2× 2 subsam-
pling of the chrominance components. Higher compression
rates can of course be obtained with more “brutal” subsam-
pling, quantization, and other lossy methods.

Since the human visual system (HVS) is more susceptible
to errors introduced in the luminance than the chrominance
components, we use lossless compression for the luminance
and lossy compression for the chrominance components re-
spectively. This results in a good compromise between high
visual quality and high compression ratios.

It should be noted here the benefits of utilizing an ex-
actly reversible color transform. This enables the possibil-
ity to mix lossless and lossy compression freely in the same
compression block. For example, it enables us to have loss-
less compression of the luminance components and simul-
taneously have lossy compression of the chrominance com-
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ponents‡. When the error threshold is reached, we can re-
vert to lossless-only chrominance compression to effectively
stop further error build-up. Furthermore, if a non-exact color
transform is used, that would introduce further errors, and
the error accumulation mechanism would have to deal with
that as well. With our approach, that can be avoided alto-
gether.

Decompression is done in the opposite direction. The sub-
sampled chrominance components are up-sampled by sim-
ply copying the sub-sampled component to the correspond-
ing components in the 2×2 quad.

5. Results

We have evaluated our compression algorithms using a soft-
ware based simulation framework, which implements a tile-
based triangle rasterizer with a modern color buffer archi-
tecture. It also simulates tile caching, using a 1 kB fully as-
sociative cache, and implements the color compression al-
gorithms described in this paper. In addition, we used a log-
ging OpenGL driver to record the rendering calls from actual
games. This means that our results include the full, incre-
mental, rasterization process of the games. They are not just
compressed screenshots.

To benchmark the color compression algorithms, we used
the four test scenes shown in Figure 7. The first scene is
designed to stress high contrast colors, and the following
two scenes are relatively colorful scenes taken from Quake 3
maps.§ The final scene features complex particle effects with
blending, and is taken from the game Quake 4. It should be
noted that this scene use blending based on the alpha value
stored in the color buffer. Therefore, we compress the full
RGBA components for this scene, while we only compress
the RGB components for the remaining scenes. This shows
that all algorithms are suitable for compressing alpha data as
well.

Note that we will refer to each compression algorithm by
the names we used in Section 2. See the titles of each sub-
section.

5.1. Exact Compression

The effective compression ratios of the different exact al-
gorithms are presented in Figure 7. We used 8× 8 pixel
tiles and variable bit-rate encoding for offset compression,
entropy coding, and our algorithm. Variable bit-rate coding
comes very natural to our algorithm and entropy coding. For
offset compression, we implemented variable bit-rate in the
sense that we use no fixed bit allocations for the offsets. We

‡ It should be noted that the chrominance errors can spread into the
luminance channels due to tandem compression.
§ The maps have been taken from the Quake 3 add-on “Urban Ter-
ror”.
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Figure 5: A normalized histogram of the number of tiles that
are compressed to a given size (in multiples of 128 bits),
using different algorithms. We use 8× 8 pixel tiles, which
means that 2048 bits indicate uncompressed tiles. The his-
togram is based on an average over all our test scenes. Note
that our algorithm has a distinct peak, which makes it effi-
cient when only a few compressed sizes can be used. It is of
course also essential that the peak is located at good com-
pression ratios, i.e., to the left in this diagram.

simply use the least amount of bits that is capable of repre-
senting the largest offset in the tile.

The plane compression algorithm is special in that we
used the specified 2× 4 tile size and only the two modes
specified in the patent. We would like to emphasize that this
algorithm is disfavored in this evaluation since it is so spe-
cialized. A generalized version of plane compression may
generate better results, but this is left for future work.

We would also like to point out that our measurements
(Figure 7) do not take hardware limitations, such as the
width of the memory bus, into account. Furthermore, in most
hardware implementations, we can only afford a few differ-
ent compressed sizes, since the compressed size of a tile is
typically stored in on-chip memory so that we know before-
hand how many memory words to read. In order to measure
the algorithms performance with respect to these limitations,
we computed the compressed size histograms shown in Fig-
ure 5. Note that we have left out plane compression since it
is so specialized, and only allows for 128 or 256 bits per tile.

Next, we show how to interpret this diagram with an ex-
ample. Assume that we allow two fixed sizes for tiles: 1024
bits for compressed and 2048 bits for uncompressed. In this
case, the number of tiles compressed to 1024 bits will be the
integral from 0 to 1024 over the histogram, while the uncom-
pressed tile will be the integral from 1024 to 2048. Using the
histogram, we can easily find the best n sizes for each algo-
rithm using an exhaustive search. In Table 1, we present the
best compressed sizes for n = 1,2,3. Note that an extra un-
compressed size always needs to be available as a fallback.
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Figure 6: Approximate (lossy) compression results for three of the test scenes (average of three rendering resolutions 320×240,
640×480 and 1280×1024 pixels). From the left: a) compression ratio vs. τ

rmse
thresh, b) PSNR vs. τ

rmse
thresh, and c) SSIMrgb vs. τ

rmse
thresh.

Color Offset
#Sizes Best sizes (Bits) Effective Compression

1 1280 1.43:1
2 1024,1408 1.58:1
3 896,1152,1408 1.61:1
∞ 2.04:1

Entropy Coding
#Sizes Best sizes (Bits) Effective Compression

1 1024 1.52:1
2 768,1280 1.75:1
3 640,1024,1408 1.88:1
∞ 2.45 : 1

Our Algorithm
#Sizes Best sizes (Bits) Effective Compression

1 1024 1.78:1
2 896,1152 2.04:1
3 640,896,1152 2.17:1
∞ 2.88:1

Table 1: The tables show how the algorithms perform when
given a number of allowed compressed sizes, as well as what
selection of sizes that worked best for our test suite. Note
that our algorithm performs very well even with very few
compressed sizes.

5.2. Approximate Compression
In Figure 6, we show the results from our experiments with
approximate compression. The Quake 4 scene is excluded
since alpha handling is currently not implemented in the
lossy part. As can be seen, the additional compression gains
can be quite substantial. We can gain an additional 25–60%
compression by allowing approximate compression. The vi-
sual impact is normally small as can be seen in Figure 8 and
in the SSIMrgb plot (Figure 6c). See Section 5.3 for more
information on SSIM. However, the “ducks” scene clearly
shows artifacts (Figure 9) already for small levels of τ

rmse
thresh.

This is due to that we use chrominance sub-sampling, which
makes chrominance leak out to surrounding pixels. For a
case like this, a more conservative error metric could be

used, e.g., a maximum error threshold. This would decrease
the effect of these artifacts. Our most important contribution
for lossy buffer compression is the error control mechanism,
and we believe our results shows that it works well, and that
it can keep high image quality. However, more research is
clearly needed on lossy compression algorithms.

5.3. Structural Similarity Index - SSIM

In addition to the common error metric, PSNR, we also
use the structural similarity index, SSIM, as suggested by
Wang et. al [WBSP04]. This is a visual quality metric which
attempts to mimic the human visual perception. The SSIM
index is a number between 0% and 100%, where 100% is
perfect similarity. Note that the SSIM index is normally cal-
culated using the luminance alone. In order to get the errors
in all three color channels, R, G and B respectively, we have
chosen to calculate the SSIM index for the R,G and B chan-
nels independently and combining them into a single num-
ber, SSIMrgb, according to:

SSIMrgb = 0.2126∗SSIMR +

0.7152∗SSIMG +0.0722∗SSIMB, (5)

where the weights comes from ITU-BT.709 [IR02].

6. Conclusions and Future Work

Color buffer compression is available in almost all (if not
all) GPUs, but up until now, this type of algorithms have not
been described in the literature. By providing an overview
of existing algorithms, we now have an important stepping
stone in place, which is needed to invent new algorithms.

In addition, we have presented new algorithms based on
a decorrelated color transform, which is also exactly re-
versible. Our results show that this can improve the com-
pression ratio compared to other algorithms. Since it is well-
known in the image and video compression community that
the human visual system is more sensitive to luminance
than chrominance, we have also done some initial results on

c© Association for Computing Machinery, Inc. 2007.
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approximate color buffer compression with this reversible
transform.

We note that it is very important to keep the accumulated
error under strict control, and we presented a simple mech-
anism to do this. We realize that approximate compression
is a feature that must be turned off for some applications,
but for, e.g., gaming on mobile devices, it can be very valu-
able with a longer use time on the battery with a only slight
degradation in image quality.

We have only experimented with simple compression al-
gorithms for approximate color buffers, and for future work,
there is much to learn and transfer from the image and video
processing field. We have started to investigate more so-
phisticated and fine-grained sub-sampling and quantization
schemes. There is definitely room for inventing new algo-
rithms. High dynamic range (HDR) color buffer compres-
sion is also an interesting topic for further studies.

In our paper, we have not handled multi-sampling, but
several of the techniques [Eld06, MSM∗04] for this can be
merged relatively quickly into our work. Finally, we note
that lossy depth buffer compression might not be feasible,
due to the artifacts that can arise when surfaces intersect.
However, this could be worth further investigation.
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Plane 1.13:1 1.43:1 1.40:1 1.47:1
Color Offset 1.90:1 2.06:1 2.15:1 2.30:1
Entropy Coding 2.09:1 2.60:1 2.66:1 2.93:1
Our 2.64:1 2.87:1 3.36:1 3.05:1

Figure 7: Evaluation of the compression algorithms: the table shows compression ratios for our test scenes (from the left:
"Ducks", "Square", "Car", and "Quake4") using exact compression algorithms. We computed the compression ratios as the
average compression ratio for rendering resolutions 320× 240, 640× 480 and 1280× 1024 pixels. The algorithms scaled
similarly with varying resolutions.

A B C

Figure 8: Crops from the “Square” scene. A: original,
B: τ

rmse
thresh = 4, PSNR = 39.0 dB, SSIMrgb = 98.8%, com-

pression ratio = 4.1:1, C: τ
rmse
thresh = 15, PSNR = 35.6 dB,

SSIMrgb = 98.8%, compression ratio = 4.3:1.

A B C

Figure 9: Crops from the “Ducks” scene. A: original,
B: τ

rmse
thresh = 4, PSNR = 34.9 dB, SSIMrgb = 97.8%, com-

pression ratio = 3.3:1, C: τ
rmse
thresh = 15, PSNR = 32.4 dB,

SSIMrgb = 97.2%, compression ratio = 3.8:1.
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