
A Simple Algorithm for
Conservative and Tiled Rasterization

Tomas Akenine-Möller
Lund Institute of Technology

Timo Aila
Helsinki University of Technology

Hybrid Graphics Ltd.

February 24, 2004

Abstract

Several algorithms that use graphics hardware to accelerate processing require
conservative rasterization in order to function correctly. Conservative rasteriza-
tion stands for either overestimating or underestimating the size of the triangles.
Overestimation is carried out by including all pixels that are at least partially over-
lapped by the triangle, whereas underestimation includes only the pixels that are
fully inside the triangle. None or few algorithms for conservative rasterization have
been described in the literature, and current hardware does not explicitly support
it. Therefore, we present a simple algorithm, which requires only a small modifi-
cation to the triangle setup when edge functions are used. Furthermore, the same
algorithm can be used for tiled rasterization, where all pixels in a tile (e.g. 8× 8
pixels) are visited before moving to the next tile.

1 Introduction
With the advent of programmable graphics hardware, lots of engineering and research
work has focused on “porting” specific algorithms so that they can be run on graphics
hardware. The argument for this is usually that the performance of graphics hard-
ware grows faster than that of CPUs, and that in the long run, superior performance
is achieved or can be expected. Several of these methods need to use conservative
rasterization to report or generate correct results.

Two slightly different methods are commonly referred to as conservative rasteriza-
tion. An overestimated footprint of a triangle includes all pixels that are at least partly
overlapped by the triangle, whereas an underestimated footprint includes only the pix-
els that are completely inside by the triangle. Figure 1 shows a comparison between
conservative and standard rasterization. Conservative rasterization is not applicable
for the actual rendering of a scene. For example, consider two triangles that share an
edge. To get the expected result when rasterizing these triangles, one usually considers
a pixel to be inside a triangle if the sampling point of the pixel is inside the triangle.
This avoids duplicate writes to pixels, and is critical for many techniques, e.g., shadow
volume rendering [3] and transparency.

1



Figure 1: To the left, standard rasterization is shown for two triangles sharing an edge.
There is a single sample point at the center of each pixel. In the middle, overesti-
mating conservative rasterization is illustrated. The darkest gray indicates that both
triangles have been written to those pixels. To the right, underestimating conservative
rasterization is demonstrated; the cracks can be avoided by disabling the conservative
rasterization for shared edges.

Still, there are several algorithms that need conservative rasterization in order to
function properly. For example, Govindaraju et al. [5] use occlusion queries avail-
able in off-the-shelf graphics hardware to compute a potential colliding set of objects,
followed by triangle-triangle intersection testing on the CPU. Exact results can only
be obtained by using conservative rasterization, whereas a larger resolution can only
make the problem less apparent. Koltun et al. [8] use graphics hardware for solving
from-region visibility in two dimensions by utilizing a dual ray space. They need to
artificially shrink all polygons to compensate the lack of conservative rasterization. Ad-
ditionally, several other papers utilize conservative rasterization, e.g., Durand et al. [4].
Thus, it should be clear that there is a need for such rasterization algorithms. To our
surprise, those algorithms are rarely described in any detail, and furthermore, we are
not aware of any graphics hardware that exposes conservative rasterization.

Some authors have implemented conservative rasterization simply by moving the
edges of the triangle either inwards or outwards by

√
2/2 pixels. Unfortunately the

technique suffers from two problems. First, it fails to find all pixels that are contained
by an underestimated triangle. Second, the size of an overestimated triangle is exag-
gerated, especially at sharp corners.

In this paper, we present the details of a conservative rasterization algorithm based
on edge functions [12]. It can be used in both hardware and software. An advantage
of this algorithm is that it requires only a small modification to the triangle setup of the
rasterizer, and that the remaining parts of the pipeline are left unmodified. Furthermore,
we show that the same algorithm can be used for tiled rasterization, which is used
to improve memory coherence [10], to do simple forms of culling [2, 11], and for
different types of analysis to accelerate rendering [1]. The algorithm allows enabling
conservative rasterization separately for each edge.

2



2 Rasterization using Edge Functions
The majority of rasterizers use edge functions [12] for rasterizing a triangle. The theory
of edge functions is briefly reviewed in this section.

Assume that a triangle ∆pqr shall be rasterized, and that the points p, q, and r
are two-dimensional points in screen space. Each edge of the triangle defines an edge
function e(s), which is simply a line equation in implicit form. The edge function for
the edge pq is

epq(s) = (qy− py,−(qx− px)) · (s−p) = n · (s−p) = n · s+ c, (1)

where c = −n ·p, and n = (nx,ny) is the normal vector of the line. A point s is inside
the triangle if e(s) ≤ 0 for all edge functions.1 This assumes that the vertices are in
counter-clockwise order.

An advantageous property of edge functions is that testing the neighboring pixels
is inexpensive during rasterization. If we have tested a pixel at s = (sx,sy), then e(s)
has already been evaluated. To test the pixel to the right of s, we want to evaluate
e(sx +1,sy), which is done as follows:

e(sx +1,sy) = n · (s+(1,0))+ c = e(s)+nx. (2)

As can be seen, the edge function can be updated using a single addition. Similar
updates are possible for traversing in the negative x-direction, and in both y-directions.
When rasterizing a triangle, one needs to store at least one scalar for each of epq , eqr ,
and erp , and also the normal vectors seen in Equation 1 for each edge.

3 Modification of Triangle Setup
In this section, we describe how the triangle setup can be modified in order to enable
conservative and tiled rasterization. A tile is a block of w×h pixels, and a pixel can be
seen as a small tile.

In tiled rasterization, a tile is excluded if the entire tile is outside at least one of the
three edge functions or if the tile is entirely outside the axis-aligned bounding rectangle
of the triangle. First, we notice that to test a three-dimensional axis-aligned bounding
box against a plane, it suffices to test the two corners of the box that define a line
segment, which most closely aligns with the normal vector of the plane [6]. Second,
Hoff [7] has suggested that one needs to test only one of these points to determine if
the entire box is either in the positive or negative half-space. Similarly, our algorithm is
based on the fact that we need to evaluate only one corner of the tile per edge function
in order to determine if the tile is outside that edge function.

We want to evaluate the edge function, e(s) = n · s+ c, at exactly one corner of the
tile. For overestimating rasterization the correct corner is the one whose dot product
with the normal vector of the edge is the smallest, as illustrated in Figure 2. However,
our technique uses a more efficient method, and for that we define the following:

1This is not entirely true since a pixel center s can lie exactly on an edge shared by two triangles. McCool
et al. [9] present a simple solution to this problem based on the signs of nx and ny.

3



n=(nx,ny)

x

y

Figure 2: In this example of overestimating rasterization, the tile consists of 4× 2
pixels. To determine at which corner of the tile the edge function should be evaluated,
the four corners are projected onto the normal vector of the edge. The corner that
corresponds to the smallest dot product between the normal and the corner is selected.
In this case it is the black corner. Note that the gray half-space is potentially inside the
triangle.

bk =
{

0, nk ≥ 0
1, nk < 0 , (3)

where bk is a single bit, and k∈ [x,y]. Assume that we have evaluated the edge function,
e, for the lower left corner of the tile. Depending on the value of n, we might need to
add nx and/or ny to e. Revisit Figure 2 for an example: since ny > 0, one of the lower
two corners must be used. Furthermore, nx < 0, and thus it can be concluded that the
lower right corner must be used.

Given that e has been evaluated at the lower left corner of a tile, we use the follow-
ing equation to compute a correct initialization of e for tiled rasterization:

e := e+bx× (wnx)+by× (hny) = e+bx× tx +by× ty, (4)

where w is the width, and h is the height of the tile in pixels. The ×-operator should
be interpreted as follows: b× n = 0 if b = 0, and b× n = n if b = 1. Equation 4
is very inexpensive to evaluate as it requires only two additions and multiplexing for
determining whether to add the term tk or not. Furthermore, the extra computations are
performed only once per triangle.

The presented technique can also be used to determine the pixels or tiles that are
fully inside a triangle. This underestimated footprint of the triangle is obtained by
simply selecting the “diagonally opposite” corner of the tile when initializing the edge
function.

There are many different ways of traversing the pixels/tiles of a triangle, and our
technique can be used with any of those as long as edge functions are involved, and
therefore we omit a discussion of any particular traversal method.

4



4 Discussion
The presented algorithm is so simple, and requires so few modifications to an existing
rasterizer that we hope the algorithm will find its way to a hardware implementation.
The only modification needed into an OpenGL-alike API is the support for selecting
one of the two conservative rasterization modes, and ideally a possibility for enabling
the selected mode separately for each edge.

With overestimating rasterization, one needs to be careful not to sample depth and
other attributes outside the triangle. One solution for this is to silently clamp the
barycentric coordinates to be inside the triangle before proceeding with pixel shading.

It is possible that current graphics chips use the presented technique internally for
zmin/zmax-culling, but no document seems to verify that hypothesis. After we developed
and implemented our algorithm in software, it came to our knowledge that a similar
algorithm has been briefly mentioned in the US Patent no. 6,480,205 “Method and
apparatus for occlusion culling in graphics systems” by Greene and Hanrahan.2 Their
presentation lacks the details presented here, and furthermore, it is not at all well-
known in the computer graphics community.

Acknowledgement Thanks to Jaakko Lehtinen, Lauri Savioja and Jacob Ström for
proofreading.

References
[1] Aila, Timo, Ville Miettinen, and Petri Nordlund, “Delay Streams for Graphics

Hardware,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 792–800, 2003.

[2] Akenine-Möller, Tomas, and Jacob Ström, “Graphics for the Masses: A Hardware
Rasterization Architecture for Mobile Phones,” ACM Transactions on Graphics,
vol. 22, no. 3, pp. 801–808, 2003.

[3] Crow, Franklin C., “Shadow Algorithms for Computer Graphics,” Computer
Graphics (SIGGRAPH ’77 Proceedings), vol. 11, no. 2, pp. 242–248, July 1977.

[4] Durand, Frédo, George Drettakis, Joëlle Thollot and Claude Puech., “Conserva-
tive Visibility Preprocessing using Extended Projections,” Proceedings of ACM
SIGGRAPH 2000, pp. 239–248, 2000.

[5] Govindaraju, Naga K., Stephane Redon, Ming C. Lin, and Dinesh Manocha,
“CULLIDE: Interactive Collision Detection between complex Models in Large
Environments using Graphics Hardware,” Graphics Hardware 2003, pp. 25–32,
July 2003.

[6] Haines, Eric, and John Wallace,“Shaft Culling for Efficient Ray-Traced Radios-
ity” in P. Brunet and F.W. Jansen, eds., Photorealistic Rendering in Computer
Graphics (Proceedings of the Second Eurographics Workshop on Rendering),
Springer-Verlag, pp. 122–138, 1994.

2They did not patent conservative rasterization but rather an algorithm for occlusion culling.

5



[7] Hoff., Kenneth E., III,“A Faster Overlap Test for a Plane and a Bounding Box,
1996. http://www.cs.unc.edu/ hoff/research/vfculler/boxplane.html

[8] Koltun, Vladlen , Daniel Cohen-Or, and Yiorgos Chrysanthou, “Hardware-
Accelerated From-Region Visibility Using a Dual Ray Space,” 12th Eurographics
Workshop on Rendering, pp. 204–214, 2001.

[9] McCool, Michael D., Chris Wales, and Kecin Moule, “Incremental and Hierar-
chical Hilbert Order Edge Equation Polygon Rasterization,” Graphics Hardware
2001, pp. 65–72, 2001.

[10] McCormack, Joel, and Robert McNamara, “Tiled Polygon Traversal using Half-
plane Edge Functions,” Graphics Hardware 2000, pp. 15–21, 2000.

[11] Morein, Steve, “ATI Radeon HyperZ Technology,” Workshop on Graphics Hard-
ware, Hot3D Proceedings, August 2000.

[12] Pineda, Juan, “A Parallel Algorithm for Polygon Rasterization,” Computer
Graphics (SIGGRAPH ’88 Proceedings), vol. 22, no. 4, pp. 17–20, August 1988.

6


