
Compiling Java for Real-Time
Systems

Anders Nilsson

andersn@cs.lth.se

Department of Computer Science, Lund University, Sweden

Compiling Java for Real-Time Systems – p.1

Outline

• Introduction
• Approach
• Real-Time Execution Platform
• A Compiler for Real-Time Java
• Experimental Verification
• Future Work
• Conclusions

Compiling Java for Real-Time Systems – p.2

Introduction

• Most computers in the world are embedded,
with various RT demands

• Software complexity is increasing drastically
• Programming language problems:

• Type casts, as in C
• Pointer arithmetics
• No array bounds checking
• Manual memory management, malloc/free
• Lack of encapsulation

Bugs are easily created, but hard to find

Compiling Java for Real-Time Systems – p.3

Hypothesis

Safe OO programming languages proved
beneficial in other software development areas
• Encapsulation
• Strict type safety
• Many errors caught by compiler. Remaining

errors caught and handled by run-time checks
• Automatic memory management

All possible results of the execution are expressed

by the source code

Compiling Java for Real-Time Systems – p.4

Java or C#

• Both are safe (except explicit unsafe in C#)
OO programming languages

• Built-in concurrency and synchronization
• Exception handling
• Platform “independent”

But, Java is more mature, available on more de-

velopment platforms, and there is an open-source

class library available

Compiling Java for Real-Time Systems – p.5

Problem Statement

Can standard Java be used as a
programming language on arbitrary
hardware platforms with varying degrees
of real-time-, memory footprint-, and
performance demands?

or

Write once run anywhere, for severely
resource-constrained real-time systems?

Compiling Java for Real-Time Systems – p.6

Standards

Two RT Java standards; RTJ and JConsortium
None complies with Real (J2SE) Java:
• Assuming (hard) RTGC not feasible
• Numerous memory types:

Immortal,Scoped, Raw, Heap
• Effectively return memory management to the

programmer

Several Java benefits are lost.
There must be a better way!

Compiling Java for Real-Time Systems – p.7

Key Concepts

Considerations for Real Real-Time Java in
embedded systems.
• Portability
• Scalability
• Real-time execution and performance
• Real-time communication
• Applicability

Utilize the language, adopt run-time to
embedded needs

Compiling Java for Real-Time Systems – p.8

Approach

1. Small memory footprint and high
performance

⇓

Natively compiled Java (no JVM)

2. Any hardware comes with a C compiler
⇓

Use ANSI C as intermediate
(high-level assembly) language

Compiling Java for Real-Time Systems – p.9

External Code

Need to link with external (not GC-aware) code.
• Hardware device drivers.
• Code libraries.
• Legacy software.
• Automatically generated code from high-level

tools (Matlab/Real-Time Workshop).

Typically, no (usable) source code available.

Compiling Java for Real-Time Systems – p.10

RT Memory Mangement

• Incremental GC in a medium priority thread.
• High priority threads pay no overhead penalty

during allocation.
• Low priority threads pay overhead for

themselves AND the high priority threads.

Compacting GC

⇒ Shorter maximum latencies than malloc/free.

Compiling Java for Real-Time Systems – p.11

Compacting GC

• Schedule so as not to disturb high-priority
threads

• Read-barrier needed; objects relocate
• Calls to external functions become critical

sections
• No fragmentation
• Average performance normally decreases

Compiling Java for Real-Time Systems – p.12

Non-Moving GC

• Schedule so as not to disturb high-priority
threads

• Fixed size memory blocks ⇒ large objects
are split in several memory blocks.
Problematic with external code

• No read barrier

Less overhead than Compacting GC

Compiling Java for Real-Time Systems – p.13

C/C++ compatibility option

Non-moving GC with variable memory block
sizes and a good memory allocator
• Johnstone et al. 1998. Memory fragmentation

is not a serious problem in real applications
• No read barrier
• As deterministic as using malloc() and
free() in C

• Can call external code, that uses Java objects

Compiling Java for Real-Time Systems – p.14

Latency and Preemption

• Native preemption promotes short latency
and allows external code, but may introduce
(external) fragmentation
⇒ deficient predictability (as in C++)

• 100% Java and appropriate run-time
⇒ Hard RT Java.
To improve average performance:
• Preemption points ⇒ higher latency
• Block-based GC ⇒ internal fragmentation

Hence a tradeoff: Latency ↔ Fragmentation

Compiling Java for Real-Time Systems – p.15

Real-Time Execution Environment

Frenchmen, I die guiltless of the countless
crimes imputed to me.
Pray God my blood fall not on France!

Lois XVI, 1793

Compiling Java for Real-Time Systems – p.16

Real-Time Execution Environment
• Garbage Collector Interface

• Different strategies require different code

• Class Library

• Native methods using GCI. Domain-specific I/O

• Threads and Synchronization

• Map thread primitives on native OS

• RTThread classes @CS

• Exceptions

• Only one active exception per thread

• Implemented with setjmp/longjmp

Compiling Java for Real-Time Systems – p.17

Garbage Collector Interface

class MyClass {

void foo() {

String foo = new

String("Hello World!");

System.out.println(foo);

}

}

GC_PROC_BEGIN(_MyClass_foo,

GC_PARAM(MyClass,this))

GC_PARAM_REF(MyClass,this);

GC_PUSH_PARAM(this);

GC_ENTER

GC_REF(String,foo); GC_PUSH_ROOT(foo);

GC_NEW(String,foo,"Hello World!");

GC_PROC_CALL(System_out_println,foo);

GC_POP_ROOT(foo);

GC_LEAVE

GC_POP_PARAM(this);

GC_PROC_END(_MyClass_foo)

Compiling Java for Real-Time Systems – p.18

Java Compiler

• Java based compiler-compiler, generating
Java (to C) translator, in Java

• Based on Reference Attributed Grammars,
JastAdd

• AOP for modular semantics, optimization and
code generating

Compiling Java for Real-Time Systems – p.19

Compiler Overview

Compiling Java for Real-Time Systems – p.20

Name Transformations

a.b = c ⇒ GC_SET(a,b,c)

a.b = c.d;

⇓

tmp_1 = c.d;

a.b = tmp_1;

=

b

a c

d

=

tmp_1 d

c

=

b

a

tmp_1

Compiling Java for Real-Time Systems – p.21

Code Generation

Compiling Java for Real-Time Systems – p.22

Evaluation

Lines of code
Parser and AST

Abstract Grammar 181
Concrete Grammar 1044

Semantic Analysis
Name- and Type Analysis 1458

Transformations and Optimizations
Simplifications 901
Dead Code Optimization 154

Code Generation
C code generation 5745

TOTAL 9473

Compiling Java for Real-Time Systems – p.23

Compiler Performance

Our compiler gcj javac
HelloWorld

Memory usage (MB) 14 <5 21
Time (s) 26 0.65 3

RobotController
Memory usage (MB) 34 - 30
Time (s) 160 - 9

Compiling Java for Real-Time Systems – p.24

Experimental Verification

To which extent are the key concept
requirements fulfilled?
• Portability
• Scalability
• Real-time execution and performance
• Real-time communication
• Applicability

Compiling Java for Real-Time Systems – p.25

Portability

Current supported platforms
AVR PPC i386 SPARC

CSRTK X
STORK X
Linux RTAI(k) X X
Linux RTAI(u) X X
Posix X X X

Compiling Java for Real-Time Systems – p.26

Scalability

Low end prototype
• Atmel AVR ATmega 103

• 8 bit RISC Architecture, 6
MHz ⇒ 6 MIPS

• 32 Registers, 128 KB Flash,
4KB RAM

• Real-Time Clock, UART,
Timers, 8-channel 10-bit
ADC

• LCD Display, Summer, 6 buttons

• Tiny in-house RTOS

Multi(3)-threaded application in less than 62 KB ROM and

32 KB RAM, including run-time

Compiling Java for Real-Time Systems – p.27

Real-Time Execution

T1 T2 T3 GC1

Period (µs) 100 300 500 NA

Workload (µs) 30 50 90 NA

0 50 100 150 200 250 300 350
0

20

40

60
Latency and response times for three periodic threads

High priority number of samples (10 KHz)

us

0 20 40 60 80 100 120
0

50

100

150

200

Medium priority number of samples (3.3 KHz)

us

0 10 20 30 40 50 60 70
0

100

200

300

Low priority number of samples (2 KHz)

us

Compiling Java for Real-Time Systems – p.28

General Performance

fibonacci (virtual) fibonacci (static) scalar
Our compiler (ms)
mark-compact GC 10050 7012 146400
mark-sweep GC 7002 6904 7760
no GC 753 586 5402
Other (ms)
Sun JVM 271 251 5085
Sun JVM -server 270 245 3910
Sun JVM -Xint 3302 3120 52500
GCJ 360 567 10098
GCJ -O3 328 504 2249
Hand-written C
GCC NA 280 6810
GCC -O3 NA 293 761

Compiling Java for Real-Time Systems – p.29

Real-Time Communication

• Real-time network protocol available:
ThrottleNet (@control.lth.se)

• Successful experiments with compiled Java
and RTAI: Patrycja Grudziecka and Daniel
Nyberg (2004)

Compiling Java for Real-Time Systems – p.30

Applicability

Tested on many platforms with different levels of
real-time requirements.
• Atmel AVR, Hard real-time
• Motorola PPC G4, Hard real-time
• RTAI Linux, Hard real-time
• Posix, No real-time

Compiling Java for Real-Time Systems – p.31

Conclusions – General

• Java (safe & portable) highly desirable for
flexible RT systems

• Use the language (no JVM) for embedded
systems!

• Real (based on J2SE) Real-Time Java is
feasible

• Standard memory model to be kept (RTGC is
ok)

Compiling Java for Real-Time Systems – p.32

Conclusions – tradeoffs

Non-moving GC

+ Can link with external binary code
that can use Java objects

+ Latency as good as C++

- Predictability as bad as with C++

Compacting GC

- 100% Java (or open source) re-
quired (no ext. code)

- Decreased average performance

+ Hard RT Java!

Trade latency for:

• predictability (using compacting GC)

• average performance (using compacting GC and
preemption points)

Compiling Java for Real-Time Systems – p.33

Contributions – Real-Time Java

• A prototype implementation of hard
Real-Time Java

• The Garbage Collector Interface
• A Real-Time Exception implementation
• Latency ⇔ Predictability tradeoff

Compiling Java for Real-Time Systems – p.34

Conclusions – CC

• OO AST, RAGs and AOP renders a very
compact, yet clear compiler implementation

• Code analysis, refactorings and optimizations
are conveniently described as aspects,
possibly performing transformations, on the
AST

• Current implementation is substantially slower
than other compilers, but still fast enough.

Compiling Java for Real-Time Systems – p.35

Contributions – CC

• A compiler for a complete real-world OO
language, based on RAGs and AOP

• A new way of implementing high-level
optimizations as a set of AST transformations

• Use AST transformations to simplify
expressions makes code generation easier

Compiling Java for Real-Time Systems – p.36

Future Work
• Full-scale applications

• Improve general performance

• GC synchronization, memory allocation and OO

optimizations

• Networking

• Dynamic class loading

• Klas Nilsson et al. 1998

• WCET analysis

• Patrik Persson 2000

• Hybrid execution environment

• Compiled Java ⇔ JVM

Compiling Java for Real-Time Systems – p.37

The End

• Portability – OK
• Scalability – OK
• Real-time execution – OK
• Real-time communication – OK
• Applicability – OK
• Performance – Needs more work

Write once run anywhere, for severely
resource-constrained real-time systems!

Compiling Java for Real-Time Systems – p.38

	Outline
	Introduction
	Hypothesis
	Java or C#
	Problem Statement
	Standards
	Key Concepts
	Approach
	External Code
	RT Memory Mangement
	Compacting GC
	Non-Moving GC
	C/C++ compatibility option
	Latency and Preemption
	Real-Time Execution Environment
	Real-Time Execution Environment
	Garbage Collector Interface
	Java Compiler
	Compiler Overview
	Name Transformations
	Code Generation
	Evaluation
	Compiler Performance
	Experimental Verification
	Portability
	Scalability
	Real-Time Execution
	General Performance
	Real-Time Communication
	Applicability
	Conclusions -- General
	Conclusions -- tradeoffs
	Contributions -- Real-Time Java
	Conclusions -- CC
	Contributions -- CC
	Future Work
	The End

