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Abstract

Our everyday appliances ranging from toys to vehicles, as well as
the equipment used to manufacture them, contain an increasing num-
ber of embedded computers. Embedded software often implement
functionality that is crucial for the operation of the device, resulting
in a variety of timing requirements and resource utilization constraints
to be fulfilled. Industrial competition and the ever increasing perfor-
mance/cost ratio for embedded computers lead to an almost exponen-
tial growth of the software complexity, raising an increasing need for
better programming languages and run-time platforms than is used to-
day.

Key concepts, such as portability, scalability, and real-time perfor-
mance, have been defined, which need to be fulfilled for Java to be a vi-
able programming language for hard real-time systems. In order to ful-
fill these key concepts, natively compiling Java using a revised memory
management technique is proposed. We have implemented a compiler
and run-time system for Java, using and evaluating new object-oriented
compiler construction research tools, which enables a new way of im-
plementing optimizations and other code transformations as a set of
transforms on an abstract syntax tree.

To our knowledge, this is the first implementation of natively com-
piled real-time Java, which handles hard real-time requirements. The
new transparent garbage collector interface makes it possible to gen-
erate, or write, C code independently of garbage collector algorithm.
There is also an implementation of the Java exception mechanism that
can be used in conjunction with an incremental real-time garbage col-
lector. Experiments show that we achieve good results on real-time
performance, but that some work is needed to get general execution
performance comparable to C++. Given our contributions and results,
we do see compiled real-time Java, or a similar language such as C#, as
industrially viable in a near future.





Acknowledgements

The research presented in this thesis was carried out within the Soft-
ware Development Environments group at the Department of Computer
Science, Lund University. This would never have existed had it not
been for my supervisors; Professor Boris Magnusson who is the head of
the research group, Klas Nilsson who introduced me to real-time Java
and has given me invaluable advice and feedback on various real-time
issues, and Görel Hedin who introduced me to compiler construction
and reference attributed grammars. Thank you!

The Java to C compiler would never have come as far as it has,
without all the contributions from people at the department. Special
thanks to Torbjörn Ekman for his work on JastAdd, the Java parser,
and the compiler front-end, Sven Gestegård-Robertz, Roger Henriks-
son, Anders Ive, and Anders Blomdell (@control.lth.se), for their work
on real-time garbage collection, the garbage collector interface, and var-
ious parts of the run-time libraries. Thank you!

I am also grateful to all those students who, in their respective Mas-
ter’s thesis projects, have contributed implementations in various parts
of the compiler and run-time system, as well as pinpointed a lot of bugs
which could then be fixed. Francisco Menjíbar, Robert Alm & Henrik
Henriksson, Daniel Lindén, Patrycja Grudziecka and Daniel Nyberg,
and Lorenzo Bigagli, thank you!

Many thanks also to the rest of you at the department. It has been a
pleasure working with you.

Last, but definitely not the least, I am infinitely grateful to Christina
and Amanda for their love and support.

The work presented in the thesis has been financially supported by
VINNOVA, the Swedish Agency for Innovation Systems.





Contents

1 Introduction 1

1.1 Real-Time Programming . . . . . . . . . . . . . . . . . . . 2
1.2 Compiler Construction . . . . . . . . . . . . . . . . . . . . 7
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 11

2.1 Distributed Embedded Real-Time Systems . . . . . . . . 11
2.1.1 Portability . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Hard Real-Time Execution and Performance . . . 13
2.1.4 Hard Real-Time Communication . . . . . . . . . . 13
2.1.5 Applicability . . . . . . . . . . . . . . . . . . . . . 13

2.2 Real-Time Memory Management . . . . . . . . . . . . . . 14
2.3 Real-Time Operating Systems . . . . . . . . . . . . . . . . 16

2.3.1 RTAI . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Object-Oriented development . . . . . . . . . . . . . . . . 17

2.4.1 Aspect-Oriented Programming . . . . . . . . . . . 17
2.5 Reference Attributed Grammars . . . . . . . . . . . . . . 18

3 An Approach to Real-Time Java 19

3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Simple Example . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Memory Management . . . . . . . . . . . . . . . . . . . . 20
3.4 External Code . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Dynamic Class Loading . . . . . . . . . . . . . . . 24
3.5.2 Latency and Preemption . . . . . . . . . . . . . . . 25

3.6 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



vi CONTENTS

4 Real-Time Execution Platform 29
4.1 Garbage Collector Interface . . . . . . . . . . . . . . . . . 29

4.1.1 User Layer . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Thread Layer . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Debug Layer . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Implementation Layer . . . . . . . . . . . . . . . . 31

4.2 Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Native Methods . . . . . . . . . . . . . . . . . . . . 32
4.2.2 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Threads and Synchronization . . . . . . . . . . . . . . . . 35
4.3.1 Real-Time Thread Classes . . . . . . . . . . . . . . 37
4.3.2 Synchronization . . . . . . . . . . . . . . . . . . . . 38

4.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 Exceptions in Compiled Java . . . . . . . . . . . . 42

4.5 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 A Compiler for Real-Time Java 47
5.1 JastAdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Architecture and Overview . . . . . . . . . . . . . . . . . 48
5.3 Simplification Transformations . . . . . . . . . . . . . . . 53
5.4 Optimization Transformations . . . . . . . . . . . . . . . . 59

5.4.1 Dead Code Elimination . . . . . . . . . . . . . . . 59
5.5 Code Generation . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Experimental Verification 65
6.1 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 Low-End Experiment Platform . . . . . . . . . . . 66
6.3 Hard Real-Time Execution and

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.1 Hard Real-Time Execution . . . . . . . . . . . . . . 70
6.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Hard Real-Time Communication . . . . . . . . . . . . . . 76
6.5 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Future Work 79
7.1 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.1 More Efficient GC Locking Scheme . . . . . . . . . 79
7.1.2 Memory Allocation . . . . . . . . . . . . . . . . . . 80
7.1.3 OO optimizations . . . . . . . . . . . . . . . . . . . 81
7.1.4 Selective Inlining . . . . . . . . . . . . . . . . . . . 81



CONTENTS vii

7.2 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Dynamic Class Loading . . . . . . . . . . . . . . . . . . . 82
7.4 Code Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 Hybrid Execution Environment . . . . . . . . . . . . . . . 82

8 Related Work 83
8.1 Real-Time Java Specifications . . . . . . . . . . . . . . . . 83
8.2 OOVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3 Jepes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 JamaicaVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.5 PERC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.6 SimpleRTJ . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.7 GCJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9 Conclusions 89
9.1 Real-Time Java . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2 Compiler Construction . . . . . . . . . . . . . . . . . . . . 91
9.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 94

A Acronyms 101

B Java Grammar 103





List of Figures

4.1 The four macro layers of the GCI. . . . . . . . . . . . . . . 30
4.2 The System.out.print(String) call chain. . . . . . 35
4.3 Linking compiled Java with appropriate run-time. . . . . 37

5.1 Overview of the Java compiler architecture. . . . . . . . . 49
5.2 Node class relations in simple JastAdd example. . . . . . 50
5.3 AST representation of a complex Java expression. . . . . 51
5.4 Java code fragment and corresponding AST. . . . . . . . 53
5.5 Simplifying names by means of an AST transformation. . 54
5.6 Simplifying a complex method call. . . . . . . . . . . . . . 55
5.7 Subtree representing a for-statement. . . . . . . . . . . . . 58
5.8 Subtree representing a simplified for-statement. . . . . . 58
5.9 Flowchart of compilation process. . . . . . . . . . . . . . . 62

6.1 Alarm-clock application running on the AVR platform. . 69
6.2 Latencies and response times for three periodic threads. . 73
6.3 Latencies and response times for three periodic threads. . 74





List of Listings

3.1 A small example Java class. . . . . . . . . . . . . . . . . . 20
3.2 Simple Java method translated into C. . . . . . . . . . . . 21
3.3 GC handling added to the small Java example class. . . . 23
3.4 Example of using preemption points. . . . . . . . . . . . . 26
3.5 Explicit preemption points may decrease GC overhead. . 27
4.1 Call a legacy function from compiled Java. . . . . . . . . 33
4.2 Mapping Java monitors on underlying OS. . . . . . . . . 39
4.3 Example of Java synchronization with compiled code. . . 40
4.4 A simple exception example. . . . . . . . . . . . . . . . . 41
4.5 C macros implementing exceptions. . . . . . . . . . . . . 42
4.6 Exception example using exception macros. . . . . . . . . 44
5.1 JastAdd abstract grammar definition example. . . . . . . 50
5.2 Type checking implemented using semantic equations. . 52
5.3 Pretty-printer implemented using Java aspects in JastAdd. 52
5.4 Simplification transformation example. . . . . . . . . . . 55





List of Tables

5.1 Code sizes after dead code elimination. . . . . . . . . . . 60
5.2 Source code sizes for the different stages of our compiler. 63
5.3 Java compiler measurements . . . . . . . . . . . . . . . . 63

6.1 Implementation of real-time Java runtime environment. . 66
6.2 Measured performance of real-time kernel. . . . . . . . . 67
6.3 Memory usage for the alarm-clock on the AVR platform. 69
6.4 Timing characteristics of three threads. . . . . . . . . . . . 70
6.5 Real-time performance statistics. . . . . . . . . . . . . . . 72
6.6 Performance measurements. . . . . . . . . . . . . . . . . . 75





640 K ought to be enough for
anybody.

Bill Gates, 1981

Chapter 1

Introduction

MAYBE contrary to common belief, the vast majority of computers in
the world are embedded in different types of systems. A quick

estimate gives at hand that general purpose computers—e.g. desktop
machines, file- and database servers—make up less than ten percent
of the total, while embedded computers comprise the remaining part.
And the numbers are constantly increasing, as small computers are em-
bedded in our everyday appliances, such as TV sets, refrigerators, laun-
dry machines—not to mention cars where computers or embedded pro-
cessors can sometimes be counted in dozens.

A number of observations can be made regarding software develop-
ment for embedded systems:

• Object-Oriented (OO) techniques have proved beneficial in other
software areas, while development of embedded software is done
mostly using low-level programming languages (assembler and
C), resulting in extensive engineering needed for development
and debugging. Software modules do not become flexible from a
reuse point of view since they are hand-crafted for a certain type
of application or target system.

• As embedded systems become parts of larger systems that require
more and more flexibility, and where parts of the software can
be installed or upgraded dynamically, flexibility with respect to
composability and reconfiguration will require some kind of safe
approach since traditional low-level implementation techniques
are too fragile (both the application and the run-time system can
crash).
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• Embedded systems becomes more and more distributed, consist-
ing of small communicating nodes instead of large centralized
ones. It would be very beneficial to make use of available Inter-
net technologies, but with the extension that both computing and
communication must enable strict timing guarantees.

Another observation on application development in general, is that pro-
gramming languages and supporting run-time systems play a central
role, not only for the development time, but also for the robustness of
the application. These observations all point in the direction that the
benefits and properties of Java (further described below) could be very
valuable for embedded systems programming.

The languages and tools used for embedded systems engineering
need to be portable and easy to tailor for specific application demands.
Adapting programming languages, or generation of code, to new en-
vironments or to specific application needs (so called domain specific
restrictions or extensions) typically requires modifications of, or devel-
opment of, compilers. However, the construction (or modification) of
a compiler for a modern OO language is both tedious and error-prone.
Nevertheless, correctness is as important as for the generated embed-
ded software, so for flexible real-time systems the principles of compiler
construction deserves special attention.

Thus, both the so call system programming (including implemen-
tation language and run-time support) and the development support
(including compiler techniques and application specific enhancements)
are of primary concern here. A further introduction to these areas now
follows, to prepare for the problem statement and thesis outline that
conclude this chapter.

1.1 Real-Time Programming

Two of the largest technical problem areas that plague many software
development projects are:

Managing System Complexity Given the industrial competition and
increasingly challenging application requirements, software sys-
tems tend to grow larger and more complex. This takes place at
approximately the same rate as CPU performance increases and
memory prices decreases, resulting in complexity being the main
obstacle for further development. Weak structuring mechanisms
in the programming languages used makes the situation worse.
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Managing System Development Software development projects are
often behind schedule. Software errors found late in the project
makes the situation worse since the time needed to correct soft-
ware errors found late is approximately exponentially related to
the point of time in the project when the error was found [Boe81].
Many late hard-to-find programming errors originate from the
use of unsafe programming languages, resulting in problems such
as memory leaks and dangling pointers.

So, what is the role of programming languages here? A good program-
ming language should help the developer avoid the problems listed
above by providing:

• Error avoidance at build time. Programming errors should, if pos-
sible, be found at compile time, or when linking or loading the
system.

• Error detection at run-time. Programming errors not found at
build time should be detected as early as possible in the develop-
ment process to avoid excessive costs. For instance, run-time er-
rors should, if possible, be explicitly detected and reported when
they occur, and not remain in the system making it potentially
unstable.

Compared to other software areas, such as desktop computing, de-
velopment of embedded systems suffer even more from these prob-
lems. Errors in embedded software are typically harder to find due
to timing demands, special hardware, less powerful debugging facili-
ties, and they are during operation often not connected to any software
upgrading facilities. Nevertheless, embedded software projects tend to
use weaker programming languages, that is, C has taken over as the
language of choice from assembly languages, but the assumption still
is that programmers do things right. Since that is clearly not the reality,
there is a great need for introducing safe programming languages with
better structuring and error detection mechanisms for use in embedded
software development.

Object-Oriented Programming Languages

According to industrial practices and experiences, object-oriented pro-
gramming techniques provide better structuring mechanisms than is
found in other paradigms (such as functional languages or the common
imperative programming languages). The mechanisms supporting de-
velopment of complex software systems include:
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Classes The class concept provides abstract data structures and meth-
ods to operate on them.

Inheritance Classes can be organized, and functionality extended, in a
structured manner.

Virtual Operations Method call sites are resolved by parameter type,
instead of by name. Method implementations can be replaced by
sub-classing.

Patterns Organize interaction between classes.

These concepts can be achieved by conventions, tools, macros, li-
braries, and the like in a simpler language. Without the built-in support
from a true object-oriented language, however, there is a obvious risk
that productivity and robustness (with respect to variations in program-
ming skill and style) is hampered. Hence, we need full object-oriented
support from the language used.

Implications of Unsafe Programming Languages

Experiences from programming in industry and academia (undergrad-
uate course projects) show that most hard-to-find errors stem from the
use of unsafe language constructs such as:

• Type casts, as defined in for example C/C++.

• Pointer arithmetics.

• Arrays with no boundary checks, sometimes resulting in uncon-
trolled memory access.

• Manual memory management (malloc/free). When to do free?
Too early results in dangling pointers, and too late may result in
memory leaks.

The first three unsafe constructs usually show up early in the develop-
ment process. Errors related to manual memory management, on the
other hand, does not often show up until very late, sometimes only af-
ter (very) long execution times. Because of this time aspect, the origins
of these errors can also be very hard to locate in the source code. Hence,
unsafe language constructs should not be permitted.
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Safe Programming Languages

A safe programming language is a language that does not have any of
the listed unsafe language constructs. Instead, a safe language is char-
acterized by the fact that all possible results of the execution are expressed
by the source code of the program. Of course, there can still be program-
ming errors, but they lead to an error message (reported exception), or
to bad output as expressed in the program. In particular, an error does
not lead to uncontrollable execution such as a “blue screen”. If, despite
a safe language, uncontrolled execution would occur (which should be
very rare), that implicates an error in the platform; not in the application
program. Clearly, a safe programming language is highly desirable for
embedded systems. Necessary properties of a safe language include:

• Strict type safety. For example, it may not possible to cast between
arbitrary types via a type cast to void* as in C/C++.

• Many programmer errors caught by the compiler. Remaining (se-
mantic) errors that would violate safety are caught by runtime
checks, e.g., array bounds and reference validity checks.

• Automatic memory management. All heap memory blocks are al-
located when object are created (by calling the operator new) and
automatically freed by a garbage collector when there no longer
exists any live references to the object. An object cannot be freed
manually.

• From the items above it follows that direct memory references are
not allowed.

The characteristics of safe languages usually makes it impossible to
directly manipulate hardware in such a language, as safety can not be
guaranteed if direct memory references are allowed1. Therefore, un-
safe languages are still needed for developing device drivers, but the
amount of code written in such languages should be kept as small and
as isolated as possible. One solution then is to wrote device drivers in C
and the application code in Java. There has also been interesting work
done trying to raise the abstraction level of hardware drivers using do-
main specific languages [MRC+00], which can be used to minimize the
amount of hand-written “dangerous” code in an application.

1A direct memory reference can be unintentionally, or intentionally, changed to refer-
ence application data instead of memory-mapped hardware. As a result, type integrity
and data consistency are no longer guaranteed, with a potential risk of ending up with
dangling pointers and/or memory leaks..
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Java

As of today, Java is the only safe, object-oriented programming lan-
guage available that has reached industrial acceptance. Not just for
these previously mentioned qualities, but also for its platform indepen-
dence2.

The benefits of security are often referred to as the ”sand-box model”
, which is a core part of both the Java language and the run-time system
in terms of the JVM. The term sand-box refers to the fact that objects
cannot refer to data outside its scope of dynamic data, so activities in
one sand-box cannot harm others that play elsewhere. This is particu-
larly important in flexible automation systems where configuration at
the user’s site is likely to exhibit new (and thereby untested) combina-
tions of objects for system functions, which then may not deteriorate
other (unrelated) parts of the system. Hence, raw memory access and
the like should not be permitted within the application code, and the
enhancements for real-time programming should be Java compatible
and without violating security.

There exists other programming languages, and run-time systems,
which fulfill the technical requirements for a safe language. The most
well known Java alternative today is the Microsoft .net environment
and the language C#, which is safe except where the keyword unsafe
is used. In principle one could argue that lack of security is built into
that language/platform, but in practice the results of this thesis would
be useful for the purpose of creating a ’RT.net’ (dot-net for real time)
platform. However, due to maturity, availability of source code, sim-
plicity, and cross-platform portability, Java is the natural basis for re-
search in this area.

Considering the rich variety of processors and operating systems
used for embedded systems, confronted with the licensing conditions
from both Sun and Microsoft, there are also legal arguments for avoid-
ing their standard (desk-top or server oriented) run-time implementa-
tions. Luckily, the language definitions are free, and free implementa-
tions of run-time systems and libraries are being developed. In the Java
case, the availability and maturity of a free GNU implementation of the
Java class library [gcj] solves this problem for the Java case. However,
standard Java and the GNU libraries are not targeted or suitable for
real-time embedded systems, which brings us to the compiler technol-
ogy issue.

2Or rather, its good platform portability, since it takes a platform dependent Java Run-
time Environment (JRE), and JREs are not quite fully equivalent on all supported plat-
forms.
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1.2 Compiler Construction

Adapting the Java programming language and runtime to meet the re-
quirements for hard real-time execution will inevitably involve the con-
struction of various libraries and tools, including the Java compiler.

Constructing a compiler for a modern OO language, such as Java,
using standard compiler construction tools is normally a large, tedious,
and error prone task. Since the correctness of the generated code de-
pends on the correctness of the compiler and other tools, it is preferable
to have also the tools (except for core well-tested software such as a
standard C compiler) implemented in a safe language. Furthermore,
focusing on design and build time rather than run time, is is desirable
to have a representation of the language and application software that is
convenient to analyze and manipulate. Therefore, applicability of real-
time embedded Java appears to go hand in hand with suitable compiler
constructions tools, preferably written in Java for portable and safe em-
bedded systems engineering.

Work on compiler construction within our research group has re-
sulted in new ideas and new compiler construction tools [HM02], which
with the aim of this work represent state of the art. The representation
of the language within that tool is based on Attribute Grammars (At-
tribute Grammar (AG)s). AG-based research tools have been available
for a long time, but there are no known compiler implementations for
a complete object-oriented language, so this topic also by itself forms a
research issue.

Optimizations and Code Generation

Compiling code for execution on very resource-limited platforms con-
sequently involves code optimizations. While many optimizations are
best performed on intermediate- or machine code, there are—especially
for OO languages—a number of high level optimizations which can
only be performed on a higher abstraction level. Examples on such
transformations are in-lining and implicit finalization of classes or
methods.

With the aim of providing as high level of portability as possible,
“Write Once, Run Everywhere” in Java terminology, the code gener-
ation phase of a compiler is very important. Should the output be
processor-specific assembly language, or would the use of a higher ab-
straction level intermediate language suit the needs better? Can a stan-
dard threading Application Programming Interface (API) such as Posix
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[NBPF96] be utilized, and/or what refinements are necessary? Can the
code representation and transformation be structured in such a way
that tailoring the generated code to specific underlying kernels and
hardware configurations can be made simpler and more modular than
feasible with currently available techniques?

1.3 Problem Statement

With the aim of promoting flexibility, portability, and safety for dis-
tributed hard real-time systems we want to utilize the Java benefits.
But, in order to enable practical/efficient widespread use of Java in the
embedded systems world there are a number of technical issues that
need to be investigated. We then need to identify current limitations
and find new techniques to advance beyond these limitations, but also
inherent limitations and necessary trade-offs need to be identified and
made explicit. In general terms, the topic of this thesis can be stated by
posing the following questions:

Can standard Java be used as a programming language on arbi-
trary hardware platforms with varying degrees of real-time-, mem-
ory footprint-, and performance demands?

Here, standard Java means the complete Java language according to
Sun’s J2SE, and (a possibly enhanced subset of) the standard Java li-
braries that are fully compliant with J2SE.
If standard Java is useful for embedded systems,

what enhancements in terms of new software techniques are needed
to enable hard real-time execution and communication, and what
are the inherent limitations?

If possible, which tools are needed for adapting standard Java to
various types of embedded systems? What techniques enable effi-
cient development of those tools, and what limitations can be iden-
tified?

In short, based on the well-known standard Java claim, what we want
to accomplish is

write once run anywhere, for severely resource-constrained real-
time systems

and find out the resource-related limitations3.
3Note that Sun’s J2ME is neither J2SE-compliant nor suitable for (hard) real-time sys-

tems as is further discussed in Chapters 3 and 4.
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1.4 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 presents short introductions to some of the techniques used,
as well as some identified important aspects concerning embed-
ded real-time systems development .

Chapter 3 presents a discussion on how to compile Java for usage in
real-time systems, possibly with limited resources. This chapter
is largely based on the paper Real Java for Real Time – Gain and
Pain [NEN02], presented at CASES’03 in Grenoble, France.

Chapter 4 presents run-time issues for real-time Java; real-time mem-
ory management, the Java standard class library, threads and syn-
chronization, and exceptions.

Chapter 5 gives a description of the Java compiler being developed to
accomplish real-time Java.

Chapter 6 presents the experiments performed to see to what extent
the ideas are applicable in reality.

Chapter 7 contains the most interesting ideas for further work on the
real-time Java implementation and the Java compiler.

Chapter 8 gives short descriptions of some related work.

Chapter 9 presents the conclusions drawn from the work presented in
the thesis. A summary of the thesis contributions is also given.





Any sufficiently advanced
technology is indistinguishable
from magic.

Arthur C. Clarke

Chapter 2

Preliminaries

ADVANCES within three computer science research areas lay the
foundation of this work, with the objective to make a modern

object-oriented language available for developing hard real-time sys-
tems. (Distributed) Real-Time Systems is the primary domain for this
work, while advances in Object-Orientation and Attribute Grammars have
made possible the construction of the tools used.

2.1 Distributed Embedded Real-Time Systems

Real-time systems can be defined as systems where the correctness of
the system is not strictly an issue of semantic correctness, i.e., given a set
of inputs, the system will respond with the intended output, but there
is also the issue of temporal correctness, i.e., the system must respond
with an output within a certain time frame from acquiring the inputs.
This time-frame is referred to as the deadline, within which the systems
must respond.

One usually makes a distinction between soft and hard real-time sys-
tems, depending on the influence a missed deadline might have on the
system behavior. A missed deadline in a soft real-time system results
in degraded performance, but the system stability is not affected, e.g.,
video stream decoding. A missed deadline in a hard real-time system,
on the other hand, jeopardizes the overall system stability, e.g., flight
control loop in an unstable airplane (such as For example the SAAB
JAS39 military aircraft)..

Despite the principal advantages of a safe object-oriented program-
ming language, numerous problems arise when one tries to use the Java
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language – and its execution model – for developing real-time systems.
More problems arise if one has to consider resource-limited target envi-
ronments, i.e., small embedded systems with hard real-time constraints
such as mobile phones or industrial process control applications.

In the sequel of this section, a number of identified key concepts for
being able to use Java in embedded real-time environments are listed.
These key concepts are then used to formulate the problem statement
for the thesis.

2.1.1 Portability

Portability is important when deciding on the programming language
to use for embedded systems development. It might not be clear from
the beginning which type of hardware and Real-Time Operating Sys-
tem (RTOS) should be used in the final product. Good portability also
makes it much easier to simulate system behavior on platforms better
suited for testing and debugging, e.g., workstations. A key concept for
retaining as much portability as possible in using Java for embedded
and/or real-time systems is:

Standard Java: If possible, real-time programming in Java should be
supported without extending or changing the Java language or
API. For instance, the special and complex memory management
introduced in the Real-Time Specification for Java (RTSJ) specifi-
cation [BBD+00] needs to be abandoned to maintain the superior
portability of standard Java, as needed within industrial automa-
tion and other fields.

2.1.2 Scalability

Scalability (both up and down) is also important to consider since non-
scalable techniques usually do not survive in the long term. How far
towards low-end hardware is it possible to go without degrading feasi-
bility on more powerful platforms?

Since Java has proved to be quite scalable for large systems, the key
issue for scalability in this work is:

Memory Footprint: For most embedded devices, especially mass-
produced devices, memory is an expensive resource. A tradeoff
has to be made between cost of physical memory and cost savings
from application development in higher level languages.
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2.1.3 Hard Real-Time Execution and Performance

Regarding feasibility for applications with real-time demands, there are
a number of issues deserving attention:

Performance: CPU performance, and in some cases power consump-
tion, is also an limited resource. The cheapest CPU that will do
the job generates the most profit for the manufacturer. The same
tradeoff as for memory footprint has to be made.

Determinism: Many embedded devices have real-time constraints,
and for some applications, such as feedback controllers, there
might be hard real-time constraints. Computing in Java needs
to be as time predictive as current industrial practice, that is, as
predictive as when programming in C/C++.

Latency: For an embedded controller, it might be equally important
that the task latency, i.e. the time elapsed between the event that
triggers a task for execution and when the task actually produces
an output, is sufficiently short and does not vary too much (sam-
pling jitter). Jitter in the timing of a control task usually results in
decreased control performance and, depending on the controlled
process characteristics, may lead to instability.

2.1.4 Hard Real-Time Communication

Embedded real-time systems tend to be more and more distributed.
For example, a factory automation system consists of a large number of
small intelligent nodes, each running one or a few control loops, com-
municating with each other and/or with a central server. The central
server collects logging data from the nodes and sends new calibration
values, and possibly also software updates, to the nodes.

In some cases, it is appropriate to distribute a single control loop
over a number of distributed nodes in a network. This places high de-
mands on the timing predictability of the whole system. Not only must
each node satisfy real-time demands, the interconnecting network must
also be predictable and satisfy strict demands on latency.

2.1.5 Applicability

The applicability of a proposed solution can be defined as the feasibil-
ity of using the proposed solution in a particular application. With an
application domain including systems ranging from small intelligent
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control nodes to complex model-based controllers, such as those found
in industrial robots, especially one issue stands out as more important:

External Code: The Java application, with its run-time system, does
not alone comprise an embedded system. There also have to be
hardware drivers, and frequently also library functions and/or
generated code from high-level tools. Examples of such tools gen-
erating C-code are the Real-Time Workshop composing Matlab/
Simulink blocks [Mat], generation of real-time code from declar-
ative descriptions such as Modelica [Mod] (object-oriented DAE)
models, or computations generated from symbolic tools such as
Maple [Map]. Note that assuming these tools (resembling compil-
ers from high-level restricted descriptions) are correct, program-
ming still fulfills the safety requirement.

2.2 Real-Time Memory Management

Automatic memory management has been well-known ever since the
appearance of function-oriented and object-oriented languages with
dynamic memory allocation, such as Lisp [MC60] and Simula [DMN68,
DN76] in the 1960’s. However, most garbage collection algorithms are
not suitable for use in systems with predictable timing demands. This is
caused by the unpredictable latencies imposed on other threads when
the garbage collector runs.

Two slightly different Garbage Collect(ion|or) (GC) algorithms are
used in the work described in this thesis; Mark-Compact and Mark-Sweep.
Both algorithms work in two passes, starting with the Mark pass where
all live memory blocks are marked. Then follows the Compact or Sweep
pass, depending on which algorithm is used, where unused memory
is reclaimed and is available for future allocations. In our implementa-
tions, both algorithms depend on the application maintaining a list of
references to heap-allocated objects, a root stack. The root stack is used
by the GC algorithm as the starting point for scanning the live object
graph in the marking phase.

During the Compact phase in a Mark-Compact GC, all objects which
were marked as live during the marking phase are moved to form a
contiguous block of live objects in the heap. After the compact phase
has finished, the heap consists of one contiguous area of live objects,
and one contiguous area of available free memory. The Sweep phase in a
Mark-sweep algorithm, on the other hand, does not result in live objects
being moved around in the heap. Instead, memory blocks which are no
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longer used by any live objects are reclaimed by the memory allocator,
similar to the free() call in a standard C environment.

The GC can be run in two ways. The simplest way of running the
GC algorithm is the batch, or stop-the-world. When the memory man-
agement system determines it is time to reclaim unused memory, the
application is stopped and the GC is allowed to run through a full cy-
cle of Mark and Compact or Sweep. When the GC has finished its cycle,
the application is allowed to continue. Naturally, this type of GC de-
ployment is utterly inadequate for use in hard real-time systems since
the time needed for performing a full GC cycle varies greatly, and the
worst case is typically much larger than the maximum acceptable delay
in the application.

In order to lessen the delay impact of the GC on the application, the
deployment of the GC can be made incremental instead, in which case
the GC may give up execution after each increment if the application
wants to run.

In 1998, Henriksson [Hen98] showed that by analyzing the appli-
cation, it is possible to schedule an incremental mark-compact garbage
collector in such a way that the execution of high priority threads is not
disturbed. This is accomplished by freeing high priority threads from
doing any GC work during object allocation, while having a medium
priority GC thread performing that GC work and letting low priority
threads perform a suitable amount of GC work during allocations. The
GC increments are then chosen sufficiently small so as not to introduce
too much worst-case latency to high priority threads.

The analysis needed for computing GC parameters, so it can be
guaranteed that the application will never run out of memory when
a high priority thread tries to allocate an object, is rather complex and
cumbersome. The complexity is equal to calculating Worst-Case Execu-
tion Time (WCET) for all threads in the application. In 2003, Gestegård-
Robertz and Henriksson [GRH03] presented some ideas and prelimi-
nary results on how scheduling of a hard real-time GC can be achieved
by using adaptive and feedback scheduling techniques. Taking that
work into account, it appears reasonable to accomplish real-time Java
without compromising the memory allocation model, in contrast with
what is done in for example the two real-time Java specifications
[BBD+00, Con00].
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2.3 Real-Time Operating Systems

Real-Time Operating Systems (RTOSs) differs from more general pur-
pose desktop- and server operating systems, such as Windows, Solaris
or GNU/Linux, in a number of ways, relating to the different purpose
of the Operating System (OS). Whereas a main purpose of a general
purpose OS is to make sure that no running process is starved, i.e.,
no matter the system load, all processes must be given some portion
of CPU time so they can finish their work, RTOSs functions in a fun-
damentally different way. RTOSs are generally strict priority based.
A thread may never be interrupted by a lower priority thread, and a
thread is always interrupted if a higher priority thread enters the sched-
uler ready queue.

Despite this difference in process scheduling between general pur-
pose OSs and RTOSs, a lot of work has been done trying to combine th
strengths of both types, since general purpose OSs usually have better
support for application development.

2.3.1 RTAI

The Real-Time Application Interface for Linux (RTAI) project [Me04],
which originated as an open-source fork of the RT-Linux project
[FSM04], aims at adding hard real-time support to the GNU/Linux
operating system. Real-Time Application Interface for Linux (RTAI)
manages to achieve hard real-time in the otherwise general purpose
GNU/Linux OS, by utilizing the modularity of the Linux kernel. By
applying a patch to the Linux kernel, the RTAI kernel module is able to
hook into the kernel as a Hardware Abstraction Layer (HAL) intercept-
ing the kernel’s communication with the hardware. This means that all
hardware interrupts have to pass through the RTAI module before be-
ing communicated to the Linux kernel, and the effect is a two-layered
scheduler with the Linux Kernel running as the idle task in the RTAI
scheduler.

RTAI threads are scheduled by the strict priority based RTAI sched-
uler, and as they are not disturbed by Linux processes, and therefore
very good timing predictability can be achieved. A side effect is, obvi-
ously, that RTAI threads may starve the Linux kernel, loosing respon-
siveness to user interaction and resulting in a locked-up computer, but
that is no different from any other RTOS.
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2.4 Object-Oriented development

OO languages have over the years proven to be a valuable program-
ming technique ever since the first object-oriented language, Simula
[DMN68, DN76]. Since then, many object-oriented languages have
been constructed, of which C++ [Str00], Java [GJS96], and C# [HWG03]
are the best known today.

The object-oriented technology has, however, had very little suc-
cess when it comes to developing software for small embedded and/or
real-time systems. The widespread apprehension that OO languages
introduce too much execution overhead is probably the main reason
for this. If this apprehension could be contradicted, there would proba-
bly be much to gain in terms of development time and software quality
if OO technology finds its way into development of these kinds of sys-
tems. Many groups, both inside and outside academia, are working on
adapting OO technology and programming languages for use in small
embedded systems. Most groups work with Java, for example [Ive03,
SBCK03, RTJ, VSWH02, Sun00a], but there are also interesting work be-
ing done using other OO languages, such as the OOVM [Bak03] using
Smalltalk.

2.4.1 Aspect-Oriented Programming

In 1997, Kiczales et al. published a paper [KLM+97] describing Aspect-
Oriented Programming (AOP) as an answer to many programming
problems, which do not fit well in the existing programming para-
digms. The authors have found that certain design decisions are diffi-
cult to capture—in a clean way—in code because they cross-cut the the
basic functionality of the system. As a simple example, one can imag-
ine an image manipulation application in which the developer wants to
add conditional debugging print-outs just before every call to a certain
library matrix function. Finding all calls is tedious and error-prone, not
to mention the task of, at a possible later time, removing all debug print-
outs again. These print-outs can be seen as an aspect on the application,
which is cross-cutting the basic functionality of the image manipulation
application.

By introducing the concept of programming in aspects, which are
woven into the basic application code at compile-time, two good things
are achieved; the basic application code is kept free from disturbing
add-ons (conditional debugging messages in the example above), and,
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the aspects themselves can be kept in containers of their own with good
overview by the developers of the system.

The tool aspectj [KHH+01] was released in 2001 to enable Aspect-
Oriented Programming (AOP) in Java. There is also a web site for the
annual aspect oriented software development conference1 where links
to useful information and tools regarding AOP are collected.

2.5 Reference Attributed Grammars

Ever since Donald Knuth published the first paper [Knu68] on Attribute
Grammar (AG) in 1968, the concept has been widely used in research
for specifying static semantic characteristics of formal (context-free) lan-
guages. The AG concept has though never caught on for use in produc-
tion code compilers.

By utilizing Reference Attribute Grammars (RAGs) [Hed99], it is
also possible to specify in a declarative way the static semantic char-
acteristics of object-oriented languages with many non-local grammar
production dependencies.

The compiler construction toolkit, JastAdd, which we are using for
developing a Java compiler, further described in Chapter 5, is based on
the Reference Attribute Grammar (RAG) concept.

1http://aosd.net



I have yet to see any problem,
however complicated, which,
when you looked at it in the right
way, did not become still more
complicated.

Poul Anderson

Chapter 3

An Approach to Real-Time
Java

WITH the objective to use Java in embedded real-time systems, one
can quickly see that standard Java as defined by Java2 Standard

Edition (J2SE) or Java2 Micro Edition (J2ME), including their run-time
systems as defined by the Java Virtual Machine (JVM), is not very well
suited for these kinds of systems.

This chapter will discuss the suitability of different execution strate-
gies for Java applications in real-time environments. Then, specific de-
tails on the chosen strategy, in order to obtain predictability in various
situations, will be discussed.

3.1 Approach

Given a program, written in Java, there are basically two different al-
ternatives for how to execute that program on the target platform. The
first alternative is to compile the Java source code to byte code, and
then have a—possibly very specialized—JVM to execute the byte code
representation. This is the standard interpreted solution used today for
Internet programming, where the target computer type is not known at
compile time. The second alternative is to compile the Java source code,
or byte code, to native machine code for the intended target platform
linking the object files with a run-time system.

A survey of available JVMs, more or less aimed at the embedded
and real-time market, reveals two major problems with the interpreted
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Listing 3.1: A small example Java class.

class AClass {
Object aMethod( int arg1, Object arg2) {

int locVar1;
Object locVar2;
Object locVar3 = new Object();

locVar2 = arg2.someMethod();

return locVar2;
}

}

solution, see also Chapter 7 on page 79 for the survey. JVMs are in
general too big, in terms of memory footprint, and they are too slow,
in terms of performance. A better approach is to use the conventional
execution model, with a binary compiled for a specific CPU, and, if one
wants to use a JVM, it can be used as a special loadable module.

One thing in common for almost all CPUs, is that there exists a C
compiler with an appropriate back-end. In the interest of maintain-
ing good portability, using C as an intermediate language seems like
a good idea. In the sequel, C is used as a portable (high level) assembly
language and as the output from a Java compiler.

3.2 Simple Example

Consider the Java class in Listing 3.1, showing a method that takes two
arguments (one of them a reference), has two local variables, and makes
a call to some other method before it returns. , Compiling this class into
equivalent C code yields something like what is shown in Listing 3.2 on
the facing page. Note that the referred structures that implement the
actual object modeling are left out.

The code shown in Listing 3.2 on the next page will execute correctly
in a sequential system. However, garbage collection, concurrency and
timing considerations will complicate the picture.

3.3 Memory Management

The presence, or absence, of automatic garbage collection in hard real-
time systems has been debated for some years. Both standards pro-
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Listing 3.2: The method of the previous small Java example class translated
to C, neglecting preemption issues.

ObjectInstance* AClass_Object_aMethod(
AClassInstance* this,
JInt arg1,
ObjectInstance* arg2) {

JInt locVar1;
ObjectInstance* locVar2;
ObjectInstance* locVar3;

// Call the constructor
locVar3 = newObject();

// Lookup and call virtual method in vTable
locVar2 = arg2->class->methodTbl.someMethod();

return locVar2;
}

posals for real-time Java [BBD+00, Con00] assume that real-time GC
is impossible, or at least not feasible to implement efficiently. There-
fore they propose a mesh of memory types instead, effectively leaving
memory management into the hands of the application programmer.
Some researchers, on the other hand, work on proving that real-time
GC actually is possible to accomplish in a useful way.

Henriksson [Hen98] has shown that, given the maximum amount of
live memory and the memory allocation rate, it is possible to schedule
an incremental compacting GC in such a way that we have a low upper
bound on task latency for high priority tasks.

Siebert [Sie99] chooses another strategy and has shown that, given
that the heap is partitioned into equally sized memory blocks, it is pos-
sible to have an upper (though varying depending on the amount of
free memory) bound on high priority task latency using an incremental
non-moving GC. The varying task latency relates to the amount of free
memory in such a way that the task latency increases dramatically in a
situation when there is almost no free memory left. In a system where
the amount of free memory varies over time, the jitter introduced may
hurt control performance greatly.
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Example with GC

Using an incremental compacting GC in the run-time system, the C
code in Listing 3.2 on the preceding page will not suffice for two rea-
sons. The GC needs to know the possible root nodes, i.e. references
outside the heap (on stacks or in registers) peeking into the heap, for
knowing where to start the mark phase. Having the GC to find them
by itself can be very time-consuming with a very bad upper bound, so
better is to supply them explicitly. Potential root nodes are reference
arguments to methods and local reference variables. Secondly, since
a compacting GC will move objects in the heap, object references will
change. Better than searching for them, is to introduce a read barrier (an
extra pointer between the reference and the object) and pay the price of
one extra pointer dereferencing when accessing an object. The resulting
code is shown in Listing 3.3 on the next page.

The REF(x) and DEREF(x) macros implement the needed read
barrier while the GC_PUSH_ROOT(x) and GC_POP_ROOT(n) macros
respectively register a possible root with the GC, and pops the number
of roots that was added in this scope.

If using a non-moving GC, on the other hand, references to live ob-
jects are never changed by the GC, and the read-barrier is just unneces-
sary performance penalty. A simple redefinition of the GC macros, as is
seen in Listing 3.3, is all that is needed to remove the read-barrier while
leaving the application code independent of which type of GC is to be
used.

3.4 External Code

Every embedded application needs to communicate with the surround-
ing environment, via the kernel, hardware device drivers, and maybe
with various already written library functions and/or generated code
blocks from high level programming tools (such as Matlab/Real-Time
Workshop from The MathWorks Inc.). As mentioned, native compila-
tion via C simplifies this interfacing. Sharing references between gener-
ated Java code and an external code module, e.g. a function operating
on an array of data, has impact on the choice of GC type and how it can
be scheduled.

When using a compacting GC, one must make sure that the object in
mind is not moved by the GC while referred to from the external code
since that code can not be presumed to be aware of read barriers. If the
execution of the external function is sufficiently fast, we may consider
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Listing 3.3: GC handling added to the small Java example class.

/* Include type definitions and GC macros.
* Omitted in following listings
*/

#include <jtypes.h>
#include <gc_macros.h>

#ifdef COMPACT_GC
/* Compacting GC */
#define REF(x) (x **)
#define DEREF(x) (* x)
#else
/* Non-moving GC */
#define REF(x) (x *)
#define DEREF(x) (x)
#endif

REF(ObjectInstance) AClass_Object_aMethod(
REF(AClassInstance) this, JInt arg1,
REF(ObjectInstance) arg2) {

JInt locVar1;
REF(ObjectInstance) locVar2;
REF(ObjectInstance) locVar3;
GC_PUSH_ROOT(arg2);
GC_PUSH_ROOT(locVar2);
GC_PUSH_ROOT(locVar3);

locVar3 = Object();

locVar2 =
DEREF(arg2)->class->methodTbl.someMethod();

GC_POP_ROOT(arg2);
GC_POP_ROOT(locVar2);
GC_POP_ROOT(locVar3);
return locVar2;

}

it a critical section for memory accesses and disable GC preemption
during its execution. More on this topic in Section 3.5.2. A seemingly
more pleasant alternative would be to mark the object as read-only to
the GC during the operation. Marking read-only blocks for arbitrarily
long periods of time would however fragment the heap and void the
deterministic behavior of the GC.

For non-moving GCs, the situation at first looks a lot better as objects
once allocated on the heap never move. However, as a non-moving GC
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depends on allocating memory in blocks of constant size to avoid exter-
nal memory fragmentation in order to be deterministic, objects larger
than the given memory block size (e.g. arrays) have to be split over two
or more memory blocks. Since we can never guarantee that these mem-
ory blocks are allocated contiguously, having external non GC-aware
functions operate on such objects (or parts thereof) is impossible.

However, if we do not depend on having really hard timing guar-
antees, the situation is no worse (nor better) than with plain C using
malloc() and free() . Memory fragmentation has been argued by
Johnstone et al. [JW98] not to be a problem in real applications, given a
good allocator mechanism. Using a good allocator and a non-moving
GC, the natively compiled Java code can be linked to virtually any ex-
ternal code modules. The price to pay is that memory allocations times
are no longer strictly deterministic, just like in C/C++.

3.5 Predictability

The ability to predict timing is crucial to real-time systems; an unex-
pected delay in the execution of an application can jeopardize safety
and/or stability of controlled processes.

Predictability and Worst-Case Execution Time (WCET) analysis in
general is by now a mature research area, with a number of text books
available [BW01], and is not further discussed in this thesis. However,
adapting Java for usage in real-time systems requires considerations
about dynamic loading of classes, latency, and preemption.

3.5.1 Dynamic Class Loading

In traditional Java, every object allocation (and calls to static meth-
ods or accesses to static fields) pose a problem concerning determinism,
since we can never really know for sure if that specific class has already
been loaded, or if it has to be loaded before the allocation (or call) can
be performed. In natively compiled and linked Java applications, all re-
ferred classes will be loaded before execution starts since they are stat-
ically linked with the application. This ensures real-time performance
from start. However, there are situations—such as software upgrades
on-the-fly—where dynamic class loading is needed.

Application-level class loading does not require real-time loading,
but when a class has been fully loaded, it should exhibit real-time be-
havior just like the statically linked parts of the application. This is re-
lated to ordinary dynamic linking, but class loaders provide convenient
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object-oriented support. That can, however, be provided also when
compiling Java to C, using the native class loading proposed by Nilsson
et al. [NBL98]. Using that technique, we can let a dedicated low-priority
thread take care of the loading and then instantaneously switch to the
cross-compiled binaries for the hard real-time parts of the system. Dy-
namic code replacement can be carried out in other ways too, but the
approach we use maintains the type-safety of the language.

3.5.2 Latency and Preemption

Many real-time systems depend on tasks being able to preempt lower
priority tasks to meet their deadlines, e.g. a sporadic task triggered
by an external interrupt needs to supply an output within a specified
period of time. Allowing a task to be preempted poses some interest-
ing problems when compiling via C, especially in conjunction with a
compacting GC. How can it be ensured that a task is not preempted
while halfway through an object de-referencing, by the GC? The GC
then moves the mentioned object to another location, leaving the first
task with an erroneous pointer when it later resumes execution. And
what about a “smart” C compiler that finds the read-barrier superfluous
and stores direct references in CPU registers to promote performance?

Using the volatile keyword in C, which in conjunction with pre-
emption points would ensure that all root references exist in memory, is
unfortunately not an answer to the latter question since the C semantics
does not enforce its use but merely recommends that volatile refer-
ences should be read from memory before use. Though many C com-
pilers for embedded systems actually enforce that volatile should be
taken seriously.

One possible solution is to explicitly state all object references as
critical sections during which preemption is disallowed, see the exam-
ple code in Listing 3.4 on the following page.

This can be a valid technique if the enabling/disabling of preemp-
tion can be made cheap enough. On the hardware described in Sec-
tion 6.2 on page 66, for example, it only costs one clock cycle. Using
this technology, the only possible way to ensure the read barrier will not
be optimized away, is to not allow the C compiler to perform optimiza-
tions which rearrange instruction order. It may seem radical but the
penalty for not performing aggressive optimizations may be acceptable
in some cases. As shown by Arnold et al. [AHR00], the performance
increase when performing hard optimizations compared to not opti-
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Listing 3.4: Preemption points implemented by regarding all memory ac-
cesses to be critical sections.

REF(ObjectInstance) AClass_Object_aMethod(
REF(AClassInstance) this, JInt arg1,
REF(ObjectInstance) arg2) {

JInt locVar1;
REF(ObjectInstance) locVar2;
REF(ObjectInstance) locVar3;
GC_PUSH_ROOT(arg2);
GC_PUSH_ROOT(locVar2);
GC_PUSH_ROOT(locVar3);
ENABLE_PREEMPT();

DISABLE_PREEMPT();
locVar3 = Object();
ENABLE_PREEMPT();

DISABLE_PREEMPT();
locVar2 = DEREF(arg2)->class->methodTbl.someMethod();
ENABLE_PREEMPT();

DISABLE_PREEMPT();
GC_POP_ROOT(3);
return locVar2;

}

mizing at all is in almost all cases less than a factor of 2. Whether this is
critical or not, depends on the application.

However, there are still many possibilities to optimize the code. The
optimizations that will probably have the greatest impact on perfor-
mance are mostly high-level, operating on source code (or compiler-
internal representations of the source code). They are best performed
by the Java to C compiler, which can do whole-program analysis (from
an OO perspective), and perform object-oriented optimizations. Some
examples which have great impact on performance are:

Class finalization A class which is not declared final , but has no sub-
classes in the application is assumed to be final. Method calls do
not have to be performed via a virtual methods table, but can car-
ried out as direct calls.

Class in-lining Small helper classes, preferably only used by one or a
few other classes, can be in-lined in their client classes to reduce
reference following. The price is larger objects which may be an
issue if a compacting GC is used.
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Listing 3.5: Using explicit preemption points may in many cases decrease the
GC synchronization overhead.

REF(ObjectInstance) AClass_Object_aMethod(
REF(AClassInstance) this, JInt arg1,
REF(ObjectInstance) arg2) {

JInt locVar1;
struct {

REF(AClassInstance) this;
REF(ObjectInstance) arg2;
REF(ObjectInstance) locVar2;
REF(ObjectInstance) locVar3;

} refStruct;
refStruct.this = this;
refStruct.arg2 = arg2;
GC_PUSH_ROOT(&refStruct, sizeof(refStruct)/ sizeof( void*));

PREEMPT(&refStruct);
refStruct.locVar3 = Object();

PREEMPT(&refStruct);
refStruct.locVar2 =

refStruct.arg2->class->methodTbl.someMethod();

GC_POP_ROOT();
return refStruct.locVar2;

}

A more in-depth discussion on optimizations implemented in the Java
compiler can be found in Section 5.4, while a more comprehensive list-
ing of object-oriented optimizations can be found in for example
[FKR+99].

In the last example, Listing 3.4, we assumed that preemption of a
task is generally allowed except at critical regions where preemption
is disabled for as short periods of time as possible. If one considers
overturning this assumption and instead have preemption generally
disabled, except at certain “preemption points” which are sufficiently
close to each other in terms of execution time, some of the previous
problems can be solved in a nicer way, see Listing 3.5. To ensure
that all variable values are written to memory before each preemption
point, all local variables (including the arguments of the method) are
stored in one local structure, the struct refStruct . By taking the
address of this struct in each call to the PREEMPT macro, the C compiler
is forced to write all register allocated values to memory before the call
is made. To handle scoped variable declarations, the names are suf-
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fixed in order to separate variables in different scopes that can share the
same name. Registration of GC roots (with the GC_PUSH_ROOT(x,n)
macro) is simplified to passing the address of the struct and the number
of elements it contains, compared to registering each root individually.

The PREEMPT(x) macro checks with the kernel if a preemption
should take place. Such preemption point calls are placed before calls
to methods and constructors, and inside long loops (even if the loop
does not contain a method call). By passing the struct address, we uti-
lize a property of the C semantics which states that if the address of a
variable is passed, not only must the value(s) be written to memory be-
fore executing the call, but subsequent reads from the variable must be
made from memory. Thus we hinder a C compiler from performing (to
us) destructive optimizations.

To prevent excessive penalty from the preemption points, a num-
ber of optimizations are possible. After performing some analysis on
the Java code, we may find that a number of methods are short and
final (in the sense that that they make no further method calls), and a
preemption point before such method calls may not be needed. Loops
where each iteration executes (very) fast, but have a large number of
iterations, may be unrolled to lower the preemption point penalty.

Since reference consistency is a much smaller problem with non-
moving GCs, the situation is simplified. In fact, no visible changes have
to be made to the code in Listing 3.3 on page 23 for maintaining ref-
erence integrity, and therefore average performance will be improved.
However, when dynamically allocating several object sizes the alloca-
tion predictability will be as poor as in C/C++.

3.6 Findings

Inclusion of external (non GC-aware code in a real-time Java system
raises a tradeoff between Latency and Predictability. For hard real-time, a
compacting GC should be used, and no object references may be passed
to non GC-aware functions. If we need to pass object references to non
GC-aware code functions, a compacting GC is not applicable since calls
to non GC-aware functions must be considered critical sections, and
task latencies can no longer be guaranteed.

Using a good allocator and a non-moving GC, the natively compiled
Java code can be linked to virtually any external code modules. The
price to pay is that memory allocations are no longer strictly determin-
istic, just like in C/C++.
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Chapter 4

Real-Time Execution
Platform

THE execution platform—scheduler, GC, class library, etc.—is very
important for the behavior of a Real-Time (RT) Java system. Com-

piled Java code will need to cooperate with the RT multi-threading sys-
tem on the underlying run-time platform. It will also need to coop-
erate closely with the RT memory management system in such a way
that timing predictability is accomplished, while memory consistency
is maintained at all times.

This chapter will first describe the concept of Real-Time Garbage
Collect(ion|or) (RTGC) for a compiled Java application, and the generic
Garbage Collector Interface (GCI). Then follows considerations con-
cerning on the Java class library, threads and synchronization, and Ex-
ceptions, for some different hardware platforms and operating systems.

4.1 Garbage Collector Interface

Different types of (incremental) GC algorithms need different code con-
structs. For example, to guarantee predictability, a mark-compact GC
requires all object references to include a read-barrier, while a read-
barrier would only be unnecessary overhead with a mark-sweep GC.
These differences makes it error-prone and troublesome to write code
generators supporting more than just one type of GC algorithm, and it
gets even worse considering hand-written code that needs a complete
rewrite for each supported GC type.
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The GCI [IBE+02] is being developed within our group to overcome
these problems. The GCI is implemented as a set of C preprocessor
macros in four layers, as seen in figure 4.1, from the user layer via
threading and debug layers to the implementation layer. The two mid-

User interface

Thread interface

Debug interface

Implementation interface

Programmer API

Call GC specific functions

On/Off to support debugging use of the GCI

On/Off to support preemptive threading

Figure 4.1: The four macro layers of the GCI.

dle layers can be switched on/off to support GCI debugging and/or
multi-threaded applications.

4.1.1 User Layer

The user layer contains all macros needed for the synchronization be-
tween an application and any type of GC. The macros can be divided
into eight groups based on functionality.

One time: Macros used to declare static GC variables, and to initialize
the heap.

Object layout declaration: Used for declaring object type structs,
struct members, and struct layouts.

Reference declaration: Declare reference variables, push/pop refe-
rences on GC root stacks.

Object allocation: A macro representing the language construct new.

Reference access: Reference assignment and equality checks.

Field access: Get/set object attribute values.
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Function declaration: Macros for handling function declarations, pa-
rameter handling, and return statements.

Function call: Macros for different function calls, and for passing argu-
ments.

None of the macros in the user layer have a specific implementation,
but just passes on to the corresponding thread layer macro.

4.1.2 Thread Layer

In a multi-threaded environment, where preemption is allowed to occur
at arbitrary locations in the code, all reference handlings become critical
sections concerning the GC.

The GCI thread layer adds GC synchronization calls to those macros
handling references, i.e.,

GC__THREAD_<macro> = gc_lock();
GC__DEBUG_<macro>;
gc_unlock();

4.1.3 Debug Layer

The debug layer macros, if debugging is turned on, adds syntactic and
consistency checks on the use and arguments of the GCI macros. While
not adding functionality, the debug layer is very useful when manu-
ally writing code using the GCI. For instance, consistency of the root
stack is checked so that roots are popped in reversed order to the or-
der they were pushed on the stack.this functionality is of great help,
not only when implementing a code generator as part of a compiler,
but also when implementing native method implementation where GC
root stack administration is handled manually.

4.1.4 Implementation Layer

The implementation layer macros, currently there are about 60 of them,
finally evaluate to GC algorithm specific dereferencing and/or calls to
GC functions, e.g., allocating a memory block on the GC controlled
heap.
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4.2 Class Library

The standard Java class library is an integral part of any Java appli-
cation. Most of the standard classes pose no timing predictability or
platform dependency problems, and will thus not be discussed here.
With the scalability aspect in mind, some adjustments may be needed
so as to lower the memory demands. The Java thread-related classes,
and the related thread synchronization mechanisms, are of such impor-
tance, that they will be treated specially in section 4.3.

When implementing a Java class library for natively compiled Java,
intended to execute on (possibly very limited) embedded systems, there
are especially two areas needing special care; native methods and I/O.

4.2.1 Native Methods

The Java language was designed from the very beginning not to be able
to use direct memory pointers, for good programming safety reasons.
There are, though, many good reasons for a Java application to make
calls to methods/functions implemented in another programming lan-
guage:

• Accessing hardware.

• External code modules, as mentioned in section 3.4 on page 22.

• For efficiency reasons, some algorithms may have to be imple-
mented on a low abstraction level using, for instance, C or assem-
bler.

• Input/output operations, as is further discussed next in section
4.2.2.

It is important to note that native method implementations are sel-
dom truly platform independent. If the compiled Java applications is
supposed to be executable on more than one platform1, platform spe-
cific versions of all native method implementations for all intended
platforms must be supplied. This is analogous to standard Java as de-
fined by the J2SE.

1Which is often the case when developing software for embedded systems. First de-
bug on a workstation, e.g. Intel x86 & Posix, then recompile for the target platform, e.g.
Atmel AVR & home-built RTOS. See also section 6.2.
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Method Calling Convention

There is a standardized calling convention for making calls from Java
classes to native method implementations, Java Native Interface (JNI)
[Lia99]. To be able to cross the boundary between Java code execut-
ing in a virtual machine sandbox and natively compiled code—such as
method call-back from a native function—, JNI specifies additional pa-
rameters in the call, as well as complicated methods for accessing fields
and methods in Java objects.

Considering natively compiled Java code, the situation changes
drastically. The overhead created by the JNI no longer fills any func-
tion, as there is no language- or execution model boundaries to cross.
Straight function calls using the C calling convention provides the best
performance, and since all code share the same execution model, native
methods may access Java objects, attributes, and methods in a straight-
forward way.

Memory Management

It is important to note that all external code must access Java refer-
ences in the same way as the compiled Java code, in order to ensure
correctness—also in cases where a compacting garbage collector is
used—and timeliness of the application. For legacy code, all code
which is not GC-aware, it may be necessary to implement wrapper
functions for handling object dereferencing.

The example in listing 4.1 shows what a call to a legacy function
may look like, using a wrapper method for object dereferencing.

Listing 4.1: Example of making a call to a legacy function from compiled Java.

/*
* Java code
*/

public static native int process( byte[] arg);

public void doSomething() {
byte[] v = new byte[100];
int result;
result = process(v);

}

/*
* Generated C code from Java code above
* Most GC administration code left out
* for clarity.
*/
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JInt Foo_process_byteA(
GC_PARAM(JByteArray,arg));

GC_PROC_BEGIN(Foo_doSomething,
GC_PARAM(Foo, this))

GC_VAR_FUNC_CALL(j2c_result,
Foo_process_byteA,
GC_PASS(j2c_v));

GC_PROC_END(Foo_doSomething)

/*
* Hand-written wrapper function
*/

GC_VAR_FUNC_BEGIN( JInt,Foo_process_byteA,
GC_PARAM(JByteArray,arg))

byte[] array;
#ifdef COMPACT_GC

/* Have to make copy to ensure integrity */
make_copy_of_array(array,arg);

#else
/* Objects will not move, so just get a pointer */
array = & GC___PTR(arg.ref)->data[0];

#endif

// Perform the call
return process(array);

GC_VAR_FUNC_END( JInt,Foo_process_byteA)

/*
* Legacy (non GC-aware) C function
*/

int process( byte[] arg){
// Code that does something

}

4.2.2 I/O

All no-nonsense applications will, sooner or later, have to communi-
cate with its environment. On desktop computers, this communication
takes place in some kind of user interface, e.g. keyboard, mouse and
graphics card, via operating system drivers.

Embedded systems typically have much more limited resources for
performing I/O. They often have neither normal user interface, nor a
file system. The Java streams based I/O (package java.io ) then be-
comes more a source of unnecessary execution- and memory overhead,
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than the generic, easy to use, class library it serves as in workstation-
and server environments.

One solution to handle this class library overhead for embedded
systems is to flatten the class hierarchy of the Java I/O classes. As an ex-
ample, consider the widely used method System.out.print(arg)
which, in an embedded system, could typically be used for logging
messages on a serially connected terminal. As is seen in figure 4.2,
printing a string on stdout starts a very long call chain before the
bytes reach the OS level. Clearly, the overhead imposed by an imple-

<<FilterOutputStream>>

PrintStream

+print(str:String): void

-print(str:String,println:boolean): void

-writeChars(str:String,offset:int,count:int): void

<<OutputStream>>

FilterOutputStream

+write(buf:byte[],offset:int,len:int): void

+write(b:int): void

Eventually to native code

Figure 4.2: The System.out.print(String) call chain, as imple-
mented in the GNU javalib.

mentation such as in listing 4.2 can not be motivated on a resource-
constrained platform. On such platforms, the call chain can be cut in
the PrintStream class by declaring native print methods.

Aggressive inlining of methods may shorten the call chain substan-
tially, and is an interesting issue for further investigation.

4.3 Threads and Synchronization

One of the benefits of using Java as a programming language for real-
time systems is its built-in threading model. All Java applications are
executed as one or more threads, unlike C or C++ where multi-
threading and thread synchronization is performed using various li-
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brary calls (such as Posix). In an environment running natively com-
piled Java applications, there are two choices on how a Java multi-
threading runtime can be implemented:

• One general Java thread runtime for all supported platforms.

+ One consistent thread model interfacing the Java class library.

- May introduce unnecessary overhead on platforms that are al-
ready thread-capable (such as Posix).

• For each supported platform, map thread primitives to native
methods.

+ More efficient.

- Implementation less straight-forward.

For efficiency reasons, the native implementation of Java threads is best
done by providing mappings from Java thread primitives to the under-
lying OS as native methods implementations, one for each supported
platform, as mentioned in section 4.2.1.

The technique with providing the mapping from Java thread classes
to underlying OS primitives by using native methods renders the com-
piled Java application portable between all supported runtime plat-
forms. Recompiling the generated C code and link with the appro-
priate set of native methods implementations is all that is needed, see
figure 4.3 on the facing page.

In order to adhere to the Java thread semantics, the application start-
up needs a special twist. Instead of assigning the main symbol to the
application main class main -method, main is a hand-coded C function
performing the following to start an application:

• Initialize the GC controlled heap.

• Initialize Java classes, i.e., fill in virtual method tables and static
attributes.

• Start the GC thread.

• Create a main thread.

• Start the main thread, with the main class main method as start-
ing point.
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Compiled
Java object file

RTAI kernel level
Executable

RTAI user level
Executable

Posix 
Executable

RTAI kernel level
Runtime library

RTAI user level
Runtime library

Posix
Runtime library

Figure 4.3: A compiled Java object file can be linked to an appropriate run-
time library without recompilation.

4.3.1 Real-Time Thread Classes

The multi-threading and synchronization semantics in regular Java are
quite flexibly specified. Though good for OS portability in a general
purpose computing environment, it is not very well suited for hard real-
time execution environments.

In order to enhance the thread semantics, a set of new classes for
real-time threads in the package se.lth.cs.realtime has been de-
veloped within our research group [Big98]. A brief description of the
most important classes follow below.

FixedPriority Any class implementing the FixedPriority interface
may not change its runtime priority after the thread has been
started. The FixedPriority property can be used in a compile time
program analysis to apply directed optimization for code which
is only executed by a high priority thread. See also section 7.1 for
some examples of such directed optimizations.

RTThread The real-time threads, RTThread and its subclasses such
as PeriodicThread and SporadicThread , classes are the ex-
tended real-time counterparts to the standard Java thread classes.
In order not to inherit any thread semantics from the standard
Java threads, the real-time threads do not extend the
java.lang.Thread class or implement the interface
java.lang.Runnable , but form an inheritance hierarchy of
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their own. This way, the thread semantics for RTThread s can
be kept suitable for hard real-time systems, if needed.

RTEvent The RTEvent is an abstract super class for time-stamped
messages objects which can be passed between instances of the
RTThread class.

RTEventBuffer All instances of the RTThread class has an
RTEventBuffer attribute buffer, serving as a mailbox in inter-
thread communication. Both blocking and wait-free message
passing is supported.

The real-time thread classes currently have no native implementa-
tions in our class library, but implementations are planned for in a near
future since some important optimizations rely on these classes, see
chapter 7.

4.3.2 Synchronization

The ability to synchronize execution of two or more threads is funda-
mental to multi-threading applications, for instance monitors and syn-
chronous inter-thread communication. In Java, thread synchronization
is built into the language with the synchronized keyword, and the
wait() , notify() , and notifyAll() methods in the
java.lang.Object class.

The common way of implementing Java thread synchronization is
to let each (synchronized) Java object comprise one monitor, where the
monitor keeps track of the thread locking the object and which threads
are blocked by this lock. This model is fairly simple and it is what is
currently implemented in the prototype. There are, though, disadvan-
tages with this model regarding scalability, since all objects in the sys-
tem must have a monitor object reference even if it will never be used.

An important observation on virtually any real-world Java applica-
tion is that the number of objects in the application by far outnumbers
the number of threads. Blomdell [Blo01] has presented an alternative
lock object implementation, where the monitor associated with locked
objects is stored in the thread owning the lock instead of in each object.
This way, substantial memory overhead may be saved.

Similar to thread implementation, thread synchronization is best
implemented in natively compiled Java as native methods, mapping
the Java semantics on the underlying OS thread synchronization prim-
itives. Depending on the OS support for monitors, the thread synchro-
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Listing 4.2: Mapping Java monitors on underlying OS.

/**
* Posix implementation
*/

GC_PROC_BEGIN(monitor_enter, GC_PARAM(java_lang_Object, this))
pthread_mutex_t *lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
pthread_mutex_lock(lock);

GC_PROC_END(monitor_enter)

GC_PROC_BEGIN(monitor_leave, GC_PARAM(java_lang_Object, this))
pthread_mutex_t *lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
pthread_mutex_unlock(lock);

GC_PROC_END(monitor_enter)

/**
* RTAI implementation
*/

GC_PROC_BEGIN(monitor_enter, GC_PARAM(java_lang_Object, this))
pthread_mutex_t *lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
rt_sem_wait(lock);

GC_PROC_END(monitor_enter)

GC_PROC_BEGIN(monitor_leave, GC_PARAM(java_lang_Object, this))
pthread_mutex_t *lock;
gc_lock();
GC_GET(lock, this);
gc_unlock();
rt_sem_signal(lock);

GC_PROC_END(monitor_enter)

nization implementation is more or less straight-forward. Example im-
plementations for Posix threads and RTAI kernel threads are shown in
listing 4.2.

Using this mapping of synchronization primitives makes it possible
to generate portable code as output from the Java compiler, as can be
seen in code listing 4.3 on the following page.
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Listing 4.3: Example of Java synchronization with compiled code.

public synchronized void synch() {
HelloWorld hello;
hello = foo();
synchronized(hello) {

bar();
}

}

//////////////////////////////////////////////

GC_PROC_BEGIN(HelloWorld_synch, GC_PARAM(HelloWorld, this))
GC_REF(HelloWorld,j2c_hello);
GC_PROC_CALL(monitor_enter, GC_PASS( this));

GC_REF_FUNC_CALL(j2c_hello,foo, GC_PASS( this));

GC_PROC_CALL(monitor_enter, GC_PASS(j2c_hello));
{

GC_PROC_CALL(bar,GC_PASS( this));
}

GC_PROC_CALL(monitor_leave, GC_PASS(j2c_hello));
GC_PROC_CALL(monitor_leave, GC_PASS( this));

GC_PROC_END(HelloWorld_synch)

4.4 Exceptions

The exception concept in Java is a structured way of handling unex-
pected execution situations. When such a situation arises, an Exception
object is created and thrown, to be caught somewhere upstream in the
call chain. There, the exception object may be analyzed, and proper
actions taken.

The Java semantics states that at most one exception at a time can
be thrown in a thread. As a consequence, it is natural to implement
exceptions, in a natively compiled environment, using the setjmp()
and longjmp() C library functions. These functions implement non-
local goto, where setjmp() saves the current stack context, which can
later be restored by calling longjmp() .

An example implementation, also considering memory manage-
ment issues, is shown in listing 4.4 on the next page. A few notes may
be necessary for the comprehension of this example:

{store|get}ThreadLocalException Since only one exception at a time
can be thrown in a thread, the simplest way to pass an exception
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object from the throw site to the catch statement is by a thread
local reference. All Java exceptions must be sub-classed from the
java.lang.Throwable class.

{push|pop}ThreadLocalEnv The execution environment is pushed on
a thread local stack at each try statement executed. A thrown
exception is checked at the nearest catch statement and, if it does
not match, the next environment is popped from the environment
stack and the exception is thrown again.

{save|restore}RootStack In order to keep the thread root stack consis-
tent when an exception is thrown, the root stack must be saved
when entering a try block. If an exception is thrown in a call
chain inside the try block, and caught by a subsequent catch
statement, the root stack state can then be restored to the same
state as just before entering the try block.

Listing 4.4: A simple exception example.

/*
* Java code exemplifying Exceptions
*/

void thrower() throws Exception {
throw new Exception();

}

void catcher() {
try {

thrower();
} catch (Exception e) {

doSomething();
}

}

////////////////////////////////////////////////////////

/*
* More or less equivalent C code
*/

void thrower() {
ex_env_t *__tmp_env;
// Create new exception object
Exception __e = newException();
// Store reference
storeThreadLocalException(__e);
// Get the stored environment,
// from latest try()-statement
__tmp_env = popThreadLocalEnv();
// Restore context, jump to catch block
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longjmp(__tmp_env->buf, Exception_nbr);
}

void catcher() {
ex_env_t __env;
volatile int __ex_nbr;
volatile int __ex_throw = 1;
// Save current status of GC root stack
saveRootStack();
// save environment
pushThreadLocalEnv(__env);
// try
if ((__ex_nbr=setjmp(__env.buf)) == 0) {

thrower();
__ex_throw = 0;

} else if (isCompatException(__ex_nbr,Exception_class)) {
// Matching exception caught
Exception e;
// Restore previously saved GC root stack
restoreRootStack();
// Fetch Exception object reference
e = getThreadLocalException();
__ex_throw = 0;
doSomething();

}
if(__ex_throw) {

// No matching exception caught,
// Pass upwards in call chain
ex_env_t *__tmp_env;
__tmp_env = popThreadLocalEnv();
longjmp(__tmp_env->buf, Exception_nbr);

}
}

4.4.1 Exceptions in Compiled Java

From a compiler writer’s point of view, the exception implementation
shown in listing 4.4 poses no really hard problems, he/she just have to
get it right once and for all. The compiler user might have an alternative
view though, since the generated code tend to get messy and hard to
read. To facilitate code readability and decrease the risk of entering
bugs, C macros, as shown in listing 4.5 are introduced.

Listing 4.5: C macros for more understandable exception implementation.

#define EXCEPTION_THROW(__nbr) \
{ \

ex_env_t *__tmp_env; \
EXCEPTION_POP(__tmp_env); \
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if(__tmp_env) { \
longjmp(__tmp_env->buf, __nbr); \

} else { \
UNCAUGHT_EXCEPTION(__nbr); \

} \
}
#define EXCEPTION_TRY \
{ SAVE_ROOT_STACK(exception); \

{\
ex_env_t __env; \
volatile int __ex_nbr; \
volatile int __ex_throw = 1;\
EXCEPTION_PUSH(__env); \
if ( (__ex_nbr = setjmp(__env.buf) ) == 0) {

#define EXCEPTION_CATCH(__catch_nbr) \
__ex_throw = 0; \
EXCEPTION_POP_DISCARD; \

} else if (__ex_nbr == __catch_nbr) { \
RESTORE_ROOT_STACK(exception); \
__ex_throw = 0; \

#define EXCEPTION_CATCH_MORE(__catch_nbr) \
} else if (__ex_nbr == __catch_nbr) { \

RESTORE_ROOT_STACK(exception); \
__ex_throw = 0; \

#define EXCEPTION_FINALLY } {
#define EXCEPTION_AFTER_CATCH\

}\
if(__ex_throw) EXCEPTION_THROW(__ex_nbr);\

}\
}
#define EXCEPTION_PUSH(__env) \

__env.next = gc_thread_get_current()->env; \
gc_thread_get_current()->env=&__env

#define EXCEPTION_POP(__env_out) \
__env_out = gc_thread_get_current()->env;\
if(__env_out) \

gc_thread_get_current()->env=
gc_thread_get_current()->env->next

#define EXCEPTION_POP_DISCARD \
gc_thread_get_current()->env;\
gc_thread_get_current()->env=

gc_thread_get_current()->env->next

The reader may notice that there are many fragile parentheses in the
macro implementations, implicating a very strong dependence between
the macros. Using these macro definitions from listing 4.5, applied to
the C code in listing 4.4 yields far more comprehensible code, as shown
in listing 4.6.
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Listing 4.6: Equivalent C code from listing 4.4, but using exception macros
from listing 4.5.

// Java code exemplifying Exceptions
void thrower() throws Exception {

throw new Exception();
}

void catcher() {
try {

thrower();
} catch (Exception e) {

doSomething();
}

}

////////////////////////////////////////////////////////

// More or less equivalent C code
void thrower() {

Exception e = newException();
storeThreadLocalException(e);
EXCEPTION_THROW(Exception_nbr)

}

void catcher() {
EXCEPTION_TRY

thrower();
EXCEPTION_CATCH(Exception_nbr)

Exception e = getThreadLocalException();
doSomething();

EXCEPTION_AFTER_CATCH
}

Due to the rather fragile nature of the exceptions macros, it is not
recommended to write C code utilizing exceptions by hand, although
possible and even inevitable in some situations.

Some execution environments, such as RTAI kernel threads, lacks
a working implementation of setjmp() and longjmp() (for policy
reasons in the RTAI case). In these situations, one must supply an ap-
propriate implementation of these functions. In the case of RTAI, the
setjmp() and longjmp() implementations can copied from the stan-
dard C library, but on other platforms one may have to implement these
functions from scratch.
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4.5 Findings

The work presented in this chapter brings forward a number of inter-
esting findings in the various topics described:

GCI: The GC algorithm transparent GCI works very well as a generic
interface to different GCs. It is, though, best suited for use in code
generators where strict control of the code can be maintained.
Manually writing code using the GCI is rather error-prone, due
to the complexity of the interface. The debug support in the GCI
is of very good use in situations where manually written code is
inevitable, such as wrapper functions to external code.

Also non RT applications may benefit from using the GC algo-
rithm transparent interface and debugging facilities of the GCI.

Class Library: In natively compiled Java, since there is no execution
environment barrier to pass, native method calls are much sim-
plified compared to JNI.

Calling external non GC-aware functions imply the need for dec-
larations of wrapper functions to resolve symbol names and GCI
references.

The I/O model in Java (java.io.* ) is excessively flexible and
bulky for use in resource-constrained embedded systems, with
limited I/O capabilities. In such systems, a constrained imple-
mentation of the I/O package can be used without inappropri-
ately changing the semantics and decrease portability.

Threads and Synchronization: The thread semantics are enhanced by
providing new thread classes more suited for use in real-time en-
vironments. By mapping the Java thread and synchronization
APIs on OS supplied implementations, we can achieve very good
portability of compiled Java code. The same Java application code
may be executed on many platforms (including a JVM) without
alterations, and often without recompiling the Java source code
to C.

Exceptions: Java type exceptions can be implemented on the C level us-
ing C macros, in a way such that RTGC is not jeopardized, while
retaining readable code. The Exception implementation was also
found not to have any significant impact on code size. In a typ-
ical application, enabling exceptions only increased code size by
approximately 2%.





Never put off till run-time what
you can do at compile-time.

D. Gries

Chapter 5

A Compiler for Real-Time
Java

THE tools used for constructing compilers have not changed much
during the last decade. Typically, the concrete grammar for the

to-be-compiled language is specified according to the parser genera-
tor of preference (for example lex/yacc, or bison). The generated parser
parses the source code and builds an Abstract Syntax Tree (AST). Hand-
crafted code is then typically used for performing static-semantic anal-
ysis on the AST, generate some kind of intermediate code, perform
various optimizations on the intermediate code, and finally generate
assembly- or machine code—possibly with a final optimization pass.
Due to the large amount of hand-crafted code needed for the analysis-,
code generation-, and optimization phases, the task of constructing a
compiler, from scratch, for a modern OO language can be overwhelm-
ing.

Using the JastAdd [HM02] compiler construction toolkit, developed
at our department, we are developing a compiler for real-time Java. The
back-end generates C code according to the ideas described in Chap-
ter 3, which is compiled and linked against the GCI and runtime, as
described in Chapter 4, to produce a time predictable executable suit-
able also for hard real-time-systems.
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5.1 JastAdd

The JastAdd system [HM02, EH04] is based on current research on Ref-
erence Attribute Grammars (RAGs) and Aspect-Oriented Programming
(AOP). The goal of the JastAdd system is to provide compiler develop-
ers with a better tool for AST manipulations than those available today.

Using the RAG technique makes it possible to declare semantic
equations that state how to compute attributes from an AST. These
equations present a convenient way of implementing name- and type
analysis, and can also be used for rewriting subtrees of the AST on de-
mand while computing attributes.

AOP, as described in Section 2.4.1, is a good help for separation of
concerns in the compiler implementation. Different aspects can be kept
in separate source code modules which enhances readability, and also
makes it possible to add or remove specific aspect modules during im-
plementation or debugging. It is also possible to integrate ordinary Java
code modules, if desired, using the JastAdd system.

Input to JastAdd is divided in two parts; an abstract grammar def-
inition of the language, and a set of aspects which will be woven into
the AST node classes. The abstract grammar defines both the context-
free grammar of a language, and the inheritance hierarchy of the node
classes comprising an AST. The other part of a JastAdd system is a set of
aspects, usually a mix of ordinary Java code with semantic equations,
which are woven in as Java code into the node classes.

The JastAdd tool does not include support for building a concrete
parser which generates the AST. Any parser generator capable of con-
structing a parser which can build Java ASTs may be used as a front-
end. JavaCC [Met] is used in our Java compiler implementation, but
CUP [HFA+99] has also been used in other JastAdd experiments.

5.2 Architecture and Overview

The architecture of our compiler differs from most available compilers,
in that there is no explicit symbol table, nor will it generate internal in-
termediate code. Instead, all operations are implemented as methods
on the AST nodes using the JastAdd system. A concrete grammar de-
scription is used to create a parser, while an abstract grammar describes
the AST node class hierarchy. A collection of aspects, including name-
and type analysis, optimizations and code generation, are woven into
the node classes. The parser, node classes, and auxiliary hand-written
Java code makes up the compiler, see Figure 5.1.



5.2. ARCHITECTURE AND OVERVIEW 49

Figure 5.1: Overview of the Java compiler architecture.

Abstract Grammar

The purpose of the abstract grammar definition is twofold; at the same
time as it specifies the node relations of an AST, it also specifies the class
hierarchy for the node classes. As an example, consider the small ex-
cerpt from our Java grammar in Listing 5.1 (the complete abstract gram-
mar for our Java compiler is listed in appendix B). The corresponding
node class inheritance hierarchy is shown in Figure 5.2.

As can be seen in the listing and figure, the abstract class Expr is
inherited by all other expression classes, which enables elegant imple-
mentations of methods common to all expressions, as exemplified later
in this section. The abstract classes Binary and Unary are analogously
inherited by all respective concrete classes.

Using the grammar shown in Listing 5.1, we can build an AST rep-
resentation of the code snippet

a.b = c.d + e - 2;

as shown in Figure 5.3. Taking advantage of the inheritance hierarchy
of the AST node classes, we can now define aspects operating on this
AST representation of a program.



50 CHAPTER 5. A COMPILER FOR REAL-TIME JAVA

Listing 5.1: A small example of the JastAdd abstract grammar definition.

abstract Expr;
abstract Binary:Expr ::= Left:Expr Right:Expr;
abstract Unary:Expr ::= Expr;

AssignExpr : Expr ::= Dest:Expr Source:Expr;

AddExpr:Binary;
SubExpr:Binary;

MinusExpr:Unary;

Primary:Expr ::= Name;
Name ::= IdUse*;

IdUse ::= <ID>;

abstract Literal:Expr;
IntLiteral:Literal ::= <INT>;
FloatLiteral:Literal ::= <FLOAT> ;

Unary

Expr

MinusExpr

IdUse

+ID: String

Binary

SubExpr AddExpr

Name

Primary Literal

IntLiteral

+INT: String

FloatLiteral

+FLOAT: String

2 1

1

*

Figure 5.2: Node class relations in simple JastAdd example.

JastAdd Aspects

Aspects in the JastAdd system are used for implementing the opera-
tions to be performed on the generated AST. They can be implemented
either as normal Java code, methods and attributes woven into the AST
node classes, or as RAG semantic equations which are translated into
Java code by JastAdd, and then woven into the AST classes.

Considering the Java assignment expression above, the two types of
aspects can be illustrated with two of the operations a compiler would
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Figure 5.3: AST representation of the Java expression a.b=c.d+e-2, ac-
cording to the grammar in Listing 5.1.

typically perform on code; type checking, and code generation. Im-
plementing type checking for this subset of Java expressions is con-
veniently done using semantic equations, and is shown in Listing 5.2
below.

The class TypeCheck declaration does not, in this example, have
any other semantic meaning other than being a syntactic placeholder
for declarations (similar to the aspect declaration in AspectJ). A syn-
thetic attribute, syn TypeDecl type , is declared in the Expr and
Nameclasses with default values, and overridden in some subclasses
of Expr . Semantic equations are written as assignments, and will be
transformed to Java methods by the JastAdd system as can be noted in,
for example, the declaration of Unary.type where the type attribute
in its Expr child is evaluated by calling the generated type() method.

Analogously to the synthetic attribute shown in this example, there
are also inherited attributes which are used to propagate information
downwards in the AST.

Code generation from an AST representation is not equally suited to
describe in the form of semantic equations, as is for example type check-
ing. Printing is operational in nature, and it is thus more convenient
to implement a code generator using imperative code, even though it
would be possible to generate code by evaluating one large string at-
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Listing 5.2: Type checking implemented using semantic equations in JastAdd.

class TypeCheck {
syn TypeDecl Expr.type = null;
syn TypeDecl Name.type = lookupTypeDecl();
Binary.type = LeastCommonType(getLeft().type(),

getRight().type());
Unary.type = getExpr().type();
Primary.type = getName().type();
IntLiteral.type = lookupType("int");
FloatLiteral.type = lookupType("float");

}

tribute. As an example of using imperative code in JastAdd, consider
the pretty-printer example in Listing 5.3 below. As can be noted in the
example, one can mix use of semantic equations with imperative code.

Listing 5.3: Pretty-printer implemented using Java aspects in JastAdd.

class PrettyPrint {
abstract void Expr.prettyPrint(PrintStream out);
syn String Binary.operator = "";
String AddExpr.operator = "+";
String SubExpr.operator = "-";

void Binary.prettyPrint(PrintStream.out) {
getLeft().prettyPrint(out);
out.print(operator());
getRight().prettyPrint(out);

}
void MinusExpr.prettyPrint(PrintStream.out) {

out.print("-");
getExpr().prettyPrint(out);

}
void Name.prettyPrint(PrintStream.out) {

for ( int i=0; i<getNumIdUse(); i++) {
getIdUse().prettyPrint(out);
if (i<getNumIdUse()) out.print(".");

}
}
void IdUse.prettyPrint(PrintStream out) {

out.print(GetID());
}
void Literal.prettyPrint(PrintStream out) {

out.print(GetLITERAL());
}

}
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5.3 Simplification Transformations

Generating code from an AST representation can be rather cumbersome
, depending on the AST topography1 and the complexity of the parsed
language. Especially, expressions in Java may be rather complex, as for
example in the code fragment with corresponding AST in Figure 5.4.

a.b().c().d = e().f.g();

=

d

c

()b

a ()

g

f ()

e

()

Figure 5.4: Java code fragment and corresponding AST.

Building a code generator capable of handling arbitrary expressions
tends to be a very complex and error-prone task. Instead, by defin-
ing the simplest possible Java language subset while not restricting the
semantics, the code generator becomes much simpler and less error-
prone, see [Men03] for a definition of such a Java language subset.

The mapping from the full Java language specification [GJS96] to the
simpler subset can be conveniently described as a set of transformation
on the AST, as will be shown in the following sections.

Names

Most of the simplifying transformations needed to perform on the AST
are consequences of real-time memory management, see Section 4.1 for
details. Memory operations on references are performed via side-effect

1The parser usually does not have all the information needed for building a seman-
tically “good” AST, but instead builds an AST syntactically close to the source code, see
Figure 5.4.
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macros, only allowing one level of indirection at each step. It is there-
fore necessary to transform all Java expressions with more than one
level of indirection into lists of statements each containing at most one
level of indirection. For example, the Java statement

a.b = c;

contains one indirection, whereas

a.b = c.d;

has two indirections, and must therefore be transformed into something
like

tmp_1 = c.d;
a.b = tmp_1;

or, described as a transformation on the AST in Figure 5.5, to meet the
indirection level requirements.

=

b

a c

d

=

tmp_1 d

c

=

b

a

tmp_1

Figure 5.5: Simplifying names by means of an AST transformation.

The situation becomes a little more complicated with method calls,
since arguments passed in the call may contain arbitrarily complex ex-
pressions. By studying the method call

a(b(c()),d());

we may soon see that the evaluation order of the method calls must be

c(), b(c()), d(), a(b(c()),d())
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argList
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tmp_1 b

argList

tmp_0

=

argList

d

tmp_2

a

argList

tmp_1 tmp_2

tmp_0 = c();
tmp_1 = b(tmp_0);
tmp_2 = d();
a(tmp_1,tmp_2);

Figure 5.6: Simplifying a complex method call.

A suitable simplifying transformation for the above expression, to meet
the indirection requirements, could then be expressed as AST transfor-
mations or as code as in Figure 5.6.

The aspect code needed for performing the simplification transfor-
mations shown in Figures 5.5 and 5.6 is shown below in Listing 5.4.

Listing 5.4: JastAdd aspects performing simplification transformations for
Java names .

class Simplify {
void Stmt.simplify() {

if (stmt.needsRewrite()) {
setStmt(stmt.rewrite(),stmtIndex);

}
}

syn boolean Stmt.needsRewrite = false;
syn boolean Expr.needsRewrite = needsRewrite(0);
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ExprStmt.needsRewrite = getExpr().needsRewrite();

boolean AssignExpr.needsRewrite {
return getSource.needsRewrite(0) || getDest.needsRewrite(0);

}

boolean Access.needsRewrite( int level) {
return nbrOfDeref() > level;

}

syn int Expr.nbrOfDeref = 0;
VarAccess.nbrOfDeref = 1+getEnv().nbrOfDeref();

void AssignExpr.rewrite(List l) {
int sLevel=0,dLevel=1;
VariableDeclaration varDecl = createTempVar(type());
l.add(varDecl);
Expr source = getSource().rewrite(l,sLevel);
Expr dest = getDest().rewrite(l,dLevel);
l.add( new ExprStmt( new AssignSimpleExpr(

accessVar(varDecl),dest)));
l.add( new ExprStmt(getSpecialAssignExpr(

accessVar(varDecl),source)));
l.add( new ExprStmt( new AssignSimpleExpr(

dest,accessVar(varDecl))));
}

Expr Access.rewrite(List l, int level) {
if (nbrOfDeref() > level) {

Expr e = getEnv().rewrite(l,0);
if (level == 0) {

VariableDeclaration varDecl = createTempVar(type());
setEnv(e);
l.add(varDecl);
l.add( new ExprStmt(

new AssignSimpleExpr(accessVar(varDecl), this)));
return accessVar(varDecl);

} else {
setEnv(e);

}
}
return this;

}

}
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Unary Expressions

Unary expressions which as a side effect changes the value of the
operand, may need to be simplified in order to meet indirection require-
ments. For example, the simple statements

a++;
b.a++;

should be read as
a = a+1;
b.a = b.a+1;

which poses no problem in the first statement, with zero indirections,
but the latter statement now has two indirections and must be simpli-
fied to something like

tmp_0 = b.a;
b.a = tmp_0+1;

However, things get more complicated as such unary expressions may
be used inside other expressions. For example, the seemingly simple
statement

a[k.i++] = b[++k.i];

has a non-trivial evaluation order. A simplification of the above state-
ment which meet indirection requirements can be written as:

tmp_0 = k.i;
++tmp_0;
k.i = tmp_0;
tmp_1 = b[tmp_0];

tmp_2 = k.i;
k.i = tmp_2 + 1;

a[tmp_2] = tmp_1;

Note that the evaluation of a PreIncrement expression differs from the
evaluation of a PostIncrement expression to maintain semantic correct-
ness.

Control-Flow Statements

The expression—or expressions—which is an important part of all
control-flow statements require special care in the simplification pro-
cess, so as not to alter the semantics of the program. Only the for-
statement will be described here, as it is—semantically—the most com-
plicated control-flow statement in Java.
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ForStmt

ForInit ForUpdateCondition Stmt

Figure 5.7: Subtree representing a for-statement.

ForStmtForInit

ForUpdate

Condition

Stmt

Stmt*

<empty><empty> Block

Figure 5.8: Subtree representing a simplified for-statement.

A Java for-statement, as defined by the abstract grammar in ap-
pendix B, is represented by the AST subtree in Figure 5.7. As defined in
the Java language specification [GJS96], the ForInit and ForUpdate nodes
may hold arbitrary lists of StatementExpressions or, in the case of ForInit,
a variableDeclaration. An example of a complex for-statement could be

for(a=b(c(1),d),e=f[g()];a[h++]<i;a=b(c(h++)),d)
// code

The solution to simplifying complex for-statements is to, in fact, cre-
ate while-statements by moving the ForInit ahead of the statement and
move the ForUpdate last inside the Stmt node (which has been trans-
formed to a Block). A simplified for-statement subtree is shown in Fig-
ure 5.8. The resulting code after simplifying the example for-statement
above would then be
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tmp_0 = c(1);
a = b(tmp_0,d);
tmp_1 = g();
e = f[tmp_1];

tmp_2 = a[h++];
for ( ; tmp_2<i ; ) {

// code

tmp_3 = c(h++);
a = b(tmp_3,d);

tmp_2 = a[h++];
}

Similar techniques are used to simplify the other Java control-flow
statements.

5.4 Optimization Transformations

Also in cases when compiling to some kind of pseudo-high-level inter-
mediate language (such as C), there is need for some optimizations at
the higher abstraction level which can not be taken care of by the inter-
mediate language compiler. Examples of such optimizations are typical
OO optimizations, such as implicit finalization of method calls, class
in-lining, but also, depending on the object model, (high level) dead
code elimination. Of these optimizations, only dead code elimination is
currently implemented in our compiler.

5.4.1 Dead Code Elimination

Constructing an AST based on static dependencies between classes in
an application clearly results in a set of type declarations including a
subset of the J2SE standard classes. However, the J2SE is so designed
that, for any application, this subset will include >200 type declara-
tions. A static analysis of all possible execution paths of the application
reveals that there exist a set of type declarations, possibly referenced
during execution, which includes much fewer classes than static de-
pendencies would suggest. It has also been shown by Tip et al. [TSL03]
that there is much to gain regarding the application size if also refer-
enced type declarations are stripped of unused code, such as attributes,
methods, and constructors.

Dead-code elimination requires static compilation of the program to
be optimized, as dynamically loaded code may try to reference meth-
ods or fields which were previously unreachable. It should also be
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performed using whole-program analysis, since otherwise only private
methods and fields may be analyzed.

Implementation

We have implemented dead code elimination in our Java compiler us-
ing JastAdd aspects to calculate the transitive closure of an application,
starting from the application main method and all run methods found
in thread objects. Encountered methods and constructors are marked
as live, as are type declarations with referenced constructors, methods,
or fields. During the code generation pass only code for live types, con-
structors, and methods will be generated.

Evaluation

The dead code optimization algorithm has been tested on a couple of
applications, with good results, as seen in Table 5.1 below. The two
applications are described in Section 5.6.

Application Without opt. (kB) With opt. (kB)
HelloWorld 316 218
Robot Controller 1059 759

Table 5.1: Code size results from utilizing dead code optimization on some
applications.

5.5 Code Generation

When the AST has been transformed, as described in Section 5.3, to
reflect the simplest possible Java coding style, the task of generating
intermediate code—in this case C code—becomes relatively simple.

First, a C header file is generated for each used class in the AST, con-
taining the type declarations of the object model. Handwritten C code,
such as native method implementations, can then include appropriate
class headers. Then, one C file containing the actual implementations
of all constructors and methods, as well as class initialization code.

Header Files

The organization of the header files is sketched below as:
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<class>_ClassStruct A C struct representing the class. Has pointers to
the class’s super class struct, and a pointer to this class’ virtual
methods table. Only one instance of this struct exist in run-time.

<class>_StaticStruct A struct containing static fields of this class, and
all ancestors. Only one instance exist in run-time.

<class>_ObjectStruct A struct representing an instantiated object of
this class. Contains a pointer to the class struct and all non-static
fields of this class (including ancestors).

<class>_MethodStruct The virtual methods table associated with ob-
jects instantiated from this class. Contains function pointers for all
methods of objects of this class. One instance of this struct exist in
run-time.

C code file

The organization of the generated C code files is sketched below as:

• Include necessary header files

• Declare the static object model structs for each class/interface;
class, class static, object layout, object static layout, vtable, inter-
face table (if applicable).

• Declare function prototypes for all constructors and methods.
This is needed since declare/use order of these is free in Java.

• All function (methods and constructors) implementations.

• The Java classes init function. Pushes layouts on the GC root
stack, fill in virtual method tables, and initialize static attributes.

The process of compiling a Java program to an executable machine
code image is sketched in Figure 5.9 on the following page.

5.6 Evaluation

The use of a modern RAG-based compiler construction toolkit, JastAdd,
lead to a rather compact—yet modular and easy to read—compiler
specification. Our Java compiler, as of today, comprises only about
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<Main class>.java

Java compiler

Other user-written
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Figure 5.9: Flowchart of compilation process.

10000 lines of source code including abstract grammar, concrete gram-
mar, and all aspects needed for semantic analysis, simplifications, opti-
mizations, and code generation needed for generating real-time capable
C code. The sizes of the modules of our compiler are listed in Table 5.2.

The current version of the compiler front-end (parser and static se-
mantic analysis) is fully compatible with the current Java standard, ver-
sion 1.4. Code generation still lacks support for some features of the
Java language, most notably inner- and anonymous classes, but the im-
plementation of these features is quite straight-forward and will not
add more than, at most, some hundred lines of aspect code to the com-
piler.

Preliminary Benchmarks

Our Java compiler is still very much in development and very little ef-
fort has been spent on compiler speed, but to get an idea on how much
slower it is compared to available Java compilers, some very prelimi-
nary benchmarks have been performed.
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Lines of code
Front-End

Abstract Grammar 181
Concrete Grammar 1044

Semantic Analysis
Name- and Type Analysis 1458

Transformations and Optimizations
Simplifications 901
Dead Code Optimization 154

Code Generation
Code generation 5745

Table 5.2: Source code sizes for the different stages of our compiler.

The test platform was an ordinary PII 300MHz workstation with
128 MB of RAM. The operating system was Debian GNU/linux, kernel
version 2.4.19, and the Java environment is the Sun J2SE version 1.4.1.
As reference Java compilers we used javac version 1.4.1 and gcj version
3.3.3.

Two applications were used to benchmark our compiler against the
references. HelloWorld is a very small one-class application, basically
just instantiating itself and printing the words “Hello World” on the
terminal. The RobotController is a much larger application consisting
of about 25 classes, implementing one part of a network-enabled con-
troller for an ABB industrial robot. For some reason, possibly due to
the use of native methods, it was not possible to compile the robot con-
troller application using gcj.

Our compiler gcj javac
HelloWorld

Memory usage (MB) 14 <5 21
Time (s) 26 0.65 3

RobotController
Memory usage (MB) 34 - 30
Time (s) 160 - 9

Table 5.3: Java compiler measurements

As can be seen in Table 5.3, our Java compiler is substantially slower
than the other tested compilers. One main reason is the two-pass na-
ture of our compiler (see Figure 5.9), the time needed for gcc to com-
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pile the generated C file exceeds 90 s itself. Another reason for the
large difference in compilation times is simply that compiler perfor-
mance has been, and still is, of low priority in the compiler develop-
ment process. Nevertheless, separate compilation of Java classes, and
using more modern computers, would surely decrease compilation
times significantly.

Observations

The modularization of a computer achievable using JastAdd benefits
compiler development in a number of ways. Some examples include:

Instrumentation The compiler can be instrumented with code for de-
bugging, for example an aspect to dump information in AST
nodes.

Measurements Code can be added for measuring, for example the ef-
fect of various optimizations.

Experiments A compiler developer can try experimental code, which
is easy to remove later. For example, a new optimization can be
written as a JastAdd aspect and tested. If it turns out to be useful,
the aspect stays, otherwise it goes.



Marge, I agree with you – in
theory. In theory, communism
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Homer Simpson

Chapter 6

Experimental Verification

IN order to verify the validity of the solutions described in Chapters 3
and 4 with respect to the identified important concepts for embed-

ded real-time Java, as described in Chapter 1, practical experiments are
needed.

In this chapter we will present a couple of Java test applications,
and how they are compiled and linked for relevant run-time platforms.
Results from executing these test applications are used to validate our
real-time Java solution with respect to the identified key concepts.

6.1 Portability

Java byte code, and also the generated C code which is the output from
our Java compiler, is in itself platform independent. The adaptation to
different platforms comes with the run-time systems, or the JVM in the
Java byte code case.

The real-time Java runtime, as described in Chapter 4, has been im-
plemented with support for 5 different threading models on 4 differ-
ent hardware platforms. Table 6.1 shows a matrix covering the current
available implementations. Of course there are no timing guarantees in
the Posix thread model on a standard Linux or Solaris OS, but it is the
best suited runtime for verifying the semantic correctness and concur-
rency behavior of an application.
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Table 6.1: Current implementation status of the real-time Java
runtime environment.

AVR PPC i386 SPARC
CSRTKa X
STORKb X
Linux RTAI(k)c X X
Linux RTAI(u)d X X
Linux and Solaris Posix X X
a Small real-time kernel for the Atmel AVR developed at

the department of CS.
b real-time kernel for PPC, developed at the department of

automatic control.
c Kernel level threads.
d User level threads.

The available implementations span a range of quite different types
of CPUs (Harvard RISC micro-controller, RISC, and CISC) and very dif-
ferent threading models. Given this diversity, porting the runtime to a
new CPU and/or threading model should be affordable, and the porta-
bility of the proposed solution can be considered agreeable.

6.2 Scalability

Experimentally verifying the scalability of compiled real-time Java ef-
fectively boils down to trying to find the lower limit for resource-
constrained hardware, on which it is possible to deploy a useful ap-
plication. Finding the upper limit is not equally interesting, since the
main development platform is a standard Intel PC (≈2GHz, ≈512MB
RAM).

6.2.1 Low-End Experiment Platform

As a low-end experimental platform, we have a small experimental
board, see Figure 6.1 on page 69, equipped with an Atmel AVR 128,
a two row LCD display, 6 buttons, and a summer.

Hardware

The Atmel AVR ATmega 128 [Atm03] is a modern 8-bit RISC micro-
controller, with many features on-chip (not all listed here):
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• 32x8 general purpose registers plus peripheral control registers.

• Up to 16 MIPS throughput at 16 MHz.

• 128K Bytes of in-system re-programmable flash memory with
10,000 write/erase cycles endurance.

• 4K Bytes E2PROM. Endurance is 100,000 write/erase cycles.

• 4K Bytes internal SRAM. Up to 64K extended memory.

• SPI interface for in-system programming.

• Two 8-bit timers/counters and two 16-bit timers/counters. One
real-time counter with separate oscillator.

• 8-channel, 10-bit ADC.

• Dual programmable serial USARTs.

The experimental platform is equipped with an additional 128 KB
SRAM chip, of which 61184 bytes are reachable from the AVR, making
a total of 64K bytes SRAM available to the running application.

RTOS

A very small real-time kernel has been developed at the department,
for use on the Atmel AVR. The fully preemptive kernel has a footprint
of less than 10 kbytes of ROM and 1 kbyte of RAM. Worst-case execu-
tion times of operations in the kernel are summarized in Table 6.2. See
also [Ekm00, NE01].

Execution time in CPU cycles
Operation Worst Best

Context switch due
to timer interrupt

963 + 358 · k 889 + 346 · k

Context switch due
to voluntary

740 + 12 · k 728

suspension

Take a mutex 113 113
Give a mutex 1024 + 12 · k 1014

Create an object 234 + 78 · i + 54 · n 234 + 78 · i + 54 · n

Table 6.2: Measured performance with k priority levels and object size s bytes
with n pointers divided into i groups. 1 CPU cycle is 0.25 µs.
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Experimental Application

For the purpose of testing the scalability of compiled real-time Java, a
suitable application is needed. It should, at least, contain two (commu-
nicating) threads and a reasonable number of classes.

A suitable application is found in the first programming assignment
of the undergraduate course in Concurrent and Real-Time Programming1.
This application is a simple implementation of an alarm-clock with ba-
sic functionality. The alarm-clock application in itself—not considering
Java classes and threads in the Graphic User Interface (GUI)—consists
of at least two threads sharing a critical resource—the representation of
time—, and four user-written classes. A typical implementation would
contain these four classes:

AlarmClock The application main class, initializes the application and
starts the two threads.

ClockStatus A passive class containing the critical resources; the time-
and alarm time representations.

TimeHandler Contains a periodic thread which updates the time once
every second. If the alarm conditions match, a beep is also emit-
ted.

ButtonHandler Contains a thread which waits on a semaphore for user
interaction, i.e. a button in the user interface has been pressed.
Depending on the sequence in which buttons are pressed, time or
alarm time is set in ClockStatus.

All User Interface (UI) specific code is placed in a separate Java pack-
age, which greatly enhances the portability of the alarm-clock applica-
tion. In order to run this application on the experimental AVR platform,
the UI package is substituted with a new implementation—with an
identical API—which communicates with the LCD display and hard-
ware buttons, via native methods, instead of using the java.swing or
java.awt packages, see Figure 6.1.

Table 6.3 on the facing page shows the memory usage of the alarm-
clock application, when compiled for the AVR. Worth notice is the sig-
nificant decrease in ROM footprint when compiling with dead code
elimination. As a comparison, running the alarm-clock as an applet
requires about 22M bytes of RAM.

1See the EDA040 course at http://www.cs.lth.se/Education/Courses/ .
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Compilation flags ROM (bytes) RAM (bytes)
-w 89k <32k

89k <32k
DCE -w 61k <32k
DCE 61k <32k
DCE -Os 61k <32k

Table 6.3: Memory usage for the alarm-clock on the AVR platform. DCE
stands for dead code elimination turned on.

One interesting observation from Table 6.3 is that the size of the
ROM flash image does not depend on whether debug (-w) or size opti-
mization (-Os) flags were given to the C compiler. The reason may be
related to some of the tricks used in the GCI to disallow dangerous C
code optimizations, but this will need more investigation.

Results

Considering the alarm-clock to be of adequate complexity for a typical
real-world application in this type of hardware platform, it still leaves
half of the amount of RAM and ROM in our hardware platform unused.
We can then argue that natively compiled real-time Java is a viable so-
lution also for systems of this size.

Figure 6.1: Alarm-clock application running on the AVR platform. The plat-
form consists of two stacked cards, with a user interface card on top of a generic
CPU card.
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6.3 Hard Real-Time Execution and

Performance

Hard real-time performance (predictability) and general performance
(speed) are not necessarily coupled. Instead, in order to guarantee tim-
ing predictability it is often necessary to sacrifice execution speed for in-
creased timing predictability. Experiments verifying the timing predict-
ability of our real-time Java execution environment are presented in
Section 6.3.1, while general performance execution experiments are pre-
sented in Section 6.3.2.

6.3.1 Hard Real-Time Execution

In order to try to verify the alleged hard real-time capabilities of our
proposed real-time Java, we implemented a simple multi-threaded ap-
plication and executed in a RTOS. The test application creates and starts
three periodic threads with different priorities and periods, as shown in
Table 6.4. This application resembles the execution pattern of a typical
embedded real-time application, with a couple of periodic threads con-
trolling a physical process.

The purpose of this experiment is to see if our ideas on how real-
time Java can be implemented, without forsaking automatic memory
management, hold up to the reality. The system is quite heavily loaded,
≈65% utilization from the threads, and then another ≈30% GC utiliza-
tion from cleaning up the garbage generated by the threads. We then
have a system where the GC thread uses practically all idle time there is
left, trying to free unused memory blocks. The three threads will then
always need to preempt the GC thread, to be able to execute (when not
waiting for a higher priority thread to finish).

Thread Period (µs) Workload (µs)
T1 100 ≈30
T2 300 ≈50
T3 500 ≈90

GC1 NA NA

Table 6.4: Characteristics of the three threads in the timing experiment.
Thread T1 has highest priority and the GC thread GC1 has lowest priority.
Neither period, nor workload is applicable for the GC thread.
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Test Platform

The benchmarks were performed on a 333MHz Pentium II worksta-
tion running Debian/GNU Linux, kernel version 2.4.19, RTAI version
24.1.11.

Compilation Configurations

The test application was compiled and linked against two different GC
implementations; one Mark-Sweep GC, and one Mark-Compact GC. All
threads allocate garbage in their run loops, forcing the GC thread to
clean up the heap during idle time.

Results

Results from the experiments are shown in Figures 6.2 and 6.3, and
some statistics are found in Table 6.5. From these results, we can draw
a number of conclusions regarding the real-time behavior:

• Latency and response times are quite good. The amount of jitter is
well within margins for thread T1, bearing in mind that we have a
sampling frequency of 10 kHz and a system with more than 90%
CPU load.

• There is a slight, but notable, difference in performance between
the two GC algorithms used in the experiment. The reason for
the Mark-Sweep GC giving a slightly better performance is here
due to that GC synchronization can be made more efficient. The
performance differences between the two GC algorithms will be
further discussed in Section 6.3.2 below.

From these results, there seem to be no reason why natively compiled
Java could not be a feasible programming language for hard real-time
systems.

6.3.2 Performance

Although determinism and the ability to guarantee that deadlines are
met are absolutely crucial for hard real-time systems, general execu-
tion performance must not be forgotten. This is especially important
in small, resource constrained, embedded systems where a faster pro-
cessor may not be a viable alternative due to common processor con-
straints including power consumption (if run on battery power), heat
dissipation, and cost.
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Mark-Compact Mark-Sweep
Latency µs

T1 min 3 2
max 12 14

T2 min 41 36
max 53 48

T3 min 43 36
max 159 139

Response µs

T1 min 32 27
max 43 41

T2 min 95 83
max 153 95

T3 min 175 142
max 291 254

Table 6.5: Real-time performance statistics.

In order to investigate the efficiency of the code generated by our
Java compiler, described in Chapter 5, and to try to investigate what
kind of impact the GCI implies, we implemented a couple of small ap-
plications. These test applications were then compiled with our Java
compiler, using different GC configurations, as well as using Sun’s
javac and GNU’s gcj [gcj] java compilers for reference. As a fairly
realistic estimate of the best possible performance, equivalent applica-
tions implemented in C were compiled with gcc . The benchmark ap-
plications are as follows:

fibonacci A simple recursive implementation of the Fibonacci algo-
rithm. Implemented both as a virtual method and as a static
method to investigate the possible performance impact of look-
ing up virtual methods.

scalar A method which calculates the scalar product of two vectors, im-
plemented as Java arrays. Linear algebra calculus is very common
in automatic control, and efficiency is very important since these
calculations often take place in high frequency control threads.

One could argue that these small benchmark applications do not
reflect the behavior of realistic embedded and real-time applications,
which is true. However, they do bring forward the code constructs
where we believe RTGC synchronization imposes the largest impact on
performance.
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Figure 6.2: Three periodic threads with top-down increasing priority. Mark-
Compact GC used.

Test Platform

The benchmarks were executed on a 333MHz Pentium II workstation
running Debian/GNU Linux, kernel version 2.4.19. Involved software
include GNU Compiler Collection (GCC) version 3.3.3 and Sun J2SDK
version 1.4.1.

Compilation Configurations

The different compilation (and runtime) configurations used in the
benchmark tests are briefly described below:

Our compiler The compiled Java code was linked against both against
a mark-compact GC and a mark-sweep, to see how much the more
complex GC synchronization for a mark-compact GC hurts per-
formance. As a reference, the code was also compiled without any
GC support at all. However only usable for applications with only
static memory allocation, compiling without GC synchronization
reveals the the total cost of GC synchronization, and it also serves
as an indication of overall code efficiency compared to other Java
compilers, which lack hard real-time support.
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Figure 6.3: Three periodic threads with top-down increasing priority. Mark-
Sweep GC used.

Sun JVM The Sun JVM was run with three different configurations.
First, the default client configuration which dynamically compiles
the byte codes using the Sun HotSpot Just-In-Time (JIT) compiler.
Then, using the -server option which tries to optimize more
for speed. Last, since JIT compilation is often impossible to to in
hard real-time systems, the JVM was run using the -Xint option
which turns off all dynamic optimizations, and run the applica-
tion in the interpreted fashion.

GCJ GNU Compiler for Java (GCJ) was used to compile and link the
applications to native static binaries. Compilation was done uti-
lizing no optimizations at all, and with the most aggressive speed
optimizations.

GCC GCC was used to compile and link the applications to native
static binaries. Compilation was done utilizing no optimizations
at all, and with the most aggressive speed optimizations.
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Results

Results from executing the benchmark applications are shown in Ta-
ble 6.6 below.

fibonacci (virtual) fibonacci (static) scalar
Our compiler
mark-compact GC 10050 7012 146400
mark-sweep GC 7002 6904 7760
no GC 753 586 5402
Other
Sun JVM 271 251 5085
Sun JVM -server 270 245 3910
Sun JVM -Xint 3302 3120 52500
GCJ 360 567 10098
GCJ -O3 328 504 2249
C code
GCC NA 280 6810
GCC -O3 NA 293 761

Table 6.6: Performance measurements. Execution times in milliseconds.

These results reveal a number of interesting properties of the cur-
rent compiler and runtime implementation. The most obvious finding
is that, at least in these small benchmark examples, we achieve really
poor performance using our Java compiler together with a RTGC. The
fibonacci application executes 20-30 times slower than when using the
Sun JVM (with JIT compiling) or the GCJ compiler, and 2–3 times slower
than pure interpreted java byte codes. However, when we disable GC
synchronization we achieve results that are just 1–2 times slower than
the JVM with JIT compiler and GCJ, which is not too bad for a compiler
with just about no performance optimizations implemented. We can
thus draw the conclusion that the observed performance problem does
not relate to the generated C code as such, but is almost solely related
to the GC synchronization mechanisms.

The scalar application shows more mixed results. Running with a
Mark-Compact GC results in very poor performance while running with
the Mark-Sweep almost matches the performance of the Sun JVM or
the GCJ. Also in this case, it is quite clear that the GC synchronization
mechanism is the main culprit for poor performance.

One intuitive conclusion to draw from these results would be that
using a Mark-Sweep GC is always preferable to using a Mark-Compact al-
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ternative due to much higher performance. That is not always true, and
depends on the type of application being executed. A Mark-Compact GC
implies both read- and write barriers in order to ensure consistent ob-
ject references, while only the write barrier is needed for ensuring con-
sistency with a Mark-Sweep GC, see also Chapter 3. This difference is
very clear in the scalar application, which is focused on reading values
from arrays, where the Mark-Compact case suffers from the read-barrier
penalty. The same phenomenon is found in the fibonacci application,
although not as evident. For an application with few live objects, and
which generates a lot of garbage (short-lived objects), the Mark-Compact
GC may result in significantly better performance than the Mark-Sweep
GC, since considerably less work is needed to copy a few (small) live
objects than adding all memory blocks occupied by garbage to free-lists.

Although results from timing experiments suggest good real-time
characteristics with short latencies and small amount of jitter, there is
certainly future work to do in order to get acceptable general perfor-
mance.

6.4 Hard Real-Time Communication

As has been shown in Section 6.3.1, our Java execution environment
provides very predictable and stable response times, also in highly
loaded systems with plenty of GC work going on.

Hard real-time communication in a compiled real-time Java envi-
ronment has been verified in a Masters thesis project done at our de-
partment [GN04]. Future work is planned to further investigate and
develop real-time communication in this environment, see Chapter 7.

6.5 Applicability

The proposed solution to natively compile Java for real-time systems
has been tested in experiments on various hardware platforms. Tested
applications range from very small with soft real-time demands—the
alarm-clock application in Section 6.2—, to industrial robot control sys-
tems with hard real-time demands and workstations running real-time
Linux. A large number of testing applications have also been executed
on standard Linux workstations, with and without hard real-time sup-
port using the RTAI.
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There are general performance issues that need to be dealt with, but
nevertheless we feel that Java will very soon be a viable programming
language for most types of embedded and/or real-time systems.





Perfection is reached, not when
there is no longer anything to add,
but when there is no longer
anything to take away.

Antoine de Saint-Exupéry

Chapter 7

Future Work

THE Java to C compiler and associated run-time system framework
is, as of current status, capable of handling most of the Java lan-

guage, generating semantically correct C code. Apart from the fact that
neither the compiler, nor the runtime system and class library, are com-
plete, with regard to the Java specification and the Java Development
Kit (JDK), there are many interesting problems to look into.

7.1 Optimizations

Generating code that will function properly in all possible executions
will result in conservative code, with sometimes unnecessary overhead
degrading application performance1. We are therefore looking at sev-
eral ways of enhancing general performance, without sacrificing real-
time performance.

7.1.1 More Efficient GC Locking Scheme

The technique used for controlling GC critical sections is very conser-
vative regarding threads with higher priority than the GC thread. A
high priority thread can not be preempted by the GC, and thus all GC
locking/unlocking in code executed by such a thread is unnecessary
overhead.

1e.g., The wanted sampling rate of a high priority regulator thread can not be accom-
plished due to GC overhead
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Hypothesis

Under certain conditions, a static analysis of the AST can reveal meth-
ods which are only called from high priority threads. GC-locking can
then be omitted in the generated code for those methods, resulting in a
significant performance gain for the highest priority thread.

Prerequisites

All threads must implement the FixedPriority interface, see Sec-
tion 4.3.1, and all thread priorities must be determinable at compile
time.

Method

• Traverse the reachable AST subtree starting from the main class
main method and all run() methods found in thread classes,
searching for thread activations.

• For each thread activation found, traverse the call graph, marking
each processed method declaration with the Min(current, called)
priority.

• During code generation, disable GC locking for those methods
which are only called in high priority threads.

7.1.2 Memory Allocation

When using a mark-sweep GC, and not partitioning the heap in blocks
of constant size, there is a critical real-time performance bottleneck
when high priority threads allocate objects from the heap. The time
needed for a memory allocator to find a suitable free block is not deter-
ministic, and may cause the thread to miss deadlines, or introduce un-
acceptable jitter. this may be a serious problem in an application where
high priority threads need to allocate memory, and, for various reasons,
it is not feasible to use a mark-compact GC or block-allocate from the
heap.

A possible solution to this problem would be to let high priority
threads allocate objects from a maintained pool, which is guaranteed to
contain free blocks of appropriate sizes at all times. The cost for main-
taining the memory block pool is added to the GC overhead paid by
low priority threads.
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7.1.3 OO optimizations

There are a number of OO optimization techniques which could be
used to increase general performance of an application. To this class
of optimizations belong such well-known techniques, see for exam-
ple [AHR00, FKR+99, TSL03], as method call de-virtualization and class
in-lining.

7.1.4 Selective Inlining

In conjunction with “normal” in-lining, it would be very interesting to
investigate the possible benefits from more aggressive in-lining of code
which is called from the highest priority thread run() method.

Hypothesis

Under certain conditions, a static analysis of the AST can reveal meth-
ods which are only called from high priority threads. Aggressive class-
or method in-lining could then be used to increase performance of the
highest priority thread, by omitting indirection- and function call over-
head. Similar to the GC locking optimization above.

Prerequisites

All threads must implement the FixedPriority interface and all
thread priorities must be determinable at compile time.

Method

Traverse the AST call graph originating from the highest priority thread
run() method. Classes or methods found during the tree traversal is
then in-lined in the highest priority thread class, if they are explicitly or
implicitly final, and are not used by any other class in the application.

7.2 Networking

The current trend towards distributed automation systems, and to close
control loops over distributed nodes in a network, introduces some in-
teresting issues in the programming language and run-time environ-
ment domain. Two concepts which would be very interesting to study
closer are Quality of Control and Constant Bandwidth Server
[HCÅÅ02].
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7.3 Dynamic Class Loading

Although dynamic loading of classes is not of very much interest for
small embedded real-time systems, it can be useful in larger real-time
systems, e.g in industrial robot control systems where a software up-
grade on-the-fly can save a lot of money.

Method

Implement dynamic class-loading using the technique described in
[NBL98]. The new class is loaded and initialized in a low priority
thread, and the time needed for activation can be kept very short so
as not to disturb high priority threads.

In the RTAI runtime environment, the concept of loadable Linux
kernel modules may present one way of achieving dynamic loading of
code.

7.4 Code Analysis

Persson [Per00], has published work on using the JastAdd tool to im-
plement worst-case memory usage and WCET analysis on Java appli-
cations. His work should be continued and implemented in our Java
compiler, not only as an aid to the programmer, but the analysis results
should be possible to use in some optimizations.

7.5 Hybrid Execution Environment

In some situations a hybrid execution model, mixing code executed in
a JVM with natively compiled code, can be preferred to choosing one of
the execution models. Since the IVM [Ive03] uses the same object model
as our Java compiler, it should be possible to integrate these execution
environments.



A thing is not necessarily true
because a man dies for it.

Oscar Wilde, "The Portrait of Mr.
W.H."

Chapter 8

Related Work

THE concept of natively compile Java code and/or making Java vi-
able for use in systems with hard timing constraints is not new.

There is plenty of both academic and industrial work published, and
this chapter will present some of the more interesting projects.

8.1 Real-Time Java Specifications

There exist two committee driven standards for adapting Java to hard
real-time systems; the Real-Time Specification for Java (RTSJ) from The
Real-Time for Java™ Expert Group (http://www.rtj.org ), and the
Real-Time Core Extensions for Java (RTCE) from the JConsrtium
(http://www.jconsortium.org ).

RTSJ

The RTSJ identifies seven areas where the Java specification must be
enhanced in order to facilitate the use of java in real-time systems. The
intended execution model is that of an enhanced JVM. The seven areas,
with a brief description of the needed enhancement, are as follows:

Thread Scheduling and Dispatching: Schedulable objects are scheduled
by the instance of a Scheduler . The scheduler is priority-based,
but the actual implementation of the scheduler may be replaced.

Memory Management: GC controlled heaps are seen as an obstacle to
achieve good real-time performance. A normal heap is supplied,
but real-time threads must not hold references to objects within it.
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instead, the RTSJ defines three additional memory areas; scoped
memory, physical memory, and immortal memory, in conjunction
with the heap. Objects in scoped memory may only be accessed
from other scoped memory object or local variables, if in visible
scope (same, outer, or shared).

Synchronization: The Java synchronization semantics is strengthened
by mandating priority inversion control by the means of priority
inheritance or priority ceiling algorithms. Wait-free communica-
tion between real-time threads and regular Java threads is also
supplied.

Asynchronous Event Handling: The enhanced support for asynch-
ronous event handling is not real-time specific, but a more effi-
cient way of handling external events in Java applications.

Asynchronous Transfer of Control: A more efficient (and data consis-
tent) way to make a thread abandon its execution, than can be
done using the interrupt() method and the regular exception
mechanism.

Asynchronous Thread Termination: Through a combination of asyn-
chronous event handling and asynchronous transfer of control,
threads may be forced to terminate in a clean an ordered way.

RTCE

The Real-Time Core Extensions (RTCE) has a slightly different approach
to real-time Java than does RTSJ. Instead of enhancing the regular Java
specification, the RTCE defines a set of Core (real-time Java) compo-
nents, which can, but must not, be used together with Baseline (regu-
lar Java) components, in an application. Another difference is that the
RTCE allows for a Core Native Compiler and the possibility to use a
conventional execution model instead of a JVM.

Objects allocated in core memory may not access baseline objects,
and baseline objects may only access core objects via special method
calls. There is also support for stackable (short-lived) core objects.

Findings

The two standards differ in many details, but they do have one large
drawback in common. Instead of focusing on how to solve the real-time
garbage collection problem, they both resort to introducing additional
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memory types which can be used by high priority threads. This will,
in effect, return memory management to the error-prone programmer,
who will have to figure out which objects may reference which other
objects without violating the various memory access rules.

8.2 OOVM

Although not based on Java technology, but on Smalltalk, the OOVM
[Bak03] is nevertheless a very interesting project. It is from the be-
ginning designed for compactness and speed, and preliminary results
show the OOVM speed to be on par, or slightly faster than, the HotSpot
virtual machine, while ROM footprint is considerably smaller than for
the JVM.

The current implementation runs on StrongARM or IA32, and needs
about 128 kB of RAM for the system itself. There is no hard real-time
support currently, but a RTGC is said to be on its way.

8.3 Jepes

The JEPES project [SBCK03] aims at being a high-performance, cus-
tomizable platform for Java in small embedded systems. The target
platforms range from low-end 8-bit micro-controllers with 512 bytes
of RAM, 4KB of ROM, up to 32 bit microprocessors with more than
1MB of RAM. JEPES hence places itself covering the range from javaC-
ard [Sun00b] environments to J2ME [Sun00a] environments.

The authors of JEPES introduce a nice idea, called Interface Directed
Configuration, to specify per-class compile-time configurations in a non-
intrusive way. By implementing an interface, it is possible to e.g. spec-
ify a method of a class as an interrupt handler, and the compiler can
then generate appropriate prolog/epilog code for that handler.

A feature of the JEPES compiler is the use of optimizations to mini-
mize memory (ROM and RAM) usage. By performing a context-
insensitive whole-program data-flow analysis on the application, it has
been shown to reduce some applications to ∼ 20% of the original size.
Optimizations include among others virtual dispatch elimination,
method in-lining, and dead code elimination.
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Findings

JEPES was not originally intended to be used in hard real-time environ-
ments, and thus lacks real-time memory management. JEPES applica-
tions can, though, have a predictable behavior if one does not use any
dynamic memory, all objects must be statically allocated at initialization
time.

8.4 JamaicaVM

Aicas GmBH and IPD Universität Karlsruhe have implemented a com-
bined JVM and Java bytecode-to-native compiler called Jamaica that is
said to comply with hard real-time constraints, see [Sie00, Sie99, SW01].
The Jamaica VM is always responsible for garbage collection and the
task scheduling, while some classes may be natively compiled and call
the VM for services such as memory allocation. The GC principle used
is a non-moving type with fixed memory block size for eliminating ex-
ternal fragmentation. The amount of GC work to do at each object al-
location is scheduled dynamically with respect to the current amount
of free memory, and task latency (also for high priority tasks) will vary
accordingly.

There is some new work going on, involving JamaicaVM, called
HIDOORS, which aims at being a fully fledged Java integrated devel-
opment environment for embedded and real-time systems. No results
have been published, except for a short objectives paper [VSWH02] and
a web-site.

Findings

Not only the varying task latency, but the need for a “bloated”1 VM and
the fact that the fixed size memory block scheme makes linking with
non-GC-aware code modules complicated, make the Jamaica system
inappropriate for small embedded systems and for flexible hard real-
time systems.

8.5 PERC

The PERC Java platform from Newmonics Inc. [NL98] is another exam-
ple of a hybrid platform with alleged hard real-time capabilities. but

1The memory footprint of the Jamaica VM is around 120KB.
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it has a footprint of at least 256KB ROM and 64 KB RAM. Linking in
external code is also not feasible.

8.6 SimpleRTJ

SimpleRTJ [RTJ] is a clean-room implementation of a Java JVM, inten-
ded to run on devices with limited amount of memory. There is sup-
port for multi-threaded applications and a GC-controlled heap, and the
typical memory footprint for the VM is around 20KB.

However, the included GC is of the ordinary three color mark-and-
sweep stop-the-world batch type, and there can thus be no timing guar-
antees in an application running on the SimpleRTJ.

8.7 GCJ

The GCJ is the Java compiler and class library part of the GNU GCC
project [gcj]. It is capable of taking Java source code or byte code as
input, producing Java byte code or a native binary as output. The GCJ
runtime provides the core class library, a garbage collector, and a byte
code interpreter, which makes it possible to run an application in mixed
mode (compiled/interpreted) and to use dynamic loading of classes.

Since GCJ share back-end with the rest of the GCC, it can be config-
ured as a cross-compiler for many types of CPUs, making it suitable for
embedded systems development. The included memory management
is though not intended for use in hard real-time applications, and thus
lacks strict timing guarantees.





"Contrariwise," continued
Tweedledee, "if it was so, it might
be, and if it were so, it would be;
but as it isn’t, it ain’t. That’s logic!"

Lewis Carroll, "Through the
Looking Glass"

Chapter 9

Conclusions

MOTIVATED by the needs to shorten development times, and to im-
prove software quality, in embedded systems development, we

have investigated and experimentally verified the possible benefits
from using more modern programming languages. Modern, safe OO
languages with built-in support for multi-threading, distributed envi-
ronments, and platform independence have been shown to be benefi-
cial in terms of software quality and development time in other soft-
ware areas. We have chosen to use Java as an example of a modern
OO language, but our results should be valid for virtually any, safe, OO
programming language, such as C#.

Important aspects, crucial for the viability of real-time Java, have
been identified. A Java compiler, and accompanying run-time libraries,
have been developed and experimentally verified against these identi-
fied aspects. In order to use safe languages as much as possible, and
to increase efficiency in the compiler development, we used and eval-
uated a new OO compiler construction tool, which also enabled us to
implement optimizations in a new way.

9.1 Real-Time Java

Many of the problems embedded systems developers are faced with,
such as memory leaks and dangling pointers, originate from the use of
unsafe low-level programming languages used. As the complexity of
embedded systems software is constantly increasing (more functional-
ity, more distributed, more flexible), there is clearly need for language
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support to manage the complexity (encapsulation), and to detect pro-
gramming errors as early as possible (safe languages).

Using Java for developing embedded real-time systems can shorten
development time, and also improve the quality of the resulting soft-
ware application. In order to make Java a viable programming lan-
guage for embedded real-time systems development, the following key
aspects have been addressed:

Portability We have successfully ported the run-time environment to
five different thread models (of which four are hard real-time),
executing on four different CPU types ranging from small 8-bit
CPUs, such as the Atmel AVR, to high-end embedded CPUs, such
as the PowerPC and the x86. Due to the diversity of both thread
models and CPU types, we find portability being accomplished
and that porting the run-time environment to yet more platforms
is quite easily done.

Scalability We have shown, by experimental verification, that our
compiled real-time Java scale down pretty well. Multi-threaded
Java applications have been run successfully on platforms with
such severe resource constraints as having only 128 KB ROM and
32 KB RAM (AVR).

Hard Real-Time Execution and Performance By natively compiling
Java, and adding support for RTGC, hard real-time determinism
has been achieved, and verified experimentally. The current GCI
prototype implementation does impose significant overhead,
hampering general execution performance. This overhead is par-
ticularly due to frequent GC synchronization in the compiled
code. GC synchronization overhead can be decreased by a com-
bination of; synchronizing less frequently, more efficient synchro-
nization implementation, and utilizing compile-time knowledge
about the threads’ priorities and run-time behavior, to generate
tailored synchronization schemes. Some ideas on how to improve
general performance is proposed as future work.

Hard Real-Time Communication For distributed embedded real-time
systems, the ability to communicate with other nodes with tim-
ing guarantees is by definition very important. By using a real-
time network protocol in conjunction with a real-time Java ap-
plication, hard real-time communication can be achieved, as has
been shown in [GN04].
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Applicability Experiences clearly indicate that, by providing flexibil-
ity in the choice of GC algorithm and run-time libraries, real-
time Java can be made applicable for many different applications.
Linking a Java application with external non GC-aware code
modules is feasible also in hard real-time systems, if some care
is taken when choosing a GC algorithm.

We have found an inherent limitation associated to linking the Java ap-
plication to legacy, non GC-aware, code modules, where a tradeoff must
be made between thread latency and timing predictability. In all other
cases are our initial requirements fulfilled, and we can argue that Java
can be made feasible for implementing hard real-time systems.

9.2 Compiler Construction

For the construction of a Java compiler, academic state-of-the-art tools
based on RAGs and AOP techniques were used. The compiler was con-
structed in a modular fashion, with a number of aspects for the JastAdd
tool, comprising the normal phases of a compiler; static semantic anal-
ysis, optimizations, and code generation.

Having implemented a compiler for a complete modern OO pro-
gramming language, using the JastAdd tool, we have drawn the fol-
lowing conclusions:

• The OO fashion of the generated AST and the use of semantic
equations renders a very compact, yet apprehensible, compiler
implementation.

• Code analysis, refactorings, and optimizations, can be conve-
niently described as aspects performing computations and trans-
formations on an OO AST.

• Although substantially slower to compile Java applications than
other Java compilers (javac and gcj), it is still fast enough to build
embedded software using standard workstations.

9.3 Contributions

The research contributions in this thesis are related to the two different
research areas, compiler construction and real-time Java. The listing
below is thus divided into two sections to reflect the different research
areas.
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Compiler Construction

• A compiler for a complete real-world object-oriented program-
ming language, Java, has been constructed, and experimentally
verified, using reference attributed grammars and aspect-oriented
programming tools.

• A new way of implementing high-level code optimizations is de-
vised. Using RAG and AOP techniques, code transformations
can be very conveniently implemented as node transformations
on the AST.

• Especially for object-oriented languages, where very complex ex-
pressions are possible, intermediate or back-end code generation
can be very difficult. We have implemented simplifying code
transformations using RAGs and AOP techniques, which appears
to be easier and more elegant than creating a complex code gen-
erator.

Real-time Java

• A prototype implementation of real-time Java, showing that Java
(based on J2SE) is a viable programming language, also for
severely resource-constrained, real-time systems. This is, to our
knowledge, the very first implementation of compiled (efficient)
hard real-time Java.

• The transparent Garbage Collector Interface (GCI), which makes
it possible to generate, or write, code independent of which type
of GC algorithm should be used.

• An implementation of the Java exception mechanism which can
be used together with an incremental RTGC.

• The Latency versus Predictability tradeoff, concerning the use of
non-GC-aware (legacy) code in a real-time Java application, is
brought forward.

9.4 Concluding Remarks

With these conclusions and contributions, we can now look back at the
problem statement in Section 1.3 with more confidence and rephrase
the original question as a statement:
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Standard Java can be used as a programming language on arbi-
trary hardware platforms with varying degrees of real-time-, mem-
ory footprint-, and performance demand.

To make this possible, enhancements to the Java semantics need to be
made. The Java application should be natively compiled in order to
meet memory footprint and performance requirements. In order to
meet real-time requirements, support for (and synchronization with)
RTGC is needed.

An inherent limitation of real-time memory management raises a
tradeoff to be made between latency and predictability when external,
non GC-aware code is needed.

During the implementation of a prototype compiler, we have found
that compiler construction tools based on AOP and RAGs are very ben-
eficial to the compiler development in terms of encapsulation and ex-
pressiveness, and thus also increasing code readability and quality.

And then, finally, due to our contributions and experiences
from a prototype implementation, there are strong reasons
to believe that our main goal is well within reach:

Write once run anywhere, for resource-constrained real-time sys-
tems, is feasible and can become mature enough for industrial us-
age in a near future.
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Appendix A

Acronyms

AG Attribute Grammar

AOP Aspect-Oriented Programming

API Application Programming Interface

AST Abstract Syntax Tree

GC Garbage Collect(ion|or)

GCC GNU Compiler Collection

GCJ GNU Compiler for Java

GCI Garbage Collector Interface

GUI Graphic User Interface

HAL Hardware Abstraction Layer

J2ME Java2 Micro Edition

J2SE Java2 Standard Edition

JDK Java Development Kit

JIT Just-In-Time

JNI Java Native Interface

JRE Java Runtime Environment
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JVM Java Virtual Machine

OO Object-Oriented

OS Operating System

RAG Reference Attribute Grammar

RT Real-Time

RTAI Real-Time Application Interface for Linux

RTCE Real-Time Core Extensions

RTGC Real-Time Garbage Collect(ion|or)

RTSJ Real-Time Specification for Java

RTOS Real-Time Operating System

UI User Interface

WCET Worst-Case Execution Time



Appendix B

Java Grammar

Below is listed the Java context-free grammar used by the JastAdd tool
to produce appropriate AST node types.

CompilationUnit ::= PackageDecl:IdDecl* ImportDecl* Typ eDecl*;

abstract Access : Expr ::= [Env:Expr];// Transformed from N ame
TypeAccess : Access ::= [Env:Expr] <Name:String> <Decl:Ty peDecl> ;
ThisAccess : TypeAccess;
SuperAccess : TypeAccess;
ArrayAccess : Access ::= Env:Expr Expr <Decl:TypeDecl> ;
VarAccess : Access ::= [Env:Expr] <Name:String> <Decl:Var iable> ;
MethodAccess : Access ::= [Env:Expr] Arg:Expr* <Name:Stri ng>

<Decl:MethodDecl>;
ConstructorAccess : Access ::= [Env:Expr] Arg:Expr* <Name :String>

<Decl:ConstructorDecl>;

Name : Access ::= [Expr] ParseName*;
ParseName ::= IdUse Dims*;
ParseMethodName : ParseName ::= IdUse Arg:Expr* Dims*;

ImportDecl ::= IdDecl* [Wildcard];
Wildcard ::= ;

abstract TypeDecl ::= Modifier* IdDecl BodyDecl*;
ClassDecl : TypeDecl ::= Modifier* IdDecl

[SuperClassAccess:Access]
Implements:Access* BodyDecl*;

PrimTypeDecl : ClassDecl ::= Modifier* IdDecl
[SuperClassAccess:Access]
Implements:Access* BodyDecl*;

InterfaceDecl : TypeDecl ::= Modifier* IdDecl
SuperInterfaceId:Access* BodyDecl*;



104 APPENDIX B. JAVA GRAMMAR

ArrayDecl : ClassDecl ::= Modifier* IdDecl
[SuperClassAccess:Access]
Implements:Access* BodyDecl*
<ElementType:TypeDecl> <Dimension:int>;

abstract BodyDecl;
InitializerDecl : BodyDecl ::= Modifier* Block;
ConstructorDecl : BodyDecl ::= Modifier* IdDecl Parameter *

Exception:Access* Block;

FieldDecl : BodyDecl ::= Modifier* TypeAccess VariableDec l*;
FieldDeclaration : BodyDecl ::= Modifier* TypeAccess IdDe cl

[AbstractVarInit];
// Simplified FieldDecl

VarDeclStmt : Stmt ::= Modifier* TypeAccess VariableDecl* ;
VariableDeclaration : Stmt ::= Modifier* TypeAccess IdDec l

[AbstractVarInit];
// Simplified VarDeclStmt

VariableDecl ::= IdDecl EmptyBracket* [AbstractVarInit] ;

Parameter ::= Modifier* TypeAccess IdDecl EmptyBracket*;
ParameterDeclaration : Parameter ::= Modifier* TypeAcces s

IdDecl;
// Simplified Parameter

EmptyBracket;

abstract AbstractVarInit;
VarInit : AbstractVarInit ::= Expr;
ArrayInit : AbstractVarInit ::= AbstractVarInit*;

MethodDecl : BodyDecl ::= Modifier* TypeAccess IdDecl Para meter*
EmptyBracket* Exception:Access*
[Block]; // Create simplified version

abstract InnerType : BodyDecl ::= TypeDecl;
InnerClass : InnerType ::= ClassDecl;
InnerInterface : InnerType ::= InterfaceDecl;

IdDecl ::= <ID>;
IdUse ::= <ID>;

abstract Expr;

abstract AssignExpr : Expr ::= Dest:Expr Source:Expr;

AssignSimpleExpr : AssignExpr ;
AssignMulExpr : AssignExpr ;
AssignDivExpr : AssignExpr ;
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AssignModExpr : AssignExpr ;
AssignPlusExpr : AssignExpr ;
AssignMinusExpr : AssignExpr ;
AssignLShiftExpr : AssignExpr ;
AssignRShiftExpr : AssignExpr ;
AssignURShiftExpr : AssignExpr ;
AssignAndExpr : AssignExpr ;
AssignXorExpr : AssignExpr ;
AssignOrExpr : AssignExpr ;

abstract PrimaryExpr : Expr;
abstract Literal : PrimaryExpr ::= <LITERAL>;
IntegerLiteral : Literal ;
FPLiteral : Literal ;
BooleanLiteral : Literal ;
CharLiteral : Literal ;
StringLiteral : Literal ;
NullLiteral : Literal ;

ParExpr : PrimaryExpr ::= Expr;

StringLiteralExpr : PrimaryExpr ::= StringLiteral;

PrimTypeClassExpr : PrimaryExpr ::= <ID>;

abstract InstanceExpr : PrimaryExpr;
ClassInstanceExpr : InstanceExpr ::= Access Arg:Expr* [Cl assDecl];
ArrayInstanceExpr : InstanceExpr ::= TypeAccess Dims* [Ar rayInit];
Dims ::= [Expr];

abstract Unary : Expr ::= Operand:Expr;
PreIncExpr : Unary ;
PreDecExpr : Unary ;
MinusExpr : Unary ;
PlusExpr : Unary ;
BitNotExpr : Unary ;
LogNotExpr : Unary ;

CastExpr : Unary ::= TypeAccess Expr;

abstract PostfixExpr : Unary;
PostIncExpr : PostfixExpr ;
PostDecExpr : PostfixExpr ;

abstract Binary : Expr ::= LeftOperand:Expr RightOperand: Expr;

abstract ArithmeticExpr : Binary;
MulExpr : ArithmeticExpr ;
DivExpr : ArithmeticExpr ;
ModExpr : ArithmeticExpr ;
AddExpr : ArithmeticExpr ;
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SubExpr : ArithmeticExpr ;

abstract BitwiseExpr : Binary;
LShiftExpr : BitwiseExpr ;
RShiftExpr : BitwiseExpr ;
URShiftExpr : BitwiseExpr ;
AndBitwiseExpr : BitwiseExpr ;
OrBitwiseExpr : BitwiseExpr ;
XorBitwiseExpr : BitwiseExpr ;

abstract RelationalExpr : Binary;
LTExpr : RelationalExpr ;
GTExpr : RelationalExpr ;
LEExpr : RelationalExpr ;
GEExpr : RelationalExpr ;
EQExpr : RelationalExpr ;
NEExpr : RelationalExpr ;

InstanceOfExpr : RelationalExpr ::= Expr TypeAccess;

abstract LogicalExpr : Binary;
AndLogicalExpr : LogicalExpr ;
OrLogicalExpr : LogicalExpr ;

QuestionColonExpr : Expr ::= Condition:Expr TrueExpr:Exp r
FalseExpr:Expr;

Modifier ::= <ID>;

// Statements

abstract Stmt;
Block : Stmt ::= Stmt*;
EmptyStmt : Stmt;
LabelStmt : Stmt ::= Label:IdDecl Stmt;
ExprStmt : Stmt ::= Expr;

SwitchStmt : Stmt ::= Expr Case*;
abstract Case;
ConstCase : Case ::= Value:Expr Stmt*;
DefaultCase : Case ::= Stmt*;

IfStmt : Stmt ::= Condition:Expr Then:Stmt [Else:Stmt];

WhileStmt : Stmt ::= Condition:Expr Stmt;

DoStmt : Stmt ::= Stmt Condition:Expr;

ForStmt : Stmt ::= InitStmt:Stmt* [Condition:Expr]
UpdateStmt:Stmt* Stmt;
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BreakStmt : Stmt ::= [Label:IdUse];
ContinueStmt : Stmt ::= [Label:IdUse];

ReturnStmt : Stmt ::= [Result:Expr];

ThrowStmt : Stmt ::= Expr;

SynchronizeStmt : Stmt ::= Expr Block;

TryStmt : Stmt ::= Block Catch* [Finally:Block];
Catch ::= Parameter Block;

abstract TypeDeclStmt : Stmt ::= TypeDecl;
ClassDeclStmt : TypeDeclStmt ::= ClassDecl;
InterfaceDeclStmt : TypeDeclStmt ::= InterfaceDecl;


