Greedy graph algorithms

- Dijkstra’s algorithm
- Prim’s algorithm
- Kruskal’s algorithm
- Union-find data structure with path compression
What is the shortest path from a to n?

To every other node?

How can we find these paths efficiently?

For navigation, the edge weights are positive distances (obviously)

For some other graphs the weights can be a positive or negative cost

The problem is easier with positive weights
Dijkstra’s algorithm

- Given a directed graph \(G(V, E) \), a weight function \(w : E \rightarrow R \), and a node \(s \in V \), Dijkstra’s algorithm computes the shortest paths from \(s \) to every other node.
- The sum of all edge weights on a path should be minimized.
- A weight can e.g. mean metric distance, cost, or travelling time.
- For this algorithm, we assume the weights are nonnegative numbers.
Dijkstra's algorithm — overview

- input \(w(e) \) weight of edge \(e = (u, v) \). We also write \(w(u, v) \)
- output \(d(v) \) shortest path distance from \(s \) to \(v \) for \(v \in V \)
- output \(\text{pred}(v) \) predecessor of \(v \) in shortest path from \(s \) to \(v \in V \)
- A set \(Q \) of nodes for which we have not yet found the shortest path
- A set \(S \) of nodes for which we have already found the shortest path

procedure \(\text{dijkstra}(G, s) \)

\[
\begin{align*}
&d(s) \leftarrow 0 \\
&Q \leftarrow V - \{s\} \\
&S \leftarrow \{s\} \\
\text{while } Q \neq \emptyset &\\
&\text{select } v \text{ which minimizes } d(u) + w(e) \text{ where } u \in S, v \notin S, e = (u, v) \\
&d(v) \leftarrow d(u) + w(e) \\
&\text{pred}(v) \leftarrow u \\
&\text{remove } v \text{ from } Q \\
&\text{add } v \text{ to } S
\end{align*}
\]
Shortest paths

- Only b has a predecessor in S
- $d(b) \leftarrow 4$
- $\text{pred}(b) \leftarrow a$
- $S \leftarrow \{a, b\}$
Shortest paths

- $d(b) + w(b, d) = 4 + 2 = 6$
- $d(b) + w(b, h) = 4 + 21 = 25$
- d minimizes $d(u) + w(u, v)$
- $d(d) \leftarrow 6$
- $pred(d) \leftarrow b$
- $S \leftarrow \{a, b, d\}$
Shortest paths

- $d(b) + w(b, h) = 4 + 21 = 25$
- $d(d) + w(d, c) = 6 + 8 = 14$
- $d(d) + w(d, g) = 6 + 13 = 19$
- c minimizes $d(u) + w(u, v)$
- $d(c) \leftarrow 14$
- $\text{pred}(c) \leftarrow d$
- $S \leftarrow \{a, b, c, d\}$
Shortest paths

- $d(b) + w(b, h) = 4 + 21 = 25$
- $d(d) + w(d, g) = 6 + 13 = 19$
- $d(c) + w(c, e) = 14 + 3 = 17$
- e minimizes $d(u) + w(u, v)$
- $d(e) \leftarrow 17$
- $pred(e) \leftarrow c$
- $S \leftarrow \{a, b, c, d, e\}$
Shortest paths

- $d(b) + w(b, h) = 4 + 21 = 25$
- $d(d) + w(d, g) = 6 + 13 = 19$
- $d(e) + w(e, f) = 17 + 9 = 26$
- g minimizes $d(u) + w(u, v)$
- $d(g) \leftarrow 19$
- $\text{pred}(g) \leftarrow d$
- $S \leftarrow \{a, b, c, d, e, g\}$
Shortest paths

- \(d(b) + w(b, h) = 4 + 21 = 25 \)
- \(d(e) + w(e, f) = 17 + 9 = 26 \)
- \(d(g) + w(g, h) = 19 + 7 = 26 \)
- \(d(g) + w(g, j) = 19 + 3 = 22 \)
- \(j \) minimizes \(d(u) + w(u, v) \)
- \(d(j) \leftarrow 22 \)
- \(\text{pred}(j) \leftarrow g \)
- \(S \leftarrow \{ a, b, c, d, e, g, j \} \)
Shortest paths

\begin{itemize}
 \item \(d(b) + w(b, h) = 4 + 21 = 25\)
 \item \(d(e) + w(e, f) = 17 + 9 = 26\)
 \item \(d(g) + w(g, h) = 19 + 7 = 26\)
 \item \(d(j) + w(j, m) = 22 + 3 = 25\)
 \item \(h\) and \(m\) minimize
 \[d(u) + w(u, v)\]
 \item We can take any of them
 \item \(d(h) \leftarrow 25\)
 \item \(\text{pred}(h) \leftarrow b\)
 \item \(S \leftarrow \{a, b, c, d, e, g, h, j\}\)
\end{itemize}
Shortest paths

- $d(e) + w(e, f) = 17 + 9 = 26$
- $d(j) + w(j, m) = 22 + 3 = 25$
- $d(h) + w(h, k) = 25 + 6 = 27$
- m minimizes $d(u) + w(u, v)$
- $d(m) \leftarrow 25$
- $pred(m) \leftarrow j$
- $S \leftarrow \{ a, b, c, d, e, g, h, j, m \}$
Shortest paths

- $d(e) + w(e, f) = 17 + 9 = 26$
- $d(h) + w(h, k) = 25 + 6 = 27$
- $d(m) + w(m, n) = 25 + 5 = 30$
- f minimizes $d(u) + w(u, v)$
- $d(f) \leftarrow 26$
- $pred(f) \leftarrow e$
- $S \leftarrow \{a, b, c, d, e, f, g, h, j, m\}$
Shortest paths

- $d(h) + w(h, k) = 25 + 6 = 27$
- $d(m) + w(m, n) = 25 + 5 = 30$
- $d(f) + w(f, i) = 26 + 6 = 32$
- k minimizes $d(u) + w(u, v)$
- $d(k) \leftarrow 27$
- $\text{pred}(k) \leftarrow h$
- $S \leftarrow \{a - h, j, k, m\}$
Shortest paths

- $d(m) + w(m, n) = 25 + 5 = 30$
- $d(f) + w(f, i) = 26 + 6 = 32$
- n minimizes $d(u) + w(u, v)$
- $d(n) \leftarrow 30$
- $pred(k) \leftarrow h$
- $S \leftarrow \{a - k, m, n\}$
Shortest paths

\[d(f) + w(f, i) = 26 + 6 = 32 \]

Only \(i \) possible

\[d(i) \leftarrow 32 \]

\[\text{pred}(i) \leftarrow f \]

\[S \leftarrow \{ a - k, m, n \} \]
Shortest paths

\[d(i) + w(i, l) = 32 + 1 = 33 \]

Only \(l \) possible

\[d(l) \leftarrow 33 \]

\[\text{pred}(l) \leftarrow i \]

\[S \leftarrow \{ a - n \} \]
Observations about Dijkstra’s algorithm

- We only add an edge when it really is to the node which is closest to the start vertex.
- To print the shortest path from s to any node v, simply print v and follow the $\text{pred}(v)$ attributes.
Dijkstra’s algorithm

Theorem

For each node \(v \in S \), \(d(v) \) is the length of the shortest path from \(s \) to \(v \).

Proof.

- We use induction with base case \(|S| = 1 \) which is true since \(S = \{s\} \) and \(d(s) = 0 \).
- Inductive hypothesis: Assume theorem is true for \(|S| \geq 1 \).
- Let \(v \) be the next node added to \(S \), and \(\text{pred}(v) = u \).
- \(d(v) = d(u) + w(e) \) where \(e = (u, v) \).
- Assume in contradiction there exists a shorter path from \(s \) to \(v \) containing the edge \((x, y) \) with \(x \in S \) and \(y \not\in S \), followed by the subpath from \(y \) to \(v \).
- Since the path via \(y \) to \(v \) is shorter than the path from \(u \) to \(v \), \(d(y) < d(v) \) but it is not since \(v \) is chosen and not \(y \). A contradiction which means no shorter path to \(v \) exists.
Recall

procedure $dijkstra(G, s)$

$$d(s) \leftarrow 0$$

$Q \leftarrow V - \{s\}$

$S \leftarrow \{s\}$

while $Q \neq \emptyset$

- select v which minimizes $d(u) + w(e)$ where $u \in S$, $v \not\in S$, $e = (u, v)$

- $d(v) \leftarrow d(u) + w(e)$

- $pred(v) \leftarrow u$

- remove v from Q

- add v to S

- We use a heap priority queue for Q with $d(v)$ as keys.

- For $v \neq s$ we initially set $d(v) \leftarrow \infty$ and then decrease it.
Running time of Dijkstra’s algorithm

- Assume \(n \) nodes and \(m \) edges
- Constructing \(Q \): \(O(n) \) using heapify (but \(O(n \log n) \) using \(n \) inserts)
- Heapify is called init_heap in C and pseudo-code in the book
- \(O(n) \) iterations of the while loop
- Each selected node must check each neighbor not in \(S \) and possibly reduce its key
- \(O(m \log n) \) operations for reducing keys
- With all nodes reachable from \(s \), we have \(m \geq n - 1 \)
- Therefore \((m \log n) \) running time
Assume the nodes are cities and a country wants to build an electrical network.

- The edge weights are the costs of connecting two cities.
- We want to find a subset of the edges so that all cities are connected, and which minimizes the cost.
- This problem was suggested to the Czech mathematician Otakar Borůvka during World War I for Mähren.
The minimum spanning tree problem

- In 1926 Borůvka published the first paper on finding the **minimum spanning tree**.
- It is an abbreviation of **minimum-weight spanning tree**.
- It has been regarded as the cradle of combinatorial optimization.
- Borůvka’s algorithm has been rediscovered several times: Choquet 1938, by Florek, Lukasiewicz, Steinhaus, and Zubrzycki 1951 and by Sollin 1965.
- We will study two classic algorithms for this problem:
 - Prim’s algorithm, and
 - Kruskal’s algorithm
- One of the currently fastest MST algorithm by Chazelle 2000 is based on Borůvka’s algorithm.
Consider a connected undirected graph $G(V, E)$

If $T \subseteq E$ and (V, T) is a tree, it is called a spanning tree of $G(V, E)$

Given edge costs $c(e)$, a (V, T) is a minimum spanning tree, or MST of G such that the sum of the edge costs is minimized.

Prim’s algorithm is similar to Dijkstra’s and grows one MST

Kruskal’s algorithm instead creates a forest which eventually becomes one MST
A root node s must first be selected.
Any will do.
How can we know which edge to add next?
Is it possible to do it with a greedy algorithm?
Compare with the Traveling Salesman Problem! (JS/Section 6.6)
TSP searches a path from one node which visits all nodes and returns.
TSP asks if there is such a tour of cost at most x?
We will next learn a rule which Prim’s and Kruskal’s algorithm rely on. It determines when it is safe to add a certain edge \((u, v)\).

A partition \((S, V - S)\) of the nodes \(V\) is called a cut.

An edge \((u, v)\) crosses the cut if \(u \in S\) and \(v \in V - S\).

Let \(A \subseteq E\) and \(A\) be a subset of the edges in some minimum spanning tree of \(G\).

\(A\) does not necessarily create a connected graph — \(A\) is applicable to both Prim’s and Kruskal’s algorithms and represents the edges selected so far.

An edge \((u, v)\) is safe if \(A \cup \{(u, v)\}\) is also a subset of the edges in some MST.

So how can we determine if an edge is safe?
Safe edges

Lemma

Assume A is a subset of the edges in some minimum spanning tree of G, $(S, V - S)$ is any cut of V, and no edge in A crosses $(S, V - S)$. Then every edge (u, v) with minimum weight, $u \in S$, and $v \in V - S$ is safe.

Proof.

- Assume $T \subseteq E$ is a minimum spanning tree of G.
- We have either $(u, v) \in T$ (in which case we are done) or $(u, v) \notin T$.
- Without loss of generality we can assume $u \in S$ and $v \in V - S$.
- There is a path p in T which connects u and v.
- Therefore $T \cup \{(u, v)\}$ creates a cycle with p.
- There is an edge $(x, y) \in T$ which also crosses $(S, V - S)$ and by assumption $(x, y) \notin A$.
Proof.

- Since T is a minimum spanning tree, it has only one path from u to v.
- Removing (x, y) from T partitions V and adding (u, v) creates a new spanning tree U
 \[U = (T - \{(x, y)\}) \cup \{(u, v)\} \]
- Since (u, v) has minimum weight, $w(U) \leq w(T)$, and since T is a minimum spanning tree, $w(U) = w(T)$
- Since $A \cup (u, v) \subseteq U$, (u, v) is safe for A
Prim’s algorithm — overview

- input $w(e)$ weight of edge $e = (u, v)$. We also write $w(u, v)$
- a root node $r \in V$
- output minimum spanning tree T

procedure $prim(G, r)$

- $T \leftarrow \emptyset$
- $Q \leftarrow V - \{r\}$
- while $Q \neq \emptyset$
 - select a v which minimizes $w(e)$ where $u \notin Q$, $v \in Q$, $e = (u, v)$
 - remove v from Q
 - add (u, v) to T
- return T

We use a heap priority queue for Q with $d(v)$, the distance to any node in $V - Q$, as keys.
Prim’s algorithm has the same running time as for Dijkstra’s algorithm
Assume n nodes and m edges
Constructing Q: $O(n)$ using heapify (but $O(n \log n)$ using n inserts)
$O(n)$ iterations of the while loop
Each selected node must check each neighbor not in S and possibly reduce its key
$O(m \log n)$ operations for reducing keys
With all nodes reachable from s, we have $m \geq n - 1$
Therefore $(m \log n)$ running time
Kruskal’s algorithm — overview

- input $w(e)$ weight of edge $e = (u, v)$. We also write $w(u, v)$
- output minimum spanning tree T

procedure $\text{kruskal}(G)$

$T \leftarrow \emptyset$

$B \leftarrow E$

while $B \neq \emptyset$

select an edge e with minimal weight

if $T \cup \{e\}$ does not create a cycle **then**

add e to T

remove e from B

return T

- How can we detect cycles?
The union-find data structure

- Consider a set, such as with n nodes of a graph
- A union-find data structure lets us:
 - Create an initial partitioning $\{p_0, p_1, \ldots, p_{n-1}\}$ with n sets consisting of one element each
 - Merge two sets p_i and p_j
 - Check which set an elements belongs to
- The merge operation is called **union**
- The check set operation is called **find**
- We can use this as follows:
 - A set represents a connected subgraph and initially consists of one node
 - When we add an edge (u, v) to the minimum spanning tree, we need to
 - Find the set p_u with u
 - Find the set p_v with v
 - Ignore (u, v) if $\text{find}(u) = \text{find}(v)$
 - Note that the two subgraphs are connected using union otherwise
How should the sets p_i be "named"?

It is only essential that two different sets have different names.

It is suitable to let the node v be the initial name of p_v.

Thus no extra data type is needed. We simply add an attribute to the node.

Then after a union operation with u and v we set one of the nodes as the name of the merged set.

Assume we use u as the name. Then v needs a way to find u.

For this the node attribute $parent(v) = u$.

Code for find: if $parent(v) == \text{null}$ then v else $parent(v)$.
Refer to Section 3.7 of JS.

Using both path compression and union-by-size (or union-by-rank), the time complexity of m find and n union operations is:

\[
\begin{align*}
\Theta(m\alpha(m, n)) & \quad m \geq n \\
\Theta(n + m\alpha(m, n)) & \quad m < n
\end{align*}
\]

\[\alpha(m, n) \leq 4 \text{ for all practical values of } m \text{ and } n\]
Running time of Kruskal’s algorithm

- Assume \(n \) nodes and \(m \) edges and \(m > n \)
- Sorting the edges: \(O(m \log m) \)
- Adding an edge \((v, w)\) would create a cycle if \(\text{find}(v) = \text{find}(w) \)
- There are \(m \) edges so we do at most \(2m \) find operations
- A tree has \(n - 1 \) edges so we do \(n - 1 \) union operations
- From previous slide the complexity of these union-find operations is \(\Theta(m\alpha(m, n)) \)
- We can conclude that sorting the edges is more costly than the union-find operations so the running time of Kruskal’s algorithm is \(O(m \log m) \)
- We have \(m \leq n^2 \)
- Therefore \(O(m \log m) = O(m \log n^2) = O(m^2 \log n) = O(m \log n) \)
- I.e. the same as for Prim’s algorithm.