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Chapter 1

Introduction

This manual contains the specification of the nodes and fields of the .wbt world description
language used in Webots. It also specifies the functions available to operate on these nodes from
controller programs.

The Webots nodes and APIs are open specifications which can be freely reused without autho-
rization from Cyberbotics. The Webots API can be freely ported and adapted to operate on
any robotics platform using the remote-control and/or the cross-compilation frameworks. Cy-
berbotics offers support to help developers implementing the Webots API on real robots. This
benefits to the robotics community by improving interoperability between different robotics ap-
plications.

1.1 Nodes and Functions

1.1.1 Nodes

Webots nodes listed in this reference are described using standard VRML syntax. Principally,
Webots uses a subset of the VRML97 nodes and fields, but it also defines additional nodes and
fields specific to robotic definitions. For example, the Webots WorldInfo and Sphere nodes
have additional fields with respect to VRML97.

1.1.2 Functions

This manual covers all the functions of the controller API, necessary to program robots. The
C prototypes of these functions are described under the SYNOPSIS tag. The prototypes for the
other languages are available through hyperlinks or directly in chapter 9. The language-related
particularities mentioned under the label called C++ Note, Java Note, Python Note, Matlab Note,
etc.

15
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1.1.3 Remote Control

The C, C++, Java or the Python API can be used for programming a remotely controlled e-puck,
Khepera or Aibo robot. This can be achieved through the robot window in the Webots graphical
user interface.

1.1.4 Cross-compilation

A number of limitations is inherent to the cross-compilation of controllers using the Webots API.
These limitations are often consequences of the limitations of the real robots. For example, the
Khepera robot can be programmed in C only, and not in C++. Please read the robot-specific chap-
ters in the Webots User Guide for a description of the limitations and programming languages
available for each robotic platform.

1.2 ODE: Open Dynamics Engine

Webots relies on ODE, the Open Dynamics Engine, for physics simulation. Hence, some Webots
parameters, structures or concepts refer to ODE. The Webots documentation does not, however,
duplicate or replace the ODE documentation. Hence, it is recommended to consult the ODE
documentation to understand these parameters, structures or concepts. This ODE documentation
is available online from the ODE web site1.

1.3 GUI Programming for Controller Programs

The programming of graphical user interfaces (GUI) is not covered in this manual since Webots
can use any GUI library for creating user interfaces for controllers (including GTK+, wxWidgets,
MFC, Swing, etc.). An example of using wxWidgets as a GUI for a Webots controller is provided
in the wxgui controller sample included within the Webots distribution.

1http://www.ode.org

http://www.ode.org


Chapter 2

Node Chart

2.1 Chart

The Webots Node Chart outlines all the nodes available to build Webots worlds.

In the chart, an arrow between two nodes represents an inheritance relationship. The inheritance
relationship indicates that a derived node (at the arrow tail) inherits all the fields and API func-
tions of a base node (at the arrow head). For example, the Supervisor node inherits from
the Robot node, and therefore all the fields and functions available in the Robot node are also
available in the Supervisor node.

Boxes depicted with a dashed line (Light, Device and Geometry) represent abstract nodes,
that is, nodes that cannot be instantiated (either using the SceneTree or in a .wbt file). Abstract
nodes are used to group common fields and functions that are shared by derived nodes.

A box with round corners represents a Geometry node; that is, a node that will be graphically
depicted when placed in the geometry field of a Shape node.

A box with a grey background indicates a node that can be used directly (or composed using
Group and Transform nodes) to build a boundingObject used to detect collisions between
Solid objects. Note that not all geometry nodes can be used as boundingObjects, and that
although Group and Transform can be used, not every combination of these will work cor-
rectly.

17
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Figure 2.1: Webots Nodes Chart



Chapter 3

Nodes and API Functions

3.1 Accelerometer

Derived from Device.

Accelerometer {
MFVec3f lookupTable [] # interpolation
SFBool xAxis TRUE # compute x-axis
SFBool yAxis TRUE # compute y-axis
SFBool zAxis TRUE # compute z-axis

}

3.1.1 Description

The Accelerometer node can be used to model accelerometer devices such as those com-
monly found in mobile electronics, robots and game input devices. The Accelerometer
node measures acceleration and gravity induced reaction forces over 1, 2 or 3 axes. It can be
used for example to detect fall, the up/down direction, etc.

3.1.2 Field Summary

• lookupTable: This field optionally specifies a lookup table that can be used for map-
ping the raw acceleration values [m/s2] to device specific output values. With the lookup
table it is also possible to add noise and to define the min and max output values. By de-
fault the lookup table is empty and therefore the raw acceleration values are returned (no
mapping).

• xAxis, yAxis, zAxis: Each of these boolean fields enables or disables computa-
tion for the specified axis. If one of these fields is set to FALSE, then the corresponding

19
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vector element will not be computed and will return NaN (Not a Number). For example, if
zAxis is FALSE, then wb accelerometer get values()[2] will always return
NaN. The default is that all three axes are enabled (TRUE). Modifying these fields makes it
possible to choose between a single, dual or three-axis accelerometer and to specify which
axes will be used.

3.1.3 Accelerometer Functions

NAME

wb accelerometer enable,
wb accelerometer disable,
wb accelerometer get sampling period,
wb accelerometer get values – enable, disable and read the output of the accelerometer

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/accelerometer.h>

void wb accelerometer enable (WbDeviceTag tag, int ms);

void wb accelerometer disable (WbDeviceTag tag);

int wb accelerometer get sampling period (WbDeviceTag tag);

const double *wb accelerometer get values (WbDeviceTag tag);

DESCRIPTION

The wb accelerometer enable() function allows the user to enable the acceleration mea-
surement each ms milliseconds.

The wb accelerometer disable() function turns the accelerometer off, saving compu-
tation time.

The wb accelerometer get sampling period() function returns the period given into
the wb accelerometer enable() function, or 0 if the device is disabled.

The wb accelerometer get values() function returns the current values measured by
the Accelerometer. These values are returned as a 3D-vector, therefore only the indices 0,
1, and 2 are valid for accessing the vector. Each element of the vector represents the acceleration
along the corresponding axis of the Accelerometer node, expressed in meters per second
squared [m/s2]. The first element corresponds to the x-axis, the second element to the y-axis, etc.
An Accelerometer at rest with earth’s gravity will indicate 1 g (9.81 m/s2) along the vertical
axis. Note that the gravity can be specified in the gravity field in the WorldInfo node. To
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obtain the acceleration due to motion alone, this offset must be subtracted. The device’s output
will be zero during free fall when no offset is substracted.

language: C, C++
The returned vector is a pointer to the internal values managed by the Ac-
celerometer node, therefore it is illegal to free this pointer. Furthermore,
note that the pointed values are only valid until the next call to wb robot -
step() or Robot::step(). If these values are needed for a longer pe-
riod they must be copied.

language: Python
getValues() returns the 3D-vector as a list containing three floats.

3.2 Appearance

Appearance {
SFNode material NULL
SFNode texture NULL
SFNode textureTransform NULL

}

3.2.1 Description

The Appearance node specifies the visual properties of a geometric node. The value for each
of the fields in this node may be NULL. However, if the field is non-NULL, it shall contain one
node of the appropriate type.

3.2.2 Field Summary

• The material field, if specified, shall contain a Material node. If the material
field is NULL or unspecified, lighting is off (all lights are ignored during rendering of the
object that references this Appearance) and the unlit object color is (1,1,1).

• The texture field, if specified, shall contain an ImageTexture node. If the tex-
ture node is NULL or the texture field is unspecified, the object that references this
Appearance is not textured.

• The textureTransform field, if specified, shall contain a TextureTransform
node. If the textureTransform is NULL or unspecified, the textureTransform
field has no effect.
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3.3 Background

Background {
MFColor skyColor [ 0 0 0 ] # [0,1]

}

The Background node defines the background used for rendering the 3D world. The sky-
Color field defines the red, green and blue components of this color. Only the three first float
values of the skyColor field are used.

3.4 Box

Box {
SFVec3f size 2 2 2 # (-inf,inf)

}

3.4.1 Description

The Box node specifies a rectangular parallelepiped box centered at (0,0,0) in the local coordi-
nate system and aligned with the local coordinate axes. By default, the box measures 2 meters in
each dimension, from -1 to +1.

The size field specifies the extents of the box along the x-, y-, and z-axes respectively. See
figure 3.1. Three positive values display the outside faces while three negative values display the
inside faces.

Textures are applied individually to each face of the box. On the front (+z), back (-z), right (+x),
and left (-x) faces of the box, when viewed from the outside with the +y-axis up, the texture is
mapped onto each face with the same orientation as if the image were displayed normally in 2D.
On the top face of the box (+y), when viewed from above and looking down the y-axis toward the
origin with the -z-axis as the view up direction, the texture is mapped onto the face with the same
orientation as if the image were displayed normally in 2D. On the bottom face of the box (-y),
when viewed from below looking up the y-axis toward the origin with the +Z-axis as the view
up direction, the texture is mapped onto the face with the same orientation as if the image were
displayed normally in 2D. TextureTransform affects the texture coordinates of the Box.

3.5 Camera

Derived from Device.

Camera {
SFFloat fieldOfView 0.7854
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Figure 3.1: Box node

SFInt32 width 64
SFInt32 height 64
SFString type "color"
SFBool spherical FALSE
SFFloat near 0.01
SFFloat maxRange 1.0
SFVec2f windowPosition 0 0
SFFloat pixelSize 1.0
SFBool antiAliasing FALSE
SFFloat colorNoise 0.0
SFFloat rangeNoise 0.0
SFNode zoom NULL

}

3.5.1 Description

The Camera node is used to model a robot’s on-board camera, a range-finder, or both simulta-
neously. The resulted image can be displayed on the 3D window. Depending on its setup, the
Camera node can model a linear camera, a lidar device, a Microsoft Kinect or even a biological
eye which is spherically distorted.
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3.5.2 Field Summary

• fieldOfView: horizontal field of view angle of the camera. The value ranges from 0
to π radians. Since camera pixels are squares, the vertical field of view can be computed
from the width, height and horizontal fieldOfView:

vertical FOV = fieldOfView * height / width

• width: width of the image in pixels

• height: height of the image in pixels

• type: type of the camera: ”color”, ”range-finder” or ”both”. The camera types are de-
scribed precisely in the corresponding subsection below.

• spherical: switch between a planar or a spherical projection. A spherical projection
can be used for example to simulate a biological eye or a lidar device. More information
on spherical projection in the corresponding subsection below.

• The near field defines the distance from the camera to the near clipping plane. This
plane is parallel to the camera retina (i.e. projection plane). The near field determines the
precision of the OpenGL depth buffer. A too small value produces depth fighting between
overlaid polygons, resulting in random polygon overlaps. More information on frustums
in the corresponding subsection below.

• The maxRange field is used only when the camera is a range-finder. In this case, maxRange
defines the distance between the camera and the far clipping plane. The far clipping plane
is not set to infinity. This field defines the maximum range that a range-finder can achieve
and so the maximum possible value of the range image (in meter).

• The windowPosition field defines a position in the main 3D window where the camera
image will be displayed. The X and Y values for this position are floating point values
between 0.0 and 1.0. They specify the position of the center of the camera image, relatively
to the top left corner of the main 3D view. This position will scale whenever the main
window is resized. Also, the user can drag and drop this camera image in the main Webots
window using the mouse. This will affect the X and Y position values.

• The pixelSize field defines the zoom factor for camera images rendered in the main
Webots window (see the windowPosition description). Setting a pixelSize value
higher than 1 is useful to better see each individual pixel of the camera image. Setting it to
0 simply turns off the display of the camera image, thus saving computation time.

• The antiAliasing field switches on or off (the default) anti-aliasing effect on the cam-
era images. Anti-aliasing is a technique that assigns pixel colors based on the fraction
of the pixel’s area that’s covered by the primitives being rendered. Anti-aliasing makes
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graphics more smooth and pleasing to the eye by reducing aliasing artifacts. Aliasing arti-
facts can appear as jagged edges (or moiré patterns, strobing, etc.). Anti-aliasing will not
be applied if it is not supported by the hardware.

• If the colorNoise field is greater than 0.0, this adds a gaussian noise to each RGB
channel of a color image. This field is useless in case of range-finder cameras. A value
of 0.0 corresponds to remove the noise and thus saving computation time. A value of
1.0 corresponds to a gaussian noise having a standard derivation of 255 in the channel
representation. More information on noise in the corresponding subsection below.

• If the rangeNoise field is greater than 0.0, this adds a gaussian noise to each depth
value of a range-finder image. This field is useless in case of color cameras. A value of
0.0 corresponds to remove the noise and thus saving computation time. A value of 1.0
corresponds to a gaussian noise having a standard derivation of maxRange meters. More
information on noise in the corresponding subsection below.

• The zoom field may contain a CameraZoom node to provide the camera device with a
controllable zoom system. If this field is set to NULL, then no zoom is available on the
camera device.

3.5.3 Camera Type

The camera type can be setup by the type field described above.

Color

The color camera allows to get color information from the OpenGL context of the camera. This
information can be get by the wb camera get image function, while the red, green and blue
channels (RGB) can be extracted from the resulted image by the wb camera image get *-
like functions.

Internally when the camera is refreshed, an OpenGL context is created, and the color or depth
information is copied into the buffer which can be get throught the wb camera get image
or the wb camera get range image functions. The format of these buffers are respectively
BGRA (32 bits) and float (16 bits). We recommend to use the wb camera image get *-like
functions to access the buffer because the internal format can changed.

Range-Finder

The range-finder camera allows to get depth information (in meters) from the OpenGL con-
text of the camera. This information is obtained through the wb camera get range image
function, while depth information can be extracted from the returned image by using the wb -
camera range image get depth function.
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Internally when the camera is refreshed, an OpenGL context is created, and the z-buffer is copied
into a buffer of float. As the z-buffer contains scaled and logarithmic values, an algorithm
linearizes the buffer to metric values between near and maxRange. This is the buffer which is
accessible by the wb camera get range image function.

Both

This type of camera allows to get both the color data and the range-finder data in the returned
buffer using the same OpenGL context. This has been introduced for optimization reasons,
mainly for the Microsoft Kinect device, as creating the OpenGL context is costly. The color
image and the depth data are obtained by using the wb camera get image and the wb -
camera get range image functions as described above.

3.5.4 Frustum

The frustum is the truncated pyramid defining what is visible from the camera. Any 3D shape
completely outside this frustum won’t be rendered. Hence, shapes located too close to the cam-
era (standing between the camera and the near plane) won’t appear. It can be displayed with
magenta lines by enabling the View|Optional Rendering|Show Camera Frustums
menu item. The near parameter defines the position of the near clipping plane (x, y, -near). The
fieldOfView parameter defines the horizontal angle of the frustum. The fieldOfView, the
width and the height parameters defines the vertical angle of the frustum according to the
formula above.

Generally speaking there is no far clipping plane while this is common in other OpenGL pro-
grams. In Webots, a camera can see as far as needed. Nevertheless, a far clipping plane is
artificially added in the case of range-finder cameras (i.e. the resulted values are bounded by the
maxRange field).

In the case of the spherical cameras, the frustum is quite different and difficult to represent. In
comparison with the frustum description above, the near and the far planes are transformed to be
sphere parts having their center at the camera position, and the fieldOfView can be greater
than Pi.

3.5.5 Noise

It is possible to add quickly a white noise on the cameras by using the colorNoise and the
rangeNoise fields (applied respectively on the color cameras and on the range-finder cam-
eras). A value of 0.0 corresponds to an image without noise. For each channel of the image and
at each camera refresh, a gaussian noise is computed and added to the channel. This gaussian
noise has a standard deviation corresponding to the noise field times the channel range. The
channel range is 256 for a color camera and maxRange for a range-finder camera.
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3.5.6 Spherical projection

OpenGL is designed to have only planar projections. However spherical projections are very
useful for simulating a lidar, a camera pointing on a curved mirror or a biological eye. Therefore
we implemented a camera mode rendering spherical projections. It can be enabled simply by
switching on the corresponding spherical parameter described above.

Internally, depending on the field of view, a spherical camera is implemented by using between 1
to 6 OpenGL cameras oriented towards the faces of a cube (the activated cameras are displayed
by magenta squares when the View|Optional Rendering|Show Camera Frustums
menu item is enabled). Moreover an algorithm computing the spherical projection is applied on
the result of the subcameras.

So this mode is costly in terms of performance! Reducing the resolution of the cameras and using
a fieldOfView which minimizes the number of activated cameras helps a lot to improve the
performances if needed.

When the camera is spherical, the image returned by the wb camera get image or the wb -
camera get range image functions is a 2-dimensional array (s,t) in spherical coordinates.

Let hFov be the horizontal field of view, and let theta be the angle in radian between the (0,
0, -z) relative coordinate and the relative coordinate of the target position along the xz plane
relative to the camera, then s=0 corresponds to a theta angle of -hFov/2, s=(width-
1)/2 corresponds to a theta angle of 0, and s=width-1 corresponds to a theta angle of
hFov/2.

Similarly, let vFov be the vertical field of view (defined just above), and phi the angle in
radian between the (0, 0, -z) relative coordinate and the relative coordinate of the target
position along the xy plane relative to the camera, t=0 corresponds to a phi angle of -vFov/2,
t=(height-1)/2 corresponds to a phi angle of 0, and t=height-1 corresponds to a phi
angle of vFov/2).

3.5.7 Camera Functions

NAME

wb camera enable,
wb camera disable,
wb camera get sampling period – enable and disable camera updates

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

void wb camera enable (WbDeviceTag tag, int ms);
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void wb camera disable (WbDeviceTag tag);

int wb camera get sampling period (WbDeviceTag tag);

DESCRIPTION

wb camera enable() allows the user to enable a camera update each ms milliseconds.

wb camera disable() turns the camera off, saving computation time.

The wb camera get sampling period() function returns the period given into the wb -
camera enable() function, or 0 if the device is disabled.

NAME

wb camera get fov,
wb camera set fov – get and set field of view for a camera

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

double wb camera get fov (WbDeviceTag tag);

void wb camera set fov (WbDeviceTag tag, double fov);

DESCRIPTION

These functions allow the controller to get and set the value for the field of view (fov) of a camera.
The original value for this field of view is defined in the Camera node, as fieldOfView. Note
that changing the field of view using wb camera set fov() is possible only if the camera
device has a CameraZoom node defined in its zoom field. The minimum and maximum values
for the field of view are defined in this CameraZoom node.

NAME

wb camera get width,
wb camera get height – get the size of the camera image

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

int wb camera get width (WbDeviceTag tag);

int wb camera get height (WbDeviceTag tag);
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DESCRIPTION

These functions return the width and height of a camera image as defined in the corresponding
Camera node.

NAME

wb camera get near – get the near parameter of the camera device

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

double wb camera get near (WbDeviceTag tag);

DESCRIPTION

This function returns the near parameter of a camera device as defined in the corresponding
Camera node.

NAME

wb camera get type – get the type of the camera

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

int wb camera get type ();

DESCRIPTION

This function returns the type of the camera as defined by the type field of the corresponding
Camera node. The constants defined in camera.h are summarized in table 3.1:

Camera.type return value
”color” WB CAMERA COLOR
”range-finder” WB CAMERA RANGE FINDER
both” WB CAMERA BOTH

Table 3.1: Return values for the wb camera get type() function
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language: C++, Java, Python
In the oriented-object APIs, the WB CAMERA * constants are available as
static integers of the Camera class (for example, Camera::COLOR).

NAME

wb camera get image,
wb camera image get red,
wb camera image get green,
wb camera image get blue,
wb camera image get grey – get the image data from a camera

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

const unsigned char *wb camera get image (WbDeviceTag tag);

unsigned char wb camera image get red (const unsigned char *image, int wi-

dth, int x, int y);

unsigned char wb camera image get green (const unsigned char *image, int

width, int x, int y);

unsigned char wb camera image get blue (const unsigned char *image, int wi-

dth, int x, int y);

unsigned char wb camera image get grey (const unsigned char *image, int wi-

dth, int x, int y);

DESCRIPTION

The wb camera get image() function reads the last image grabbed by the camera. The
image is coded as a sequence of three bytes representing the red, green and blue levels of a pixel.
Pixels are stored in horizontal lines ranging from the top left hand side of the image down to
bottom right hand side. The memory chunk returned by this function must not be freed, as it
is handled by the camera itself. The size in bytes of this memory chunk can be computed as
follows:

byte size = camera width * camera height * 4

Internal pixel format of the buffer is BGRA (32 bits). Attempting to read outside the bounds of
this chunk will cause an error.

The wb camera image get red(), wb camera image get green() and wb cam-
era image get blue()macros can be used for directly accessing the pixel RGB levels from
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the pixel coordinates. The wb camera image get grey()macro works in a similar way but
returns the grey level of the specified pixel by averaging the three RGB components. In the C
version, these four macros return an unsigned char in the range [0..255]. Here is a C usage
example:

language: C

1 const unsigned char *image = wb_camera_get_image(
camera);

2 for (int x = 0; x < image_width; x++)
3 for (int y = 0; y < image_height; y++) {
4 int r = wb_camera_image_get_red(image,

image_width, x, y);
5 int g = wb_camera_image_get_green(image,

image_width, x, y);
6 int b = wb_camera_image_get_blue(image,

image_width, x, y);
7 printf("red=%d, green=%d, blue=%d", r, g, b);
8 }

language: Java
Camera.getImage() returns an array of int (int[]). The length of this
array corresponds to the number of pixels in the image, that is the width
multiplied by the height of the image. Each int element of the array repre-
sents one pixel coded in BGRA (32 bits). For example red is 0x0000ff00,
green is 0x00ff0000, etc. The Camera.pixelGetRed(), Cam-
era.pixelGetGreen() and Camera.pixelGetBlue() functions
can be used to decode a pixel value for the red, green and blue components.
The Camera.pixelGetGrey() function works in a similar way, but re-
turns the grey level of the pixel by averaging the three RGB components.
Each of these four functions take an int pixel argument and return an int
color/grey component in the range [0..255]. Here is an example:

1 int[] image = camera.getImage();
2 for (int i=0; i < image.length; i++) {
3 int pixel = image[i];
4 int r = Camera.pixelGetRed(pixel);
5 int g = Camera.pixelGetGreen(pixel);
6 int b = Camera.pixelGetBlue(pixel);
7 System.out.println("red=" + r + " green=" + g +

" blue=" + b);
8 }
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language: Python
getImage() returns a string. This string is closely related to the
const char * of the C API. imageGet*-like functions can be used to
get the channels of the camera Here is an example:

1 #...
2 cameraData = camera.getImage()
3
4 # get the grey component of the pixel (5,10)
5 grey = Camera.imageGetGrey(cameraData, camera.

getWidth(), 5, 10)

Another way to use the camera in Python is to get the image by getIm-
ageArray() which returns a list<list<list<int>>>. This three
dimensional list can be directly used for accessing to the pixels. Here is an
example:

1 image = camera.getImageArray()
2 # display the components of each pixel
3 for x in range(0,camera.getWidth()):
4 for y in range(0,camera.getHeight()):
5 red = image[x][y][0]
6 green = image[x][y][1]
7 blue = image[x][y][2]
8 grey = (red + green + blue) / 3
9 print ’r=’+str(red)+’ g=’+str(green)+’ b=’+

str(blue)
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language: Matlab
wb camera get image() returns a 3-dimensional array of uint(8).
The first two dimensions of the array are the width and the height of cam-
era’s image, the third being the RGB code: 1 for red, 2 for blue and 3 for
green. wb camera get range image() returns a 2-dimensional array
of float(’single’). The dimensions of the array are the width and the
length of camera’s image and the float values are the metric distance values
deduced from the OpenGL z-buffer.

1 camera = wb_robot_get_device(’camera’);
2 wb_camera_enable(camera,TIME_STEP);
3 half_width = floor(wb_camera_get_width(camera) /

2);
4 half_height = floor(wb_camera_get_height(camera)

/ 2);
5 % color camera image
6 image = wb_camera_get_image(camera);
7 red_middle_point = image(half_width,half_heigth

,1);% red color component of the pixel lying
in the middle of the image

8 green_middle_line = sum(image(half_width,:,2));%
sum of the green color over the vertical
middle line of the image

9 blue_overall = sum(sum(image(:,:,3));% sum of the
blue color over all the pixels in the image

10 fprintf(’red_middle_point = %d, green_middle_line
= %d, blue_overall = %d\n’, red_middle_point,
green_middle_line, blue_overall);

11 % range-finder camera image
12 image = wb_camera_get_range_image(camera);
13 imagesc(image,[0 1]);
14 colormap(gray);
15 drawnow;
16 distance = min(min(image))% distance to the

closest point seen by the camera

NAME

wb camera get range image,
wb camera range image get depth,
wb camera get max range – get the range image and range data from a range-finder camera
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SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

const float *wb camera get range image (WbDeviceTag tag);

float wb camera range image get depth (const float *range image, int width,

int x, int y);

double wb camera get max range (WbDeviceTag tag);

DESCRIPTION

The wb camera get range image() macro allows the user to read the contents of the last
range image grabbed by a range-finder camera. The range image is computed using the depth
buffer produced by the OpenGL rendering. Each pixel corresponds to the distance expressed in
meter from the object to the plane defined by the equation z = 0 within the coordinates system
of the camera. The bounds of the range image is determined by the near clipping plane (defined
by the near field) and the far clipping plane (see the maxRange field). The range image is
coded as an array of single precision floating point values corresponding to the range value of
each pixel of the image. The precision of the range-finder values decreases when the objects are
located farther from the near clipping plane. Pixels are stored in scan lines running from left to
right and from top to bottom. The memory chunk returned by this function shall not be freed, as
it is managed by the camera internally. The size in bytes of the range image can be computed as
follows:

size = camera width * camera height * sizeof(float)

Attempting to read outside the bounds of this memory chunk will cause an error.

The wb camera range image get depth() macro is a convenient way to access a range
value, directly from its pixel coordinates. The camera width parameter can be obtained from
the wb camera get width() function. The x and y parameters are the coordinates of the
pixel in the image.

The wb camera get max range() function returns the value of the maxRange field.

language: Python
The Camera class has two methods for getting the camera image. The ge-
tRangeImage() returns a one-dimensional list of floats, while the ge-
tRangeImageArray() returns a two-dimensional list of floats. Their
content are identical but their handling is of course different.

NAME

wb camera save image – save a camera image in either PNG or JPEG format
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SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/camera.h>

int wb camera save image (WbDeviceTag tag, const char *filename, int qual-

ity);

DESCRIPTION

The wb camera save image() function allows the user to save a tag image which was
previously obtained with the wb camera get image() function. The image is saved in a file
in either PNG or JPEG format. The image format is specified by the filename parameter.
If filename is terminated by .png, the image format is PNG. If filename is terminated
by .jpg or .jpeg, the image format is JPEG. Other image formats are not supported. The
quality parameter is useful only for JPEG images. It defines the JPEG quality of the saved
image. The quality parameter should be in the range 1 (worst quality) to 100 (best quality).
Low quality JPEG files will use less disk space. For PNG images, the quality parameter is
ignored.

The return value of the wb camera save image() is 0 in case of success. It is -1 in case of
failure (unable to open the specified file or unrecognized image file extension).

3.6 CameraZoom

CameraZoom {
SFFloat minFieldOfView 0.5 # (rad)
SFFloat maxFieldOfView 1.5 # (rad)

}

3.6.1 Description

The CameraZoom node allows the user to define a controllable zoom for a Camera device.
The CameraZoom node should be set in the zoom field of a Camera node. The zoom level
can be adjusted from the controller program using the wb camera set fov() function.

3.6.2 Field Summary

• The minFieldOfView and the maxFieldOfView fields define respectively the min-
imum and maximum values for the field of view of the camera zoom (i.e., respectively the
maxium and minimum zoom levels). Hence, they represent the minimum and maximum
values that can be passed to the wb camera set fov() function.
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3.7 Capsule

Capsule {
SFBool bottom TRUE
SFFloat height 2 # (-inf,inf)
SFFloat radius 1 # (-inf,inf)
SFBool side TRUE
SFBool top TRUE
SFInt32 subdivision 12 # (2,inf)

}

3.7.1 Description

A Capsule node is like a Cylinder node except it has half-sphere caps at its ends. The
capsule’s height, not counting the caps, is given by the height field. The radius of the caps,
and of the cylinder itself, is given by the radius field. Capsules are aligned along the local
y-axis.

The capsule can be used either as a graphical or collision detection primitive (when placed in a
boundingObject). The capsule is a particularly fast and accurate collision detection primi-
tive.

A capsule has three optional parts: the side, the top and the bottom. Each part has an
associated boolean field that indicates whether the part should be drawn or not. For collision
detection, all parts are considered to be present, regardless of the value of these boolean fields.

If both height and radius are positive, the outside faces of the capsule are displayed while
if they are negative, the inside faces are displayed. The values of height and radius must
both be greater than zero when the capsule is used for collision detection.

The subdivision field defines the number of triangles that must be used to represent the
capsule and so its resolution. More precisely, it corresponds to the number of faces that compose
the capsule’s side. This field has no effect on collision detection.

When a texture is mapped to a capsule, the texture map is vertically divided in three equally sized
parts (e.g. like the German flag). The top part is mapped to the capsule’s top. The middle part
is mapped to the capsule’s side (body). The bottom part is mapped to the capsule’s bottom. On
each part, the texture wraps counterclockwise (seen from above) starting from the intersection
with the y- and negative z-plane.

3.8 Charger

Derived from Solid.

Charger {
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Figure 3.2: The Capsule node

MFFloat battery []
SFFloat radius 0.04 # (0,inf)
SFColor emissiveColor 0 1 0 # [0,1]
SFBool gradual TRUE

}

3.8.1 Description

The Charger node is used to model a special kind of battery charger for the robots. A robot
has to get close to a charger in order to recharge itself. A charger is not like a standard battery
charger connected to a constant power supply. Instead, it is a battery itself: it accumulates energy
with time. It could be compared to a solar power panel charging a battery. When the robot comes
to get energy, it can’t get more than the charger has presently accumulated.

The appearance of the Charger node can be altered by its current energy. When the Charger
node is full, the resulted color corresponds to its emissiveColor field, while when the
Charger node is empty, its resulted color corresponds to its original one. Intermediate col-
ors depend on the gradual field. Only the first child of the Charger node is affected by this
alteration. The resulted color is applied only on the first child of the Charger node. If the first
child is a Shape node, the emissiveColor field of its Material node is altered. If the
first child is a Light node, its color field is altered. Otherwise, if the first child is a Group
node, a recursive search is applied on this node and every Light, Shape and Group nodes are
altered according to the two previous rules.
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First  case: the origin of the charger
coordinate system is at the center
of the charger.

Robot

Charger

origin of the charger coordinate system is 
not at the center of the charger.

RobotCharger

Charging area

Charging area

Second case: Using a "Transform", the 

Figure 3.3: The sensitive area of a charger

3.8.2 Field Summary

The fields specific to the Charger node are:

• battery: this field should contain three values, namely the present energy of the charger
(J), its maximum energy (J) and its charging speed (W=J/s).

• radius: radius of the charging area in meters. The charging area is a disk centered on
the origin of the charger coordinate system. The robot can recharge itself if its origin is in
the charging area (see figure 3.3).

• emissiveColor: color of the first child node (see above) when the charger is full.

• gradual: defines the behavior of the indicator. If set to TRUE, the indicator displays
a progressive transition between its original color and the emissiveColor specified in
the Charger node, corresponding to the present level of charge. If set to FALSE, the in-
dicator remains its original color until the charger is fully charged (i.e., the present energy
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level equals the maximum energy level). Then, it switches to the specified emissive-
Color.

3.9 Color

Color {
MFColor color [] # [0,1]

}

This node defines a set of RGB colors to be used in the fields of another node.

Color nodes are only used to specify multiple colors for a single geometric shape, such as
colors for the faces or vertices of an ElevationGrid. A Material node is used to specify
the overall material parameters of a geometric node. If both a Material node and a Color
node are specified for a geometric shape, the colors shall replace the diffuse component of the
material.

RGB or RGBA textures take precedence over colors; specifying both an RGB or RGBA texture
and a Color node for a geometric shape will result in the Color node being ignored.

3.10 Compass

Derived from Device.

Compass {
MFVec3f lookupTable [] # interpolation
SFBool xAxis TRUE # compute x-axis
SFBool yAxis TRUE # compute y-axis
SFBool zAxis TRUE # compute z-axis

}

3.10.1 Description

A Compass node can be used to model a 1, 2 or 3-axis digital compass (magnetic sensor). The
Compass node returns a vector that indicates the direction of the virtual north. The virtual north
is specified by the northDirection field in the WorldInfo node.

3.10.2 Field Summary

• lookupTable: This field optionally specifies a lookup table that can be used for map-
ping each vector component (between -1.0 and +1.0) to device specific output values. With
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the lookup table it is also possible to add noise and to define min and max output values.
By default the lookup table is empty and therefore no mapping is applied.

• xAxis, yAxis, zAxis: Each of these boolean fields specifies if the computation
should be enabled or disabled for the specified axis. If one of these fields is set to FALSE,
then the corresponding vector element will not be computed and it will return NaN (Not a
Number). For example if zAxis is FALSE, then calling wb compass get values()[2] will
always return NaN. The default is that all three axes are enabled (TRUE). Modifying these
fields makes it possible to choose between a single, dual or a three-axis digital compass
and to specify which axes will be used.

3.10.3 Compass Functions

NAME

wb compass enable,
wb compass disable,
wb compass get sampling period,
wb compass get values – enable, disable and read the output values of the compass device

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/compass.h>

void wb compass enable (WbDeviceTag tag, int ms);

void wb compass disable (WbDeviceTag tag);

const double *wb compass get values (WbDeviceTag tag);

int wb compass get sampling period (WbDeviceTag tag);

DESCRIPTION

The wb compass enable() function turns on the Compass measurement each ms millisec-
onds.

The wb compass disable() function turns off the Compass device.

The wb compass get sampling period() function returns the period given into the wb -
compass enable() function, or 0 if the device is disabled.

The wb compass get values() function returns the current Compass measurement. The
returned vector indicates the direction of the virtual north in the coordinate system of the Com-
pass device. Here is the internal algorithm of wb compass get values() in pseudo-code:
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float[3] wb_compass_get_values() {
float[3] n = getGlobalNorthDirection();
n = rotateToCompassOrientation3D(n);
n = normalizeVector3D(n);
n[0] = applyLookupTable(n[0]);
n[1] = applyLookupTable(n[1]);
n[2] = applyLookupTable(n[2]);
if (xAxis == FALSE) n[0] = 0.0;
if (yAxis == FALSE) n[1] = 0.0;
if (zAxis == FALSE) n[2] = 0.0;
return n;

}

If the lookupTable is empty and all three xAxis, yAxis and zAxis fields are TRUE then the length
of the returned vector is 1.0.

The values are returned as a 3D-vector, therefore only the indices 0, 1, and 2 are valid for ac-
cessing the vector. Let’s look at one example. In Webots global coordinates system, the xz-plane
represents the horizontal floor and the y-axis indicates the elevation. The default value of the
northDirection field is [ 1 0 0 ] and therefore the north direction is horizontal and aligned
with the x-axis. Now if the Compass node is in upright position, meaning that its y-axis is
aligned with the global y-axis, then the bearing angle in degrees can be computed as follows:

language: C

1 double get_bearing_in_degrees() {
2 const double *north = wb_compass_get_values(tag);
3 double rad = atan2(north[0], north[2]);
4 double bearing = (rad - 1.5708) / M_PI * 180.0;
5 if (bearing < 0.0)
6 bearing = bearing + 360.0;
7 return bearing;
8 }

language: C, C++
The returned vector is a pointer to the internal values managed by the Com-
pass node, therefore it is illegal to free this pointer. Furthermore, note that
the pointed values are only valid until the next call to wb robot step()
or Robot::step(). If these values are needed for a longer period they
must be copied.



42 CHAPTER 3. NODES AND API FUNCTIONS

language: Python
getValues() returns the vector as a list containing three floats.

3.11 Cone

Cone {
SFFloat bottomRadius 1 # (-inf,inf)
SFFloat height 2 # (-inf,inf)
SFBool side TRUE
SFBool bottom TRUE
SFInt32 subdivision 12 # (3,inf)

}

The Cone node specifies a cone which is centered in the local coordinate system and whose
central axis is aligned with the local y-axis. The bottomRadius field specifies the radius of
the cone’s base, and the height field specifies the height of the cone from the center of the base
to the apex. By default, the cone has a radius of 1 meter at the bottom and a height of 2 meters,
with its apex at y = height/2 and its bottom at y = -height/2. See figure 3.4.

If both bottomRadius and height are positive, the outside faces of the cone are displayed
while if they are negative, the inside faces are displayed.

The side field specifies whether the sides of the cone are created, and the bottom field speci-
fies whether the bottom cap of the cone is created. A value of TRUE specifies that this part of the
cone exists, while a value of FALSE specifies that this part does not exist.

The subdivision field defines the number of polygons used to represent the cone and so its
resolution. More precisely, it corresponds to the number of lines used to represent the bottom of
the cone.

When a texture is applied to the sides of the cone, the texture wraps counterclockwise (from
above) starting at the back of the cone. The texture has a vertical seam at the back in the yz plane,
from the apex (0, height/2, 0) to the point (0, 0, -r). For the bottom cap, a circle is cut out of
the unit texture square centered at (0, -height/2, 0) with dimensions (2 * bottomRadius) by
(2 * bottomRadius). The bottom cap texture appears right side up when the top of the cone is
rotated towards the -Z axis. TextureTransform affects the texture coordinates of the Cone.

Cone geometries cannot be used as primitives for collision detection in bounding objects.

3.12 Connector

Derived from Device.
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Figure 3.4: The Cone node
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Connector {
SFString type "symmetric"
SFBool isLocked FALSE
SFBool autoLock FALSE
SFBool unilateralLock TRUE
SFBool unilateralUnlock TRUE
SFFloat distanceTolerance 0.01 # [0,inf)
SFFloat axisTolerance 0.2 # [0,pi)
SFFloat rotationTolerance 0.2 # [0,pi)
SFInt32 numberOfRotations 4
SFBool snap TRUE
SFFloat tensileStrength -1
SFFloat shearStrength -1

}

3.12.1 Description

Connector nodes are used to simulate mechanical docking systems, or any other type of de-
vice, that can dynamically create a physical link (or connection) with another device of the same
type.

Connector nodes can only connect to other Connector nodes. At any time, each connection
involves exactly two Connector nodes (peer to peer). The physical connection between two
Connector nodes can be created and destroyed at run time by the robot’s controller. The
primary idea of Connector nodes is to enable the dynamic reconfiguration of modular robots,
but more generally, Connector nodes can be used in any situation where robots need to be
attached to other robots.

Connector nodes were designed to simulate various types of docking hardware:

• Mechanical links held in place by a latch

• Gripping mechanisms

• Magnetic links between permanent magnets (or electromagnets)

• Pneumatic suction systems, etc.

Connectors can be classified into two types, independent of the actual hardware system:

Symmetric connectors, where the two connecting faces are mechanically (and electrically) equiv-
alent. In such cases both connectors are active.

Asymmetric connectors, where the two connecting interfaces are mechanically different. In
asymmetric systems there is usually one active and one passive connector.
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The detection of the presence of a peer Connector is based on simple distance and angle
measurements, and therefore the Connector nodes are a computationally inexpensive way of
simulating docking mechanisms.

3.12.2 Field Summary

• model: specifies the Connector’s model. Two Connector nodes can connect only if
their model strings are identical.

• type: specifies the connector’s type, this must be one of: ”symmetric”, ”active”, or ”pas-
sive”. A ”symmetric” connector can only lock to (and unlock from) another ”symmetric”
connector. An ”active” connector can only lock to (and unlock from) a ”passive” connec-
tor. A ”passive” connector cannot lock or unlock.

• isLocked: represents the locking state of the Connector. The locking state can be
changed through the API functions wb connector lock() and wb connector -
unlock(). The locking state means the current state of the locking hardware, it does
not indicates whether or not an actual physical link exists between two connectors. For
example, according to the hardware type, isLocked can mean that a mechanical latch or
a gripper is closed, that electro-magnets are activated, that permanent magnets were moved
to an attraction state, or that a suction pump was activated, etc. But the actual physical link
exists only if wb connector lock() was called when a compatible peer was present
(or if the Connector was auto-locked).

• autoLock: specifies if auto-locking is enabled or disabled. Auto-locking allows a con-
nector to automatically lock when a compatible peer becomes present. In order to success-
fully auto-lock, both the autoLock and the isLocked fields must be TRUE when the
peer becomes present, this means that wb connector lock() must have been invoked
earlier. The general idea of autoLock is to allow passive locking. Many spring mounted
latching mechanisms or magnetic systems passively lock their peer.

• unilateralLock: indicate that locking one peer only is sufficient to create a physical
link. This field must be set to FALSE for systems that require both sides to be in the
locked state in order to create a physical link. For example, symmetric connectors using
rotating magnets fall into this category, because both connectors must be simultaneously
in a magnetic ”attraction” state in order to create a link. Note that this field should always
be TRUE for ”active” Connectors, otherwise locking would be impossible for them.

• unilateralUnlock: indicates that unlocking one peer only is sufficient to break the
physical link. This field must be set to FALSE for systems that require both sides to be
in an unlocked state in order to break the physical link. For example, connectors often
use bilateral latching mechanisms, and each side must release its own latch in order for
the link to break. Note that this field should always be TRUE for ”active” Connectors,
otherwise unlocking would be impossible for them.
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Figure 3.5: Example of rotational alignment (numberOfRotations=4 and rotationalToler-
ance=22.5 deg)

• distanceTolerance: the maximum distance [in meters] between two Connectors
which still allows them to lock successfully. The distance is measured between the origins
of the coordinate systems of the connectors.

• axisTolerance: the maximum angle [in radians] between the z-axes of two Connec-
tors at which they may successfully lock. Two Connector nodes can lock when their
z-axes are parallel (within tolerance), but pointed in opposite directions.

• rotationTolerance: the tolerated angle difference with respect to each of the al-
lowed docking rotations (see figure 3.5).

• numberOfRotations: specifies how many different docking rotations are allowed in
a full 360 degree rotation around the Connector’s z-axis. For example, modular robots’
connectors are often 1-, 2- or 4-way dockable depending on mechanical and electrical
interfaces. As illustrated in figure 3.5, if numberOfRotations is 4 then there will
be 4 different docking positions (one every 90 degrees). If you don’t wish to check the
rotational alignment criterion this field should be set to zero.

• snap: when TRUE: the two connectors do automatically snap (align, adjust, etc.) when
they become docked. The alignment is threefold: 1) the two bodies are rotated such that
their z-axes become parallel (but pointed in opposite directions), 2) the two bodies are
rotated such that their y-axes match one of the possible rotational docking position, 3) the
two bodies are shifted towards each other such that the origin of their coordinate system
match. Note that when the numberOfRotations field is 0, step 2 is omitted, and
therefore the rotational alignment remains free. As a result of steps 1 and 3, the connector
surfaces always become superimposed.
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Figure 3.6: Connector axis system

• tensileStrength: maximum tensile force [in Newtons] that the docking mechanism
can withstand before it breaks. This can be used to simulate the rupture of the docking
mechanism. The tensile force corresponds to a force that pulls the two connectors apart (in
the negative z-axes direction). When the tensile force exceeds the tensile strength, the link
breaks. Note that if both connectors are locked, the effective tensile strength corresponds
to the sum of both connectors’ tensileStrength fields. The default value -1 indicates
an infinitely strong docking mechanism that does not break no matter how much force is
applied.

• shearStrength: indicates the maximum shear force [in Newtons] that the docking
mechanism can withstand before it breaks. This can be used to simulate the rupture of the
docking mechanism. The shearStrength field specifies the ability of two connectors
to withstand a force that would makes them slide against each other in opposite directions
(in the xy-plane). Note that if both connectors are locked, the effective shear strength
corresponds to the sum of both connectors’ shearStrength fields. The default value
-1 indicates an infinitely strong docking mechanism that does not break no matter how
much force is applied.

3.12.3 Connector Axis System

A Connector’s axis system is displayed by Webots when the corresponding robot is selected
or when Display Axes is checked in Webots Preferences. The z-axis is drawn as a 5 cm blue
line, the y-axis (a potential docking rotation) is drawn as a 5 cm red line, and each additional
potential docking rotation is displayed as a 4 cm black line. The bounding objects and graphical
objects of a Connector should normally be designed such that the docking surface corresponds
exactly to xy-plane of the local coordinate system. Furthermore, the Connector’s z-axis should
be perpendicular to the docking surface and point outward from the robot body. Finally, the
bounding objects should allow the superposition of the origin of the coordinate systems. If these
design criteria are not met, the Connector nodes will not work properly and may be unable to
connect.
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To be functional, a Connector node requires the presence of a Physics
node in its parent node. But it is not necessary to add a Physics node to
the Connector itself.

3.12.4 Connector Functions

NAME

wb connector enable presence,
wb connector disable presence,
wb connector get presence – detect the presence of another connector

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/connector.h>

void wb connector enable presence (WbDeviceTag tag, int ms);

void wb connector disable presence (WbDeviceTag tag);

int wb connector get presence (WbDeviceTag tag);

DESCRIPTION

The wb connector enable presence() function starts querying the Connector’s pres-
ence (see definition below) state each ms milliseconds. The wb connector disable -
presence() function stops querying the Connector’s presence. The wb connector -
get presence() function returns the current presence state of this connector, it returns:

• 1: in case of the presence of a peer connector

• 0: in case of the absence of a peer connector

• -1: not applicable (if this connector is of ”passive” type)

The presence state is defined as the correct positioning of a compatible peer Connector.

Two connectors are in position if they are axis-aligned, rotation-aligned and near enough. To
be axis-aligned, the angle between the z-axes of the two connectors must be smaller than the
axisTolerance field. To be rotation-aligned, the angle between the y-axis of both Connec-
tors must be within distanceTolerance of one of the possible numberOfRotations
subdivisions of 360 degrees. Two Connectors are near enough if the distance between them
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(measured between the origins of the coordinate systems) is smaller than distanceToler-
ance.

Two Connectors are compatible if both types are ”symmetric” or if one is ”active” and the
other is ”passive”. A further requirement for the compatibility is that the model fields of the
connectors must be identical. The conditions for detecting presence can be summarized this way:

presence := in_position AND compatible
compatible := type_compatible AND model_compatible
type_compatible := both connectors are "symmetric" OR one connector

is "active" AND the other one is "passive"
model_compatible := both models strings are equal
in_position := near_enough AND axis_aligned AND rotation_aligned
near_enough := the distance between the connectors < tolerance
axis_aligned := the angle between the z-axes < tolerance
rotation_aligned := the n-ways rotational angle is within tolerance

NAME

wb connector lock,
wb connector unlock – create / destroy the physical connection between two connector nodes

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/connector.h>

void wb connector lock (WbDeviceTag tag);

void wb connector unlock (WbDeviceTag tag);

DESCRIPTION

The wb connector lock() and wb connector unlock() functions can be used to set
or unset the Connector’s locking state (isLocked field) and eventually create or destroy the
physical connection between two Connector nodes.

If wb connector lock() is invoked while a peer connector is present (see the definition
of presence above), a physical link will be created between the two connectors. If both the
isLocked and autoLock fields are TRUE, then the physical link will be created automatically
as soon as the peer’s presence is detected. If wb connector lock() succeeds in creating the
link, the two connected bodies will keep a constant distance and orientation with respect to each
other from this moment on.

If wb connector unlock() is invoked while there is a physical link between two Con-
nectors, the link will be destroyed, unless unilateralUnlock is FALSE and the peer
connector is still in the isLocked state.
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3.13 ContactProperties

ContactProperties {
SFString material1 "default"
SFString material2 "default"
SFFloat coulombFriction 1 # [0,inf)
SFFloat bounce 0.5 # [0,1]
SFFloat bounceVelocity 0.01 # (m/s)
SFFloat forceDependentSlip 0

}

3.13.1 Description

ContactProperties nodes define the contact properties to use in case of contact between
Solid nodes (or any node derived from Solid). ContactProperties nodes are placed
in the contactProperties field of the WorldInfo node. Each ContactProperties
node specifies the name of two materials for which these ContactProperties are valid.

When two Solid nodes collide, a matching ContactProperties node is searched in the
WorldInfo.contactProperties field. A ContactProperties node will match if its
material1 and material2 fields correspond (in any order) to the the contactMaterial
fields of the two colliding Solids. The values of the first matching ContactProperties
are applied to the contact. If no matching node is found, default values are used. The default
values are the same as those indicated above.

In older Webots versions, contact properties used to be specified in Physics
nodes. For compatibility reasons, contact properties specified like this are
still functional in Webots, but they trigger deprecation warnings. To remove
these warning you need to switch to the new scheme described in this page.
This can be done in three steps: 1. Add ContactProperties nodes in
WorldInfo, 2. Define the contactMaterial fields of Solid nodes,
3. Reset the values of coulombFriction, bounce, bounceVel-
ocity and forceDependentSlip in the Physics nodes.

3.13.2 Field Summary

• The material1 and material2 fields specify the two contact materials to which this
ContactProperties node must be applied. The values in this fields should match
the contactMaterial fields of Solid nodes in the simulation. The values in mate-
rial1 and material2 are exchangeable.

• The coulombFriction is the Coulomb friction coefficient. This must be in the range
0 to infinity (use -1 for infinity). 0 results in a frictionless contact, and infinity results in a
contact that never slips.
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• The bounce field is the coefficient of restitution (COR) between 0 and 1. The coefficient
of restitution (COR), or bounciness of an object is a fractional value representing the ratio
of speeds after and before an impact. An object with a COR of 1 collides elastically, while
an object with a COR < 1 collides inelastically. For a COR = 0, the object effectively
”stops” at the surface with which it collides, not bouncing at all. COR = (relative speed
after collision) / (relative speed before collision).

• The bounceVelocity is the minimum incoming velocity necessary for bouncing. In-
coming velocities below this will effectively have a bounce parameter of 0.

• The forceDependentSlip field defines the force dependent slip (FDS) for friction, as
explained in the ODE documentation: ”FDS is an effect that causes the contacting surfaces
to side past each other with a velocity that is proportional to the force that is being applied
tangentially to that surface. Consider a contact point where the coefficient of friction mu
is infinite. Normally, if a force f is applied to the two contacting surfaces, to try and get
them to slide past each other, they will not move. However, if the FDS coefficient is set to a
positive value k then the surfaces will slide past each other, building up to a steady velocity
of k*f relative to each other. Note that this is quite different from normal frictional effects:
the force does not cause a constant acceleration of the surfaces relative to each other - it
causes a brief acceleration to achieve the steady velocity.”

3.14 Coordinate

Coordinate {
MFVec3f point [] # (-inf,inf)

}

This node defines a set of 3D coordinates to be used in the coord field of vertex-based Geo-
metry nodes including IndexedFaceSet and IndexedLineSet.

3.15 Cylinder

Cylinder {
SFBool bottom TRUE
SFFloat height 2 # (-inf,inf)
SFFloat radius 1 # (-inf,inf)
SFBool side TRUE
SFBool top TRUE
SFInt32 subdivision 12 # (2,inf)

}
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Figure 3.7: The Cylinder node

3.15.1 Description

The Cylinder node specifies a cylinder centered at (0,0,0) in the local coordinate system and
with a central axis oriented along the local y-axis. By default, the cylinder spans -1 to +1 in all
three dimensions. The radius field specifies the radius of the cylinder and the height field
specifies the height of the cylinder along the central axis. See figure 3.7.

If both height and radius are positive, the outside faces of the cylinder are displayed while
if they are negative, the inside faces are displayed.

The cylinder has three parts: the side, the top (y = +height/2) and the bottom (y = -height+/2).
Each part has an associated SFBool field that indicates whether the part exists (TRUE) or does
not exist (FALSE). Parts which do not exist are not rendered. However, all parts are used for
collision detection, regardless of their associated SFBool field.

The subdivision field defines the number of polygons used to represent the cylinder and so
its resolution. More precisely, it corresponds to the number of lines used to represent the bottom
or the top of the cylinder.

When a texture is applied to a cylinder, it is applied differently to the sides, top, and bottom. On
the sides, the texture wraps counterclockwise (from above) starting at the back of the cylinder.
The texture has a vertical seam at the back, intersecting the yz plane. For the top and bottom
caps, a circle is cut out of the unit texture squares centered at (0, +/- height, 0) with dimensions
2*radius by 2*radius. The top texture appears right side up when the top of the cylinder
is tilted toward the +z axis, and the bottom texture appears right side up when the top of the
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cylinder is tilted toward the -z axis. TextureTransform affects the texture coordinates of the
Cylinder.

3.16 Damping

Damping {
SFFloat linear 0.2 # [0,1]
SFFloat angular 0.2 # [0,1]

}

3.16.1 Description

A Damping node can be used to slow down a body (a Solid node with Physics). The speed
of each body is reduced by the specified amount (between 0.0 and 1.0) every second. A value of
0.0 means ”no slowing down” and value of 1.0 means a ”complete stop”, a value of 0.1 means
that the speed should be decreased by 10 percent every second. A damped body will possibly
come to rest and become disabled depending on the values specified in WorldInfo. Damping
does not add any force in the simulation, it directly affects the velocity of the body. The damping
effect is applied after all forces have been applied to the bodies. Damping can be used to reduce
simulation instability.

The linear field indicates the amount of damping that must be applied to the body’s linear
motion. The angular field indicates the amount of damping that must be applied to the body’s
angular motion. The linear damping can be used, e.g. to slow down a vehicule by simulating air
or water friction. The angular damping can be used, e.g. to slow down the rotation of a rolling
ball or the spin of a coin. Note that the damping is applied regardless of the shape of the object,
so damping cannot be used to model complex fluid dynamics.

A Damping node can be specified in the defaultDamping field of the WorldInfo node;
in this case it defines the default damping parameters that must be applied to every body in the
simulation. A Damping node can be specified in the damping field of a Physics node; in
this case it defines the damping parameters that must be applied to the Solid that contains the
Physics node. The damping specified in a Physics node overrides the default damping.

3.17 Device

Abstract node, derived from Solid.

Device {
}
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3.17.1 Description

This abstract node (not instanciable) represents a robot device (actuator and/or sensor).

3.17.2 Device Functions

NAME

wb device get name – convert WbDeviceTag to its corresponding device name

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/device.h>

const char *wb device get name (WbDeviceTag tag);

DESCRIPTION

wb device get name() convert the WbDeviceTag given as parameter (tag) to its corre-
sponding name.

This function returns NULL if the WbDeviceTag does not match a valid device.

NAME

wb device get type – convert WbDeviceTag to its corresponding WbNodeType

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/device.h>

WbNodeType wb device get type (WbDeviceTag tag);

DESCRIPTION

wb device get type() convert the WbDeviceTag given as parameter (tag) to its corre-
sponding WbNodeType (cf. the Supervisor API)

This function returns NULL if the WbDeviceTag does not match a valid device.
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3.18 DifferentialWheels

Derived from Robot.

DifferentialWheels {
SFFloat motorConsumption 0 # [0,inf)
SFFloat axleLength 0.1 # (0,inf)
SFFloat wheelRadius 0.01 # (0,inf)
SFFloat maxSpeed 10 # (0,inf)
SFFloat maxAcceleration 10
SFFloat speedUnit 1
SFFloat slipNoise 0.1 # [0,inf)
SFFloat encoderNoise -1
SFFloat encoderResolution -1
SFFloat maxForce 0.3 # (0,inf)

}

3.18.1 Description

The DifferentialWheels node can be used as base node to build robots with two wheels
and differential steering. Any other type of robot (legged, humanoid, vehicle, etc.) needs to use
Robot as base node.

A DifferentialWheels robot will automatically take control of its wheels if they are placed
in the children field. The wheels must be Solid nodes, and they must be named ”right
wheel” and ”left wheel”. If the wheel objects are found, Webots will automatically make them
rotate at the speed specified by the wb differential wheels set speed() function.

The origin of the robot coordinate system is the projection on the ground plane of the middle of
the wheels’ axle. The x axis is the axis of the wheel axle, y is the vertical axis and z is the axis
pointing towards the rear of the robot (the front of the robot has negative z coordinates).

3.18.2 Field Summary

• motorConsumption: power consumption of the the motor in Watts.

• axleLength: distance between the two wheels (in meters). This field must be specified
for ”kinematics” based robot models. It will be ignored by ”physics” based models.

• wheelRadius: radius of the wheels (in meters). Both wheels must have the same radius.
This field must be specified for ”kinematics” based robot models. It will be ignored by
”physics” based models.

• maxSpeed: maximum speed of the wheels, expressed in rad/s.
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• maxAcceleration: maximum acceleration of the wheels, expressed in rad/s2. It is
used only in ”kinematics” mode.

• speedUnit: defines the unit used in the wb differential wheels set speed()
function, expressed in rad/s.

• slipNoise: slip noise added to each move expressed in percent. If the value is 0.1, a
noise component of +/- 10 percent is added to the command for each simulation step. The
noise is, of course, different for each wheel. The noise has a uniform distribution, also
known as as ”white noise.”

• encoderNoise: white noise added to the incremental encoders. If the value is -1, the
encoders are not simulated. If the value is 0, encoders are simulated without noise. Other-
wise a cumulative uniform noise is added to encoder values. At every simulation step, an
increase value is computed for each encoder. Then, a random uniform noise is applied to
this increase value before it is added to the encoder value. This random noise is computed
in the same way as the slip noise (see above). When the robot encounters an obstacle, and
if no physics simulation is used, the robot wheels do not slip, hence the encoder values are
not incremented. This is very useful to detect that a robot has hit an obstacle. For each
wheel, the angular velocity is affected by the slipNoise field. The angular speed is used
to compute the rotation of the wheel for a basic time step (by default 32 ms). The wheel
is actually rotated by this amount. This amount is then affected by the encoderNoise
(if any). This means that a noise is added to the amount of rotation in a similar way as
with the slipNoise. Finally, this amount is multiplied by the encoderResolution
(see below) and used to increment the encoder value, which can be read by the controller
program.

• encoderResolution: defines the number of encoder increments per radian of the
wheel. An encoderResolution of 100 will make the encoders increment their value
by (approximately) 628 each time the wheel makes a complete revolution. The -1 default
value means that the encoder functionality is disabled as with encoderNoise.

• maxForce: defines the maximum torque used by the robot to rotate each wheel in a
”physics” based simulation. It corresponds to the dParamFMax parameter of an ODE
hinge joint. It is ignored in ”kinematics” based simulations.

3.18.3 Simulation Modes

The DifferentialWheels’s motion can be computed by different algorithms: ”physics”,
”kinematics” or ”Fast2D” depending on the structure of the world.
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Physics mode

A DifferentialWheels is simulated in ”physics” mode if it contains Physics nodes in
its body and wheels. In this mode, the simulation is carried out by the ODE physics engine, and
the robot’s motion is caused by the friction forces generated by the contact of the wheels with
the floor. The wheels can have any arbitrary shape (usually a cylinder), but their contact with
the floor is necessary for the robot’s motion. In ”physics” mode the inertia, weight, etc. of the
robot and wheels is simulated, so for example the robot will fall if you drop it. The friction is
simulated with the Coulomb friction model, so a DifferentialWheels robot would slip on
a wall with some friction coefficient that you can tune in the Physics nodes. The ”physics”
mode is the most realistic but also the slowest simulation mode.

Kinematics mode

When a DifferentialWheels does not have Physics nodes then it is simulated in ”kine-
matics” mode. In the ”kinematics” mode the robot’s motion is calculated according to 2D kine-
matics algorithms and the collision detection is calculated with 3D algorithms. Friction is not
simulated, so a DifferentialWheels does not actually require the contact of the wheels
with the floor to move. Instead, its motion is controlled by a 2D kinematics algorithm using the
axleLength, wheelRadius and maxAcceleration fields. Because friction is not sim-
ulated the DifferentialWheels will not slide on a wall or on another robot. The simulation
will rather look as if obstacles (walls, robots, etc.) are very rough or harsh. However the robots
can normally avoid to become blocked by changing direction, rotating the wheels backwards,
etc. Unlike the ”physics” mode, in the ”kinematics” mode the gravity and other forces are not
simulated therefore a DifferentialWheels robot will keep its initial elevation throughout
the simulation.

Physics mode Kinematics mode Fast2D (Enki) mode
Motion triggered by Wheels friction 2d Webots kinematics 2d Enki kinematics
Friction simulation Yes, Coulomb model No Yes, Enki model
Inertia/Weight/Forces Yes No No
Collision detection 3D (ODE) 3D (ODE) 2D (Enki)
wheelRadius field Ignored Ignored Used
axleLength field Ignored Ignored Used
maxAcceleration field Ignored Ignored Used
maxForce field Used Ignored Ignored
Sensor rays shape 3d cone 3d cone 2d fan
RGB sensitive Yes Yes No

Table 3.2: DifferentialWheels simulation modes
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Fast2D (Enki) mode

This mode is enabled when the string ”enki” is specified in the WorldInfo.fast2d field.
The ”Fast2D” mode is implemented in a user-modifiable plugin which code can be found in this
directory: webots/resources/projects/default/plugins/fast2d/enki. This
is another implementation of 2D kinematics in which gravity, and other forces are also ignored
simulated. However ”Fast2D” mode the friction is simulated so a robot will smoothly slide over
an obstacle or another robot. The ”Fast2D” mode may be faster than ”kinematics” in configu-
rations where there are multiple DifferentialWheels with multiple DistanceSensors
with multiple rays. However the ”Fast2D” mode has severe limitations on the structure of the
world and robots that it can simulate. More information on the ”Fast2D” mode can be found
here.

3.18.4 DifferentialWheels Functions

NAME

wb differential wheels set speed – control the speed of the robot

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/differential wheels.h>

void wb differential wheels set speed (double left, double right);

DESCRIPTION

This function allows the user to specify a speed for the DifferentialWheels robot. This
speed will be sent to the motors of the robot at the beginning of the next simulation step. The
speed unit is defined by the speedUnit field of the DifferentialWheels node. The
default value is 1 radians per seconds. Hence a speed value of 2 will make the wheel rotate at
a speed of 2 radians per seconds. The linear speed of the robot can then be computed from the
angular speed of each wheel, the wheel radius and the noise added. Both the wheel radius and
the noise are documented in the DifferentialWheels node.

NAME

wb differential wheels enable encoders,
wb differential wheels disable encoders,
wb differential wheels get encoders sampling period – enable or disable the incremental en-
coders of the robot wheels
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SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/differential wheels.h>

void wb differential wheels enable encoders (int ms);

void wb differential wheels disable encoders ();

int wb differential wheels get encoders sampling period (WbDeviceTag tag);

DESCRIPTION

These functions allow the user to enable or disable the incremental wheel encoders for both
wheels of the DifferentialWheels robot. Incremental encoders are counters that incre-
ment each time a wheel turns. The amount added to an incremental encoder is computed from
the angle the wheel rotated and from the encoderResolution parameter of the Differen-
tialWheels node. Hence, if the encoderResolution is 100 and the wheel made a whole
revolution, the corresponding encoder will have its value incremented by about 628. Please note
that in a kinematic simulation (with no Physics node set) when a DifferentialWheels
robot encounters an obstacle while trying to move forward, the wheels of the robot do not slip,
hence the encoder values are not increased. This is very useful to detect that the robot has
hit an obstacle. On the contrary, in a physics simulation (when the DifferentialWheels
node and its children contain appropriate Physics nodes), the wheels may slip depending on
their friction parameters and the force of the motors (maxForce parameter of the Differ-
entialWheels node). If a wheel slips, then its encoder values are modified according to its
actual rotation, even though the robot doesn’t move.

The wb differential wheels get encoders sampling period() function returns
the period given into the wb differential wheels enable encoders() function, or
0 if the device is disabled.

NAME

wb differential wheels get left encoder,
wb differential wheels get right encoder,
wb differential wheels set encoders – read or set the encoders of the robot wheels

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/differential wheels.h>

double wb differential wheels get left encoder ();

double wb differential wheels get right encoder ();

void wb differential wheels set encoders (double left, double right);
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DESCRIPTION

These functions are used to read or set the values of the left and right encoders. The encoders
must be enabled with wb differential wheels enable encoders(), so that the func-
tions can read valid data. Additionally, the encoderNoise of the corresponding Differen-
tialWheels node should be positive. Setting the encoders’ values will not make the wheels
rotate to reach the specified value; instead, it will simply reset the encoders with the specified
value.

3.19 DirectionalLight

Derived from Light.
DirectionalLight {
SFVec3f direction 0 0 -1 # (-inf,inf)

}

3.19.1 Description

The DirectionalLight node defines a directional light source that illuminates along rays
parallel to a given 3-dimensional vector. Unlike PointLight, rays cast by Directional-
Light nodes do not attenuate with distance.

3.19.2 Field Summary

• The direction field specifies the direction vector of the illumination emanating from
the light source in the global coordinate system. Light is emitted along parallel rays from
an infinite distance away. The direction field is taken into account when computing
the quantity of light received by a LightSensor.

3.20 Display

Derived from Device.
Display {
SFInt32 width 64
SFInt32 height 64
SFVec2f windowPosition 0 0
SFFloat pixelSize 1.0

}
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3.20.1 Description

The Display node allows to handle a 2D pixel array using simple API functions, and render
it into a 2D overlay on the 3D view, into a 2D texture of any Shape node, or both. It can
model an embedded screen or it can display any graphical information such as graphs, text, robot
trajectory, filtered camera images and so on.

If the first child of the Display node is or contains (recursive search if the first node is a Group)
a Shape node having a ImageTexture, then the internal texture of the(se) ImageTexture
node(s) is replaced by the texture of the Display.

3.20.2 Field Summary

• width: width of the display in pixels

• height: height of the display in pixels

• windowPosition: position in the 3D window where the Display image will be dis-
played. The X and Y values for this position are floating point values between 0.0 and 1.0.
They specify the position of the center of the image, relatively to the top left corner of the
3D window. This position will scale whenever the 3D window is resized. Also, the user
can drag and drop this display image in the 3D window using the mouse. This will affect
the X and Y position values.

• pixelSize: scale factor for the Display image rendered in the 3D window (see the
windowPosition description). Setting a pixelSize value higher than 1 is useful to
better see each individual pixel of the image. Setting it to 0 simply turns off the display of
the camera image.

3.20.3 Coordinates system

Internally, the Display image is stored in a 2D pixel array. The RGBA value (4x8 bits) of a
pixel is dislayed in the status bar (the bar at the bottom of the console window) when the mouse
hovers over the pixel in the Display. The 2D array has a fixed size defined by the width
and height fields. The (0,0) coordinate corresponds to the top left pixel, while the (width-
1,height-1) coordinate corresponds to the bottom right pixel.

3.20.4 Command stack

Each function call of the Display device API (except for wb display get width() and
wb display get height()) is storing a specific command into an internal stack. This com-
mand stack is sent to Webots during the next call of the wb robot step() function, using a
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FIFO scheme (First In, First Out), so that commands are executed in the same order as the cor-
responding function calls.

3.20.5 Context

The Display device has among other things two kinds of functions; the contextual ones which
allow to set the current state of the display, and the drawing ones which allow to draw specific
primitives. The behavior of the drawing functions depends on the display context. For example,
in order to draw two red lines, the wb display set color contextual function must be called
for setting the display’s internal color to red before calling twice the wb display draw line
drawing function to draw the two lines.

3.20.6 Display Functions

NAME

wb display get width,
wb display get height – get the size of the display

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/display.h>

int wb display get width (WbDeviceTag tag);

int wb display get height (WbDeviceTag tag);

DESCRIPTION

These functions return respectively the values of the width and height fields.

NAME

wb display set color,
wb display set alpha,
wb display set opacity – set the drawing properties of the display

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/display.h>
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Cn = (1− opacity) ∗ Co+ opacity ∗ Cn

Figure 3.8: Blending formula used to compute the new the color channels (Cn) of a pixel from
the old color channels (Co) of the background pixel and from the opacity.

void wb display set color (WbDeviceTag tag, int color);

void wb display set alpha (WbDeviceTag tag, double alpha);

void wb display set opacity (WbDeviceTag tag, double opacity);

DESCRIPTION

These three functions define the context in which the subsequent drawing commands (see draw
primitive functions) will be applied.

wb display set color() defines the color for the subsequent drawing commands. It is
expressed as a 4 bytes RGB integer, where the first byte is ignored, the second byte represents
the red component, the third byte represents the green component and the last byte represents the
blue component. For example, 0xFF00FF (a mix of the red and blue components) represents
the magenta color. Before the first call to wb display set color(), the default color is
white (0xFFFFFF).

wb display set alpha() defines the alpha channel for the subsequent drawing commands.
This function should be used only with special displays that can be transparent or semi-transparent
(for which one can see through the display). The alpha channel defines the opacity of a pixel of
the display. It is expressed as a floating point value between 0.0 and 1.0 representing respec-
tively fully transparent and fully opaque. Intermediate values correspond to semi-transparent
levels. Before the first call to wb display set alpha(), the default value for alpha is 1
(opaque).

wb display set opacity() defines with which opacity the new pixels will replace the old
ones for the following drawing instructions. It is expressed as a floating point value between
0.0 and 1.0; while 0 means that the new pixel has no effect over the old one and 1 means that
the new pixel replaces entirely the old one. Only the color channel is affected by the opacity
according to the figure 3.8 formula.

language: Matlab
In the Matlab version of wb display set color() the color argu-
ment must be a vector containing the three RGB components: [RED GREEN
BLUE]. Each component must be a value between 0.0 and 1.0. For example
the vector [1 0 1] represents the magenta color.
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NAME

wb display draw pixel,
wb display draw line,
wb display draw rectangle,
wb display draw oval,
wb display draw polygon,
wb display draw text,
wb display fill rectangle,
wb display fill oval,
wb display fill polygon – draw a graphic primitive on the display

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/display.h>

void wb display draw pixel (WbDeviceTag tag, int x, int y);

void wb display draw line (WbDeviceTag tag, int x1, int y1, int x2, int y2);

void wb display draw rectangle (WbDeviceTag tag, int x, int y, int width,

int height);

void wb display draw oval (WbDeviceTag tag, int cx, int cy, int a, int b);

void wb display draw polygon (WbDeviceTag tag, const int *x, const int *y,

int size);

void wb display draw text (WbDeviceTag tag, const char *txt, int x, int y);

void wb display fill rectangle (WbDeviceTag tag, int x, int y, int width,

int height);

void wb display fill oval (WbDeviceTag tag, int cx, int cy, int a, int b);

void wb display fill polygon (WbDeviceTag tag, const int *x, const int *y,

int size);

DESCRIPTION

These functions order the execution of a drawing primitive on the display. They depend on
the context of the display as defined by the contextual functions (see set context func-
tions).

wb display draw pixel() draws a pixel at the (x,y) coordinate.

wb display draw line() draws a line between the (x1,y1) and the (x2,y2) coordinates
using the Bresenham’s line drawing algorithm.

wb display draw rectangle() draws the outline of a rectangle having a size of wi-
dth*height. Its top left pixel is defined by the (x,y) coordinate.
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wb display draw oval() draws the outline of an oval. The center of the oval is specified
by the (cx,cy) coordinate. The horizontal and vertical radius of the oval are specified by the
(a,b) parameters. If a equals b, this function draws a circle.

wb display draw polygon() draws the outline of a polygon having size vertices. The
list of vertices must be defined into px and py. If the first pixel coordinates are not identical to
the last ones, the loop is automatically closed. Here is an example :

const int px[] = {10,20,10, 0};
const int py[] = {0, 10,20,10};
wb_display_draw_polygon(display,px,py,4); // draw a diamond

wb display draw text() draws an ASCII text from the (x,y) coordinate. The font used to
display the characters has a size of 8x8 pixels. There is no extra space between characters.

wb display fill rectangle() draws a rectangle having the same properties as the rect-
angle drawn by the wb display draw rectangle() function except that it is filled instead
of outlined.

wb display fill oval() draws an oval having the same properties as the oval drawn by
the wb display draw oval() function except that it is filled instead of outlined.

wb display fill polygon() draws a polygon having the same properties as the polygon
drawn by the wb display draw polygon() function except that it is filled instead of out-
lined.

language: Java, Python, Matlab
The Java, Python and Matlab equivalent of wb display draw poly-
gon() and wb display fill polygon() don’t have a size argu-
ment because in these languages the size is determined directly from the x
and y arguments.

NAME

wb display image new,
wb display image load,
wb display image copy,
wb display image paste,
wb display image save,
wb display image delete – image manipulation functions

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/display.h>
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WbImageRef wb display image new (WbDeviceTag tag, int width, int height,

const void *data, int format);

WbImageRef wb display image load (WbDeviceTag tag, const char *filename);

WbImageRef wb display image copy (WbDeviceTag tag, int x, int y, int wi-

dth, int height);

void wb display image paste (WbDeviceTag tag, WbImageRef ir, int x, int y);

void wb display image save (WbDeviceTag tag, WbImageRef ir, const char *fi-

lename);

void wb display image delete (WbDeviceTag tag, WbImageRef ir);

DESCRIPTION

In addition to the main display image, each Display node also contains a list of clipboard
images used for various image manipulations. This list is initially empty. The functions described
below use a reference (corresponding to the WbImageRef data type) to refer to a specific image.
Clipboard images can be created either with wb display image new(), or wb display -
image load(), or wb display image copy(). They should be deleted with the wb -
display image delete() function.when they are no more used. Finally, note that both the
main display image and the clipboard images have an alpha channel.

wb display image new() creates a new clipboard image, with the specified with and he-
ight, and loads the image data into it with respect to the defined image format. Three im-
ages format are supported: WB IMAGE RGB which is similar to the image format returned by a
Camera device and WB IMAGE RGBA or WB IMAGE ARGB which includes an alpha channel
respectively after and before the color components.

wb display image load() creates a new clipboard image, loads an image file into it and
returns a reference to the new clipboard image. The image file is specified with the filename
parameter (relatively to the controller directory). An image file can be in either PNG or JPEG
format. Note that this function involves sending an image from the controller process to Webots,
thus possibly affecting the overall simulation speed.

wb display image copy() creates a new clipboard image and copies the specified sub-
image from the main display image to the new clipboard image. It returns a reference to the new
clipboard image containing the copied sub-image. The copied sub-image is defined by its top
left coordinate (x,y) and its dimensions (width,height).

wb display image paste() pastes a clipboard image referred to by the ir parameter to
the main display image. The (x,y) coordinates define the top left point of the pasted image. The
resulting pixels displayed in the main display image are computed using a blending operation
(similar to the one depicted in the figure 3.8 formula but involving the alpha channels of the old
and new pixels instead of the opacity).
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wb display image save() saves a clipboard image referred to by the ir parameter to a
file. The file name is defined by the filename parameter (relatively to the controller directory).
The image is saved in a file using either the PNG format or the JPEG format depending on
the end of the filename parameter (respectively .png and .jpg). Note that this function
involves sending an image from Webots to the controller process, thus possibly affecting the
overall simulation speed.

wb display image delete() releases the memory used by a clipboard image specified by
the ir parameter. After this call the value of ir becomes invalid and should not be used any
more. Using this function is recommended after a clipboard image is not needed any more.

language: Java
The Display.imageNew() function can display the image returned by
the Camera.getImage() function directly if the pixel format argument is
set to ARGB.

3.21 DistanceSensor

Derived from Device.

DistanceSensor {
MFVec3f lookupTable [ 0 0 0, 0.1 1000 0 ]
SFString type "infra-red"
SFInt32 numberOfRays 1 # [1,inf)
SFFloat aperture 1.5708 # [0,2pi]
SFFloat gaussianWidth 1

}

3.21.1 Description

The DistanceSensor node can be used to model an infra-red sensor, a sonar sensor, or a
laser range-finder. This device simulation is performed by detecting the collisions between one
or several sensor rays and the bounding objects of Solid nodes in the environment.

The rays of the DistanceSensor nodes can be displayed by checking the menu View > Op-
tional Rendering > Show Distance Sensor Rays. The red/green transition on the rays indicates
the points of intersection with the bounding objects.

3.21.2 Field Summary

• lookupTable: a table used for specifying the desired response curve and noise of the
device. This table indicates how the ray intersection distances measured by Webots must
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Figure 3.9: Sensor response versus obstacle distance

be mapped to response values returned by the function wb distance sensor get -
value(). The first column of the table specifies the input distances, the second column
specifies the corresponding desired response values, and the third column indicates the
desired noise. The noise on the return value is computed according to a uniform random
number distribution whose range is calculated as a percent of the response value. Let us
consider an example:

lookupTable [ 0 1000 0,
0.1 1000 0.1,
0.2 400 0.1,
0.3 50 0.1,
0.37 30 0 ]

The above lookup table means that for a distance of 0 meters, the sensor will return a value
of 1000 without noise (0); for a distance of 0.1 meter, the sensor will return 1000 with a
noise of up to 10 percent (100); for a distance value of 0.2 meters, the sensor will return
400 plus or minus up to 10 percent (40), etc. Distance values not directly specified in
the lookup table will be linearly interpolated. This can be better understood in the figure
below. Note that the input values of a lookup table must always be positive and sorted in
increasing order.

• type: one of ”infra-red” (the default), ”sonar” or ”laser”. Sensors of type ”infra-red”
are sensitive to the objects’ colors; light and red (RGB) obstacles have a higher response
than dark and non-red obstacles (see below for more details). Sensors of type ”sonar”
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Figure 3.10: Predefined configurations for 1 through 10 sensor rays
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Figure 3.11: Weight distribution formulas

and ”laser” return the distance to the nearest object while ”infa-red” computes the average
distance of all rays. Sensors of type ”laser” can have only one ray and they have the
particularity to draw a red spot at the point where this ray hits an obstacle. This red spot is
visible on the camera images.

• numberOfRays: number of rays cast by the sensor. The number of rays must be equal to,
or greater than 1 for ”infra-red” and ”sonar” sensors. numberOfRays must be exactly
1 for ”laser” sensors. If this number is larger than 1, then several rays are used and the
sensor measurement value is computed from the weighted average of the individual rays’
responses. By using multiple rays, a more accurate model of the physical infra-red or
ultrasound sensor can be obtained. The sensor rays are distributed inside 3D-cones whose
opening angles can be tuned through the aperture parameter. See figure 3.10 for the
ray distributions from one to ten rays. The spacial distribution of the rays is as much as
possible uniform and has a left/right symmetry. There is no upper limit on the number of
rays; however, Webots’ performance drops as the number of rays increases.

• aperture: sensor aperture angle or laser beam radius. For the ”infra-red” and ”sonar”
sensor types, this parameter controls the opening angle (in radians) of the cone of rays
when multiple rays are used. For the ”laser” sensor type, this parameter specifies (in
meters) the radius of the red spot drawn where the laser beam hits an obstacle.

• gaussianWidth: width of the Gaussian distribution of sensor ray weights (for ”infra-
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Figure 3.12: Example distribution for 10 rays using a Gaussian width of 0.5

red” sensors). When averaging the sensor’s response, the individual weight of each sensor
ray is computed according to a Gaussian distribution as described in figure 3.11. where
wi is the weight of the ith ray, ti is the angle between the ith ray and the sensor axis, a
is the aperture angle of the sensor, g is the Gaussian width, and n is the number of rays.
As depicted in figure 3.12, rays in the center of the sensor cone are given a greater weight
than rays in the periphery. A wider or narrower distribution can be obtained by tuning
the gaussianWidth parameter. An approximation of a flat distribution is obtained if a
sufficiently large number is chosen for the gaussianWidth. This field is ignored for
the ”sonar” and ”laser” DistanceSensor types.

In fast2d mode, the sensor rays are arranged in 2d-fans instead of 3D-cones
and the aperture parameter controls the opening angle of the fan. In
fast2d mode, Gaussian averaging is also applied, and the ti parameter of
the above formula corresponds to the 2D angle between the ith ray and the
sensor axis.

3.21.3 DistanceSensor types

This table summarizes the difference between the three types of DistanceSensor.

type (field) ”infra-red” ”sonar” ”laser”
numberOfRays (field) > 0 > 0 must be exactly 1
Distance calculation Average of all rays Nearest collision of any ray Nearest collision of the ray
gaussianWidth (field) Used Ignored Ignored
Sensitive to red objects Yes No No
Draws a red spot No No Yes

Table 3.3: Summary of DistanceSensor types
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3.21.4 Infra-Red Sensors

In the case of an ”infra-red” sensor, the value returned by the lookup table is modified by a re-
flection factor depending on the color properties of the object hit by the sensor ray. In fact, if
the object is a Solid node with a bounding object, the color of the bounding object is used for
computing the reflection factor rather that the actual color of the object. The reflection factor is
computed as follows: f = 0.2 + 0.8 * red level where red level is the level of red color (dif-
fuseColor) of the object hit by the sensor ray. The distance value computed by the simulator
is divided by this factor before the lookup table is used to compute the output value. This re-
flection factor is not taken into consideration in fast2d mode, so in this case, an infra-red sensor
behaves like the other types of sensors.

3.21.5 Line Following Behavior

Some support for DistanceSensor nodes used for reading the red color level of a textured
floor is implemented. This is useful to simulate line following behaviors. This feature is demon-
strated in the rover.wbt example (see in the projects/robots/mindstorms/worlds
directory of Webots). The ground texture must be placed in a Plane.

3.21.6 DistanceSensor Functions

NAME

wb distance sensor enable,
wb distance sensor disable,
wb distance sensor get sampling period,
wb distance sensor get value – enable, disable and read distance sensor measurements

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/distance sensor.h>

void wb distance sensor enable (WbDeviceTag tag, int ms);

void wb distance sensor disable (WbDeviceTag tag);

int wb distance sensor get sampling period (WbDeviceTag tag);

double wb distance sensor get value (WbDeviceTag tag);

DESCRIPTION
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wb distance sensor enable() allows the user to enable a distance sensor measurement
each ms milliseconds.

wb distance sensor disable() turns the distance sensor off, saving computation time.

The wb distance sensor get sampling period() function returns the period given
into the wb distance sensor enable() function, or 0 if the device is disabled.

wb distance sensor get value() returns the last value measured by the specified dis-
tance sensor. This value is computed by the simulator according to the lookup table of the
DistanceSensor node. Hence, the range of the return value is defined by this lookup table.

3.22 ElevationGrid

ElevationGrid {
SFNode color NULL
MFFloat height [] # (-inf,inf)
SFBool colorPerVertex TRUE
SFInt32 xDimension 0 # [0,inf)
SFFloat xSpacing 1 # (0,inf)
SFInt32 zDimension 0 # [0,inf)
SFFloat zSpacing 1 # (0,inf)
SFFloat thickness 1 # [0,inf)

}

3.22.1 Description

The ElevationGrid node specifies a uniform rectangular grid of varying height in the y=0
plane of the local coordinate system. The geometry is described by a scalar array of height values
that specify the height of the surface above each point of the grid. The ElevationGrid node
is the most appropriate to model an uneven terrain.

3.22.2 Field Summary

The xDimension and zDimension fields indicate the number of points in the grid height
array in the x and z directions. Both xDimension and zDimension shall be greater than or
equal to zero. If either the xDimension or the zDimension is less than two, the Eleva-
tionGrid contains no quadrilaterals. The vertex locations for the quadrilaterals are defined by
the height field and the xSpacing and zSpacing fields:

• The height field is an xDimension by zDimension array of scalar values represent-
ing the height above the grid for each vertex.
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Figure 3.13: ElevationGrid node

• The xSpacing and zSpacing fields indicate the distance between vertices in the x and
z directions respectively, and shall be greater than zero.

Thus, the vertex corresponding to the point P[i,j] on the grid is placed at:

P[i,j].x = xSpacing * i
P[i,j].y = height[ i + j * xDimension]
P[i,j].z = zSpacing * j

where 0 <= i < xDimension and 0 <= j < zDimension,
and P[0,0] is height[0] units above/below the origin of the local
coordinate system

The color field specifies per-vertex or per-quadrilateral colors for the ElevationGrid node
depending on the value of colorPerVertex. If the color field is NULL, the Eleva-
tionGrid node is rendered with the overall attributes of the Shape node enclosing the Ele-
vationGrid node. If only two colors are supplied, these two colors are used alternatively to
display a checkerboard structure.

The colorPerVertex field determines whether colors specified in the color field are applied
to each vertex or each quadrilateral of the ElevationGrid node. If colorPerVertex
is FALSE and the color field is not NULL, the color field shall specify a Color node
containing at least (xDimension-1) x (zDimension-1) colors.

If colorPerVertex is TRUE and the color field is not NULL, the color field shall specify
a Color node containing at least xDimension x zDimension colors, one for each vertex.

The thickness field specifies the thickness of the bounding box which is added below the
lowest point of the height field, to prevent objects from falling through very thin Eleva-
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tionGrids.

3.22.3 Texture Mapping

The default texture mapping produces a texture that is upside down when viewed from the pos-
itive y-axis. To orient the texture with a more intuitive mapping, use a TextureTransform
node to reverse the texture coordinate, like this:

Shape {
appearance Appearance {

textureTransform TextureTransform {
scale 1 -1

}
}
geometry ElevationGrid {

...
}

}

This will produce a compact ElevationGridwith texture mapping that aligns with the natural
orientation of the image.

3.23 Emitter

Derived from Device.

Emitter {
SFString type "radio" # or "serial" or "infra-red"
SFFloat range -1 # -1 or positive
SFFloat maxRange -1 # -1 or positive
SFFloat aperture -1 # -1 or between 0 and 2*pi
SFInt32 channel 0
SFInt32 baudRate -1 # -1 or positive
SFInt32 byteSize 8 # 8 or more
SFInt32 bufferSize 4096 # positive

}

3.23.1 Description

The Emitter node is used to model radio, serial or infra-red emitters. An Emitter node must
be added to the children of a robot or a supervisor. Please note that an emitter can send data but
it cannot receive data. In order to simulate a unidirectional communication between two robots,
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one robot must have an Emitter while the other robot must have a Receiver. To simulate
a bidirectional communication between two robots, each robot needs to have both an Emitter
and a Receiver. Note that messages are never transmitted from one robot to itself.

3.23.2 Field Summary

• type: type of signals: ”radio”, ”serial” or ”infra-red”. Signals of type ”radio” (the default)
and ”serial” are transmitted without taking obstacles into account. Signals of type ”infra-
red,” however, do take potential obstacles between the emitter and the receiver into account.
Any solid object (solid, robots, etc ...) with a defined bounding object is a potential obstacle
to an ”infra-red” communication. The structure of the emitting or receiving robot itself will
not block an ”infra-red” transmission. Currently, there is no implementation difference
between the ”radio” and ”serial” types.

• range: radius of the emission sphere (in meters). A receiver can only receive a message if
it is located within the emission sphere. A value of -1 (the default) for range is considered
to be an infinite range.

• maxRange: defines the maximum value allowed for range. This field defines the max-
imum value that can be set using emitter set range(). A value of -1 (the default)
for maxRange is considered to be infinite.

• aperture opening angle of the emission cone (in radians); for ”infra-red” only. The
cone’s apex is located at the origin ([0 0 0]) of the emitter’s coordinate system and the
cone’s axis coincides with the z-axis of the emitter coordinate system. An ”infra-red”
emitter can only send data to receivers currently located within its emission cone. An
aperture of -1 (the default) is considered to be infinite, meaning that the emitted signals
are omni-directional. For ”radio” and ”serial” emitters, this field is ignored. See figure 3.14
for an illustration of range and aperture.

• channel: transmission channel. This is an identification number for an ”infra-red” emit-
ter or a frequency for a ”radio” emitter. Normally a receiver must use the same channel as
an emitter to receive the emitted data. However, the special channel -1 allows broadcasting
messages on all channels. Channel 0 (the default) is reserved for communicating with a
physics plugin. For inter-robot communication, please use positive channel numbers.

• baudRate: the baud rate is the communication speed expressed in number of bits per
second. A baudRate of -1 (the default) is regarded as infinite and causes the data to be
transmitted immediately (within one control step) from emitter to receiver.

• byteSize: the byte size is the number of bits required to transmit one byte of informa-
tion. This is usually 8 (the default), but can be more if control bits are used.

• bufferSize: specifies the size (in bytes) of the transmission buffer. The total number
of bytes in the packets enqueued in the emitter cannot exceed this number.
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Figure 3.14: Illustration of aperture and range for ”infra-red” Emitter/Receiver

Emitter nodes can also be used to communicate with the physics plugin
(see chapter 6). In this case the channel must be set to 0 (the default). In
addition it is highly recommended to choose -1 for the baudRate, in order to
enable the fastest possible communication; the type, range and aper-
ture will be ignored.

3.23.3 Emitter Functions

NAME

wb emitter send – send a data packet to potential receivers

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/emitter.h>

int wb emitter send (WbDeviceTag tag, const void *data, int size);

DESCRIPTION
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The wb emitter send() function adds to the emitters’s queue a packet of size bytes lo-
cated at the address indicated by data. The enqueued data packets will then be sent to potential
receivers (and removed from the emitter’s queue) at the rate specified by the baudRate field of
the Emitter node. Note that a packet will not be sent to its emitter robot. This function returns
1 if the message was placed in the sending queue, 0 if the sending queue was full. The queue
is considered to be full when the sum of bytes of all the currently enqueued packets exceeds the
buffer size specified by the bufferSize field. Note that a packet must have at least 1 byte.

The Emitter/Receiver API does not impose any particular format on the data being transmitted.
Any user chosen format is suitable, as long as the emitter and receiver codes agree. The following
example shows how to send a null-terminated ascii string using the C API:

language: C

1 char message[128];
2 sprintf(message, "hello%d", i);
3 wb_emitter_send(tag, message, strlen(message) +

1);

And here an example on how to send binary data with the C API:

language: C

1 double array[5] = { 3.0, x, y, -1/z, -5.5 };
2 wb_emitter_send(tag, array, 5 * sizeof(double));

language: Python
The send() function sends a string. For sending primitive data types into
this string, the struct module can be used. This module performs conversions
between Python values and C structs represented as Python strings. Here is
an example:

1 import struct
2 #...
3 message = struct.pack("chd","a",45,120.08)
4 emitter.send(message)
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language: Java
The Java send() method does not have a size argument because the size
is implicitly passed with the data argument. Here is an example of sending
a Java string in a way that is compatible with a C string, so that it can be
received in a C/C++ controller.

1 String request = "You are number " + num + "\0";
2 try {
3 emitter.send(request.getBytes("US-ASCII"));
4 }
5 catch (java.io.UnsupportedEncodingException e) {
6 System.out.println(e);
7 }

NAME

wb emitter set channel,
wb emitter get channel – set and get the emitter’s channel.

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/emitter.h>

void wb emitter set channel (WbDeviceTag tag, int channel);

int wb emitter get channel (WbDeviceTag tag);

DESCRIPTION

The wb emitter set channel() function allows the controller to change the transmission
channel. This modifies the channel field of the corresponding Emitter node. Normally, an
emitter can send data only to receivers that use the same channel. However, the special WB -
CHANNEL BROADCAST value can be used for broadcasting to all channels. By switching the
channel number an emitter can selectively send data to different receivers. The wb emitter -
get channel() function returns the current channel number of the emitter.

language: C++, Java, Python
In the oriented-object APIs, the WB CHANNEL BROADCAST constant is
available as static integer of the Emitter class (Emitter::CHANNEL -
BROADCAST).
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NAME

wb emitter set range,
wb emitter get range – set and get the emitter’s range.

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/emitter.h>

void wb emitter set range (WbDeviceTag tag, double range);

double wb emitter get range (WbDeviceTag tag);

DESCRIPTION

The wb emitter set range() function allows the controller to change the transmission
range at run-time. Data packets can only reach receivers located within the emitter’s range. This
function modifies the range field of the corresponding Emitter node. If the specified range
argument is larger than the maxRange field of the Emitter node then the current range will
be set to maxRange. The wb emitter get range() function returns the current emitter’s
range. For both the wb emitter set range() and emitter get range() functions, a
value of -1 indicates an infinite range.

NAME

wb emitter get buffer size – get the transmission buffer size

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/emitter.h>

int wb emitter get buffer size (WbDeviceTag tag);

DESCRIPTION

The wb emitter get buffer size() function returns the size (in bytes) of the transmis-
sion buffer. This corresponds to the value specified by the bufferSize field of the Emitter
node. The buffer size indicates the maximum number of data bytes that the emitter’s queue can
hold in total. When the buffer is full, calls to wb emitter send() will fail and return 0.
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3.24 Fog

Fog {
SFColor color 1 1 1 # [0,1]
SFString fogType "LINEAR"
SFFloat visibilityRange 0 # [0,inf)

}

The Fog node provides a way to simulate atmospheric effects by blending objects with the color
specified by the color field based on the distances of the various objects from the camera. The
distances are calculated in the coordinate space of the Fog node. The visibilityRange
specifies the distance in meters (in the local coordinate system) at which objects are totally ob-
scured by the fog. Objects located beyond the visibilityRange of the camera are drawn
with a constant specified by the color field. Objects very close to the viewer are blended very
little with the fog color. A visibilityRange of 0.0 disables the Fog node.

The fogType field controls how much of the fog color is blended with the object as a func-
tion of distance. If fogType is ”LINEAR”, the amount of blending is a linear function of the
distance, resulting in a depth cueing effect. If fogType is ”EXPONENTIAL”, an exponential
increase in blending is used, resulting in a more natural fog appearance. If fogType is ”EX-
PONENTIAL2”, a square exponential increase in blending is used, resulting in an even more
natural fog appearance (see the OpenGL documentation for more details about fog rendering).

3.25 GPS

Derived from Device.

GPS {
SFString type "satellite"
SFFloat resolution 0

}

3.25.1 Description

The GPS node is used to model a Global Positioning Sensor (GPS) which can obtain information
about its absolute position from the controller program.

3.25.2 Field Summary

• type: This field defines the type of GPS technology used like ”satellite” or ”laser” (cur-
rently ignored).
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• resolution: This field defines the precision of the GPS, that is the maximum error
(expressed in meter) in the absolute position.

3.25.3 GPS Functions

NAME

wb gps enable,
wb gps disable,
wb gps get sampling period,
wb gps get values – enable, disable and read the GPS measurements

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/gps.h>

void wb gps enable (WbDeviceTag tag, int ms);

void wb gps disable (WbDeviceTag tag);

int wb gps get sampling period (WbDeviceTag tag);

const double *wb gps get values (WbDeviceTag tag);

DESCRIPTION

wb gps enable() allows the user to enable a GPS measurement each ms milliseconds.

wb gps disable() turns the GPS off, saving computation time.

The wb gps get sampling period() function returns the period given into the wb gps -
enable() function, or 0 if the device is disabled.

The wb gps get values() function returns the current GPS measurement. The values are
returned as a 3D-vector, therefore only the indices 0, 1, and 2 are valid for accessing the vector.
The returned vector indicates the absolute position of the GPS device.

language: C, C++
The returned vector is a pointer to the internal values managed by the GPS
node, therefore it is illegal to free this pointer. Furthermore, note that the
pointed values are only valid until the next call to wb robot step() or
Robot::step(). If these values are needed for a longer period they must
be copied.
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language: Python
getValues() returns the 3D-vector as a list containing three floats.

3.26 Group

Group {
MFNode children []

}

Direct derived nodes: Transform.

A Group node contains children nodes without introducing a new transformation. It is
equivalent to a Transform node containing an identity transform.

A Group node may not contain subsequent Solid, device or robot nodes.

3.27 Gyro

Derived from Device.

Gyro {
MFVec3f lookupTable [] # interpolation
SFBool xAxis TRUE # compute x-axis
SFBool yAxis TRUE # compute y-axis
SFBool zAxis TRUE # compute z-axis

}

3.27.1 Description

The Gyro node is used to model 1, 2 and 3-axis angular velocity sensors (gyroscope). The
angular velocity is measured in radians per second [rad/s].

3.27.2 Field Summary

• lookupTable: This field optionally specifies a lookup table that can be used for map-
ping the raw angular velocity values [rad/s] to device specific output values. With the
lookup table it is also possible to add noise and to define the min and max output val-
ues. By default the lookup table is empty and therefore the raw values are returned (no
mapping).
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• xAxis, yAxis, zAxis: Each of these boolean fields specifies if the computation
should be enabled or disabled for the specified axis. If one of these fields is set to FALSE,
then the corresponding vector element will not be computed and it will return NaN (Not a
Number) For example if zAxis is FALSE, then wb gyro get values()[2] returns
NaN. The default is that all three axes are enabled (TRUE).

3.27.3 Gyro Functions

NAME

wb gyro enable,
wb gyro disable,
wb gyro get sampling period,
wb gyro get values – enable, disable and read the output values of the gyro device

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/gyro.h>

void wb gyro enable (WbDeviceTag tag, int ms);

void wb gyro disable (WbDeviceTag tag);

int wb gyro get sampling period (WbDeviceTag tag);

const double *wb gyro get values (WbDeviceTag tag);

DESCRIPTION

The wb gyro enable() function turns on the angular velocity measurement each ms mil-
liseconds.

The wb gyro disable() function turns off the Gyro device.

The wb gyro get sampling period() function returns the period given into the wb -
gyro enable() function, or 0 if the device is disabled.

The wb gyro get values() function returns the current measurement of the Gyro device.
The values are returned as a 3D-vector therefore only the indices 0, 1, and 2 are valid for access-
ing the vector. Each vector element represents the angular velocity about one of the axes of the
Gyro node, expressed in radians per second [rad/s]. The first element corresponds to the angular
velocity about the x-axis, the second element to the y-axis, etc.
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language: C, C++
The returned vector is a pointer to the internal values managed by the Gyro
node, therefore it is illegal to free this pointer. Furthermore, note that the
pointed values are only valid until the next call to wb robot step() or
Robot::step(). If these values are needed for a longer period they must
be copied.

language: Python
getValues() returns the vector as a list containing three floats.

3.28 ImageTexture

ImageTexture {
MFString url []
SFBool repeatS TRUE
SFBool repeatT TRUE
SFBool filtering TRUE

}

3.28.1 Description

The ImageTexture node defines a texture map by specifying an image file and general pa-
rameters for mapping to geometry. Texture maps are defined in a 2D coordinate system (s,t)
that ranges from 0.0 to 1.0 in both directions. The bottom edge of the image corresponds to the
s-axis of the texture map, and left edge of the image corresponds to the t-axis of the texture map.
The lower-left pixel of the image corresponds to s=0, t=0, and the top-right pixel of the image
corresponds to s=1, t=1. These relationships are depicted below.

The texture is read from the file specified by the url field. The file should be specified with
a relative path. Absolute paths work as well, but they are not recommended because they are
not portable across different systems. Ideally, the texture file should lie next to the world file,
possibly inside a textures subfolder. Supported image formats include both JPEG and PNG.
The rendering of the PNG alpha transparency is supported. The texture image width and height
should be a power of 2. For example, images with a resolution of 8x8, 8x16, 32x64, 1024x64,
2048x512, 1024x1024 pixels are valid images. Images with a resolution of 100x100, 123x47,
1203x2336 are not valid images.

A PNG image may contain an alpha channel. If such an alpha channel exists, the texture becomes
semi-transparent. This is useful to render for example a scissor cut texture. Semi-transparent ob-
jects are sorted according to their center (the local position of the parent Transform) and are ren-
dered in the same rendering queue as the objects having a transparent material (see the trans-
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Figure 3.15: Texture map coordinate system

parency field of the Material node). Semi-transparent objects cannot receive and cannot
cast shadows.

If the image contains an alpha channel no texture filtering is performed, otherwise both a trilinear
interpolation and an anisotropic texture filtering is applied (the texture is subsampled according
to the distance and the angle between the textured polygon and the camera).

The repeatS and repeatT fields specify how the texture wraps in the s and t directions.
If repeatS is TRUE (the default), the texture map is repeated outside the [0.0,1.0] texture
coordinate range in the s direction so that it fills the shape. If repeatS is FALSE, the texture
coordinates are clamped in the s direction to lie within the [0.0,1.0] range. The repeatT field
is analogous to the repeatS field.

The filtering field defines whether the texture will be displayed using a texture filtering or
not. No filtering corresponds to a simple nearest-neighbor pixel interpolation filtering method.
Filtering corresponds to both an anisotropic filtering method (using mipmapping) which chooses
the smallest mipmap according to the texture orientation and to the texture distance, and a tri-
linear filtering method which smoothes the texture. Using filtering doesn’t affect significantly
the run-time performance, however it may increase slightly the initialization time because of the
generation of the mipmaps.

3.29 IndexedFaceSet

IndexedFaceSet {
SFNode coord NULL
SFNode texCoord NULL
SFBool solid TRUE # ignored and regarded as FALSE
SFBool ccw TRUE
SFBool convex TRUE
MFInt32 coordIndex [] # [-1,inf)
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MFInt32 texCoordIndex [] # [-1,inf)
SFFloat creaseAngle 0 # [0,inf)

}

3.29.1 Description

The IndexedFaceSet node represents a 3D shape formed by constructing faces (polygons)
from vertices listed in the coord field. The IndexedFaceSet node can be used either as a
graphical or as a collision detection primitive (in a boundingObject). IndexedFaceSet nodes
can be easily imported from 3D modeling programs after a triangle mesh conversion.

3.29.2 Field Summary

The coord field contains a Coordinate node that defines the 3D vertices referenced by the
coordIndex field. IndexedFaceSet uses the indices in its coordIndex field to specify
the polygonal faces by indexing into the coordinates in the Coordinate node. An index of
”-1” indicates that the current face has ended and the next one begins. The last face may be (but
does not have to be) followed by a ”-1” index. If the greatest index in the coordIndex field is
N, the Coordinate node shall contain N+1 coordinates (indexed as 0 to N). Each face of the
IndexedFaceSet shall have:

• at least three non-coincident vertices;

• vertices that define a planar polygon;

• vertices that define a non-self-intersecting polygon.

Otherwise, the results are undefined.

When used for collision detection (boundingObject), each face of the IndexedFaceSet must
contain exactly three vertices, hence defining a triangle mesh (or trimesh).

If the texCoord field is not NULL, then it must contain a TextureCoordinate node. The
texture coordinates in that node are applied to the vertices of the IndexedFaceSet as follows:

If the texCoordIndex field is not empty, then it is used to choose texture coordinates for
each vertex of the IndexedFaceSet in exactly the same manner that the coordIndex
field is used to choose coordinates for each vertex from the Coordinate node. The tex-
CoordIndex field must contain at least as many indices as the coordIndex field, and must
contain end-of-face markers (-1) in exactly the same places as the coordIndex field. If the
greatest index in the texCoordIndex field is N, then there must be N+1 texture coordinates
in the TextureCoordinate node.

The creaseAngle field, affects how default normals are generated. For example, when an
IndexedFaceSet has to generate default normals, it uses the creaseAngle field to deter-
mine which edges should be smoothly shaded and which ones should have a sharp crease. The
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Figure 3.16: A simple IndexedFaceSet example

crease angle is the positive angle between surface normals on adjacent polygons. For example,
a crease angle of .5 radians means that an edge between two adjacent polygonal faces will be
smooth shaded if the normals to the two faces form an angle that is less than .5 radians (about 30
degrees). Otherwise, it will be faceted. Crease angles must be greater than or equal to 0.0.

3.29.3 Example

IndexedFaceSet {
coord Coordinate {

point [ 1 0 -1, -1 0 -1, -1 0 1, 1 0 1, 0 2 0 ]
}
coordIndex [ 0 4 3 -1 # face A, right

1 4 0 -1 # face B, back
2 4 1 -1 # face C, left
3 4 2 -1 # face D, front
0 3 2 1 ] # face E, bottom

}

3.30 IndexedLineSet

IndexedLineSet {
SFNode coord NULL
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MFInt32 coordIndex [] # [-1,inf)
}

The IndexedLineSet node represents a 3D geometry formed by constructing polylines from
3D vertices specified in the coord field. IndexedLineSet uses the indices in its co-
ordIndex field to specify the polylines by connecting vertices from the coord field. An
index of ”-1” indicates that the current polyline has ended and the next one begins. The last
polyline may be (but does not have to be) followed by a ”-1”. IndexedLineSet is specified
in the local coordinate system and is affected by the transformations of its ancestors.

The coord field specifies the 3D vertices of the line set and contains a Coordinate node.

IndexedLineSets are not lit, are not texture-mapped and they do not cast or receive shadows.
IndexedLineSets cannot be use for collision detection (boundingObject).

3.31 InertialUnit

Derived from Device.

InertialUnit {
MFVec3f lookupTable [] # interpolation
SFBool xAxis TRUE # compute roll
SFBool yAxis TRUE # compute yaw
SFBool zAxis TRUE # compute pitch

}

3.31.1 Description

The InertialUnit node simulates an Inertial Measurement Unit (IMU). The InertialU-
nit computes and returns its roll, pitch and yaw angles with respect to a global coordinate
system defined in the WorldInfo node. If you would like to measure an acceleration or an
angular velocity, please use the Accelerometer or Gyro node instead. The InertialU-
nit node must be placed on the Robot so that its x-axis points in the direction of the Robot’s
forward motion (longitudinal axis). The positive z-axis must point towards the Robot’s right
side, e.g. right arm, right wing (lateral axis). The positive y-axis must point to the Robot’s
up/top direction. If the InertialUnit has this orientation, then the roll, pitch and yaw angles
correspond to the usual automotive, aeronautics or spatial meaning.

3.31.2 Field Summary

• lookupTable: This field optionally specifies a lookup table that can be used for chang-
ing the angle values [rad] into device specific output values, or for changing the units to
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Figure 3.17: Roll, pitch and yaw angles in Webots’ Inertial Unit

degrees for example. With the lookup table it is also possible to define the min and max
output values and to add noise to the output values. By default the lookup table is empty
and therefore the returned angle values are expressed in radians and no noise is added.

• xAxis, yAxis, zAxis: Each of these boolean fields specifies if the computation
should be enabled or disabled for the specified axis. The xAxis field defines whether the
roll angle should be computed. The yAxis field defines whether the yaw angle should be
computed. The zAxis field defines whether the pitch angle should be computed. If one
of these fields is set to FALSE, then the corresponding angle element will not be computed
and it will return NaN (Not a Number). For example if zAxis is FALSE, then wb -
inertial unit get values()[2] returns NaN. The default is that all three axes
are enabled (TRUE).

3.31.3 InertialUnit Functions
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NAME

wb inertial unit enable,
wb inertial unit disable,
wb inertial unit get sampling period,
wb inertial unit get roll pitch yaw – enable, disable and read the output values of the inertial
unit

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/inertial unit.h>

void wb inertial unit enable (WbDeviceTag tag, int ms);

void wb inertial unit disable (WbDeviceTag tag);

int wb inertial unit get sampling period (WbDeviceTag tag);

const double *wb inertial unit get roll pitch yaw (WbDeviceTag tag);

DESCRIPTION

The wb inertial unit enable() function turns on the angle measurement each ms mil-
liseconds.

The wb inertial unit disable() function turns off the InertialUnit device.

The wb inertial unit get sampling period() function returns the period given into
the wb inertial unit enable() function, or 0 if the device is disabled.

The wb inertial unit get roll pitch yaw() function returns the current roll, pitch
and yaw angles of the InertialUnit. The values are returned as an array of 3 components
therefore only the indices 0, 1, and 2 are valid for accessing the returned array. Note that the
indices 0, 1 and 2 return the roll, pitch and yaw angles respectively.

The roll angle indicates the unit’s rotation angle about its x-axis, in the interval [-π,π]. The
roll angle is zero when the InertialUnit is horizontal, i.e. when its z-axis is parallel to the
ground plane. The WorldInfo.gravity vector defines the orientation of the ground plane.

The pitch angle indicates the unit’s rotation angle about is z-axis, in the interval [-π/2,π/2]. The
pitch angle is zero when the InertialUnit is horizontal, i.e. when its x-axis is parallel to the
ground plane. If the InertialUnit is placed on the Robot with a standard orientation, then
the pitch angle is negative when the Robot is going down, and positive when the robot is going
up.

The yaw angle indicates the unit orientation, in the interval [-π,π], with respect to World-
Info.northDirection. The yaw angle is zero when the InertialUnit’s x-axis is aligned
with the north direction, it is π/2 when the unit is heading east, and -π/2 when the unit is oriented
towards the west. The yaw angle can be used as a compass.



3.32. LED 91

language: C, C++
The returned vector is a pointer to internal values managed by the We-
bots, therefore it is illegal to free this pointer. Furthermore, note that the
pointed values are only valid until the next call to wb robot step() or
Robot::step(). If these values are needed for a longer period they must
be copied.

language: Python
getRollPitchYaw() returns the angles as a list containing three floats.

3.32 LED

Derived from Device.

LED {
MFColor color [ 1 0 0 ] # [0,1]
SFBool gradual FALSE # for gradual color display and RBG

LEDs
}

3.32.1 Description

The LED node is used to model a light emitting diode (LED). The light produced by an LED
can be used for debugging or informational purposes. The resulted color is applied only on the
first child of the LED node. If the first child is a Shape node, the emissiveColor field of
its Material node is altered. If the first child is a Light node, its color field is altered.
Otherwise, if the first child is a Group node, a recursive search is applied on this node in order
to find which color field must be modified, so every Light, Shape and Group node is altered
according to the previous rules.

3.32.2 Field Summary

• color: This defines the colors of the LED device. When off, an LED is always black.
However, when on it may have different colors as specified by the LED programming
interface. By default, the color defines only one color (red), but you can change this and
add extra colors that could be selected from the LED programming interface. However,
the number of colors defined depends on the value of the gradual field (see below).
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• gradual: This defines the type of LED. If set to FALSE, the LED can take any of the
color values defined in the color list. If set to TRUE, then the color list should either
be empty or contain only one color value. If the color list is empty, then the LED is an
RGB LED and can take any color in the R8G8B8 color space (16 million possibilities). If
the color list contains a single color, then the LED is monochromatic, and its intensity
can be adjusted between 0 (off) and 255 (maximum intensity).

3.32.3 LED Functions

NAME

wb led set – turn an LED on or off

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/led.h>

void wb led set (WbDeviceTag tag, int value);

DESCRIPTION

wb led set() switches an LED on or off, possibly changing its color. If the value parameter
is 0, the LED is turned off. Otherwise, it is turned on.

In the case of a non-gradual LED (gradual field set to FALSE), if the value parameter is 1,
the LED is turned on using the first color specified in the color field of the corresponding LED
node. If the value parameter is 2, the LED is turned on using the second color specified in the
color field of the LED node, and so on. The value parameter should not be greater than the
size of the color field of the corresponding LED node.

In the case of a monochromatic LED (gradual field set to TRUE and color field containing
exactly one color), the value parameter indicates the intensity of the LED in the range 0 (off)
to 255 (maximum intensity).

In the case of an RGB LED (gradual field set to TRUE and color field containing an empty
list), the value parameter indicates the RGB color of the LED in the range 0 (off or black) to
0xffffff (white). The format is R8G8B8: The most significant 8 bits (left hand side) indicate the
red level (between 0x00 and 0xff). Bits 8 to 15 indicate the green level and the least significant
8 bits (right hand side) indicate the blue level. For example, 0xff0000 is red, 0x00ff00 is green,
0x0000ff is blue, 0xffff00 is yellow, etc.
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3.33 Light

Light {
SFFloat ambientIntensity 0 # [0,1]
SFColor color 1 1 1 # [0,1]
SFFloat intensity 1 # [0,1]
SFBool on TRUE
SFBool castShadows FALSE

}

Direct derived nodes: PointLight, SpotLight, DirectionalLight.

3.33.1 Description

The Light node is abstract: only derived nodes can be instantiated. Lights have two purposes in
Webots: (1) the are used to graphically illuminate objects and (2) they determine the quantity of
light perceived by LightSensor nodes. Except for castShadows, every field of a Light
node affects the light measurements made by LightSensor nodes.

3.33.2 Field Summary

• The intensity field specifies the brightness of the direct emission from the light, and
the ambientIntensity specifies the intensity of the ambient emission from the light.
Light intensity usually ranges from 0.0 (no light emission) to 1.0 (full intensity). However,
when used together with LightSensors, and if real physical quantities such as Watts
or lumen (lm) are desired, larger values of intensity and ambientIntensity can
also be used. The color field specifies the spectral color properties of both the direct and
ambient light emission as an RGB value.

• The on boolean value allows the user to turn the light on (TRUE) or off (FALSE).

• The castShadows field allows the user to turn on (TRUE) or off (FALSE) the casting
of shadows for this Light. When activated, sharp shadows are casted from and received
by any renderable object except for the semi-transparent objects, for the objects having
a texture containing an alpha channel, and the IndexedLineSet primitive. Shadows
are additive (Several lights can cast shadows). The darkness of a shadow depends on how
the occluded part is lighted (either by an ambient light component or by another light).
Activating the shadows of just one Light can have a significant impact on the global
rendering performance, particularly if the world contains either lots of objects or complex
meshes. Some shadow issues can occurs in closed spaces.
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3.34 LightSensor

Derived from Device.

LightSensor {
MFVec3f lookupTable [ 0 0 0, 1 1000 0 ]
SFColor colorFilter 1 1 1 # [0,1]
SFBool occlusion FALSE

}

3.34.1 Description

LightSensor nodes are used to model photo-transistors, photo-diodes or any type of device
that measures the irradiance of light in a given direction. Irradiance represents the radiant power
incident on a surface in Watts per square meter (W/m2), and is sometimes called intensity. The
simulated irradiance is computed by adding the irradiance contributed by every light source (Di-
rectionalLight, SpotLight and PointLight) in the world. Then the total irradiance is
multiplied by a color filter and fed into a lookup table that returns the corresponding user-defined
value.

The irradiance contribution of each light source is divided into direct and ambient contributions.
The direct contribution depends on the position and the orientation of the sensor, the
location and the direction of the light sources and (optionally) on the possible occlusion
of the light sources. The ambient contribution ignores the possible occlusions, and it is not af-
fected by the orientation of the sensor nor by the direction of a light source. The direct
and ambient contributions of PointLights and SpotLights are attenuated according to the
distance between the sensor and the light, according to specified attenuation coefficients. The
light radiated by a DirectionalLight is not attenuated. See also DirectionalLight,
SpotLight and PointLight node descriptions.

Note that the Webots lighting model does not take reflected light nor object colors into account.

3.34.2 Field Summary

• lookupTable: this table allows Webots to map simulated irradiance values to user-
defined sensor output values and to specify a noise level. The first column contains the
input irradiance values in W/m2. The second column represents the corresponding sensor
output values in user-defined units. The third column specifies the level of noise in percent
of the corresponding output value. See the section on the DistanceSensor node for
more explanation on how a lookupTable works.

• colorFilter: specifies an RGB filter that can be used to approximate a physical color
filter or spectral response. The total RGB irradiance is multiplied by this filter (see formula
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Figure 3.18: Light sensor irradiance formula

att[i] =
{ 1

a1+a2d+a3d
2 if (PointLight or SpotLight)

1 otherwise

Figure 3.19: Light attenuation

below) in order to obtain a scalar irradiance value E that is then used as the input to the
lookup table. The colorFilter field can, for example, be used to selectively detect
light sources according to color.

• occlusion: specifies whether or not obstacles between the sensor and light sources
should be taken into account in the calculation of irradiance. If the occlusion field
is FALSE (the default), all potential obstacles (Walls, other Robots, etc.) are ignored and
Webots behaves as if they were transparent. If the occlusion field is TRUE, Webots will
detect which light sources are occluded (from the sensor’s viewpoint) and it will ignore
their direct contributions. Note that the occlusion flag affects only the direct light
measurement, not the ambient light which is always added in. By default, the occlusion
field is disabled because the occlusion detection is computationally expensive and should
be avoided whenever possible. For example, in a setup where it is obvious that there
will never be an obstacle between a particular sensor and the various light sources, the
occlusion flag can be set to FALSE.

Before being interpolated by the lookupTable, the total irradianceE [W/m2] seen by a sensor
is computed according to the equation shown in figure 3.18:

The F vector corresponds to the sensor’s colorFilter field, n is the total number of lights in
the simulation, on[i] corresponds to the on field of light i (TRUE=1, FALSE=0), the C[i] vector
is the color field of light i, and Ia[i] is the ambientIntensity field of light i. The value
att[i] is the attenuation of light i, and is calculated as shown in figure 3.19.

Variables a1, a2 and a3 correspond to the attenuation field of light i, and d is the distance
between the sensor and the light. There is no attenuation for DirectionalLights. Id[i] is
the direct irradiance contributed by light i, and is calculated as shown in figure 3.20.

Finally, spot[i] is a factor used only in case of a SpotLight, and that depends on its cut-
OffAngle and beamWidth fields, and is calculated as shown in figure 3.21, where the alpha
angle corresponds to the angle between −L and the direction vector of the SpotLight.

The value I[i] corresponds to the intensity field of light i, and N is the normal axis (x-axis)
of the sensor (see figure 3.22). In the case of a PointLight, L is the sensor-to-light-source
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Id[i] =
{ 0 if the light source is occluded

I[i]
(

~N∗~L

| ~N ||~L|

)

otherwise

Figure 3.20: Direct irradiance

spot[i] =
{ (cosα)log

log 1
2

2·log(cos(beamWidth)) if (SpotLight and α ≤ CutOffAngle)

0 else if (SpotLight and α > CutOffAngle)

1 otherwise

Figure 3.21: SpotLight factor

vector. In the case of a DirectionalLight, L corresponds to the negative of the light’s
direction field. The * operation is a modified dot product: if dot < 0, then 0, otherwise,
dot product. Hence, each light source contributes to the irradiance of a sensor according to the
cosine of the angle between the N and the L vectors, as shown in the figure. The contribution is
zero if the light source is located behind the sensor. This is derived from the physical fact that a
photo-sensitive device is usually built as a surface of semiconductor material and therefore, the
closer the angle of incidence is to perpendicular, the more photons will actually hit the surface
and excite the device. When a light source is parallel to (or behind) the semiconductor surface,
no photons actually reach the surface.

The ”occlusion” condition is true if the light source is hidden by one or more obstacles. More
precisely, ”occlusion” is true if (1) the occlusion field of the sensor is set to TRUE and
(2) there is an obstacle in the line of sight between the sensor and the light source. Note that
DirectionalLight nodes don’t have location fields; in this case Webots checks for obstacles
between the sensor and an imaginary point located 1000m away in the direction opposite to the
one indicated by the direction field of this DirectionalLight.

Like any other type of collision detection in Webots, the LightSensor occlusion detection is
based on the boundingObjects of Solid nodes (or derived nodes). Therefore, even if it has

Figure 3.22: The irradiance (E) depends on the angle (phi) between the N and L vectors
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a visible geometric structure, a Solid node cannot produce any occlusion if its bounding-
Object is not specified.

The default value of the attenuation field of PointLights and Spot-
Lights is 1 0 0. These values correspond to the VRML default, and are
not appropriate for modeling the attenuation of a real lights. If a point or
spot light radiates uniformly in all directions and there is no absorption, then
the irradiance drops off in proportion to the square of the distance from the
object. Therefore, for realistic modeling, the attenuation field of a light
source should be changed to 0 0 4*π. If, in addition, the intensity field
of the light is set to the radiant power [W] of a real point source (e.g., a light
bulb), then the computed sensor irradiance E will approximate real world
values in [W/m2]. Finally, if the sensor’s lookupTable is filled with cor-
rect calibration data, a fairly good approximation of the real world should be
achieved.

If the calibration data for the lookupTable was obtained in lux (lx) or
lumens per square meter (lm/m2) instead of W/m2, it makes sense to substi-
tute the radiometry terms and units in this document with their photometry
equivalents: irradiance becomes illuminance, radiant power becomes lumi-
nous power and W becomes lm (lumen), etc.

3.34.3 LightSensor Functions

NAME

wb light sensor enable,
wb light sensor disable,
wb light sensor get sampling period,
wb light sensor get value – enable, disable and read light sensor measurement

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/light sensor.h>

void wb light sensor enable (WbDeviceTag tag, int ms);

void wb light sensor disable (WbDeviceTag tag);

int wb light sensor get sampling period (WbDeviceTag tag);
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double light sensor get value (WbDeviceTag tag);

DESCRIPTION

wb light sensor enable() enables a light sensor measurement each ms milliseconds.

wb light sensor disable() turns off the light sensor to save CPU time.

The wb light sensor get sampling period() function returns the period given into
the wb light sensor enable() function, or 0 if the device is disabled.

wb light sensor get value() returns the most recent value measured by the specified
light sensor. The returned value is the result of interpolating the irradiance E as described above
with the sensor’s lookupTable.

3.35 Material

Material {
SFFloat ambientIntensity 0.2 # [0,1]
SFColor diffuseColor 0.8 0.8 0.8 # [0,1]
SFColor emissiveColor 0 0 0 # [0,1]
SFFloat shininess 0.2 # [0,1]
SFColor specularColor 0 0 0 # [0,1]
SFFloat transparency 0 # [0,1]

}

3.35.1 Description

The Material node specifies surface material properties for associated geometry nodes and is
used by the VRML97 lighting equations during rendering. The fields in the Material node
determine how light reflects off an object to create color.

3.35.2 Field Summary

• The ambientIntensity field specifies how much ambient light from the various light
sources in the world this surface shall reflect. Ambient light is omni-directional and de-
pends only on the number of light sources, not their positions with respect to the surface.
Ambient color is calculated as ambientIntensity x diffuseColor.

• The diffuseColor field reflects all VRML97 light sources depending on the angle of
the surface with respect to the light source. The more directly the surface faces the light,
the more diffuse light reflects.
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• The emissiveColor field models ”glowing” objects. This can be useful for displaying
pre-lit models (where the light energy of the room is computed explicitly), or for displaying
scientific data.

• The specularColor and shininess fields determine the specular highlights (e.g.,
the shiny spots on an apple). When the angle from the light to the surface is close to
the angle from the surface to the camera, the specularColor is added to the diffuse
and ambient color calculations. Lower shininess values produce soft glows, while higher
values result in sharper, smaller highlights.

• The transparency field specifies how ”translucent” an object must be rendered: with
0.0 (the default) the object will appear completely opaque, and with 1.0 it will appear
completely transparent. A transparent object doesn’t cast or receive shadows. Webots
performs dynamic alpha sorting according to the distance between the center of the objects
(the local position of the parent Transform) and the viewpoint. Some occlusion issues
can occur if two transparent objects intersect each other, or if the coordinate center of a
transparent object is located outside the effectively rendered polygons, or if the sizes of
nearby transparent objects differ significantly.

3.36 Pen

Derived from Device.

Pen {
SFColor inkColor 0 0 0 # [0,1]
SFFloat inkDensity 0.5
SFFloat leadSize 0.002
SFBool write TRUE

}

3.36.1 Description

The Pen node models a pen attached to a mobile robot, typically used to show the trajectory of
the robot. The paint direction of the Pen device coincides with the -y-axis of the node. So, it
can be adjusted by modifying the rotation and translation fields of the Solid node. In order to
be paintable, an object should be made up of a Solid node containing a Shape with a valid
Geometry. Even if a ImageTexture is already defined, the painture is applied over the
texture without modifying it.

The precision of the painting action mainly depends on the subdivision field of the Geo-
metry node. A high subdivision value increases the number of polygons used to represent
the geometry and thus allows a more precise texture mapping, but it will also slow down the
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rendering of the scene. On the other hand, with a poor texture mapping, the painted area could
be shown at a different position than the expected one.

An example of a textured floor used with a robot equipped with a pen is given in the pen.
wbt example world (located in the projects/samples/devices/worlds directory of
Webots).

The inkEvaporation field of the WorldInfo node controls how fast the
ink evaporates (disappears).

The drawings performed by a pen can be seen by infra-red distance sensors.
Hence, it is possible to implement a robotics experiment where a robot draws
a line on the floor with a pen and a second robot performs a line following
behavior with the line drawn by the first robot.

3.36.2 Field Summary

• inkColor: define the color of the pen’s ink. This field can be changed from the pen API,
using the wb pen set ink color() function.

• inkDensity: define the density of the color of the ink. This field can also be changed
from the pen API, using the wb pen set ink color() function.

• leadSize: define the width of the ”tip” of the pen. This allows the robot to write a wider
or narrower track.

• write: this boolean field allows the robot to enable or disable writing with the pen. It is
also switchable from the pen API, using the wb pen write() function.

3.36.3 Pen Functions

NAME

wb pen write – enable or disable pen writing

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/pen.h>

void wb pen write (WbDeviceTag tag, bool write);
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DESCRIPTION

wb pen write() allows the user to switch a pen device on or off to disable or enable writing.
If the write parameter is true, the specified tag device will write; if write is false, it won’t.

NAME

wb pen set ink color – change the color of a pen’s ink

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/pen.h>

void wb pen set ink color (WbDeviceTag tag, int color, double density);

DESCRIPTION

wb pen set ink color() changes the current ink color of the specified tag device. The
color is a 32 bit integer value which defines the new color of the ink in the 0xRRGGBB
hexadecimal format (i.e., 0x000000 is black, 0xFF0000 is red, 0x00FF00 is green, 0x0000FF is
blue, 0xFFA500 is orange, 0x808080 is grey 0xFFFFFF is white, etc.). The density parameter
defines the ink density, with 0 meaning transparent ink and 1 meaning completely opaque ink.

EXAMPLE

wb_pen_set_ink_color(pen,0xF01010,0.9);

The above statement will change the ink color of the indicated pen to some red color.

language: Matlab
In the Matlab version of wb pen set ink color(), the color argu-
ment must be a vector containing the three RGB components: [RED GREEN
BLUE]. Each component must be a value between 0.0 and 1.0. For example
the vector [1 0 1] represents the magenta color.

3.37 Physics

Physics {
SFFloat density 1000 # (kg/mˆ3) -1 or > 0
SFFloat mass -1 # (kg) -1 or > 0
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SFVec3f centerOfMass 0 0 0 # (-inf,inf)
MFVec3f inertiaMatrix [] # empty or 2 values
SFNode damping NULL # optional damping node

}

3.37.1 Description

The Physics node allows to specify parameters for the physics simulation engine. Physics
nodes are used in most Webots worlds with the exception of some purely kinematics-based sim-
ulations. The Physics node specifies the mass, the center of gravity and the mass distribution,
thus allowing the physics engine to create a body and compute realistic forces.

A Physics node can be placed in a Solid node (or any node derived from Solid). The
presence or absence of a Physics node in the physics field of a Solid defines whether the
Solid will have a physics or a kinematic behavior.

In older Webots versions, coulombFriction, bounce, bounceVe-
locity and forceDependentSlip fields used to be specified in
Physics nodes. Now these values must be specified in ContactProp-
erties nodes. For compatibility reasons, these fields are still present in the
Physics but they should no longer be used.

3.37.2 Field Summary

• The density field can be used to define the density of the containing Solid. The value
of the density field should be a positive number number or -1. A -1 value indicates that
the dentity is not known, in this case the mass field (see below) must be specified. If the
density is specified (different from -1) then the total mass of the Solid is calculated
by multiplying the specified density with the total volume of the geometrical primitives
composing the boundingObject. Note that Webots ignores if the geometrical primi-
tives intersect or not, the volume of each primitive is simply added to the total volume and
finally multiplied by the density.

• The mass field can be used to specify the total mass of the containing Solid. The value
of the mass field should be a positive number or -1. A -1 value indicates that the total
mass is not known, in this case the density field (see above) must be specified. If the
mass is known, e.g., indicated in the specifications of the robot, then it is more accurate to
specify the mass rather than the density.

• The centerOfMass field defines the position of the center of mass of the solid. It
is expressed in meters in the relative coordinate system of the Solid node. If cen-
terOfMass field is different from [0 0 0], then the center of mass is depicted as a dark
red/green/blue cross in Webots 3D-window.
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• The inertiaMatrix field can be used to manually specify the inertia matrix of the
Solid. This field can either be empty (the default) or contain exactly 2 vectors. If this
field is empty, Webots will compute the inertia matrix automatically according to the posi-
tion and orientation of the geometrical primitives in boundingObject.

If this field contains 2 vectors, these values specify the inertia matrix of the Solid. If the
inertia matrix is specified then the mass field must also be specified. The first vector [I11,
I22, I33] represents the principals moments of inertia and the second vector [I12, I13, I23]
represents the products of inertia. Together these values form a 3x3 inertia matrix:

[ I11 I12 I13 ]
[ I12 I22 I23 ]
[ I13 I23 I33 ]

The Ixx values are expressed in kg*m2. The principals moments of inertia must be pos-
itive. The inertia matrix is defined with respect to the centerOfMass of the Solid.
Internally, these 6 values are passed unchanged to the dMassSetParameters() ODE
function.

• The damping field allows to specify a Damping node that defines the velocity damping
parameters to be applied to the Solid.

3.37.3 How to use Physics nodes?

If it contains a Physics node, a Solid object will be simulated in physics mode. The physics
simulation mode takes into account the simulation of the forces that act on the bodies and the
properties of these bodies, e.g., mass and moment of inertia. On the contrary, if its physics
field is NULL, then the Solid will be simulated in kinematics mode. The kinematics mode
simulates the objects motions without considering the forces that cause the motion. For example
in kinematics mode an object can reach the desired speed immediately while in physics mode the
inertial resistance will cause this object to accelerate progressively. It is usually not necessary to
specify all the Physics nodes in a Webots world. Whether to use or not a Physics node in a
particular case depends on what aspect of the real world your want to model in your simulation.

In passive objects

If a passive object should never move during a simulation then you should leave its physics
field empty. In this case no contact force will be simulated on this object and hence it will never
move. This is perfect for modeling walls or the floor. Furthermore the floor should always be
designed without Physics node anyway, because otherwise it would fall under the action of
gravity.

On the contrary, if a passive object needs to be pushed, kicked, dropped, etc. then it should have
a Physics node. So for example, if you want to design a soccer game where the ball needs to
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be kicked and roll, then you will need to add a Physics node to the ball. Similarly, in a box
pushing or stacking simulation, you will need to specify the Physics nodes for the boxes so
that the friction and gravity forces are applied to these objects.

In robots

Articulated robot, humanoids, vehicles and so on, are built as hierarchies of Solid nodes (or
subclasses of Solid). The contact and friction forces generated by legs or wheels are usually
a central aspect of the simulation of robot locomotion. Similarly, the contact and friction forces
of a grasping robotic hand or gripper is crucial for the simulation of such devices. Therefore
the mechanical body parts of robots (eg., legs, wheels, arms, hands, etc) need in general to have
Physics nodes.

The DifferentialWheels robot is a special case: it works even if it does
not have Physics nodes. That’s because Webots uses a special kinematics
algorithm for DifferentialWheels robots without Physics. How-
ever, if the Physics nodes are present then Webots uses the regular physics
simulation algorithms.

In servos

When designing the robot tree structure, there is one important rule to remember about the
Physics nodes: If a Solid node has a Physics node then its parent must also have a Physics
node (1). A consequence of this rule is that, in a robot tree structure, only leaf nodes can have a
NULL physics field. In addition top nodes (Robot, DifferentialWheels or Super-
visor) do usually have Physics because this is required to allow any of their children to use
the physics simulation.

Note that each Physics node adds a significant complexity to the world: as a consequence the
simulation speed decreases. Therefore the number of Physics nodes should be kept as low as
possible. Fortunately, even with a complex wheeled or articulated robot some of the physics
fields can remain empty (NULL). This is better explained with an example. Let’s assume that
you want to design an articulated robot with two legs. Your robot model may look like this (very
simplified):

Robot {
...
children [

DEF LEG1 Servo {
...
physics Physics {
}

}
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DEF LEG2 Servo {
...
physics Physics {
}

}
]
physics Physics {
}

}

The legs need Physics nodes because the forces generated by their contact with the floor will
allow the robot to move. If you would leave the legs without Physics, then no contact forces
would be generated and therefore the robot would not move. Now, according to rule (1), because
the legs have Physics nodes, their parent (the Robot node) must also have a Physics node.
If the Physics node of the Robot was missing, the simulation would not work, the legs would
fall off, etc.

Now suppose you would like to add a Camera to this robot. Let’s also assume that the physical
properties of this camera are not relevant for this simulation, say, because the mass of the camera
is quite small and because we want to ignore potential collisions of the camera with other objects.
In this case, you should leave the physics field of the camera empty. So the model with the
camera would look like this:

Robot {
...
children [

DEF CAM Camera {
...

}
DEF LEG1 Servo {

...
physics Physics {
}

}
DEF LEG2 Servo {

...
physics Physics {
}

}
]
physics Physics {
}

}

Now suppose that the camera needs to be motorized, e.g., it should rotate horizontally. Then the
camera must simply be placed in a Servo node that controls its horizontal position. This time
again, the physical properties of the camera motor are apparently unimportant. If we assume
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that the mass of the camera motor is small and that its inertia is not relevant, then the Physics
node can also be omitted in this Servo. So we obtain a model without Physics node in the
Camera and in the camera Servo:
Robot {

...
children [

DEF CAMERA_SERVO Servo {
...
children [

DEF CAM Camera {
...

}
}

DEF LEG1 Servo {
...
physics Physics {
}

}
DEF LEG2 Servo {

...
physics Physics {
}

}
]
physics Physics {
}

}

Devices

Most device nodes work without Physics node. But a Physics node can optionally be used
if one wishes to simulate the weight and inertia of the device. So it is usually recommended to
leave the physics field of a device empty, unless it represents a significant mass or volume
in the simulated robot. This is true for these devices: Accelerometer, Camera, Compass,
DistanceSensor, Emitter, GPS, LED, LightSensor, Pen, and Receiver.

The InertialUnit and Connector nodes work differently. Indeed, they
require the presence of a Physics node in their parent node to be functional.
It is also possible to specify a Physics node of the device but this adds an
extra body to the simulation.
The TouchSensor is also a special case: it needs a Physics node when
it is used as ”force” sensor; it does not necessarily need a Physics node
when it is only used as ”bumper” sensor.
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3.38 Plane

Plane {
SFVec2f size 1 1 # (-inf,inf)

}

3.38.1 Description

The Plane node defines a plane in 3D-space. The plane’s normal vector is the y-axis of the local
coordinate system. The plane can be used as graphical object or as collision detection object.

When a plane is used as graphical object, the size field specifies the dimensions of the graphical
representation. Just like the other graphical primitives, it is possible to apply a Material (e.g.,
a texture) to a plane.

When a plane is used as collision detection object (in a boundingObject) then the size
field is ignored and the plane is considered to be infinite. The Plane node is the ideal primitive
to simulate, e.g., the floor or infinitely high walls. Unlike the other collision detection primitives,
the Plane can only be used in static objects (a static object is an object without a Physics
node). Note that Webots ignores collision between planes, so planes can safely cut each other.
Note that a Plane node is in fact not really a plane: it’s a half-space. Anything that is moving
inside the half-space will be ejected out of it. This means that planes are only planes from the
perspective of one side. If you want your plane to be reversed, rotate it by π using a Transform
node.

3.39 PointLight

Derived from Light.

PointLight {
SFVec3f attenuation 1 0 0 # [0,inf)
SFVec3f location 0 0 0 # (-inf,inf)
SFFloat radius 100 # [0,inf)

}

3.39.1 Description

The PointLight node specifies a point light source at a 3D location in the local coordinate
system. A point light source emits light equally in all directions. It is possible to put a Point-
Light on board a mobile robot to have the light move with the robot.

A PointLight node’s illumination drops off with distance as specified by three attenu-
ation coefficients. The final attenuation factor is calculated as follows: att = 1/(attenuation[0]
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+ attenuation[1] * r + attenuation[2] * r2), where r is the distance from the light to the surface
being illuminated. The default is no attenuation. When PointLight nodes are used together
with LightSensor, it is recommended to change the default attenuation to a more realistic [0
0 4*π] in order to more accurately model physical reality. Indeed, if a point source radiates light
uniformly in all directions and there is no absorption, then the irradiance drops off in proportion
to the square of the distance from the surface.

3.40 Receiver

Derived from Device.

Receiver {
SFString type "radio" # or "serial" or "infra-red"
SFFloat aperture -1 # -1 or [0,2pi]
SFInt32 channel 0 # [-1,inf)
SFInt32 baudRate -1 # -1 or [0,inf)
SFInt32 byteSize 8 # [8,inf)
SFInt32 bufferSize 4096 # [1,inf)

}

3.40.1 Description

The Receiver node is used to model radio, serial or infra-red receivers. A Receiver node
must be added to the children of a robot or supervisor. Please note that a Receiver can receive
data but it cannot send it. In order to achieve bidirectional communication, a robot needs to have
both an Emitter and a Receiver on board.

3.40.2 Field Summary

• type: type of signal: ”radio”, ”serial” or ”infra-red”. Signals of type ”radio” (the default)
and ”serial” are transmitted without taking obstacles into account. Signals of type ”infra-
red,” however, do take potential obstacles between the emitter and the receiver into account.
Any solid object (solid, robots, etc ...) with a defined bounding object is a potential obstacle
for an ”infra-red” communication. The structure of the emitting or receiving robot itself
will not block an ”infra-red” transmission. Currently, there is no implementation difference
between the ”radio” and ”serial” types.

• aperture: opening angle of the reception cone (in radians); for ”infra-red” only. The re-
ceiver can only receive messages from emitters currently located within its reception cone.
The cone’s apex is located at the origin ([0 0 0]) of the receiver’s coordinate system and the
cone’s axis coincides with the z-axis of the receiver coordinate system (see figure 3.14 in
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section 3.23). An aperture of -1 (the default) is considered to be infinite, meaning that
a signal can be received from any direction. For ”radio” receivers, the aperture field is
ignored.

• channel: reception channel. The value is an identification number for an ”infra-red”
receiver or a frequency for a ”radio” receiver. Normally, both emitter and receiver must
use the same channel in order to be able to communicate. However, the special -1 channel
number allows the receiver to listen to all channels.

• baudRate: the baud rate is the communication speed expressed in bits per second. It
should be the same as the speed of the emitter. Currently, this field is ignored.

• byteSize: the byte size is the number of bits used to represent one byte of transmitted
data (usually 8, but may be more if control bits are used). It should be the same size as the
emitter byte size. Currently, this field is ignored.

• bufferSize: size (in bytes) of the reception buffer. The size of the received data should
not exceed the buffer size at any time, otherwise data may be lost.

If the previous data have not been read when new data are received, the previous data are
lost.

3.40.3 Receiver Functions

NAME

wb receiver enable,
wb receiver disable,
wb receiver get sampling period – enable and disable receiver

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/receiver.h>

void wb receiver enable (WbDeviceTag tag, int ms);

void wb receiver disable (WbDeviceTag tag);

int wb receiver get sampling period (WbDeviceTag tag);

DESCRIPTION

wb receiver enable() starts the receiver listening for incoming data packets. Data recep-
tion is activated in the background of the controller’s loop at a rate of once every msmilliseconds.
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Incoming data packet are appended to the tail of the reception queue (see figure 3.23). Incoming
data packets will be discarded if the receiver’s buffer size (specified in the Receiver node) is
exceeded. To avoid buffer overflow, the data packets should be read at a high enough rate by the
controller program. The function wb receiver disable() stops the background listening.

The wb receiver get sampling period() function returns the period given into the
wb receiver enable() function, or 0 if the device is disabled.

NAME

wb receiver get queue length,
wb receiver next packet – check for the presence of data packets in the receivers queue

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/receiver.h>

int wb receiver get queue length (WbDeviceTag tag);

void wb receiver next packet (WbDeviceTag tag);

DESCRIPTION

The wb receiver get queue length() function returns the number of data packets cur-
rently present in the receiver’s queue (see figure 3.23).

The wb receiver next packet() function deletes the head packet. The next packet in
the queue, if any, becomes the new head packet. The user must copy useful data from the head
packet, before calling wb receiver next packet(). It is illegal to call wb receiver -
next packet() when the queue is empty (wb receiver get queue length() == 0).
Here is a usage example:
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Figure 3.23: Receiver’s packet queue

language: C

1 while (wb_receiver_get_queue_length(tag) > 0) {
2 const char *message = wb_receiver_get_data(tag)

;
3 const double *dir =

wb_receiver_get_emitter_direction(tag);
4 double signal = wb_receiver_get_signal_strength

(tag);
5 printf("received: %s (signal=%g, dir=[%g %g %g

])\n",
6 message, signal, dir[0], dir[1], dir[2])

;
7 wb_receiver_next_packet(tag);
8 }

This example assumes that the data (message) was sent in the form of a null-terminated string.
The Emitter/Receiver API does not put any restriction on the type of data that can be transmitted.
Any user chosen format is suitable, as long as emitters and receivers agree.

Webots’ Emitter/Receiver API guarantees that:

• Packets will be received in the same order they were sent

• Packets will be transmitted atomically (no byte-wise fragmentation)

However, the Emitter/Receiver API does not guarantee a specific schedule for the transmission.
Sometimes several packets may be bundled and received together. For example, imagine a simple
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setup where two robots have an Emitter and a Receiver on board. If both robots use the
same controller time step and each one sends a packet at every time step, then the Receivers
will receive, on average, one data packet at each step, but they may sometimes get zero packets,
and sometimes two! Therefore it is recommend to write code that is tolerant to variations in the
transmission timing and that can deal with the eventuality of receiving several or no packets at
all during a particular time step. The wb receiver get queue length() function should
be used to check how many packets are actually present in the Receiver’s queue. Making
assumptions based on timing will result in code that is not robust.

NAME

wb receiver get data,
wb receiver get data size – get data and size of the current packet

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/receiver.h>

const void *wb receiver get data (WbDeviceTag tag);

int wb receiver get data size (WbDeviceTag tag);

DESCRIPTION

The wb receiver get data() function returns the data of the packet at the head of the
reception queue (see figure 3.23). The returned data pointer is only valid until the next call to the
function wb receiver next packet(). It is illegal to call wb receiver get data()
when the queue is empty (wb receiver get queue length() == 0). The Receiver
node knows nothing about that structure of the data being sent but its byte size. The emitting and
receiving code is responsible to agree on a specific format.

The wb receiver get data size() function returns the number of data bytes present in
the head packet of the reception queue. The data size is always equal to the size argument of
the corresponding emitter send packet() call. It is illegal to call wb receiver get -
data size() when the queue is empty (wb receiver get queue length() == 0).
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language: Python
The getData() function returns a string. Similarly to the send-
Packet() function of the Emitter device, using the functions of the struct
module is recommended for sending primitive data types. Here is an example
for getting the data:

1 import struct
2 #...
3 message=receiver.getData()
4 dataList=struct.unpack("chd",message)
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language: Matlab
The Matlab wb receiver get data() function returns a MATLAB lib-
pointer. The receiving code is responsible for extracting the data from the
libpointer using MATLAB’s setdatatype() and get() functions. Here
is an example on how to send and receive a 2x3 MATLAB matrix.

1 % sending robot
2 emitter = wb_robot_get_device(’emitter’);
3
4 A = [1, 2, 3; 4, 5, 6];
5 wb_emitter_send(emitter, A);

1 % receiving robot
2 receiver = wb_robot_get_device(’receiver’);
3 wb_receiver_enable(receiver, TIME_STEP);
4
5 while wb_receiver_get_queue_length(receiver) > 0
6 pointer = wb_receiver_get_data(receiver);
7 setdatatype(pointer, ’doublePtr’, 2, 3);
8 A = get(pointer, ’Value’);
9 wb_receiver_next_packet(receiver);

10 end

The MATLAB wb receiver get data() function can also take a second
argument that specifies the type of the expected data. In this case the func-
tion does not return a libpointer but an object of the specified type, and it is
not necessary to call setdatatype() and get(). For example wb re-
ceiver get data() can be used like this:

1 % receiving robot
2 receiver = wb_robot_get_device(’receiver’);
3 wb_receiver_enable(receiver, TIME_STEP);
4
5 while wb_receiver_get_queue_length(receiver) > 0
6 A = wb_receiver_get_data(receiver, ’double’);
7 wb_receiver_next_packet(receiver);
8 end

The available types are ’uint8’, ’double’ and ’string’. More sophisticated
data typed must be accessed explicitly using setdatatype() and get().

NAME

wb receiver get signal strength,
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wb receiver get emitter direction – get signal strength and emitter direction

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/receiver.h>

double wb receiver get signal strength (WbDeviceTag tag);

const double *wb receiver get emitter direction (WbDeviceTag tag);

DESCRIPTION

The wb receiver get signal strength() function operates on the head packet in the
receiver’s queue (see figure 3.23). It returns the simulated signal strength at the time the packet
was transmitted. This signal strength is equal to the inverse of the distance between the emitter
and the receiver squared. In other words, s = 1 / r2, where s is the signal strength and r is the
distance between emitter and receiver. It is illegal to call this function if the receiver’s queue is
empty (wb receiver get queue length() == 0).

The function wb receiver get emitter direction() also operates on the head packet
in the receiver’s queue. It returns a normalized (length=1) vector that indicates the direction
of the emitter with respect to the receiver’s coordinate system. The three vector components
indicate the x, y , and z-directions of the emitter, respectively. For example, if the emitter was
exactly in front of the receiver, then the vector would be [0 0 1]. In the usual orientation used
for 2D simulations (robots moving in the xz-plane and the y -axis oriented upwards), a positive
x -component indicates that the emitter is located to the left of the receiver while a negative x
-component indicates that the emitter is located to the right. The returned vector is valid only
until the next call to wb receiver next packet(). It is illegal to call this function if the
receiver’s queue is empty (wb receiver get queue length() == 0).

language: Python
getEmitterDirection() returns the vector as a list containing three
floats.

NAME

wb receiver set channel,
wb receiver get channel – set and get the receiver’s channel.

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/receiver.h>
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void wb receiver set channel (WbDeviceTag tag, int channel);

int wb receiver get channel (WbDeviceTag tag);

DESCRIPTION

The wb receiver set channel() function allows a receiver to change its reception chan-
nel. It modifies the channel field of the corresponding Receiver node. Normally, a receiver
can only receive data packets from emitters that use the same channel. However, the special
WB CHANNEL BROADCAST value can be used to listen simultaneously to all channels.

The wb receiver get channel() function returns the current channel number of the re-
ceiver.

language: C++, Java, Python
In the oriented-object APIs, the WB CHANNEL BROADCAST constant is
available as static integer of the Receiver class (Receiver::CHANNEL -
BROADCAST).

3.41 Robot

Derived from Solid.

Robot {
SFString controller "void"
SFString controllerArgs ""
SFBool synchronization TRUE
MFFloat battery []
SFFloat cpuConsumption 0 # [0,inf)
SFBool selfCollision FALSE
SFBool showRobotWindow FALSE
SFString robotWindow ""
SFString remoteControl ""

}

Direct derived nodes: DifferentialWheels, Supervisor.

3.41.1 Description

The Robot node can be used as basis for building a robot, e.g., an articulated robot, a humanoid
robot, a wheeled robot... If you want to build a two-wheels robot with differential-drive you
should also consider the DifferentialWheels node. If you would like to build a robot with
supervisor capabilities use the Supervisor node instead (Webots PRO license required).
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3.41.2 Field Summary

• controller: name of the controller program that the simulator must use to control
the robot. This program is located in a directory whose name is equal to the field’s
value. This directory is in turn located in the controllers subdirectory of the cur-
rent project directory. For example, if the field value is ”my controller” then the controller
program should be located in my_project/controllers/my_controller/my_
controller[.exe]. The .exe extension is added on the Windows platforms only.

• controllerArgs: string containing the arguments (separated by space characters) to
be passed to the main() function of the C/C++ controller program or the main()method
of the Java controller program.

• synchronization: if the value is TRUE (default value), the simulator is synchronized
with the controller; if the value is FALSE, the simulator runs as fast as possible, without
waiting for the controller. The wb robot get synchronization() function can be
used to read the value of this field from a controller program.

• battery: this field should contain three values: the first one corresponds to the present
energy level of the robot in Joules (J), the second is the maximum energy the robot can
hold in Joules, and the third is the energy recharge speed in Watts ([W]=[J]/[s]). The
simulator updates the first value, while the other two remain constant. Important: when
the current energy value reaches zero, the corresponding controller process terminates and
the simulated robot stops all motion.

Note: [J]=[V].[A].[s] and [J]=[V].[A.h]/3600

• cpuConsumption: power consumption of the CPU (central processing unit) of the robot
in Watts.

• selfCollision: setting this field to TRUE will enable the detection of collisions
within the robot. This is useful for complex articulated robots for which the controller
doesn’t prevent inner collisions. Enabling self collision is, however, likely to decrease the
simulation speed, as more collisions will be generated during the simulation.

• showRobotWindow: defines whether the robot window should be shown at the startup
of the controller. If yes, the related entry point function of the robot window controller
plugin (wbw show()) is called as soon as the controller is initialized.

• robotWindow: defines the path of the robot window controller plugin used to display
the robot window. If the robotWindow field is empty, the default generic robot win-
dow is loaded. The search algorithm works as following: Let VALUE be the value of the
robotWindow field, let EXT be the shared library file extension of the OS(.so, .dll or
.dylib), let PROJECT be the current project path, and let WEBOTS be the webots installa-
tion path, the first existing file will be used as absolute path:
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PROJECT/lib/VALUE/VALUE.EXT

WEBOTS/resources/projects/default/lib/VALUE/VALUE.EXT

WEBOTS/resources/projects/default/lib/libgenericwindow/libgenericwindow.EXT

• remoteControl: defines the path of the remote-control controller plugin used to re-
mote control the real robot. The search algorithm is identical to the one used for the
robotWindow field.

3.41.3 Synchronous versus Asynchronous controllers

The synchronization field specifies if a robot controller must be synchronized with the
simulator or not.

If synchronization is TRUE (the default), the simulator will wait for the controller’s wb -
robot step()whenever necessary to keep the simulation and the controller synchronized. So
for example if the simulation step (WorldInfo.basicTimeStep) is 16 ms and the control
step (wb robot step()) is 64 ms, then Webots will always execute precisely 4 simulation
steps during one control step. After the 4th simulation step, Webots will wait for the controller’s
next control step (call to wb robot step(64)).

If synchronization is FALSE, the simulator will run as fast a possible without waiting for
the control step. So for example, with the same simulation step (16 ms) and control step (64
ms) as before, if the simulator has finished the 4th simulation step but the controller has not yet
reached the call to wb robot step(64), then Webots will not wait; instead it will continue the
simulation using the latest actuation commands. Hence, if synchronization is FALSE, the
number of simulation steps that are executed during a control step may vary; this will depend on
the current simulator and controller speeds and on the current CPU load, and hence the outcome
of the simulation may also vary. Note that if the number of simulation steps per control step
varies, this will appear as a variations of the ”speed of the physics” in the controller’s point of
view, and this will appear as a variation of the robot’s reaction speed in the user’s point of view.

So generally the synchronization field should be set to TRUE when robust control is re-
quired. For example if a motion (or .motionfile) was designed in asynchronous mode then
it may appear completely different in asynchronous mode. The asynchronous mode is currently
used only for the robot competitions, because in this case it is necessary to limit the CPU time
allocated to each participating controller. Note that it is also possible to combine synchronous
and asynchronous controllers, e.g., for the robot competitions generally the Supervisor con-
troller is synchronous while the contestants controllers are asynchronous. Asynchronous contr-
ollers may also be recommended for networked simulations involving several robots distributed
over a computer network with an unpredictable delay (like the Internet).
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3.41.4 Self-collision

When selfCollision is FALSE (the default), Webots does not attempt to detect any internal
collisions in a robot. In this case, nothing but the controller code can prevent the various body
parts of a robot from crossing each other.

When selfCollision is TRUE, Webots detects inter-robot collisions and applies the corre-
sponding contact forces. In this case robot limbs cannot cross each other (provided that they have
Physics nodes). Note that Webots does automatically exclude directly joined bodies from the
self-collision detection. The reason is that this type of collision is usually not wanted by the user,
because otherwise a very accurate design of the boundingObjects would be required. When
two body parts are not directly joined, i.e. joined through an intermediate body, then the collision
detection takes place normally. Here is an example for a robot leg:

Thigh (body)
|

Knee (joint)
|

Leg (body)
|

Ankle (joint)
|

Foot (body)

In this example, no collision is detected between the ”Thigh” and the ”Leg” bodies because they
are directly joined by the ”Knee”. In the same way no collision detection takes place between the
”Leg” and the ”Foot” bodies because the are also directly joined (”Ankle”). However, collisions
may be detected between the ”Thigh” and the ”Foot” bodies, because they are not joined directly,
but through and intermediate body (”Leg”).

3.41.5 Robot Functions

NAME

wb robot step,
wb robot init,
wb robot cleanup – controller step, initialization and cleanup functions

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

int wb robot step (int ms);

void wb robot init ();
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void wb robot cleanup ();

DESCRIPTION

The wb robot step() function is crucial and must be used in every controller. This function
synchronizes the sensor and actuator data between Webots and the controllers. If the wb -
robot step() function is not called then there will be no actuation in Webots and no update
of the sensors in the controller.

The ms parameter specifies the number of milliseconds that must be simulated until the wb -
robot step() function returns. Note that this is not real time but virtual (simulation) time,
so this is not like calling the system’s sleep(). In fact the function may return immediately,
however the important point is that when it returns ms milliseconds of simulation will have
elapsed. In other words the physics will have run for ms milliseconds and hence the Servo
may have moved, the sensor values may have changed, etc. Note that ms parameter must be a
multiple of the WorldInfo.basicTimeStep.

If this function returns -1, this indicates that Webots wishes to terminate the controller. This
happens when the user hits the Revert button or quits Webots. So if your code needs to do some
cleanup, e.g., flushing or closing data files, etc., it is necessary to test this return value and take
proper action. The controller termination cannot be vetoed: one second later the controller is
killed by Webots. So only one second is available to do the cleanup.

If the synchronization field is TRUE, this function always returns 0 (or -1 to indicate
termination). If the synchronization field is FALSE, the return value can be different from
0: Let controller time be the current time of the controller and let dt be the return value.
Then dt may be interpreted as follows:

• if dt = 0, then the asynchronous behavior was equivalent to the synchronous behavior.

• if 0<= dt<= ms, then the actuator values were set at controller time + dt, and the
sensor values were measured at controller time + ms, as requested. It means that
the step actually lasted the requested number of milliseconds, but the actuator commands
could not be executed on time.

• if dt> ms, then the actuators values were set at controller time + dt, and the sensor
values were also measured at controller time + dt. It means that the requested step
duration could not be respected.

The C API has two additional functions wb robot init() and wb robot cleanup().
There is not equivalent of the wb robot init() and wb robot cleanup() functions in
the Java, Python, C++ and MATLAB APIs. In these languages the necessary initialization and
cleanup of the controller library is done automatically.

The wb robot init() function is used to initialize the Webots controller library and enable
the communication with the Webots simulator. Note that the wb robot init() function must
be called before any other Webots API function.
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Calling the wb robot cleanup() function is the clean way to terminate a C controller. This
function frees the various resources allocated by Webots on the controller side. In addition
wb robot cleanup() signals the termination of the controller to the simulator. As a conse-
quence, Webots removes the controller from the simulation which can continue normally with
the execution of the other controllers (if any). If a C controller exits without calling wb robot -
cleanup(), then its termination will not be signalled to Webots. In this case the simulation will
remain blocked (sleeping) on the current step (but only if this Robot’s synchronization
field is TRUE). Note that the call to the wb robot cleanup() function must be the last API
function call in a C controller. Any subsequent Webots API function call will give unpredictable
results.

SIMPLE C CONTROLLER EXAMPLE
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language: C

1 #include <webots/robot.h>
2
3 #define TIME_STEP 32
4
5 static WbDeviceTag my_sensor, my_led;
6
7 int main() {
8 /* initialize the webots controller library */
9 wb_robot_init();

10
11 // get device tags
12 my_sensor = wb_robot_get_device("

my_distance_sensor");
13 my_led = wb_robot_get_device("my_led");
14
15 /* enable sensors to read data from them */
16 wb_distance_sensor_enable(my_sensor, TIME_STEP)

;
17
18 /* main control loop: perform simulation steps

of 32 milliseconds */
19 /* and leave the loop when the simulation is

over */
20 while (wb_robot_step(TIME_STEP) != -1) {
21
22 /* Read and process sensor data */
23 double val = wb_distance_sensor_get_value(

my_sensor);
24
25 /* Send actuator commands */
26 wb_led_set(my_led, 1);
27 }
28
29 /* Add here your own exit cleanup code */
30
31 wb_robot_cleanup();
32
33 return 0;
34 }



3.41. ROBOT 123

NAME

wb robot get device – get a unique identifier to a device

SYNOPSIS [Matlab]

#include <webots/robot.h>

WbDeviceTag wb robot get device (const char *name);

DESCRIPTION

This function returns a unique identifier for a device corresponding to a specified name. For ex-
ample, if a robot contains a DistanceSensor node whose name field is ”ds1”, the function
will return the unique identifier of that device. This WbDeviceTag identifier will be used sub-
sequently for enabling, sending commands to, or reading data from this device. If the specified
device is not found, the function returns 0.

SEE ALSO

wb robot step.

NAME

Robot::getAccelerometer,
Robot::getCamera,
Robot::getCompass,
Robot::getConnector,
Robot::getDistanceSensor,
Robot::getDisplay,
Robot::getEmitter,
Robot::getGPS,
Robot::getGyro,
Robot::getInertialUnit,
Robot::getLED,
Robot::getLightSensor,
Robot::getPen,
Robot::getReceiver,
Robot::getServo,
Robot::getTouchSensor – get the instance of a robot’s device

SYNOPSIS [C++] [Java] [Python]
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#include <webots/Robot.hpp>

Accelerometer *Robot::getAccelerometer (const std::string &name);

Camera *Robot::getCamera (const std::string &name);

Compass *Robot::getCompass (const std::string &name);

Connector *Robot::getConnector (const std::string &name);

Display *Robot::getDisplay (const std::string &name);

DistanceSensor *Robot::getDistanceSensor (const std::string &name);

Emitter *Robot::getEmitter (const std::string &name);

GPS *Robot::getGPS (const std::string &name);

Gyro *Robot::getGyro (const std::string &name);

InertialUnit *Robot::getInertialUnit (const std::string &name);

LightSensor *Robot::getLightSensor (const std::string &name);

Pen *Robot::getPen (const std::string &name);

Receiver *Robot::getReceiver (const std::string &name);

Servo *Robot::getServo (const std::string &name);

TouchSensor *Robot::getTouchSensor (const std::string &name);

DESCRIPTION

These functions return a reference to an object corresponding to a specified name. Depending
on the called function, this object can be an instance of a Device subclass. For example, if a
robot contains a DistanceSensor node whose name field is ”ds1”, the function getDis-
tanceSensor will return a reference to a DistanceSensor object. If the specified device
is not found, the function returns NULL in C++, null in Java or the none in Python.

SEE ALSO

wb robot step.

NAME

wb robot battery sensor enable,
wb robot battery sensor disable,
wb robot get battery sampling period,
wb robot battery sensor get value – battery sensor function
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SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

void wb robot battery sensor enable (int ms);

void wb robot battery sensor disable ();

double wb robot battery sensor get value ();

int wb robot get battery sampling period (WbDeviceTag tag);

DESCRIPTION

These functions allow you to measure the present energy level of the robot battery. First, it is
necessary to enable battery sensor measurements by calling the wb robot battery sen-
sor enable() function. The ms parameter is expressed in milliseconds and defines how
frequently measurements are performed. After the battery sensor is enabled a value can be read
from it by calling the wb robot battery sensor get value() function. The returned
value corresponds to the present energy level of the battery expressed in Joules (J).

The wb robot battery sensor disable() function should be used to stop battery sen-
sor measurements.

The wb robot get battery sampling period() function returns the period given into
the wb robot battery sensor enable() function, or 0 if the device is disabled.

NAME

wb robot get basic time step – returns the value of the basicTimeStep field of the WorldInfo node

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

double wb robot get basic time step ();

DESCRIPTION

This function returns the value of the basicTimeStep field of the WorldInfo node.

NAME

wb robot get mode – get operating mode, simulation vs. real robot

SYNOPSIS [C++] [Java] [Python] [Matlab]
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#include <webots/robot.h>

int wb robot get mode ();

void wb robot set mode (int mode, void *arg);

DESCRIPTION

The wb robot get mode function returns an integer value indicating the current operating
mode for the controller.

The wb robot set mode function allows to switch between the simulation and the remote
control mode. When switching to the remote-control mode, the wbr start function of the
remote control plugin is called. The argument arg is passed directly to the wbr start function
(more information in the user guide).

The integers can be compared to the following enumeration items:

Mode Purpose
WB MODE SIMULATION simulation mode
WB MODE CROSS COMPILATION cross compilation mode
WB MODE REMOTE CONTROL remote control mode

Table 3.4: Helper enumeration to interpret the integer argument and return value of the wb -
robot [gs]et mode() functions

NAME

wb robot get name – return the name defined in the robot node

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

const char *wb robot get name ();

DESCRIPTION

This function returns the name as it is defined in the name field of the robot node (Robot, Dif-
ferentialWheels, Supervisor, etc.) in the current world file. The string returned should not be
deallocated, as it was allocated by the libController shared library and will be deallocated
when the controller terminates. This function is very useful to pass some arbitrary parameter
from a world file to a controller program. For example, you can have the same controller code
behave differently depending on the name of the robot. This is illustrated in the soccer.wbt
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sample demo, where the goal keeper robot runs the same control code as the other soccer players,
but its behavior is different because its name was tested to determine its behavior (in this sample
world, names are ”b3” for the blue goal keeper and ”y3” for the yellow goal keeper, whereas
the other players are named ”b1”, ”b2”, ”y1” and ”y2”). This sample world is located in the
projects/samples/demos/worlds directory of Webots.

NAME

wb robot get model – return the model defined in the robot node

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

const char *wb robot get model ();

DESCRIPTION

This function returns the model string as it is defined in the model field of the robot node (Robot,
DifferentialWheels, Supervisor, etc.) in the current world file. The string returned should not be
deallocated, as it was allocated by the libController shared library and will be deallocated
when the controller terminates.

NAME

wb robot get project path – return the full path of the current project

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

const char *wb robot get project path ();

DESCRIPTION

This function returns the full path of the current project, that is the directory which contains the
worlds and controllers subdirectories (among others) of the current simulation world. It doesn’t
include the final directory separator char (slash or anti-slash). The returned pointer is a UTF-8
encoded char string. It should not be deallocated.

NAME

wb robot get synchronization – return the value of the synchronization field of the Robot node
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SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

bool wb robot get synchronization ();

DESCRIPTION

This function returns the boolean value corresponding to the synchronization field of the Robot
node.

NAME

wb robot get time – return the current simulation time in seconds

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

double wb robot get time ();

DESCRIPTION

This function returns the current simulation time in seconds. This correspond to the simulation
time displayed in the bottom right corner of Webots window. It does not matter whether the
controller is synchronized or not.

NAME

wb robot keyboard enable,
wb robot keyboard disable,
wb robot keyboard get key – keyboard reading function

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/robot.h>

void wb robot keyboard enable (int ms);

void wb robot keyboard disable ();

int wb robot keyboard get key ();
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DESCRIPTION

These functions allow you to read a key pressed on the computer keyboard from a controller
program while the main window of Webots is selected and the simulation is running. First, it is
necessary to enable keyboard input by calling the wb robot keyboard enable() function.
The ms parameter is expressed in milliseconds, and defines how frequently readings are updated.
After the enable function is called, values can be read by calling the wb robot keyboard -
get key() function repeatedly until this function returns 0. The returned value, if non-null, is
a key code corresponding to a key currently pressed. If no modifier (shift, control or alt) key is
pressed, the key code is the ASCII code of the corresponding key or a special value (e.g., for the
arrow keys). However, if a modifier key was pressed, the ASCII code (or special value) can be
obtained by applying a binary AND between to the WB ROBOT KEYBOARD KEY mask and the
returned value. In this case, the returned value is the result of a binary OR between one of WB -
ROBOT KEYBOARD SHIFT, WB ROBOT KEYBOARD CONTROL or WB ROBOT KEYBOARD -
ALT and the ASCII code (or the special value) of the pressed key according to which modifier
key was pressed simultaneously.

If no key is currently pressed, the function will return 0. Calling the wb robot keyboard -
get key() function a second time will return either 0 or the key code of another key which
is currently simultaneously pressed. The function can be called up to 7 times to detect up to 7
simultaneous keys pressed. The wb robot keyboard disable() function should be used
to stop the keyboard readings.

language: C++
The keyboard predefined values are located into a (static) enumeration of the
Robot class. For example, Robot.KEYBOARD CONTROL corresponds to
the Control key stroke.

language: Java
The keyboard predefined values are final integers located in the Robot class.
For example, Ctrl+B can be tested like this:

1 int key=robot.keyboardGetKey()
2 if (key==Robot.KEYBOARD_CONTROL+’B’)
3 System.out.Println("Ctrl+B is pressed");
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language: Python
The keyboard predefined values are integers located into the Robot class. For
example, Ctrl+B can be tested like this:

1 key=robot.keyboardGetKey()
2 if (key==Robot.KEYBOARD_CONTROL+ord(’B’)):
3 print ’Ctrl+B is pressed’

NAME

wb robot task new – start a new thread of execution

SYNOPSIS

#include <webots/robot.h>

void wb robot task new (void (*task)(void *), void *param);

DESCRIPTION

This function creates and starts a new thread of execution for the robot controller. The task
function is immediately called using the param parameter. It will end only when the task
function returns. The Webots controller API is thread safe, however, some API functions use
or return pointers to data structures which are not protected outside the function against asyn-
chronous access from a different thread. Hence you should use mutexes (see below) to ensure
that such data is not accessed by a different thread.

SEE ALSO

wb robot mutex new.

NAME

wb robot mutex new,
wb robot mutex delete,
wb robot mutex lock,
wb robot mutex unlock – mutex functions

SYNOPSIS

#include <webots/robot.h>
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WbMutexRef wb robot mutex new ();

void wb robot mutex delete (WbMutexRef mutex);

void wb robot mutex lock (WbMutexRef mutex);

void wb robot mutex unlock (WBMutexRef mutex);

DESCRIPTION

The wb robot mutex new() function creates a new mutex and returns a reference to that
mutex to be used with other mutex functions. A newly created mutex is always initially unlocked.
Mutexes (mutual excluders) are useful with multi-threaded controllers to protect some resources
(typically variables or memory chunks) from being used simultaneously by different threads.

The wb robot mutex delete() function deletes the specified mutex. This function should
be used when a mutex is no longer in use.

The wb robot mutex lock() function attempts to lock the specified mutex. If the mutex
is already locked by another thread, this function waits until the other thread unlocks the mutex,
and then locks it. This function returns only after it has locked the specified mutex.

The wb robot mutex unlock() function unlocks the specified mutex, allowing other threads
to lock it.

SEE ALSO

wb robot task new.

Users unfamiliar with the mutex concept may wish to consult a reference on multi-threaded
programming techniques for further information.

3.42 Servo

Derived from Device.

Servo {
SFString type "rotational"
SFFloat maxVelocity 10 # (0,inf)
SFFloat maxForce 10 # [0,inf)
SFFloat controlP 10 # (0,inf)
SFFloat acceleration -1 # -1 or (0,inf)
SFFloat position 0
SFFloat minPosition 0 # (-inf,0]
SFFloat maxPosition 0 # [0,inf)
SFFloat minStop 0 # [-pi,0]
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SFFloat maxStop 0 # [0,pi]
SFFloat springConstant 0 # [0,inf)
SFFloat dampingConstant 0 # [0,inf)

}

3.42.1 Description

A Servo node is used to add a joint (1 degree of freedom (DOF)) in a mechanical simulation.
The joint can be active or passive; it is placed between the parent and children nodes (.wbt
hierarchy) of the Servo and therefore it allows the children to move with respect to the parent.
The Servo can be of type ”rotational” or ”linear”. A ”rotational” Servo is used to simulate a
rotating motion, like an electric motor or a hinge. A ”linear” Servo is used to simulate a sliding
motion, like a linear motor, a piston, a hydraulic/pneumatic cylinder, a spring, or a damper.

3.42.2 Field Summary

• The type field is a string which specifies the Servo type, and may be either ”rotational”
(default) or ”linear”.

• The maxVelocity field specifies both the upper limit and the default value for the servo
velocity. The velocity can be changed at run-time with the wb servo set velocity()
function. The value should always be positive (the default is 10).

• The maxForce field specifies both the upper limit and the default value for the servo
motor force. The motor force is the torque/force that is available to the motor to perform
the requested motions. The wb servo set motor force() function can be used to
change the motor force at run-time. The value of maxForce should always be zero or
positive (the default is 10). A small maxForce value may result in a servo being unable
to move to the target position because of its weight or other external forces.

• The controlP field specifies the initial value of the P parameter, which is the propor-
tional gain of the servo P-controller. A high P results in a large response to a small error,
and therefore a more sensitive system. Note that by setting P too high, the system can
become unstable. With a small P, more simulation steps are needed to reach the target
position, but the system is more stable. The value of P can be changed at run-time with the
wb servo set control p() function.

• The acceleration field defines the default acceleration of the P-controller. A value of
-1 (infinite) means that the acceleration is not limited by the P-controller. The acceleration
can be changed at run-time with the wb servo set acceleration() function.
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• The position field represents the current position of the Servo, in radians or meters.
For a ”rotational” servo, position represents the current rotation angle in radians. For
a ”linear” servo, position represents the magnitude of the current translation in meters.

• The minPosition and maxPosition fields specify soft limits for the target position.
These fields are described in more detail in the section ”Servo Limits,” see below.

• The minStop and maxStop fields specify the position of physical (or mechanical) stops.
These fields are described in more detail in the section ”Servo Limits,” see below.

• The springConstant and dampingConstant fields allow the addition of spring
and/or damping behavior to the Servo. These fields are described in more detail in the
section ”Springs and Dampers,” see below.

3.42.3 Units

Rotational servos units are expressed in radians while linear servos units are expressed in meters.
See table 3.5:

Rotational Linear
Position rad (radians) m (meters)
Velocity rad/s (radians / second) m/s (meters / second)
Acceleration rad/s2 (radians / second2) m/s2 (meters / second2)
Torque/Force N*m (Newtons * meters) N (Newtons)

Table 3.5: Servo Units

3.42.4 Initial Transformation and Position

The Servo node inherits the translation and rotation fields from the Transform
node. These two fields represent the initial coordinate system transformation between the Servo
parent and children.

In a ”rotational” Servo, these fields have the following meaning: The translation field
specifies the translation of the axis of rotation. The rotation field specifies the orientation of
the axis of rotation. See figure 3.24.

In a ”linear” Servo, these fields have the following meaning: The translation field speci-
fies the translation of the sliding axis. The rotation field specifies the direction of the sliding
axis. See figure 3.25.

The position field represents the current angle difference (in radians) or the current distance
(in meters) with respect to the initial translation and rotation of the Servo. If po-
sition field is zero then the Servo is at its initial translation and rotation. For
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Figure 3.24: Rotational servo

Figure 3.25: Linear servo
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Figure 3.26: Servo control

example if we have a ”rotational” Servo and the value of the position field is 1.5708, this
means that this Servo is 90 degrees from its initial rotation. The values passed to the wb -
servo set position() function are specified with respect to the position zero. The values
of the minPosition, maxPosition, minStop and maxStop fields are also defined with
respect to the position zero.

3.42.5 Position Control

The standard way of operating a Servo is to control the position directly (position control). The
user specifies a target position using the wb servo set position() function, then the P-
controller takes into account the desired velocity, acceleration and motor force in order to move
the servo to the target position. See table 3.6.

In Webots, position control is carried out in three stages, as depicted in figure 3.26. The first
stage is performed by the user-specified controller (1) that decides which position, velocity, ac-
celeration and motor force must be used. The second stage is performed by the servo P-controller
(2) that computes the current velocity of the servo Vc. Finally, the third stage (3) is carried out
by the physics simulator (ODE joint motors).

At each simulation step, the P-controller (2) recomputes the current velocity Vc according to
following algorithm:

Vc = P * (Pt - Pc);
if (abs(Vc) > Vd)

Vc = sign(Vc) * Vd;
if (A != -1) {

a = (Vc - Vp) / ts;
if (abs(a) > A)

a = sign(a) * A;
Vc = Vp + a * ts;

}
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where Vc is the current servo velocity in rad/s or m/s, P is the P-control parameter specified in
controlP field or set with wb servo set control p(), Pt is the target position of the
servo set by the function wb servo set position(), Pc is the current servo position as
reflected by the position field, Vd is the desired velocity as specified by the maxVeloc-
ity field (default) or set with wb servo set velocity(), a is the acceleration required
to reach Vc in one time step, Vp is the motor velocity of the previous time step, ts is the dura-
tion of the simulation time step as specified by the basicTimeStep field of the WorldInfo
node (converted in seconds), and A is the acceleration of the servo motor as specified by the
acceleration field (default) or set with wb servo set acceleration().

3.42.6 Velocity Control

The servos can also be used with velocity control instead of position control. This is obtained
with two function calls: first the wb servo set position() function must be called with
INFINITY as a position parameter, then the desired velocity, which may be positive or negative,
must be specified by calling the wb servo set velocity() function. This will initiate a
continuous servo motion at the desired speed, while taking into account the specified acceleration
and motor force. Example:

wb_servo_set_position(servo, INFINITY);
wb_servo_set_velocity(servo, 6.28); // 1 rotation per second

INFINITY is a C macro corresponding to the IEEE 754 floating point standard. It is imple-
mented in the C99 specifications as well as in C++. In Java, this value is defined as Dou-
ble.POSITIVE INFINITY. In Python, you should use float(’inf’). Finally, in Matlab
you should use the inf constant.

3.42.7 Force Control

The position/velocity control described above are performed by the Webots P-controller and
ODE’s joint motor implementation (see ODE documentation). As an alternative, Webots does
also allow the user to directly specify the amount of torque/force that must be applied by a
Servo. This is achieved with the wb servo set force() function which specifies the de-
sired amount of torque/forces and switches off the P-controller and motor force. A subsequent
call to wb servo set position() restores the original position control. Some care must
be taken when using force control. Indeed the torque/force specified with wb servo set -
force() is applied to the Servo continuously. Hence the Servo will infinitely accelerate its
rotational or linear motion and eventually explode unless a functional force control algorithm is
used.
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position control velocity control force control
uses P-controller yes yes no
wb servo set position() * specifies the de-

sired position
should be set to IN-
FINITY

switches to posi-
tion/velocity con-
trol

wb servo set velocity() specifies the max
velocity

* specifies the de-
sired velocity

is ignored

wb servo set acceleration() specifies the max
acceleration

specifies the max
acceleration

is ignored

wb servo set motor force() specifies the avail-
able force

specifies the avail-
able force

specifies the max
force

wb servo set force() switches to force
control

switches to force
control

* specifies the de-
sired force

Table 3.6: Servo Control Summary

3.42.8 Servo Limits

The position field is a scalar value that represents the current servo ”rotational” or ”linear”
position. For a rotational servo, position represents the difference (in radians) between the
initial and the current angle of its rotation field. For a linear servo, position represents the
distance (in meters) between the servo’s initial and current translation (translation field).

The minPosition and maxPosition fields define the soft limits of the servo. Soft limits
specify the software boundaries beyond which the P-controller will not attempt to move. If
the controller calls wb servo set position() with a target position that exceeds the soft
limits, the desired target position will be clipped in order to fit into the soft limit range. Since
the initial position of the servo is always zero, minPosition must always be negative or
zero, and maxPosition must always be positive or zero. When both minPosition and
maxPosition are zero (the default), the soft limits are deactivated. Note that the soft limits
can be overstepped when an external force which exceeds the motor force is applied to the servo.
For example, it is possible that the weight of a robot exceeds the motor force that is required to
hold it up.

The minStop and maxStop fields define the hard limits of the servo. Hard limits represent
physical (or mechanical) bounds that cannot be overrun by any force. Hard limits can be used,
for example, to simulate both end caps of a hydraulic or pneumatic piston or to restrict the range
of rotation of a hinge. The value of minStop must be in the range [-π, 0] and maxStop must
be in the range [0, π]. When both minStop and maxStop are zero (the default), the hard limits
are deactivated. The servo hard limits use ODE joint stops (for more information see the ODE
documentation on dParamLoStop and dParamHiStop).

Finally, note that when both soft and hard limits are activated, the range of the soft limits must be
included in the range of the hard limits, such that minStop <= minValue and maxStop>=
maxValue.
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Figure 3.27: Mechanical Diagram of a Servo

3.42.9 Springs and Dampers

The springConstant field specifies the value of the spring constant (or spring stiffness),
usually denoted as K. The springConstant must be positive or zero. If the spring-
Constant is zero (the default), no spring torque/force will be applied to the servo. If the
springConstant is greater than zero, then a spring force will be computed and applied to
the servo in addition to the other forces (i.e., motor force, damping force). The spring force is
calculated according to Hooke’s law: F = −Kx, where K is the springConstant and x is
the current servo position as represented by the position field. Therefore, the spring force is
computed so as to be proportional to the current servo position, and to move the servo back to its
initial position. When designing a robot model that uses springs, it is important to remember that
the spring’s resting position for each servo will correspond to the initial position of the servo.

The dampingConstant field specifies the value of the servo damping constant. The value of
dampingConstantmust be positive or zero. If dampingConstant is zero (the default), no
damping torque/force will be added to the servo. If dampingConstant is greater than zero,
a damping torque/force will be applied to the servo in addition to the other forces (i.e., motor
force, spring force). This damping torque/force is proportional to the effective servo velocity:
F = −Bv, where B is the damping constant, and v = dx/dt is the effective servo velocity
computed by the physics simulator.

As you can see in (see figure 3.27), a Servo creates a joint between two masses m0 and m1.
m0 is defined by the Physics node in the parent of the Servo. The mass m1 is defined by the
Physics node of the Servo. The value x0 corresponds to the initial translation of the Servo
defined by the translation field. The position x corresponds to the current position of the
Servo defined by the position field.
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3.42.10 Servo Forces

Altogether, three different forces can be applied to a Servo: the motor force, the spring force
and the damping force. These three forces are applied in parallel and can be switched on and off
independently (by default only the motor force is on). For example, to turn off the motor force
and obtain a passive Servo, you can set the maxForce field to zero.

Force motor force spring force damping force
Turned on when: maxForce > 0 springConstant > 0 dampingConstant > 0
Turned off when: maxForce = 0 springConstant = 0 dampingConstant = 0
regular motor (the default) on off off
regular spring & damper off on on
damper (without spring) off off on
motor with friction on off on
spring without any friction off on off

Table 3.7: Servo Forces

To obtain a spring & damper element, you can set maxForce to zero and springConstant
and dampingConstant to non-zero values. A pure spring is obtained when both maxForce
and dampingConstant but not springConstant are set to zero. However in this case the
spring may oscillate forever because Webots will not simulate the air friction. So it is usually
wise to associate some damping to every spring.

3.42.11 Serial Servos

Each instance of a Servo simulates a mechanical system with optional motor, spring and damp-
ing elements, mounted in parallel. Sometimes it is necessary to have such elements mounted
serially. With Webot, serially mounted elements must be modeled by having Servo nodes used
as children of other Servo nodes. For example if you wish to have a system where a motor
controls the resting position of a spring, then you will need two Servo nodes, as depicted in
figure 3.28. In this example, the parent Servo will have a motor force (maxForce > 0) and the
child Servo will have spring and damping forces (springConstant > 0 and damping-
Constant > 0).

This is equivalent to this .wbt code, where, as you can notice, Servo2 is a child of Servo1:

DEF Servo1 Servo {
...
children [

DEF Servo2 Servo {
...
children [

...
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Figure 3.28: Example of serial connection of two Servo nodes

]
boundingObject ...
physics Physics {

mass {m2}
}
maxForce 0
springConstant {K}
dampingConstant {B}

}
]
boundingObject ...
physics Physics {

mass {m1}
}
maxForce {M}
springConstant 0
dampingConstant 0

}

Note that it is necessary to specify the Physics and the boundingObject of Servo1. This
adds the extra body m1 in the simulation, between the motor and the spring and damper.

3.42.12 Simulating Overlayed Joint Axes

Sometimes it is necessary to simulate a joint with two or three independent but overlayed rotation
axes (e.g., a shoulder joint with a pitch axis and a roll axis). As usually with Webots, each axis
must be implemented as a separate Servo node. So for two axes you need two Servo nodes,
for three axes you need three Servo nodes, etc.
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With overlayed axes (or very close axes) the mass and the shape of the body located between
these axes is often unknown or negligible. However, Webots requires all the intermediate bound-
ingObject and physics fields to be defined. So the trick is to use dummy values for these
fields. Usually the dummy boundingObject can be specified as a Sphere with a radius of 1
millimeter. A Sphere is the preferred choice because this is the cheapest shape for the collision
detection. And the physics field can use a Physics node with default values.

This is better explained with an example. Let’s assume that we want to build a pan/tilt robot
head. For this we need two independent (and perpendicular) rotation axes: pan and tilt. Now
let’s assume that these axes cross each other but we don’t know anything about the shape and the
mass of the body that links the two axes. Then this can be modeled like this:

DEF PAN Servo {
...
children [

DEF TILT Servo {
translation 0 0 0 # overlayed
children [

DEF HEAD_TRANS Transform {
# head shape

}
# head devices

]
boundingObject USE HEAD_TRANS
physics Physics {
}

}
]
boundingObject DEF DUMMY_BO Sphere {

radius 0.001
}
physics DEF DUMMY_PHYSICS Physics {
}

}

Please note the dummy Physics and the 1 millimeter Sphere as dummy boundingObject.

3.42.13 Servo Functions

NAME

wb servo set position,
wb servo set velocity,
wb servo set acceleration,
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wb servo set motor force,
wb servo set control p – change the parameters of the P-controller

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/servo.h>

void wb servo set position (WbDeviceTag tag, double position);

void wb servo set velocity (WbDeviceTag tag, double velocity);

void wb servo set acceleration (WbDeviceTag tag, double acceleration);

void wb servo set motor force (WbDeviceTag tag, double force);

void wb servo set control p (WbDeviceTag tag, double p);

DESCRIPTION

The wb servo set position() function specifies a new target position that the P-controller
will attempt to reach using the current velocity, acceleration and motor torque/force parameters.
This function returns immediately (asynchronous) while the actual motion is carried out in the
background by Webots. The target position will be reached only if the physics simulation allows
it, that means, if the specified motor force is sufficient and the motion is not blocked by obstacles,
external forces or the servo’s own spring force, etc. It is also possible to wait until the Servo
reaches the target position (synchronous) like this:

language: C

1 void servo_set_position_sync(WbDeviceTag tag,
double target, int delay) {

2 const double DELTA = 0.001; // max tolerated
difference

3 wb_servo_set_position(tag, target);
4 wb_servo_enable_position(tag, TIME_STEP);
5 double effective; // effective position
6 do {
7 wb_robot_step(TIME_STEP);
8 delay -= TIME_STEP;
9 effective = wb_servo_get_position(tag);

10 }
11 while (fabs(target - effective) > DELTA &&

delay > 0);
12 wb_servo_disable_position(tag);
13 }
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The INFINITY (#include <math.h>) value can be used as the second argument to the wb -
servo set position() function in order to enable an endless rotational (or linear) motion.
The current values for velocity, acceleration and motor torque/force are taken into account. So for
example, wb servo set velocity() can be used for controlling the velocity of the endless
rotation:

language: C

1 // velocity control
2 wb_servo_set_position(tag, INFINITY);
3 wb_servo_set_velocity(tag, desired_speed); //

rad/s

language: C++
In C++ use std::numeric limits<double>::infinity() in-
stead of INFINITY

language: Java
In Java use Double.POSITIVE INFINITY instead of INFINITY

language: Python
In Python use float(’+inf’) instead of INFINITY

language: Matlab
In MATLAB use inf instead of INFINITY

The wb servo set velocity() function specifies the velocity that servo should reach while
moving to the target position. In other words, this means that the servo will accelerate (using the
specified acceleration, see below) until the target velocity is reached. The velocity argument
passed to this function cannot exceed the limit specified in the maxVelocity field.

The wb servo set acceleration() function specifies the acceleration that the P-controller
should use when trying to reach the specified velocity. Note that an infinite acceleration is ob-
tained by passing -1 as the acc argument to this function.

The wb servo set motor force() function specifies the max torque/force that will be
available to the motor to carry out the requested motion. The motor torque/force specified with
this function cannot exceed the value specified in the maxForce field.
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The wb servo set control p() function changes the value of the P parameter in the P-
controller. P is a parameter used to compute the current servo velocity Vc from the current
position Pc and target position Pt, such that Vc = P ∗ (Pt − Pc). With a small P , a long time
is needed to reach the target position, while too large a P can make the system unstable. The
default value of P is specified by the controlP field of the corresponding Servo node.

NAME

wb servo enable position,
wb servo disable position,
wb servo get position sampling period,
wb servo get position – get the effective position of a servo

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/servo.h>

void wb servo enable position (WbDeviceTag tag, int ms);

void wb servo disable position (WbDeviceTag tag);

int wb servo get position sampling period (WbDeviceTag tag);

double wb servo get position (WbDeviceTag tag);

DESCRIPTION

The wb servo enable position() function activates position measurements for the spec-
ified servo. A new position measurement will be performed each msmilliseconds; the result must
be obtained with the wb servo get position() function. The returned value corresponds
to the most recent measurement of the servo position. The wb servo get position() func-
tion measures the effective position of the servo which, under the effect of external forces, is
usually different from the target position specified with wb servo set position(). For
a rotational servo, the returned value is expressed in radians, for a linear servo, the value is
expressed in meters. The returned value is valid only if the corresponding measurement was
previously enabled with wb servo enable position().

The wb servo disable position() function deactivates position measurements for the
specified servo. After a call to wb servo disable position(), wb servo get posi-
tion() will return undefined values.

The wb servo get position sampling period() function returns the period given
into the wb servo enable position() function, or 0 if the device is disabled.
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NAME

wb servo enable motor force feedback,
wb servo get motor force feedback,
wb servo get motor force feedback sampling period,
wb servo disable motor force feedback – get the motor force currently used by a servo

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/servo.h>

void wb servo enable motor force feedback (WbDeviceTag tag, int ms);

void wb servo disable motor force feedback (WbDeviceTag tag);

int wb servo get motor force feedback sampling period (WbDeviceTag tag);

double wb servo get motor force feedback (WbDeviceTag tag);

DESCRIPTION

The wb servo enable motor force feedback() function activates torque/force feed-
back measurements for the specified servo. A new measurement will be performed each ms mil-
liseconds; the result must be retrieved with the wb servo get motor force feedback()
function.

The wb servo get motor force feedback() function returns the most recent motor
force measurement. This function measures the amount of motor force that is currently being
used by the servo in order to achieve the desired motion or hold the current position. For a ”rota-
tional” servo, the returned value is a torque [N*m]; for a ”linear” servo, the value is a force [N].
The returned value is an approximation computed by the physics engine, and therefore it may
be inaccurate. The returned value normally does not exceed the available motor force specified
with wb servo set motor force() (the default being the value of the maxForce field).
Note that this function measures the current motor force exclusively, all other external or internal
forces that may apply to the servo are ignored. In particular, wb servo get motor force -
feedback() does not measure:

The wb servo get motor force feedback sampling period() function returns the
period given into the wb servo enable motor force feedback() function, or 0 if the
device is disabled.

• The spring and damping forces that apply when the springConstant or damping-
Constant fields are non-zero.

• The force specified with the wb servo set force() function.
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• The constraint forces that restrict the servo motion to one degree of freedom (DOF). In
other words, the forces applied outside of the servo DOF are ignored. Only the forces
applied in the DOF are considered. For example, in a ”linear” servo, a force applied at
a right angle to the sliding axis is completely ignored. In a ”rotational” servo, only the
torque applied around the rotation axis is considered.

Note that this function applies only to physics-based simulation. Therefore, the physics and
boundingObject fields of the Servo node must be defined for this function to work prop-
erly.

If wb servo get motor force feedback() was not previously enabled, the return value
is undefined.

NAME

wb servo set force – direct force control

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/servo.h>

void wb servo set force (WbDeviceTag tag, double force);

DESCRIPTION

As an alternative to the P-controller, the wb servo set force() function allows the user
to directly specify the amount of torque/force that must be applied by a servo. This function
bypasses the P-controller and ODE joint motors; it adds the force to the physics simulation
directly. This allows the user to design a custom controller, for example a PID controller. Note
that when wb servo set force() is invoked, this automatically resets the force previously
added by the P-controller.

In a ”rotational” servo, the force parameter specifies the amount of torque that will be applied
around the servo rotation axis. In a ”linear” servo, the parameter specifies the amount of force
[N] that will be applied along the sliding axis. A positive torque/force will move the bodies
in the positive direction, which corresponds to the direction of the servo when the position
field increases. When invoking wb servo set force(), the specified force parameter cannot
exceed the current motor force of the servo (specified with wb servo set motor force()
and defaulting to the value of the maxForce field).

Note that this function applies only to physics-based simulation. Therefore, the physics and
boundingObject fields of the Servo node must be defined for this function to work prop-
erly.

It is also possible, for example, to use this function to implement springs or dampers with
controllable properties. The example in projects/samples/howto/worlds/force_



3.43. SHAPE 147

control.wbt demonstrates the usage of wb servo set force() for creating a simple
spring and damper system.

3.43 Shape

Shape {
SFNode appearance NULL
SFNode geometry NULL

}

The Shape node has two fields, appearance and geometry, which are used to create
rendered objects in the world. The appearance field contains an Appearance node that
specifies the visual attributes (e.g., material and texture) to be applied to the geometry. The
geometry field contains a Geometry node: Box, Capsule, Cone, Cylinder, Eleva-
tionGrid, IndexedFaceSet, IndexedLineSet, Plane or Sphere. The specified
Geometry node is rendered with the specified appearance nodes applied.

3.44 Solid

Derived from Transform.

Solid {
SFString name "solid"
SFString model ""
SFString description ""
SFString contactMaterial "default"
SFNode boundingObject NULL
SFNode physics NULL
SFBool locked FALSE

}

Direct derived nodes: Accelerometer, Camera, Charger, Compass, Connector, Dis-
play, DistanceSensor, Emitter, GPS, Gyro, InertialUnit, LED, LightSensor,
Pen, Receiver, Robot, Servo, TouchSensor.

3.44.1 Description

A Solid node represents an object with physical properties such as dimensions, a contact ma-
terial and optionally a mass. The Solid class is the base class for collision-detected objects.
Robots and device classes are subclasses of the Solid class. In the 3D window, Solid nodes
can be manipulated (dragged, lifted, rotated, etc) using the mouse.
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3.44.2 Solid Fields

Note that in the Solid node, the scale field inherited from the Transform is always remain
uniform, i.e., of the form x x x where x is any positive real number. This ensures that all prim-
itive geometries will remain suitable for ODE collision detection. Whenever a scale coordinate
is changed, the two other ones are automatically changed to this new value. If a scale coordinate
is assigned a non-positive value, it is automatically changed to 1.

• name: name of the solid. In derived device classes this corresponds to the device name
argument used by wb robot get device().

• model: generic name of the solid (e.g., ”chair”).

• description: short description (1 line) of the solid.

• contactMaterial: name of the contact material. When the boundingObjects of
Solid nodes intersect, the contactMaterial is used to define which Contact-
Properties must be applied at the contact points.

• boundingObject: the bounding object specifies the geometrical primitives used for
collision detection. If the boundingObject field is NULL, then no collision detection
is performed and that object can pass through any other object, e.g., the floor, obstacles
and other robots. Note that if the boundingObject field is NULL then the physics
field (see below) must also be NULL. You will find more explanations about the bound-
ingObject field below.

• physics: this field can optionally contain a Physics node that is used to model the
physical properties of this Solid. A Physics node should be added when effects such
as gravity, inertia, frictional and contact forces need to be simulated. If the physics field
is NULL then Webots simulates this object in kinematics mode. Note that if this field is
not NULL then the boundingObject field must be specified. Please find more info in
the description of the Physics node.

• locked: if TRUE, the solid object cannot be moved using the mouse. This is useful to
prevent moving an object by mistake.

3.44.3 How to use the boundingObject field?

boundingObjects are used to define the bounds of a Solid as geometrical primitive. Each
boundingObject can hold one or several geometrical primitives, such as Box, Capsule,
Cylinder, etc. These primitives should normally be chosen such as to represent the approx-
imate bounds of the Solid. In the usual case, the graphical representation of a robot is com-
posed of many complex shapes, e.g. IndexedFaceSets, placed in the children field of
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the Solid nodes. However this graphical representation is usually too complex to be used di-
rectly for detecting collisions. If there are too many faces the simulation becomes slow and
error-prone. For that reason, it is useful to be able to approximate the graphical representation
by simpler primitives, e.g., one or more Box or Capsules, etc. This is the purpose of the
boundingObject field.

Various combinations of primitives can be used in a boundingObject: it can contain either:

1. A Box node,

2. A Capsule node,

3. A Cylinder node,

4. An ElevationGrid node,

5. An IndexedFaceSet node,

6. A Plane node,

7. A Sphere node,

8. A Shape node with one of the above nodes in its geometry field,

9. A Transform node with one of the above nodes in its children field, or

10. A Group node with several children, each being one of the above.

The boundingObject, together with the Physics node, are used to compute the inertia
matrix of the Solid. Such a computation assumes a uniform mass distribution in the primitives
composing the boundingObject. Note that the center of mass of the Solid does not depend
on its boundingObject. The center of mass of is specified by the centerOfMass field of
the Physics node (in coordinates relative to the center of the Solid).

3.45 Sphere

Sphere {
SFFloat radius 1 # (-inf,inf)
SFInt32 subdivision 1 # [0,5] or 10

}

The Sphere node specifies a sphere centered at (0,0,0) in the local coordinate system. The
radius field specifies the radius of the sphere (see figure 3.29).

If radius is positive, the outside faces of the sphere are displayed while if it is negative, the
inside faces are displayed.
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Figure 3.29: Sphere node

The subdivision field controls the number of faces of the rendered sphere. Spheres are
rendered as icosahedrons with 20 faces when the subdivision field is set to 0. If the subdivision
field is 1 (default value), then each face is subdivided into 4 faces, making 80 faces. With
a subdivision field set to 2, 320 faces will be rendered, making the sphere very smooth. A
maximum value of 5 (corresponding to 20480 faces) is allowed for this subdivision field to avoid
a very long rendering process. A value of 10 will turn the sphere appearance into a black and
white soccer ball.

When a texture is applied to a sphere, the texture covers the entire surface, wrapping counter-
clockwise from the back of the sphere. The texture has a seam at the back where the yz-plane
intersects the sphere. TextureTransform affects the texture coordinates of the Sphere.

3.46 SpotLight

Derived from Light.

SpotLight {
SFFloat ambientIntensity 0 # [0,1]
SFVec3f attenuation 1 0 0 # [0,inf)
SFFloat beamWidth 1.570796 # [0,pi/2)
SFColor color 1 1 1 # [0,1]
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SFFloat cutOffAngle 0.785398 # [0,pi/2)
SFVec3f direction 0 0 -1 # (-inf,inf)
SFFloat intensity 1 # [0,1]
SFVec3f location 0 0 10 # (-inf,inf)
SFBool on TRUE
SFFloat radius 100 # [0,inf)
SFBool castShadows FALSE

}

3.46.1 Description

The SpotLight node defines a light source that emits light from a specific point along a specific
direction vector and constrained within a solid angle. Spotlights may illuminate Geometry
nodes that respond to light sources and intersect the solid angle. Spotlights are specified in their
local coordinate system and are affected by parent transformations.

The location field specifies a translation offset of the center point of the light source from the
light’s local coordinate system origin. This point is the apex of the solid angle which bounds light
emission from the given light source. The direction field specifies the direction vector of the
light’s central axis defined in its own local coordinate system. The on field specifies whether
the light source emits light–if TRUE, then the light source is emitting light and may illuminate
geometry in the scene, if FALSE it does not emit light and does not illuminate any geometry.
The radius field specifies the radial extent of the solid angle and the maximum distance from
location that may be illuminated by the light source - the light source does not emit light
outside this radius. The radius must be >= 0.0.

The cutOffAngle field specifies the outer bound of the solid angle. The light source does not
emit light outside of this solid angle. The beamWidth field specifies an inner solid angle in
which the light source emits light at uniform full intensity. The light source’s emission intensity
drops off from the inner solid angle (beamWidth) to the outer solid angle (cutOffAngle).
The drop off function from the inner angle to the outer angle is a cosine raised to a power
function:

intensity(angle) = intensity * (cosine(angle) ** exponent)

where exponent = 0.5*log(0.5)/log(cos(beamWidth)),
intensity is the SpotLight’s field value,
intensity(angle) is the light intensity at an arbitrary

angle from the direction vector,
and angle ranges from 0.0 at central axis to cutOffAngle.

If beamWidth > cutOffAngle, then beamWidth is assumed to be equal to cutOffAn-
gle and the light source emits full intensity within the entire solid angle defined by cutOf-
fAngle. Both beamWidth and cutOffAngle must be greater than 0.0 and less than or
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Figure 3.30: Spot light

equal to π/2. See figure below for an illustration of the SpotLight’s field semantics (note: this
example uses the default attenuation).

The light’s illumination falls off with distance as specified by three attenuation coefficients.
The attenuation factor is 1/(attenuation[0]+attenuation[1]*r+attenuation[2]*r2),
where r is the distance of the light to the surface being illuminated. The default is no attenuation.
An attenuation value of 0 0 0 is identical to 1 0 0. Attenuation values must be >= 0.0.

3.47 Supervisor

Derived from Robot.

Supervisor {
# no additional fields

}

3.47.1 Description

A Supervisor is a special kind of Robot which is specially designed to control the simula-
tion. A Supervisor has access to extra functions that are not available to a regular Robot. If
a Supervisor contains devices then the Supervisor controller can use them. Webots PRO
is required to use the Supervisor node.
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Note that in some special cases the Supervisor functions might return
wrong values and it might not be possible to retrieve fields and nodes. This
occurs when closing a world and quitting its controllers, i.e. reverting the
current world, opening a new world, or closing Webots. In this case the
output will be a NULL pointer or a default value. For functions returning a
string, an empty string is returned instead of a NULL pointer.

language: C++, Java, Python
It is a good practice to check for a NULL pointer after calling a Supervi-
sor function.

3.47.2 Supervisor Functions

As for a regular Robot controller, the wb robot init(), wb robot step(), etc. func-
tions must be used in a Supervisor controller.

NAME

wb supervisor export image – save the current 3D image of the simulator into a JPEG file,
suitable for building a webcam system

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor export image (const char *filename, int quality);

DESCRIPTION

The wb supervisor export image() function saves the current image of Webots main
window into a JPEG file as specified by the filename parameter. The quality parameter
defines the JPEG quality (in the range 1 - 100). The filename parameter should specify a
valid (absolute or relative) file name, e.g., snapshot.jpg or /var/www/html/images/
snapshot.jpg. In fact, a temporary file is first saved, and then renamed to the requested
filename. This avoids having a temporary unfinished (and hence corrupted) file for webcam
applications.

EXAMPLE
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The projects/samples/howto/worlds/supervisor.wbt world provides an exam-
ple on how to use the wb supervisor export image() function. In this example, the
Supervisor controller takes a snapshot image each time a goal is scored.

NAME

wb supervisor node get from def,
wb supervisor node get root – get a handle to a node in the world

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

WbNodeRef wb supervisor node get from def (const char *def);

WbNodeRef wb supervisor node get root ();

DESCRIPTION

The wb supervisor node get from def() function retrieves a handle to a node in the
world from its DEF name. The return value can be used for subsequent calls to functions which
require a WbNodeRef parameter. If the requested node does not exist in the current world file,
the function returns NULL, otherwise, it returns a non-NULL handle.

The wb supervisor node get root() function returns a handle to the root node which is
actually a Group node containing all the nodes visible at the top level in the scene tree window
of Webots. Like any Group node, the root node has a MFNode field called ”children” which
can be parsed to read each node in the scene tree. An example of such a usage is provided
in the supervisor.wbt sample worlds (located in the projects/samples/devices/
worlds directory of Webots.

NAME

wb supervisor node get type,
wb supervisor node get type name – get information on a specified node

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

WbNodeType wb supervisor node get type (wbNodeRef node);

const char *wb supervisor node get type name (wbNodeRef node);
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DESCRIPTION

The wb supervisor node get type() function returns a symbolic value corresponding
the type of the node specified as an argument. If the argument is NULL, it returns WB NODE -
NO NODE. A list of all node types is provided in the webots/nodes.h include file. Node
types include WB NODE DIFFERENTIAL WHEELS, WB NODE APPEARANCE, WB NODE -
LIGHT SENSOR, etc.

The wb supervisor node get type name() function returns a text string corresponding
to the name of the node, like ”DifferentialWheels”, ”Appearance”, ”LightSensor”, etc. If the
argument is NULL, the function returns NULL.

language: C++, Java, Python
In the oriented-object APIs, the WB NODE * constants are available as
static integers of the Node class (for example, Node::DIFFERENTIAL -
WHEELS). These integers can be directly compared with the output of the
Node::getType()

NAME

wb supervisor node get field – get a field reference from a node

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

WbFieldRef wb supervisor node get field (WbNodeRef node, const char *field -

name);

DESCRIPTION

The wb supervisor node get field() function retrieves a handler to a node field. The
field is specified by its name in field name and the node it belongs to. It can be a single field
(SF) or a multiple field (MF). If no such field name exist for the specified node, the return value
is NULL. Otherwise, it returns a handler to a field.

NAME

wb supervisor node get position,
wb supervisor node get orientation – get the global (world) position/orientation of a node

SYNOPSIS [C++] [Java] [Python] [Matlab]
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#include <webots/supervisor.h>

const double *wb supervisor node get position (WbNodeRef node);

const double *wb supervisor node get orientation (WbNodeRef node);

DESCRIPTION

The wb supervisor node get position() function returns the position of a node ex-
pressed in the global (world) coordinate system. The node argument must be a Transform
node (or a derived node), otherwise the function will print a warning message and return NULL.
This function returns a vector containing exactly 3 values.

The wb supervisor node get orientation() function returns a matrix that represents
the rotation of the node in the global (world) coordinate system. The node argument must be a
Transform node (or a derived node), otherwise the function will print a warning message and
return NULL. This function returns a matrix containing exactly 9 values that shall be interpreted
as a 3 x 3 orthogonal rotation matrix:

[ R[0] R[1] R[2] ]
[ R[3] R[4] R[5] ]
[ R[6] R[7] R[8] ]

Each column of the matrix represents where each of the three main axes (x, y and z) is pointing in
the node’s coordinate system. The columns (and the rows) of the matrix are pairwise orthogonal
unit vectors (i.e., they form an orthonormal basis). Because the matrix is orthogonal, its transpose
is also its inverse. So by transposing the matrix you can get the inverse rotation. Please find more
info here1.

By multiplying the rotation matrix on the right with a vector and then adding the position vector
you can express the coordinates of a point in the global (world) coordinate system knowing its
coordinates in a local (node) coordinate system. For example:

p’ = R * p + T

where p is a point whose coordinates are given with respect to the local coordinate system
of a node, R the the rotation matrix returned by wb supervisor node get orienta-
tion(node), T is the position returned by wb supervisor node get position(node)
and p’ represents the same point but this time with coordinates expressed in the global (world)
coordinate system.

The WEBOTS_HOME/projects/robots/ipr/worlds/ipr_cube.wbt project shows
how to use these functions to do this.

NAME

wb supervisor node get center of mass – get the global position of a solid’s center of mass
1http://en.wikipedia.org/wiki/Rotation_representation

http://en.wikipedia.org/wiki/Rotation_representation
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SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

const double *wb supervisor node get center of mass (WbNodeRef node);

DESCRIPTION

The wb supervisor node get center of mass() function returns the position of the
center of mass of a Solid node expressed in the global (world) coordinate system. The node
argument must be a Solid node (or a derived node), otherwise the function will print a warning
message and return NULL. This function returns a vector containing exactly 3 values. If the
node argument has a NULL physics node, the return value is always the zero vector.

The WEBOTS_HOME/projects/samples/.wbt project shows how to use this function.

NAME

wb supervisor node get contact points – get the contact points of a solid and of all its descen-
dants

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

const double *wb supervisor node get contact points (WbNodeRef node, int *num-

ber of contact points);

DESCRIPTION

The wb supervisor node get contact points() function returns the list contact points
belonging to a given Solid and all its descendants. The second argument allows to retrieve the
length of this list. Contact points are expressed in the global (world) coordinate system. If the
number of contact points is not zero, the x (resp. y, z) coordinate of the ith contact point is the
element number 3∗i (resp. 3∗i+1, 3∗i+2) in the returned array. The node argument must be a
Solid node (or a derived node), which moreover has no Solid parent, otherwise the function
will print a warning message and return NULL.

The WEBOTS_HOME/projects/samples/.wbt project shows how to use this function.

NAME

wb supervisor node get static balance – return the boolean value of the static balance test
based on the support polygon of a solid
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SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

bool wb supervisor node get static balance (WbNodeRef node);

DESCRIPTION

The wb supervisor node get static balance() function returns the boolean value
of the static balance test based on the support polygon of a solid. The node argument must be a
Solid node (or a derived node), which moreover has no Solid parent. Otherwise the function
will print a warning message and return false. The support polygon of a solid is the convex
hull of the solid’s contact points projected onto a plane that is orthognal to the gravity direction.
The test consists in checking whether the projection of the center of mass onto this plane lies
inside or outside the support polygon.

The WEBOTS_HOME/projects/samples/.wbt project shows how to use this function.

NAME

wb supervisor set label – overlay a text label on the 3D scene

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor set label (int id, const char *text, double x, double

y, double size, int color, double transparency);

DESCRIPTION

The wb supervisor set label() function displays a text label overlaying the 3D scene
in Webots’ main window. The id parameter is an identifier for the label; you can choose any
value in the range 0 to 65535. The same value may be used later if you want to change that label,
or update the text. The text parameter is a text string which should contain only displayable
characters in the range 32-127. The x and y parameters are the coordinates of the upper left
corner of the text, relative to the upper left corner of the 3D window. These floating point values
are expressed in percent of the 3D window width and height, hence, they should lie in the range
0-1. The size parameter defines the size of the font to be used. It is expressed in the same unit as
the y parameter. Finally, the color parameter defines the color of the label. It is expressed as a 4
bytes RGB integer, where the first byte is ignored, the second byte represents the red component,
the third byte represents the green component and the last byte represents the blue component.
The transparency parameter defines the transparency of the label. A transparency level of 0
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means no transparency, while a transparency level of 1 means total transparency (the text will be
invisible). Intermediate values correspond to semi-transparent levels.

EXAMPLE

•
wb_supervisor_set_label(0,"hello world",0,0,0.1,0xff0000,0);

will display the label ”hello world” in red at the upper left corner of the 3D window.

•
wb_supervisor_set_label(1,"hello Webots",0,0.1,0.1,0x00ff00,0.5);

will display the label ”hello Webots” in semi-transparent green, just below.

•
supervisor_set_label(0,"hello universe",0,0,0.1,0xffff00,0);

will change the label ”hello world” defined earlier into ”hello universe”, using a yellow
color for the new text.

language: Matlab
In the Matlab version of wb supervisor set label() the color ar-
gument must be a vector containing the three RGB components: [RED
GREEN BLUE]. Each component must be a value between 0.0 and 1.0. For
example the vector [1 0 1] represents the magenta color.

NAME

wb supervisor simulation quit – terminate the simulator and controller processes

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor simulation quit (int status);

DESCRIPTION

The wb supervisor simulator quit() function quits Webots, as if one was using the
menu File > Quit Webots. This function makes it easier to invoke a Webots simulation from a
script because it allows to terminate the simulation automatically, without human intervention.
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As a result of quitting the simulator process, all controller processes, including the calling super-
visor controller, will terminate. The wb supervisor simulator quit() sends a request
to quit the simulator and immediately returns to the controller process, it does not wait for the ef-
fective termination of the simulator. After the call to wb supervisor simulator quit(),
the controller should call the wb robot cleanup() function and then exit. The POSIX exit
status returned by Webots can be defined by the status status parameter. Some typical values
for this are the EXIT SUCCESS or EXIT FAILURE macros defined into the stdlib.h file.
Here is a C example:

language: C

1 #include <webots/robot.h>
2 #include <webots/supervisor.h>
3 #include <stdlib.h>
4
5 #define TIME_STEP 32
6
7 int main(int argc, char *argv[]) {
8 wb_robot_init();
9 ...

10 while (! finished) {
11 // your controller code here
12 ...
13 wb_robot_step(TIME_STEP);
14 }
15 saveExperimentsData();
16 wb_supervisor_simulation_quit(EXIT_SUCCESS); //

ask Webots to terminate
17 wb_robot_cleanup(); // cleanup resources
18 return 0;
19 }

In object-oriented languages, there is no wb robot cleanup() function, in this case the con-
troller should call its destructor. Here is a C++ example:
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language: C

1 #include <webots/Robot.hpp>
2 #include <webots/Supervisor.hpp>
3 #include <cstdlib>
4
5 using namespace webots;
6
7 class MySupervisor : public Supervisor {
8 public:
9 MySupervisor() { ... }

10 virtual ˜MySupervisor() { ... }
11 void run() {
12 ...
13 while (! finished) {
14 // your controller code here
15 ...
16 step(TIME_STEP);
17 }
18 simulationQuit(EXIT_SUCCESS); // ask Webots

to terminate
19 }
20
21 int main(int argc, char *argv[]) {
22 MySupervisor *controller = new MySupervisor();
23 controller->run();
24 delete controller; // cleanup resources
25 return 0;
26 }

NAME

wb supervisor simulation revert – reload the current world

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor simulation revert ();

DESCRIPTION

The wb supervisor simulator revert() function sends a request to the simulator pro-
cess, asking it to reload the current world immediately. As a result of reloading the current world,
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the supervisor process and all the robot processes are terminated and restarted. You may wish to
save some data in a file from your supervisor program in order to reload it when the supervisor
controller restarts.

NAME

wb supervisor simulation physics reset – stop the inertia of all solids in the world and reset the
random number generator

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor simulation physics reset ();

DESCRIPTION

The wb supervisor simulation physics reset() function sends a request to the
simulator process, asking it to stop the movement of all physics-enabled solids in the world.
It means that for any Solid node containing a Physics node, the linear and angular velocities
of the corresponding body are reset to 0, hence the inertia is also zeroed. This is actually im-
plemented by calling the ODE dBodySetLinearVel() and dBodySetAngularVel()
functions for all bodies with a zero velocity parameter. This function is especially useful for
resetting a robot to its initial position and inertia.

Furthermore, this function resets the seed of the random number generator used in Webots, so
that noise-based simulations can be be reproduced identically after calling this function.

NAME

wb supervisor start movie,
wb supervisor stop movie – export the current simulation into a movie file

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor start movie (const char *filename, int width, int he-

ight, int type, int quality);

void wb supervisor stop movie ();

DESCRIPTION
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The wb supervisor start movie() function starts saving the current simulation into a
movie file. The movie creation process will complete after the wb supervisor stop -
movie() function is called. The movie is saved in the file defined by the filename parameter.
If the filename doesn’t ends with an .avi extension, the file extension is completed auto-
matically. Under Mac OS X and Linux, the extension can also be .mpeg according to the type
parameter. The type parameter specify the type of movie to be created. It corresponds to the
choice offered in the dialog box when creating a movie manually from the Webots graphical user
interface: 0 means the top choice, 1 means the second choice from the top, etc. For example,
under Linux and Mac OS X, 0 means MPEG-4 and 1 means MPEG-1. Under Windows, the
choices depend on the encoders available on your system and may include for example DivX
or Xvid if they are installed. The quality corresponds to the movie compression factor that
affects the movie quality and file size. It should be a value between 1 and 100. It may be ignored
under Windows depending on the chosen movie encoders (the quality of the movie is defined by
the setup of the chosen encoder). Beware, that choosing a too small value for MPEG-4 encoding
may cause the mencoder program to fail because of a too low bitrate.

NAME

wb supervisor field get type,
wb supervisor field get type name,
wb supervisor field get count – get a handler and more information on a field in a node

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

WbFieldType wb supervisor field get type (WbFieldRef field);

const char *wb supervisor field get type name (WbFieldRef field);

int wb supervisor field get count (WbFieldRef field);

DESCRIPTION

The wb supervisor field get type() returns the data type of a field found previously
from the wb supervisor node get field() function, as a symbolic value. If the argu-
ment is NULL, the function returns 0. Field types are defined in webots/supervisor.h
and include for example: WB SF FLOAT, WB MF NODE, WB SF STRING, etc.

The wb supervisor field get type name() returns a text string corresponding to the
data type of a field found previously from the wb supervisor node get field() func-
tion. Field type names are defined in the VRML’97 specifications and include for example:
"SFFloat", "MFNode", "SFString", etc. If the argument is NULL, the function returns
NULL.
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The wb supervisor field get count() returns the number of items of a multiple field
(MF) passed as an argument to this function. If a single field (SF) or NULL is passed as an
argument to this function, it returns -1. Hence, this function can also be used to test if a field is
MF (like WB MF INT32) or SF (like WB SF BOOL).

language: C++, Java, Python
In the oriented-object APIs, the WB *F * constants are available as static
integers of the Field class (for example, Field::SF BOOL). These integers
can be directly compared with the output of the Field::getType()

NAME

wb supervisor field get sf bool,
wb supervisor field get sf int32,
wb supervisor field get sf float,
wb supervisor field get sf vec2f,
wb supervisor field get sf vec3f,
wb supervisor field get sf rotation,
wb supervisor field get sf color,
wb supervisor field get sf string,
wb supervisor field get sf node,
wb supervisor field get mf int32,
wb supervisor field get mf float,
wb supervisor field get mf vec2f,
wb supervisor field get mf vec3f,
wb supervisor field get mf color,
wb supervisor field get mf string,
wb supervisor field get mf node – get the value of a field

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

bool wb supervisor field get sf bool (WbFieldRef field);

int wb supervisor field get sf int32 (WbFieldRef field);

double wb supervisor field get sf float (WbFieldRef field);

const double *wb supervisor field get sf vec2f (WbFieldRef sf field);

const double *wb supervisor field get sf vec3f (WbFieldRef field);

const double *wb supervisor field get sf rotation (WbFieldRef field);

const double *wb supervisor field get sf color (WbFieldRef field);
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const char *wb supervisor field get sf string (WbFieldRef field);

WbNodeRef wb supervisor field get sf node (WbFieldRef field);

int wb supervisor field get mf in32 (WbFieldRef field, int index);

double wb supervisor field get mf float (WbFieldRef field, int index);

const double *wb supervisor field get mf vec2f (WbFieldRef field, int in-

dex);

const double *wb supervisor field get mf vec3f (WbFieldRef field, int in-

dex);

const double *wb supervisor field get mf color (WbFieldRef field, int in-

dex);

const char *wb supervisor field get mf string (WbFieldRef field, int index);

WbNodeRef wb supervisor field get mf node (WbFieldRef field, int index);

DESCRIPTION

The wb supervisor field get sf *() functions retrieve the value of a specified single
field (SF). The type of the field has to match the name of the function used, otherwise the
return value is undefined (and a warning message is displayed). If the field parameter is
NULL, it has the wrong type, or the index is not valid, then a default value is returned. Default
values are defined as 0 and 0.0 for integer and double values, false in case of boolean values,
and NULL for vectors, strings and pointers.

The wb supervisor field get mf *() functions work the same way as the wb super-
visor field get sf *() functions but with multiple field argument. They take an ad-
ditional index argument which refers to the index of the item in the multiple field (MF). The
type of the field has to match the name of the function used and the index should be comprised
between 0 and the total number of item minus one, otherwise the return value is undefined (and
a warning message is displayed).

NAME

wb supervisor field set sf bool,
wb supervisor field set sf int32,
wb supervisor field set sf float,
wb supervisor field set sf vec2f,
wb supervisor field set sf vec3f,
wb supervisor field set sf rotation,
wb supervisor field set sf color,
wb supervisor field set sf string,
wb supervisor field set mf int32,
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wb supervisor field set mf float,
wb supervisor field set mf vec2f,
wb supervisor field set mf vec3f,
wb supervisor field set mf color,
wb supervisor field set mf string,
wb supervisor field set mf node – set the value of a field

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor field set sf bool (WbFieldRef field, bool value);

void wb supervisor field set sf int32 (WbFieldRef field, int value);

void wb supervisor field set sf float (WbFieldRef field, double value);

void wb supervisor field set sf vec2f (WbFieldRef sf field, const double val-

ues[2]);

void wb supervisor field set sf vec3f (WbFieldRef field, const double val-

ues[3]);

void wb supervisor field set sf rotation (WbFieldRef field, const double val-

ues[4]);

void wb supervisor field set sf color (WbFieldRef field, const double val-

ues[3]);

void wb supervisor field set sf string (WbFieldRef field, const char *value);

void wb supervisor field set mf int32 (WbFieldRef field, int index, int value);

void wb supervisor field set mf float (WbFieldRef field, int index, double

value);

void wb supervisor field set mf vec2f (WbFieldRef field, int index, const

double values[2]);

void wb supervisor field set mf vec3f (WbFieldRef field, int index, const

double values[3]);

void wb supervisor field set mf color (WbFieldRef field, int index, const

double values[3]);

void wb supervisor field set mf string (WbFieldRef field, int index, const

char *value);

DESCRIPTION
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The wb supervisor field set sf *() functions assign a value to a specified single field
(SF). The type of the field has to match with the name of the function used, otherwise the value
of the field remains unchanged (and a warning message is displayed).

The wb supervisor field set mf *() functions work the same way as the wb super-
visor field set sf *() functions but with a multiple field (MF) argument. They take
an additional index argument which refers to the index of the item in the multiple field. The
type of the field has to match with the name of the function used and the index should be com-
prised between 0 and the total number of item minus one, otherwise the value of the field remains
unchanged (and a warning message is displayed).

EXAMPLES

The texture_change.wbtworld, located in the projects/samples/howto/worlds
directory, shows how to change a texture from the supervisor while the simulation is running.
The soccer.wbt world, located in the projects/samples/demos/worlds directory,
provides a simple example for getting and setting fields with the above described functions.

NAME

wb supervisor field import mf node – import a node into an MF NODE field (typically a ”chil-
dren” field) from a file

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/supervisor.h>

void wb supervisor field import mf node (WbFieldRef field, int position, const

char *filename);

DESCRIPTION

The wb supervisor field import mf node() function imports a Webots node into an
MF NODE. This node should be defined in a .wbo file referenced by the filename parameter.
Such a file can be produced easily from Webots by selecting a node in the scene tree window and
using the Export button.

The position parameter defines the position in the MF NODE where the new node will be
inserted. It can be positive or negative. Here are a few examples for the position parameter:

• 0: insert at the beginning of the scene tree.

• 1: insert at the second position.
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• 2: insert at the third position.

• -1: insert at the last position.

• -2: insert at the second position from the end of the scene tree.

• -3: insert at the third position from the end.

The filename parameter can be specified as an absolute or a relative path. In the later case, it
is relative to the location of the supervisor controller.

This function is typically used in order to add a node into a ”children” field. Note that a node can
be imported into the scene tree by calling this function with the ”children” field of the root node.

Note that this function is still limited in the actual Webots version. For ex-
ample, a device imported into a Robot node doesn’t reset the Robot, so the
device cannot be get by using the wb robot get device() function.

3.48 TextureCoordinate

TextureCoordinate {
MFVec2f point [] # (-inf,inf)

}

The TextureCoordinate node specifies a set of 2D texture coordinates used by vertex-
based Geometry nodes (e.g., IndexedFaceSet) to map textures to vertices. Textures are
two-dimensional color functions that, given a coordinate pair (s,t), return a color value color(s,t).
Texture map values (ImageTexture) range from 0.0 to 1.0 along the s and t axes. Texture
coordinates identify a location (and thus a color value) in the texture map. The horizontal coor-
dinate s is specified first, followed by the vertical coordinate t.

3.49 TextureTransform

TextureTransform {
SFVec2f center 0 0 # (-inf,inf)
SFFloat rotation 0 # (-inf,inf)
SFVec2f scale 1 1 # (-inf,inf)
SFVec2f translation 0 0 # (-inf,inf)

}

The TextureTransform node defines a 2D transformation that is applied to texture coor-
dinates. This node affects the way textures are applied to the surface of a Geometry. The
transformation consists of (in order):
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Figure 3.31: Texture transformation in matrix notation

• a translation;

• a rotation about the center point;

• a non-uniform scaling operation about the center point.

These parameters support changes in the size, orientation, and position of textures on shapes.
Note that these operations appear reversed when viewed on the surface of a geometric node.
For example, a scale value of (2 2) will scale the texture coordinates, with the net effect of
shrinking the texture size by a factor of 2 (texture coordinates are twice as large and thus cause
the texture to repeat). A translation of (0.5 0.0) translates the texture coordinates +0.5
units along the s axis, with the net effect of translating the texture -0.5 along the s axis on the
geometry’s surface. A rotation of π/2 of the texture coordinates results in a -π/2 rotation of
the texture on the geometric node.

The center field specifies a translation offset in texture coordinate space about which the ro-
tation and scale fields are applied. The scale field specifies a scaling factor in s and t of
the texture coordinates about the center point. The rotation field specifies a rotation in radi-
ans of the texture coordinates about the center point after the scaling operation has been applied.
A positive rotation value makes the texture coordinates rotate counterclockwise about the center,
thereby rotating the appearance of the texture clockwise. The translation field specifies a
translation of the texture coordinates.

Given a point T with texture coordinates (s, t) and a TextureTransform node, T is trans-
formed into the point T’= (s′, t′) by the three intermediate transformations described above. Let
C be the translation mapping (0, 0) to the point (Cs, Ct), T be the translation of vector (Ts, Tt),
R the rotation with center (0, 0) and angle θ , and S a scaling with scaling factors Ss, St. In
matrix notation, the corresponding TextureTransform reads as

where C−1 denotes the matrix inverse of C.

Note that TextureTransform nodes cannot combine or accumulate.
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3.50 TouchSensor

Derived from Device.

TouchSensor {
SFString type "bumper"
MFVec3f lookupTable [ 0 0 0, 5000 50000 0 ]

}

3.50.1 Description

A TouchSensor node is used to model a bumper or a force sensor. The TouchSensor
comes in three different types. The ”bumper” type simply detects collisions and returns a boolean
status. The ”force” type measures the force exerted on the sensor’s body on one axis (z-axis).
The ”force-3d” type measures the 3d force vector exerted by external object on the sensor’s body.

Examples of using the TouchSensor are provided by the hoap2_sumo.wbt and hoap2_
walk.wbt worlds (located in the projects/robots/hoap2/worlds directory of We-
bots) and by the force_sensor.wbt and bumper.wbt worlds (located in the projects/
samples/devices/worlds directory of Webots).

3.50.2 Field Summary

• type: allows the user to select the type of sensor: ”bumper”, ”force”, or ”force-3d”,
described below.

• lookupTable: similar to the one used by the DistanceSensor node.

3.50.3 Description

”bumper” Sensors

A ”bumper” TouchSensor returns a boolean value that indicates whether or not there is a
collision with another object. More precisely, it returns 1.0 if a collision is detected and 0.0 oth-
erwise. A collision is detected when the boundingObject of the TouchSensor intersects
the boundingObject of any other Solid object. The lookupTable field of a ”bumper”
sensor is ignored. The Physics node of a ”bumper” sensor is not required.
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”force” Sensors

A ”force” TouchSensor computes the (scalar) amount of force currently exerted on the sen-
sor’s body along the z-axis. The sensor uses this equation: r = |f | ∗ cos(α), where r is the
return value, f is the cumulative force currently exerted on the sensor’s body, and α is the angle
between f and the sensor’s z-axis. So the ”force” sensor returns the projection of the force on its
z-axis; a force perpendicular to the z-axis yields zero. For this reason, a ”force” sensor must be
oriented such that its positive z-axis points outside of the robot, in the direction where the force
needs to me measured. For example if the TouchSensor is used as foot sensor then the z-axis
should be oriented downwards. The scalar force value must be read using the wb touch sen-
sor get value() function.

”force-3d” Sensors

A ”force-3d” TouchSensor returns a 3d-vector that represents the cumulative force currently
applied to its body. This 3d-vector is expressed in the coordinate system of the TouchSensor.
The length of the vector reflects the magnitude of the force. The force vector must be read using
the wb touch sensor get values() function.

sensor type ”bumper” ”force” ”force-3d”
boundingObject required required required
Physics node not required required required
lookupTable ignored used used
return value 0 or 1 scalar vector
API function wb touch sensor get -

value()
wb touch sensor get -
value()

wb touch sensor get -
values()

Table 3.8: TouchSensor types

Lookup Table

A ”force” and ”force-3d” sensors can optionally specify a lookupTable to simulate the pos-
sible non-linearity (and saturation) of the real device. The lookupTable allows the user to
map the simulated force measured in Newtons (N) to an output value that will be returned by the
wb touch sensor get value() function. The value returned by the force sensor is first
computed by the ODE physics engine, then interpolated using the lookupTable, and finally
noise is added (if specified in the lookupTable). Each line of the lookupTable contains three
numbers: (1) an input force in Newtons, (2) the corresponding output value, and (3) a noise level
between 0.0 and 1.0 (see DistanceSensor for more info). Note that the default lookupT-
able of the TouchSensor node is:

[ 0 0 0
5000 50000 0 ]
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and hence it maps forces between 0 and 5000 Newtons to output values between 0 and 50000,
the output unit being 0.1 Newton. You should empty the lookupTable to have Newtons as
output units.

Collision detection

TouchSensors detect collisions based on the 3D geometry of its boundingObject. So the
boundingObjectmust be specified for every type of TouchSensor. Because the actual 3D
intersection of the sensors boundingObjects with other boundingObjects is used in the
calculation, it is very important that the sensors’ boundingObjects are correctly positioned;
they should be able to collide with other objects, otherwise they would be ineffective. For that
reason, the boundingObjects of TouchSensors should always extend beyond the other
boundingObjects of the robot in the area where the collision is expected.

For example, let’s assume that you want to add a TouchSensor under the foot of a humanoid
robot. In this case, it is critical that the boundingObject of this sensor (and not any other
boundingObject of the robot) makes the actual contact with the floor. Therefore, it is nec-
essary that the sensor’s boundingObject extend below any other boundingObject of the
robot (e.g., foot, ankle, etc.).

Coordinate System

It is easy to check the orientation of the coordinate system of a TouchSensor: if you select the
TouchSensor object in the Scene Tree, then only the bounding object of this TouchSensor
should be shown in the 3D window. If you zoom in on this bounding object, you should see the
red/green/blue depiction of the TouchSensor’s coordinate system (the color coding is: x/y/z =
red/green/blue). For a ”force” sensor, the blue (z) component should point in the direction where
the collision is expected.

Accuracy

The force measured by the ODE physics engine is only a rough approximation of a real physi-
cal force. This approximation usually improves as the basicTimeStep (WorldInfo node)
decreases.

3.50.4 TouchSensor Functions

NAME

wb touch sensor enable,
wb touch sensor disable,
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wb touch sensor get sampling period,
wb touch sensor get value,
wb touch sensor get values – enable, disable and read last touch sensor measurements

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/touch sensor.h>

void wb touch sensor enable (WbDeviceTag tag, int ms);

void wb touch sensor disable (WbDeviceTag tag);

int wb touch sensor get sampling period (WbDeviceTag tag);

double wb touch sensor get value (WbDeviceTag tag);

const double *wb touch sensor get values (WbDeviceTag tag);

DESCRIPTION

wb touch sensor enable() allows the user to enable a touch sensor measurement every
ms milliseconds.

wb touch sensor disable() turns the touch sensor off, saving computation time.

wb touch sensor get value() returns the last value measured by a ”bumper” or ”force”
TouchSensor. This function can be used with a sensor of type ”bumper” or ”force”. For a
”force” sensor, the value may be altered by an optional lookup table. For a ”bumper” sensor, the
value can be 0.0 or 1.0.

The wb touch sensor get sampling period() function returns the period given into
the wb touch sensor enable() function, or 0 if the device is disabled.

wb touch sensor get values() returns the last force vector measured by a ”force-3d”
TouchSensor. This function can be used with a sensor of type ”force-3d” exclusively.

3.51 Transform

Derived from Group.

Transform {
SFVec3f translation 0 0 0 # 3D vector
SFRotation rotation 0 1 0 0 # 3D unit vector,angle (rad)
SFVec3f scale 1 1 1 # 3 real scaling factors

}

Direct derived nodes: Solid.
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3.51.1 Description

The Transform node is a grouping node that defines a coordinate system for its children that
is relative to the coordinate systems of its parent.

3.51.2 Field Summary

• The translation field defines the translation from the parent coordinate system to the
children’s coordinate system.

• The rotation field defines an arbitrary rotation of the children’s coordinate system with
respect to the parent coordinate system. This field contains four floating point values:
rx, ry, rz and α. The first three numbers, rx ry rz, define a normalized vector giving the
direction of the axis around which the rotation must be carried out. The fourth value, α,
specifies the rotation angle around the axis in radians. When α is zero, no rotation is carried
out. All the values of the rotation field can be positive or negative. Note however that the
length of the 3D vector rx ry rz must be normalized (i.e. its length is 1.0), otherwise the
outcome of the simulation is undefined.
For example, a rotation of π/2 radians around the z-axis is represented like this:

rotation 0 0 1 1.5708

A rotation of π radians around an axis located exactly between the x and y-axis is repre-
sented like this:

rotation 0.7071 0.7071 0 3.1416

And finally, note that these two rotations are identical:

rotation 0 1 0 -1.5708
rotation 0 -1 0 1.5708

• The scale field specifies a possibly non-uniform scale. Only positive values are per-
mitted; non-positive values scale are automatically reset to 1. Graphical objects support
any positive non-uniform scale whereas physical objects are subjected to restrictions. This
is so because scaled geometries must remain admissible for the physics engine collision
detection. Restrictions for Geometries placed inside boundingObjects are as fol-
lows: Spheres and Capsules only support uniform scale; the scale coordinates x and
z of a Transform with a Cylinder descendant must be the same. For the remaining
Geometries, the scale is not restricted. The scale fields of a Solid node and its
derived nodes must be uniform, i.e., of the form x x x so as to comply with the physics
engine. For such nodes a positive scale field initially set to x y z is automatically reset to
x x x. The same holds for a Transform placed inside a boundingObject and with a
Sphere or a Capsule descendant. In the case of a Cylinder, x y z will be reset to x z
x. If some value changes within one of the previous constrained scale fields, the two others
are actuated using the new value and the corresponding constraint rule.
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If a Transform is named using the DEF keyword and later referenced inside
a boundingObject with a USE statement, the constraint corresponding
to its first Geometry descendant applies to the scale fields of the defining
Transform and of all its further references.

3.52 Viewpoint

Viewpoint {
SFFloat fieldOfView 0.785398 # (0,pi)
SFRotation orientation 0 0 1 0 # 3D unit vector, angle (rad)
SFVec3f position 0 0 0 # 3D vector
SFString description ""
SFFloat near 0.05 # [0,inf)
SFString follow ""

}

The Viewpoint node defines a specific location in the local coordinate system from which the
user may view the scene.

The position and orientation fields of the Viewpoint node specify absolute locations
in the coordinate system. In the default position and orientation, the viewer is on the z-axis,
looking down the -z-axis toward the origin with +x to the right and +y straight up.

Navigating in the 3D view by dragging the mouse pointer dynamically changes the position
and the orientation fields of the Viewpoint node.

The fieldOfView field specifies the viewing angle in radians. A small field of view roughly
corresponds to a telephoto lens; a large field of view roughly corresponds to a wide-angle lens.

The near field defines the distance from the camera to the near clipping plane. This plane is
parallel to the projection plane for the 3D display in the main window. The near field determines
the precision of the OpenGL depth buffer. A too small value may cause depth fighting between
overlaid polygons, resulting in random polygon overlaps. The far clipping plane is parallel to the
near clipping plane and is defined at an infinite distance from the camera. The far clipping plane
distance cannot be modified.

The near and the fieldOfView fields define together the viewing frustum. Any 3D shape
outside this frustum won’t be rendered. Hence, shapes too close (standing between the camera
and the near plane) won’t appear.

The follow field can be used to specify the name of a robot (or other object) that the viewpoint
needs to follow during the simulation. If the string is empty, or if it does not correspond to any
object, then the viewpoint will remain fixed. The follow field is modified by the View > Follow
Object menu item.
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3.53 WorldInfo

WorldInfo {
SFString title ""
MFString info []
SFVec3f gravity 0 -9.81 0
SFFloat CFM 0.00001 # [0,inf)
SFFloat ERP 0.2 # [0,1]
SFString fast2d ""
SFString physics ""
SFString sound ""
SFFloat basicTimeStep 32 # in ms
SFInt displayRefresh 2 # multiplied by

basicTimeStep
SFFloat physicsDisableTime 1 # time after

which the objects are disabled if they are idle
SFFloat physicsDisableLinearThreshold 0.01 # threshold

determining if an object is idle or not
SFFloat physicsDisableAngularThreshold 0.01 # threshold

determining if an object is idle or not
SFNode defaultDamping NULL # default damping

parameters
SFFloat inkEvaporation 0 # make ground

textures evaporate
SFVec3f northDirection 1 0 0 # for compass and

InertialUnit
SFFloat lineScale 0.1 # control the

length of every arbitrary-sized lines
MFNode contactProperties [] # see

ContactProperties node
}

The WorldInfo node provides general information on the simulated world:

• The title field should briefly describe the purpose of the world.

• The info field should give additional information, like the author who created the world,
the date of creation and a description of the purpose of the world. Several character strings
can be used.

• The gravity field defines the gravitational acceleration to be used in physics simulation.
The gravity is set by default to the gravity found on earth. You should change it if you want
to simulate rover robots on Mars, for example. The gravity vector defines the orientation
of the ground plane used by InertialUnits.
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• The CFM and ERP fields correspond to the physics simulation world parameters used by
ODE. See the ODE documentation for more details of these parameters.

• The fast2d field allows the user to switch to Fast2d mode. If the fast2d field is not
empty, Webots tries to load a Fast2d plugin with the given name. Subsequent kinematics,
collision detection, and sensor measurements are computed using the plugin. The objective
is to carry out these calculations using a simple 2D world model that can be computed
faster than the 3D equivalent. The Webots distribution comes with a pre-programmed
plugin called ”enki.” In addition, a Webots user can implement his own plugin. However,
Fast2d mode is limited to simple world models containing only cylindrical and rectangular
shapes. The Webots distribution contains an example of world using Fast2d: khepera_
fast2d.wbt (located in the projects/robots/khepera/worlds directory of
Webots). For more information on the Fast2d plugin, please refer to chapter 7.

• The physics field refers to a physics plugin which allows the user to program custom
physics effects using the ODE API. See chapter 6 for a description on how to set up a
physics plugin. This is especially useful for modeling hydrodynamic forces, wind, non-
uniform friction, etc.

• The sound is an experimental field not effective yet.

• The basicTimeStep field defines the duration of the simulation step executed by We-
bots. It is a floating point value expressed in milliseconds. The minimum value for this
parameter is 0.001, that is, one microsecond. Setting this field to a high value will acceler-
ate the simulation, but will decrease the accuracy and the stability, especially for physics
computations and collision detection. It is usually recommended to tune this value in order
to find a suitable speed/accuracy trade-off.

• The displayRefresh field is multiplied by the basicTimeStep value to define how
frequently the 3D display of the main window is refreshed in normal Run mode.

• The physicsDisableTime determines the amount of simulation time (in seconds)
before the idle solids are automatically disabled from the physics computation. Set this
to zero to disable solids as soon as they become idle. This field matchs directly with the
dBodySetAutoDisableTime ODE function. This feature can improve significantly
the speed of the simulation if the solids are static most of the time. The solids are enabled
again after any interaction (collision, movement, ...).

• The physicsDisableLinearThreshold determines the solid’s linear velocity thresh-
old (in meter/seconds) for automatic disabling. The body’s linear velocity magnitude
must be less than this threshold for it to be considered idle. This field is only useful if
physicsDisableTime is bigger or equal to zero. This field matchs directly with the
dBodySetAutoDisableLinearThreshold ODE function.
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• The physicsDisableAngularThreshold determines the solid’s angular velocity
threshold (in radian/seconds) for automatic disabling. The body’s angular velocity magni-
tude must be less than this threshold for it to be considered idle. This field is only useful
if physicsDisableTime is bigger or equal to zero. This field matchs directly with the
dBodySetAutoDisableAngularThreshold ODE function.

• The defaultDamping field allows to specifiy a Damping node that defines the default
damping parameters that must be applied to each Solid in the simulation.

• If the inkEvaporation field is set to a non-null value, the colors of the ground tex-
tures will slowly turn to white. This is useful on a white-textured ground in conjunction
with a Pen device, in order to have the track drawn by the Pen device disappear progres-
sively. The inkEvaporation field should be a positive floating point value defining the
speed of evaporation. This evaporation process is a computationally expensive task, hence
the ground textures are updated only every WorldInfo.basicTimeStep * World-
Info.displayRefresh milliseconds (even in fast mode). Also, it is recommended to
use ground textures with low resolution to speed up this process. As with the pen device,
the modified ground textures can be seen only through infra-red distance sensors, and not
through cameras (as the ground textures are not updated on the controller side).

• The northDirection field is used to indicate the direction of the virtual north and is
used by Compass and InertialUnit nodes.

• The lineScale field allows the user to control the size of the optionally rendered arbitrary-
sized lines or objects such as the connector and the servo axes, the local coordinate systems
and centers of mass of solid nodes, the rays of light sensors, the point light representations,
the camera frustums, or the offsets used for drawing bounding objects. The value of this
field is somehow arbitrary, but setting this value equal to the average size of a robot (ex-
pressed in meter) is likely to be a good initial choice.

• The contactProperties field allows to specifiy a number of ContactProper-
ties nodes that define the behavior when Solid nodes collide.
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Motion Functions

The wbu motion*() functions provide a facility for reading and playing back .motion files.
Motion file specify motion sequences that usually involve several Servo motors playing simulta-
neously, e.g., a walking sequence, a standing up sequence, etc.

4.1 Motion

NAME

wbu motion new,
wbu motion delete – obtaining and releasing a motion file handle

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/utils/motion.h>

WbMotionRef wbu motion new (const char *filename);

void wbu motion delete (WbMotionRef motion);

DESCRIPTION

The wbu motion new() function allows to read a motion file specified by the filename
parameter. The filename can be specified either with an absolute path or a path relative to
the controller directory. If the file can be read, if its syntax is correct and if it contains at least
one pose and one joint position, then wbu motion new() returns a WbMotionRef that can
be used as parameter in further wbu motion *() calls. If an error occurred, an error message
is printed to Webots’ console, and NULL is returned. Motions are created in stopped mode,
wbu motion play() must be called to start the playback.

179
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The wbu motion delete() function frees all the memory associated with the WbMotion-
Ref. This WbMotionRef can no longer be used afterwards.

language: C++, Java, Python
The constructor and destructor of the Motion class are used instead of wbu -
motion new() and wbu motion delete(). In these languages, an er-
ror condition can be detected by calling the isValid() function after the
constructor. If isValid() yields false then the Motion object should
be explicitly deleted. See example below.

language: C++

1 Motion *walk = new Motion(filename);
2 if (! walk->isValid()) {
3 cerr << "could not load file: " << filename <<

endl;
4 delete walk;
5 }

SEE ALSO

wbu motion play

NAME

wbu motion play,
wbu motion stop,
wbu motion set loop,
wbu motion set reverse – Controlling motion files playback

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/utils/motion.h>

void wbu motion play (WbMotionRef motion);

void wbu motion stop (WbMotionRefmotion);

void wbu motion set loop (WbMotionRef motion, bool loop);

void wbu motion set reverse (WbMotionRefmotion, bool reverse);
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DESCRIPTION

The wbu motion play() starts the playback of the specified motion. This function registers
the motion to the playback system, but the effective playback happens in the background and is
activated as a side effect of calling the wb robot step() function. If you want to play a file
and wait for its termination you can do it with this simple function:

language: C

1 void my_motion_play_sync(WbMotionRef motion)
2 {
3 wbu_motion_play(motion);
4 do {
5 wb_robot_step(TIME_STEP);
6 }
7 while (! wbu_motion_is_over(motion));
8 }

Several motion files can be played simultaneously by the same robot, however if two motion files
have common joints, the behavior is undefined.

Note that the steps of the wb robot step() function and the pose intervals in the motion file
can differ. In this case Webot computes intermediate joint positions by linear interpolation.

The wbu motion stop() interrupts the playback of the specified motion but preserves the
current position. After interruption the playback can be resumed with wbu motion play().

The wbu motion set loop() sets the loop mode of the specified motion. If the loop mode
is true, the motion repeats when it reaches either the end or the beginning (reverse mode) of the
file. The loop mode can be used, for example, to let a robot repeat a series of steps in a walking
sequence. Note that the loop mode can be changed while the motion is playing.

The wbu motion set reverse() sets the reverse mode of the specified motion. If the re-
verse mode is true, the motion file plays backwards. For example, by using the reverse mode,
it may be possible to turn a forwards walking motion into a backwards walking motion. The
reverse mode can be changed while the motion is playing, in this case, the motion will go back
from its current position.

By default, the loop mode and reverse mode of motions are false.

SEE ALSO

wbu motion new



182 CHAPTER 4. MOTION FUNCTIONS

NAME

wbu motion is over,
wbu motion get duration,
wbu motion get time,
wbu motion set time – controlling the playback position

SYNOPSIS [C++] [Java] [Python] [Matlab]

#include <webots/utils/motion.h>

bool wbu motion is over (WbMotionRef motion);

int wbu motion get duration (WbMotionRefmotion);

int wbu motion get time (WbMotionRef motion, bool loop);

void wbu motion set time (WbMotionRefmotion, int ms);

DESCRIPTION

The wbu motion is over() function returns true when the playback position has reached
the end of the motion file. That is when the last pose has been sent to the Servo nodes using
the wb servo set position() function. But this does not mean that the motors have yet
reached the specified positions; they may be slow or blocked by obstacles, robots, walls, the
floor, etc. If the motion is in loop mode, this function returns always false. Note that wbu -
motion is over() depends on the reverse mode. wbu motion is over() returns true
when reverse mode is true and the playback position is at the beginning of the file or when
reverse mode is false and the playback position is at the end of the file.

The wbu motion get duration() function returns the total duration of the motion file in
milliseconds.

The wbu motion get time() function returns the current playback position in milliseconds.

The wbu motion set time() function allows to change the playback position. This enables,
for example, to skip forward or backward. Note that, the position can be changed whether
the motion is playing or stopped. The minimum value is 0 (beginning of the motion), and the
maximum value is the value returned by the wbu motion get duration() function (end
of the motion).

SEE ALSO

wbu motion play
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Prototypes

A prototype defines a new node type in terms of built-in nodes or other prototypes. The prototype
interface defines the fields for the prototype. Once defined, prototypes may be instantiated in the
scene tree exactly like built-in nodes.

5.1 Prototype Definition

5.1.1 Interface

The prototype definition defines exactly what the prototype does in terms of the built-in nodes or
of the instances of other prototypes. Here is the syntax for a prototype definition:

PROTO protoName [ protoInterface ] { protoBody }

The interface is a sequence of field declarations which specify the types, names and default
values for the prototype’s fields. A field declaration has this syntax:

field fieldType fieldName defaultValue

where field is a reserved keyword, fieldType is one of: SFColor, SFFloat, SFInt32,
SFString, SFVec2f, SFVec3f, SFRotation, SFBool, MFNode, MFColor,
MFFloat, MFInt32, MFString, MFVec2f and MFVec3f (SFNode is currently not
implemented). fieldName is a freely chosen name for this field and defaultValue is a
literal default value that depends on fieldType.

Here is an example of prototype definition:

PROTO MyProto [
field SFVec3f translation 0 0 0
field SFRotation position 0 1 0 0
field SFColor color 0.5 0.5 0.5

]
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{
Solid {

...
}

}

The type of the root node in the body of the prototype definition (a Solid node in this example)
is called the base type of the prototype. The base type determines where instantiations of the
prototype can be placed in the scene tree. For example, if the base type of a prototype is Ma-
terial, then instantiations of the prototype can be used wherever a Material mode can be
used.

5.1.2 IS Statements

Nodes in the prototype definition may have their fields associated with the fields of the prototype
interface. This is accomplished using IS statements in the body of the node. An IS statement
consists of the name of a field from a built-in node followed by the keyword IS followed by the
name of one of the fields of the prototype interface:

For example:

PROTO Bicycle [
field SFVec3f position 0 0 0
field SFRotation rotation 0 1 0 0
field SFColor frameColor 0.5 0.5 0.5
field SFBool hasBrakes TRUE

]
{

Solid {
translation IS position
rotation IS rotation
...
children [

...
]
...

}
}

IS statements may appear inside the prototype definition wherever fields may appear. IS state-
ments shall refer to fields defined in the prototype declaration. Multiple IS statements for the
same field in the prototype interface declaration is valid.

It is an error for an IS statement to refer to a non-existent interface field. It is an error if the type
of the field being associated does not match the type declared in the prototype’s interface. For
example, it is illegal to associate an SFColor with an SFVec3f. It is also illegal to associate
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a SFColor with a MFColor or vice versa. Results are undefined if a field of a node in the
prototype body is associated with more than one field in the prototype’s interface.

5.2 Prototype Instantiation

Each prototype instance can be considered to be a complete copy of the prototype, with its
interface fields and body nodes. Prototype are instantiated using the standard node syntax, for
example:

Bicycle {
position 0 0.5 0
frameColor 0 0.8 0.8
hasBrakes FALSE

}

When prototype instances are read from a .wbt file, field values for the fields of the prototype
interface may be given. If given, the field values are used for all nodes in the prototype definition
that have IS statements for those fields.

5.3 Example

A complete example of prototype definition and instantiation is provided here. The prototype
is called TwoColorChair; it defines a simple chair with four legs and a seating part. For
simplicity, this prototype does not have bounding objects nor Physics nodes. A more complete
example of this prototype named SimpleChair is provided in Webots distribution.

The TwoColorChair prototype allows to specify two colors: one for the legs and one for the
seating surface of the chair. The interface also defines a translation field and a rotation
field that are associated with the equally named fields of the prototype’s Solid base node. This
allows to store the position and orientation of the prototype instances.

TwoColorChair.proto:

# A two-color chair

PROTO TwoColorChair [
field SFVec3f translation 0 0.91 0
field SFRotation rotation 0 1 0 0
field SFColor legColor 1 1 0
field SFColor seatColor 1 0.65 0 ]

{
Solid {

translation IS translation
rotation IS rotation
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children [
Transform {

translation 0 0 -0.27
children [

Shape {
appearance Appearance {

material Material { diffuseColor IS seatColor }
}
geometry Box { size 0.6 0.67 0.0275 }

}
]

}
Transform {

translation 0 -0.35 0
children [

Shape {
appearance Appearance {

material Material { diffuseColor IS seatColor }
}
geometry Box { size 0.6 0.075 0.52 }

}
]

}
Transform {

translation 0.25 -0.65 -0.23
children [

DEF LEG_SHAPE Shape {
appearance Appearance {

material Material { diffuseColor IS legColor }
}
geometry Box { size 0.075 0.52 0.075 }

}
]

}
Transform {

translation -0.25 -0.65 -0.23
children [ USE LEG_SHAPE ]

}
Transform {

translation 0.25 -0.65 0.2
children [ USE LEG_SHAPE ]

}
Transform {

translation -0.25 -0.65 0.2
children [ USE LEG_SHAPE ]
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}
]

}
}

As you can observe in this example, it is perfectly valid to have several IS statement for one
interface field (seatColor), as long as the types match. It is also possible to use IS state-
ments inside a defined (DEF) node and then to reuse (USE) that node. This is done here with
the diffuseColor IS legColor statement placed inside the DEF LEG SHAPE Shape
node which is then reused (USE) several times below.

The ProtoInstantiationExample.wbt file below exemplifies the instantiation of this
prototype. Prototypes are instantiated using the regular node syntax. Fields with the default
value can be omitted. Fields which value differ from the default must be specified.

TwoChairs.wbt:

#VRML_SIM V6.0 utf8

WorldInfo {
}
Viewpoint {

orientation 0.545864 0.834589 0.0741162 5.71096
position -1.21885 1.67546 3.01015

}
Background {

skyColor [
0.4 0.7 1

]
}
DirectionalLight {

direction -0.3 -1 -0.5
castShadows TRUE

}
TwoColorChair {
}
TwoColorChair {

translation 1.2 0.91 0
seatColor 0.564706 0.933333 0.564706

}

The TwoChairs.wbt file once loaded by Webots appears as shown in figure 5.1.
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Figure 5.1: Two instances of the TwoColorChair prototype in Webots

5.4 Using Prototypes with the Scene Tree

Several prototype examples are packaged with Webots. Instances of these prototypes can be
added to the simulation with the Scene Tree buttons. Note that currently the Scene Tree allows
the instantiation but not the definition of prototypes. Prototype definitions must be created or
modified manually in .proto files.

5.4.1 Prototype Directories

In order to make a prototype available to Webots, the complete prototype definition must be
placed in a .proto file. Each .proto file can contain the definition for only one prototype, and
each file must be saved under the name<prototypeName>.proto, where prototypeName is the
name of the prototype as specified after the PROTO keyword (case-sensitive). For example the
above TwoColorChair prototype must be saved in a file name TwoColorChair.proto.

The .proto file should be placed in the protos subdirectory of the current project directory.
By definition, the current project directory is the parent directory of the worlds directory that
contains the currently opened .wbt file. The figure 5.2 shows where .proto files are stored in
a project directory.

Note that inside the protos directory, the number of subdirectories and their names is free. The
user can assign directory names for practical classification reasons; but the names do not influ-
ence how prototypes are searched. The whole subdirectory tree is always searched recursively.

In addition to the current project directory, Webots does also manage a default project directory.
This directory is structurally similar to the current project directory (see above) but it is located
inside Webots distribution. In the default project directory there is also a protos subdirectory
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Figure 5.2: Prototypes directory in a project directory structure

that provides Webots standard prototypes. These standard prototypes should normally not be
modified by the user. Note that .proto files will be searched first in the current project directory
and then in the default project directory.

5.4.2 Add a Node Dialog

If a prototype is saved in a file with proper name and location, it should become visible in
the Add a node dialog that can be invoked from the Scene Tree. In the dialog, the prototypes
are organized using the same directory hierarchy found in the project’s and Webots’s protos
folders. However this dialog shows a prototype only if its base type is suitable for the chosen
insertion point. For example, a prototype whose base type is Material cannot be inserted in
a boundingObject field. In figure 5.3 you can see how the TwoColorChair prototype
appears in the dialog. Note that, the dialog’s text pane is automatically filled with any comment
placed at the beginning of the .proto file.

Icons can be used to better illustrate prototypes. A prototype icon must be stored in a 128 x 128
pixels .png file. The file name must correspond to that of the prototype plus the .png extension
and it must be stored in the icons subdirectory of the protos directory (see figure 5.2). Note
that it is possible to create the .png files directly with Webots’s menu File > Take Screenshot....
Then the image should be cropped or resized to 128 x 128 pixels using an image editor.
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Figure 5.3: Adding an instance of the TwoColorChair prototype

5.4.3 Using Prototype Instances

If you hit the Add button, the prototype instance is added to the Scene Tree. In the Scene Tree,
prototype instances are represented with a different color than built-in nodes (see figure 5.4).
Prototype fields can be manipulated exactly like built-in node fields.

5.5 Prototype Scoping Rules

Prototype names must be unique: defining a prototype with the same name as another prototype
or a built-in node type is an error. A .proto file can contain only one prototype definition.
A prototype can be defined in terms of other prototypes. However, instantiation of a prototype
inside its own definition is not permitted (i.e., recursive prototypes are illegal). An IS statement
refers to a field in the interface of the same prototype, in the same file.

A .proto file establishes a DEF/USE name scope separate from the rest of the scene tree and
separate from any other prototype definition. Nodes given a name by a DEF construct inside
the prototype may not be referenced in a USE construct outside of the prototype’s scope. Nodes
given a name by a DEF construct outside the prototype scope may not be referenced in a USE
construct inside the prototype scope.
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Figure 5.4: Scene Tree with two instances of the TwoColorChair prototype
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Chapter 6

Physics Plugin

6.1 Introduction

This chapter describes Webots capability to add a physics plugin to a simulation. A physics plu-
gin is a user-implemented shared library which is loaded by Webots at run-time, and which gives
access to the low-level API of the ODE1 physics engine. A physics plugin can be used, for ex-
ample, to gather information about the simulated bodies (position, orientation, linear or angular
velocity, etc.), to add forces and torques, to add extra joints, e.g., ”ball & socket” or ”universal
joints” to a simulation. For example with a physics plugin it is possible to design an aerodynam-
ics model for a flying robot, a hydrodynamics model for a swimming robot, etc. Moreover, with
a physics plugin you can implement your own collision detection system and define non-uniform
friction parameters on some surfaces. Note that physics plugins can be programmed only in C or
C++. Webots PRO is necessary to program physics plugins.

6.2 Plugin Setup

You can add a new plugin, or edit the existing plugin, by using the menu Tools > Edit Physics
Plugin. After a physics plugin was created it must be associated with the current .wbt file.
This can be done in the Scene Tree: the WorldInfo node has a field called physics which
indicates the name of the physics plugin associated with the current world. Select the World-
Info.physics field, then hit the Select... button. A dialog pops-up and lets you choose one
of the plugins available in the current project. Choose a plugin in the dialog and then save the
.wbt file.

Note that the WorldInfo.physics string specifies the name of the plugin source and binary
files without extension. The extension will be added by Webots depending on the platform: it
will be .so (Linux), .dll (Windows) or .dylib (Mac OS X) for the binary file. For example,
this WorldInfo node:

1http://www.ode.org
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WorldInfo {
...
physics "my_physics"
...

}

specifies that the plugin binary file is expected to be at the location my_project/plugins/
physics/my_physics/my_physics[.dll|.dylib|.so] (actual extension depend-
ing on the platform) and that the plugin source file should be located in my_project/plugins/
physics/my_physics/my_physics[.c|.cpp]. If Webots does not find the file there,
it will also look in the WEBOTS_HOME/resources/projects/default/plugins di-
rectory.

6.3 Callback Functions

The plugin code must contain user-implemented functions that will be called by Webots dur-
ing the simulation. These user-implemented functions and their interfaces are described in this
section. The implementation of the webots physics step() and webots physics -
cleanup() functions is mandatory. The implementation of the other callback functions is
optional.

6.3.1 void webots physics init(dWorldID, dSpaceID, dJointGroupID)

This function is called upon initialization of the world. It provides your physics plugin with
some global ODE variables used by the simulation, such as a pointer to the world (dWorl-
dID), a pointer to the geometry space (dSpaceID) and a pointer to the contact joints group
(dJointGroupID). These parameters should generally be stored in global variables in order
to be used later by the other callback functions. This function is a good place to call the dWe-
botsGetBodyFromDEF() and dWebotsGetGeomFromDEF() functions (see below for
details) to get pointers to the objects for which you want to control the physics. Before calling
this function, Webots sets the current directory to where the plugin’s .dll, .so or .dylib
was found. This is useful for reading config files or writing log files in this directory.

This function is also the preferred place to initialize/reinitialize the random number generator (via
srand()). Reinitializing the generator with a constant seed allows Webots to run reproducible
(deterministic) simulations. If you don’t need deterministic behavior you should initialize srand()
with the current time: srand(time(NULL)). Webots itself does not invoke srand(); how-
ever, it uses rand(), for example to add noise to sensor measurements. In order to have repro-
ducible simulations, it is also required that all controllers run in synchronous mode. That means
that the synchronization field of every Robot, DifferentialWheels or Supervi-
sor must be set to TRUE. Finally, note that ODE uses its own random number generator that
you might also want to reinitialize separately via the dRandSetSeed() function.
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6.3.2 int webots physics collide(dGeomID, dGeomID)

This function is called whenever a collision occurs between two geoms. It may be called several
times (or not at all) during a single simulation step, depending on the number of collisions.
Generally, you should test whether the two colliding geoms passed as arguments correspond to
objects for which you want to control the collision. If you don’t wish to handle a particular
collision you should return 0 to inform Webots that the default collision handling code must be
used.

Otherwise you should use ODE’s dCollide() function to find the contact points between the
colliding objects and then you can create contact joints using ODE’s dJointCreateCon-
tact() function. Normally the contact joints should be created within the contact joint group
passed as argument to the webots physics init() function. Note that this contact joint
group is automatically emptied after each simulation step, see here. Then the contact joints
should be attached to the corresponding bodies in order to prevent them from inter-penetrating.
Finally, the webots physics collide() function should return 1 to inform Webots that
this collision was handled.

An implementation example for this function is provided in the projects/robots/shrimp/
plugins/physics/shrimp/shrimp.c file.

6.3.3 void webots physics step()

This function is called before every physics simulation step (call to the ODE dWorldStep()
function). For example it can contain code to read the position and orientation of bodies or add
forces and torques to bodies.

6.3.4 void webots physics step end()

This function is called right after every physics simulation step (call to the ODE dWorld-
Step() function). It can be used to read values out of dJointFeedback structures. ODE’s
dJointFeedback structures are used to know how much torque and force is added by a spe-
cific joint to the joined bodies (see ODE User Guide for more information). For example, if
the plugin has registered dJointFeedback structures (using ODE’s function dJointSet-
Feedback()), then the structures will be filled during dWorldStep() and the result can be
read straight afterwards in webots physics step end().

6.3.5 void webots physics cleanup()

This function is the counterpart to the webots physics init() function. It is called once,
when the world is destroyed, and can be used to perform cleanup operations, such as closing files
and freeing the objects that have been created in the plugin.
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6.3.6 void webots physics draw()

This function is used to add user-specified OpenGL graphics to the 3D view. For example, this
can be used to draw robots trajectories, force vectors, etc. This function is called right after the
regular OpenGL rendering of the world. The function should normally contain OpenGL function
calls. Here is an implementation example:

void webots_physics_draw() {
/* modify OpenGL context */
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glLineWidth(2.0);

/* draw 1 meter yellow line */
glBegin(GL_LINES);
glColor3f(1, 1, 0);
glVertex3f(0, 0, 0);
glVertex3f(0, 1, 0);
glEnd();

}

The above example will draw a meter high yellow line in the center of the world. Note that
Webots loads the world (global) coordinates matrix right before calling this function. Therefore
the arguments passed to glVertex() are expected to be specified in world coordinates. Note
that the default OpenGL states should be restored before leaving this function otherwise the
rendering in Webots 3D view may be altered.

6.3.7 void webots physics predraw()

This function is similar to webots physics draw(), except that it is called before the world
is displayed. It may be useful, for example, for drawing solid objects visible through transparent
or semi-transparent objects in the world.

6.4 Utility Functions

This section describes utility functions that are available to the physics plugin. They are not
callback functions, but functions that you can call from your callback functions.

6.4.1 dWebotsGetBodyFromDEF()

This function looks for a Solid node with the specified name and returns the corresponding
dBodyID. The returned dBodyID is an ODE object that represent a rigid body with properties
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such as mass, velocity, inertia, etc. The dBodyID object can then be used with all the available
ODE dBody*() functions (see ODE documentation). For example it is possible to add a force
to the body with dBodyAddForce(), etc. The prototype of this function is:

dBodyID dWebotsGetBodyFromDEF(const char *DEF);

where DEF is the DEF name of the requested Solid node.

It is possible to use dots (.) as scoping operator in the DEF parameter. Dots can be used when
looking for a specific node path in the node hierarchy. For example:

dBodyID head_pitch_body = dWebotsGetBodyFromDEF("BLUE_PLAYER_1.HeadYaw
.HeadPitch");

means that we are searching for a Solid node named ”HeadPitch” inside a node named ”Head-
Yaw”, inside a node named ”BLUE PLAYER 1”. Note that each dot (.) can be substituted by
any number of named or unnamed nodes, so in other words it is not necessary to fully specify
the path.

This function returns NULL if there is no Solid (or derived) node with the specified DEF
name. It will also return NULL if the physics field of the Solid node is undefined (NULL).
This function searches the Scene Tree recursively, therefore it is recommended to store the result
rather than calling it at each step. It is highly recommended to test for NULL returned values,
because passing a NULL dBodyID to an ODE function is illegal and will crash the plugin and
Webots.

6.4.2 dWebotsGetGeomFromDEF()

This function looks for a Solid node with the specified name and returns the corresponding
dGeomID. A dGeomID is an ODE object that represents a geometrical shape such as a sphere, a
cylinder, a box, etc., or a coordinate system transformation. The dGeomID returned by Webots
corresponds to the boundingObject of the Solid. The dGeomID object can then be used with
all the available ODE dGeom*() functions (see ODE documentation). The prototype of this
function is:

dGeomID dWebotsGetGeomFromDEF(const char *DEF);

where DEF is the DEF name of the requested Solid node.

It is possible to use dots (.) as scoping operator in the DEF parameter, see above. This function
returns NULL if there is no Solid (or derived) node with the specified DEF name. It will
also return NULL if the boundingObject field of the Solid node is undefined (NULL).
This function searches the Scene Tree recursively therefore it is recommended to store the result
rather than calling it at each step. It is highly recommended to test for NULL returned values,
because passing a NULL dGeomID to an ODE function is illegal and will crash the plugin and
Webots.
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Using the returned dGeomID, it is also possible to obtain the corresponding dBodyID object
using ODE’s dGeomGetBody() function. This is an alternative to calling the dWebotsGet-
GeomFromDEF() function described above.

Note that this function returns only the top level dGeomID of the boundingObject, but the bound-
ingObject can be made of a whole hierarchy of dGeomIDs. Therefore it is risky to make assump-
tions about the type of the returned dGeomID. It is safer to use ODE functions to query the actual
type. For example this function may return a ”transform geom” (dGeomTransformClass) or a
”space geom” (dSimpleSpaceClass) if this is required to represent the structure of the bounding-
Object.

6.4.3 dWebotsSend() and dWebotsReceive()

It is often useful to communicate information between your physics plugin and your robot (or
Supervisor) controllers. This is especially useful if your physics plugin implements some sensors
(like accelerometers, force feedback sensors, etc.) and needs to send the sensor measurement to
the robot controller. It is also useful if your physics plugin implements some actuators (like an
Akermann drive model), and needs to receive motor commands from a robot controller.
The physics plugin API provides the dWebotsSend() function to send messages to robot
controllers and the dWebotsReceive() function to receive messages from robot controllers.
In order to receive messages from the physics plugin, a robot has to contain a Receiver node
set to an appropriate channel (see Reference Manual) and with a baudRate set to -1 (for infinite
communication speed). Messages are sent from the physics plugin using the dWebotsSend()
function, and received through the receiver API as if they were sent by an Emitter node with
an infinite range and baud rate. Similarly, in order to send messages to the physics plugin, a
robot has to contain an Emitter node set to channel 0 (as the physics plugin only receives
data sent on this channel). The range and baudRate fields of the Emitter node should be
set to -1 (infinite). Messages are sent to the physics plugin using the standard Emitter API
functions. They are received by the physics plugin through the dWebotsReceive() function.
void dWebotsSend(int channel,const void *buffer,int size);
void *dWebotsReceive(int *size);

The dWebotsSend() function sends size bytes of data contained in buffer over the spec-
ified communication channel.

The dWebotsReceive() function receives any data sent on channel 0. If no data was sent, it
returns NULL; otherwise it returns a pointer to a buffer containing the received data. If size is
non-NULL, it is set to the number of bytes of data available in the returned buffer. This buffer is
currently limited to 1024 bytes.

6.4.4 dWebotsGetTime()

This function returns the current simulation time in milliseconds [ms] as a double precision
floating point value. This corresponds to the time displayed in the bottom right corner of the
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main Webots window.

double dWebotsGetTime(void);

6.4.5 dWebotsConsolePrintf()

This function prints a line of formatted text to the Webots console. The format argument is the
same as the standard C printf() function, i.e., the format string may contain format charac-
ters defining conversion specifiers, and optional extra arguments should match these conversion
specifiers. A prefix and a ’\n’ (new line) character will automatically be added to each line. A
’\f’ (form feed) character can optionally be used for clearing up the console.

void dWebotsConsolePrintf(const char *format, ...);

6.5 Structure of ODE objects

This table shows how common .wbt constructs are mapped to ODE objects. This information
shall be useful for implementing physics plugins.

Webots construct ODE construct
Solid { physics Physics {...} } dBodyID
Solid { boundingObject ... } dGeomID
Solid { boundingObject Box {...} } dGeomID (dBoxClass)
Solid { boundingObject Sphere {...} } dGeomID (dSphereClass)
Solid { boundingObject Capsule {...} } dGeomID (dGeomTransformClass + dCapsuleClass)
Solid { boundingObject Cylinder {...} } dGeomID (dGeomTransformClass + dCylinderClass)
Solid { boundingObject Plane {...} } dGeomID (dPlaneClass)
Solid { boundingObject IndexedFaceSet {...} } dGeomID (dTriMeshClass)
Solid { boundingObject ElevationGrid {...} } dGeomID (dHeightfieldClass)
Solid { boundingObject Transform {...} } dGeomID (dGeomTransformClass)
Solid { boundingObject Group {...} } dSpaceID (dSimpleSpaceClass)
Servo { type ”rotational” } dJointID (dJointTypeHinge)
Servo { type ”linear” } dJointID (dJointTypeSlider)

Table 6.1: Mapping between common Webots constructs and ODE objects.

6.6 Compiling the Physics Plugin

When a plugin is created using the menu Wizard > New Physics Plugin, Webots will automatically
add a suitable .c or .cpp source file and a Makefile to the plugin’s directory. Your plugin can be
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compiled with Webots text editor or manually by using gcc and make commands in a terminal.
On Windows, you can also use Visual C++ to compile the plugin. In this case, please note that
the plugin should be dynamically linked to the ODE library. The Webots lib directory contains
the gcc (libode.a) and Visual C++ (ode.lib) import libraries. Under Linux, you don’t need
to link the shared library with anything.

6.7 Examples

Webots comes with several examples of physics plugin. When opening an example, the code of
the physics plugin should appear in Webots text editor. If it does not appear automatically, then
you can always use the menu: Tools > Edit Physics Plugin.

A simple example is the WEBOTS_HOME/projects/samples/howto/worlds/physics.
wbt world. In this example, the plugin is used to add forces to make the robot fly, to commu-
nicate with the Webots model, to detect objects using a Ray object, to display this object using
OpenGL and to define a frictionless collision between the robot and the floor.

The WEBOTS_HOME/projects/samples/howto/worlds/contact_points.wbt ex-
ample shows how to detect collision of an arbitrary object with the floor, draw the collision
contact points in the 3D window, set up contact joints to define the collison behavior, and deter-
mines the forces and torques involved in the collision. This example can be helpful if you need
a detailed feedback about the contact points and forces involved in the locomotion of a legged
robot.

The WEBOTS_HOME/projects/samples/demos/worlds/stewart_platform.wbt
example shows how to add extra ODE joints (universal joints and ball joints) to a simulation.

The WEBOTS_HOME/projects/samples/demos/worlds/blimp_lis.wbt shows how
to suppress gravity, and apply a thrust force (propeller) for a blimp model.

The WEBOTS_HOME/projects/robots/shrimp/worlds/shrimp.wbt example shows
how to add extra ODE joints, how to add a custom spring force and how to create a spongy effect
for the tires.

6.8 Troubleshooting

Unlike the controller code, the physics plugin code is executed in the same process and memory
space as the Webots application. Therefore, a segmentation fault in the physics plugin code will
cause the termination of the Webots application. Webots termination is often misinterpreted by
users who believe that Webots is unstable, while the error is actually in the user’s plugin code.
For that reason, it is important to precisely locate the crash before reporting a bug to Cyberbotics
Ltd.
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The following are some debugging hints that should help you find the exact location of a crash
using gdb (the GNU Debugger). The first step is to recompile the physics plugin with the -g flag,
in order to add debugging information to the compiled plugin. This can be achieved by adding
this line to the plugin’s Makefile:

CFLAGS=-g

Then you must rebuild the plugin using Webots Text Editor or using these commands in a termi-
nal:

$ make clean
$ make

Make sure that the -g flag appears in the compilation line. Once you have rebuilt the plugin, you
can quit Webots, and restart it using gdb in a terminal, like this:

$ cd /usr/local/webots
$ export LD_LIBRARY_PATH=/usr/local/webots/lib:$LD_LIBRARY_PATH
$ gdb ./webots-bin
(gdb) run

Note that the above path corresponds to a default Webots installation on Linux: the actual path
might be different depending on your specific system or installation. The LD LIBRARY PATH
environment variable indicates where to find the shared libraries that will be required by Webots.

When Webots window appears, run the simulation until it crashes, or make it crash by some
manipulations if necessary. If the plugin crahes due to a segmentation fault, gdb should print an
error message similar to this:

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread -1208154400 (LWP 30524)]
0x001f5c7e in webots_physics_init (w=0xa6f8060, s=0xa6f80e0, j=0

xa6f5c00)
at my_physics.c:50
50 float pos = position[0] + position[1] + position[2];
...

This indicates precisely the file name and line number where the problem occurred. If the indi-
cated file name corresponds to one of the plugin source files, then the error is located in the plugin
code. You can examine the call stack more precisely by using the where or the bt command of
gdb. For example:

(gdb) where
#0 0x001f5c7e in webots_physics_init (w=0xa6f8060, s=0xa6f80e0, j=0

xa6f5c00)
at my_physics.c:50
#1 0x081a96b3 in A_PhysicsPlugin::init ()
#2 0x081e304b in A_World::preprocess ()
#3 0x081db3a6 in A_View::render ()
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#4 0x081db3f3 in A_View::onPaint ()
#5 0x084de679 in wxEvtHandler::ProcessEventIfMatches ()
#6 0x084de8be in wxEventHashTable::HandleEvent ()
#7 0x084def90 in wxEvtHandler::ProcessEvent ()
#8 0x084ea393 in wxGLContext::SetCurrent ()
...

In this example you see that the error is located in the plugin’s webots physics init()
function. If the error is reported in an unknown function (and if the line number and file name
are not displayed), then the crash may have occurred in Webots, or possibly in a library used by
your plugin.

6.9 Execution Scheme

The following diagram illustrates the sequence of execution of the plugin callback functions. In
addition, the principal interactions of Webots with the ODE functions are indicated.
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Figure 6.1: Physics Plugin Execution Scheme
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Chapter 7

Fast2D Plugin

7.1 Introduction

In addition to the usual 3D and physics-based simulation modes, Webots offers a 2D simula-
tion mode called Fast2D. The Fast2D mode enables very fast simulation for worlds that require
only two-dimensional (2D) computations. Many simulations are carried out on a 2D area using
wheeled robots such as AliceTMor KheperaTM; in such simulations the height and elevation of
the objects are generally irrelevant, therefore the overhead of 3D computations can be avoided
by using Fast2D. The Fast2D plugin is designed for situations where the speed of a simulation is
more important than its realism, as in evolutionary robotics or swarm intelligence, for example.

7.2 Plugin Architecture

7.2.1 Overview

The Webots’ Fast2D mode is built on a plugin architecture. The Fast2D plugin is a dynamically
linked library that provides the functions necessary for the 2D simulation. These functions are
responsible for the simulation of:

• Differential wheels robots (kinematics, friction model, collision detection)

• Obstacles (collision detection)

• Distance sensors (distance measurement)

The plugin architecture makes it possible to use different plugins for different worlds (.wbt
files) and allows Webots users to design their own custom plugins.

205
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7.2.2 Dynamically Linked Libraries

The Fast2D plugin is loaded by Webots when the user loads a world (.wbt file) that requires
Fast2D simulation mode. The WorldInfo node of the world has a field called fast2d which
specifies the name of the dynamically linked library to be used as plugin for this world. For
example:

WorldInfo {
fast2d "enki"

}

An empty fast2d field means that no plugin is required and that the simulation must be carried
out in 3D mode. When the fast2d field in not empty, Webots looks for the corresponding plu-
gin in the plugins/fast2d directory located at the same directory level as the worlds
and controllers directories. More precisely, Webots looks for the plugin file $(plugin-
name)/$(pluginname).$(extension) at these two locations:

1. $(projectdir)/plugins/fast2d/

2. $(webotsdir)/resources/projects/default/plugins/fast2d/

Where $(projectdir) represents a Webots project directory, $(pluginname) is the plugin name
as specified in the fast2d field of the WorldInfo node, $(extension) is an operating system
dependent filename extension such as so (Linux) or dll (Windows) and $(webotsdir) is the path
specified by the WEBOTS HOME environment variable. If WEBOTS HOME is undefined then
$(webotsdir) is the path from which the Webots executable was started. If the required plugin
is not found, Webots attempts to run the simulation using the built-in 3D simulator. According
to the ”enki” example above, and assuming that the current project directory $(projectdir) is
/home/user/webots and that WEBOTS_HOME=/usr/local/webots, then the Linux
version of Webots looks for the plugin in:

1. /home/user/webots/plugins/fast2d/enki/enki.so

2. /usr/local/webots/resources/projects/default/plugins/fast2d/
enki/enki.so

Since the plugin name is referred to by the WorldInfo node of a world (.wbt file), it is
possible to have a different plugin for each world.

7.2.3 Enki Plugin

The Linux and Windows distributions of Webots come with a pre-installed Fast2D plugin called
the Enki plugin. The Enki plugin is based on the Enki simulator, which is a fast open source 2D
robot simulator developed at the Laboratory of Intelligent Systems, at the EPFL in Lausanne,
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Switzerland, by Stephane Magnenat, Markus Waibel and Antoine Beyeler. You can find more
information about Enki at the Enki website1.

7.3 How to Design a Fast2D Simulation

Webots’ scene tree allows a large choice of 3D objects to be assembled in complex 3D worlds.
Because Fast2D is designed to run simulations exclusively in 2D, the 3D worlds must be simpli-
fied before the Fast2D simulation can handle them properly.

7.3.1 3D to 2D

The most important simplification is to remove one dimension from the 3D worlds; this is carried
out by Webots automatically. In 3D mode, the xz-plane is traditionally used to represent the
ground, while the positive y-axis represents the ”up” direction. In Fast2D mode Webots projects
3D objects onto the xz-plane simply by removing the y-dimension. Therefore, Fast2D mode
ignores the y-axis and carries out simulations in the xz-plane exclusively. However, the naming
convention in Fast2D changes, using the y-axis to represent the 3D z-axis. See table 7.1.

3D -> Fast2D
x -> x
y -> none
z -> y
α (rotation angle) -> -α (orientation angle)

Table 7.1: Conversion from 3D to Fast2D coordinate systems.

In short, the 3D y-axis does not matter with Fast2D. The objects’ heights and elevations are
ignored, and the worlds intended for Fast2D simulation must be designed with this in mind.
Furthermore, Fast2D worlds must be designed such that the y-axes of all its Solid and Differen-
tialWheels nodes are aligned with the world’s y-axis. In other words, the rotation field of
Solid and DifferentialWheels nodes must be:

Solid {
rotation 0 1 0 <alpha>
...

This leaves the rotation angle alpha as the only parameter that you can tune. If a Fast2D world
does not fulfill this requirement, the result of the simulation is undefined. Note also that Fast2D
rotation angles are equal to the negative of the 3D rotation angles. See table 7.1.

1http://home.gna.org/enki

http://home.gna.org/enki
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7.3.2 Scene Tree Simplification

In Fast2D mode, Webots takes only the top level objects of the scene tree into account. Each
Solid or DifferentialWheels node defined at the root level will be used in the Fast2D
simulation, but other Solid or DifferentialWheels nodes will be ignored. It is possible
to use a Solid as a child of another Solid or as a child of a DifferentialWheels node,
but be aware that in this case, although the child Solid does appear graphically, it is not taken
into account by the simulation.

7.3.3 Bounding Objects

In Fast2D, just as in 3D simulation, only bounding objects are used in collision detection. Al-
though Webots allows a full choice of bounding objects, in Fast2D mode, it is only possible to
use a single Cylinder or a single Box as a bounding object. Furthermore, Fast2D mode requires
that the coordinate systems of an object and of its corresponding bounding object must be the
same. In other words, any Transform of the bounding object will be ignored in Fast2D mode.

7.4 Developing Your Own Fast2D Plugin

The Enki-based Fast2D plugin that comes with Webots is highly optimized, and should be suit-
able for most 2D simulations. However, in some cases you might want to use your own imple-
mentation of kinematics and collision detection. In this case you will have to develop your own
Fast2D plugin; this section explains how to proceed.

7.4.1 Header File

The data types and interfaces required to compile your own Fast2D plugin are defined in the
fast2d.h header file. This file is located in Webots installation directory, in the include/
plugins/fast2d subdirectory. It can be included like this:

#include <plugins/fast2d/fast2d.h>
...

The fast2d.h file contains C types and function declarations; it can be compiled with either a
C or C++ compiler.

7.4.2 Fast2D Plugin Types

Four basic types are defined in fast2d.h: ObjectRef, SolidRef, RobotRef and Sen-
sorRef. In order to enforce a minimal amount of type-checking and type-awareness, these
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basic types are declared as non-interchangeable pointer types. They are only dummy types, not
designed to be used as-is, but rather to be placeholders for the real data types that the plugin
programmer is responsible for implementing. We suggest that you declare your own four data
types as C structs or C++ classes. Then in your implementation of the Fast2D functions, you
should cast the addresses of your data instances to the Fast2D types, as in the example below,
where MyRobotClass and MySensorClass are user-defined types:

RobotRef webots_fast2d_create_robot() {
return (RobotRef) new MyRobotClass();

}

void webots_fast2d_robot_add_sensor(RobotRef robotRef,
SensorRef sensorRef, double x, double y, double angle) {

MyRobotClass *robot = (MyRobotClass*) robotRef;
MySensorClass *sensor = (MySensorClass*) sensorRef;
robot->addSensor(sensor, x, y, angle);
...

}

In this example, Webots calls webots fast2d create robot() when it requires a new
robot object; this function instantiates the object and casts it to a Fast2D type before returning
it. Webots will then pass back this pointer as an argument to every subsequent plugin call that
involves the same object. Apart from storing its address and passing it back, Webots does nothing
with the object; it is completely safe for you to cast to any pointer type. However, the simplest and
most effective method is to directly cast the addresses of your data instances. You are however
free to do otherwise, provided that you assign a unique reference to each object.

Your data types should contain certain attributes in order for the Fast2D functions to be able to
operate on them. The UML diagram in in figure 7.1 shows the types and attributes that make
sense according to the Fast2D functionality. This diagram is an implementation guideline for
your own type declarations. We recommended implementing four data types in order to match
exactly the four Fast2D basic types; we also suggest that in the implementation of these types
you use similar attributes as those indicated in the diagram.

• ObjectRef: Reference to a solid or a robot object. ObjectRef is used in the Fast2D
API to indicate that both SolidRef and RobotRef are suitable parameters. ObjectRef can
be considered as a base class for a solid object or a robot because it groups the attributes
common to both objects. These attributes are the object’s position (xpos and ypos) and
orientation (angle), the object’s mass, the object’s bounding radius (for circular objects)
and the object’s bounding rectangle (for rectangular objects). The object’s position and
angle are defined with respect to the world’s coordinate system.

• SolidRef: Reference for a solid object. A SolidRef has the same physical properties as
ObjectRef, but it is used to implement a wall or another obstacle.
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Figure 7.1: Fast2D Plugin Entity Relationship

• RobotRef: Reference for a robot object. A RobotRef has the same physical properties
as an ObjectRef, but additionally contains linear speed (dx and dy) and angular speed (da).
It is used to implement a differential wheeled robot.

• SensorRef: Reference for a distance sensor object. A SensorRef represents a distance
sensor that must be associated with a robot (RobotRef). SensorRef attributes are: the sen-
sor’s maximal range (range), the sensor’s aperture angle in radians (aperture), the number
of rays of the sensor (numRays), the weight of the individual rays (rayWeights), and the
position (xpos and ypos) and orientation (angle) of the sensor. The sensor’s position and
angle are defined with respect to the coordinate system of the corresponding robot.

7.4.3 Fast2D Plugin Functions

In order for your plugin to be operational, it has to implement all of the Fast2D functions. Once
the plugin is loaded, Webots checks that every function is present; if a function is missing, Webots
will attempt to run the simulation using the built-in 3D routines instead of the Fast2D plugin.

The Fast2D API uses two types of coordinates: global and local. The global coordinate system is
the world’s coordinate system, as described in table 7.1. Positions and angles of an ObjectRef
(including RobotRef and SolidRef) are expressed in the global coordinate system. On the
other hand, the position and angle of SensorRef and the coordinates of bounding rectangles
are expressed in the local coordinate system of the object they belong to. For example, the
position and angle of a sensor is expressed with respect to the local coordinate system of the
robot which contains the sensor. As in 3D, an angle of zero in the Fast2D coordinate system
matches up with a direction parallel to the x-axis.
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void webots fast2d init()

The webots fast2d init() function is called by Webots to initialize the plugin. This func-
tion is called before any other Fast2D function: its purpose is to allocate and initialize the plu-
gin’s global data structures. Note than when the Revert button is pressed or whenever something
changes in the scene tree, Webots reinitializes the plugin by first calling webots fast2d -
cleanup() and then webots fast2d init(). See also figure 7.2.

void webots fast2d cleanup()

This function must be implemented to free all the data structures used by the plugin. After a
call to this function, no further Fast2D calls will be made by Webots, with the exception of we-
bots fast2d init(). A subsequent call to webots fast2d init() will indicate that
the plugin must be reinitialized because the world is being re-created. The plugin is responsible
for allocating and freeing all of the Fast2D objects. If webots fast2d cleanup() fails to
free all the memory that was allocated by the plugin, this will result in memory leaks in Webots.

void webots fast2d step(double dt)

This function must perform a simulation step of dt seconds. It is invoked by Webots once for
each simulation step (basic simulation step) when the simulation is running, or once each time
the Step button is pressed. The dt parameter corresponds to the world’s basic time step (set in
the WorldInfo node) converted to seconds (i.e., divided by 1000). The job of this function
is to compute the new position and angle (as returned by webots fast2d object get -
transform()) of every simulated object (ObjectRef) according to your implementation of
kinematics and collision handling. This function usually requires the largest amount of imple-
mentation work on the user’s part.

RobotRef webots fast2d create robot()

Requests the creation of a robot by the plugin. This function must return a valid robot reference
(RobotRef) to Webots. The exact properties of the robot will be specified in subsequent Fast2D
calls.

SolidRef webots fast2d create solid()

Requests the creation of a solid object by the plugin. This function must return a valid solid
reference (SolidRef) to Webots. The exact properties of the solid object will be specified in
subsequent Fast2D calls.
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void webots fast2d add object(ObjectRef object)

Requests the insertion of an object (robot or solid) into the 2D world model. This function
is called by Webots after an object’s properties have been set and before executing the first
simulation step (webots fast2d step()).

SensorRef webots fast2d create irsensor(RobotRef robot, double xpos, double ypos, dou-
ble angle, double range, double aperture, int numRays, const double rayWeights[])

Requests the creation of an infra-red sensor. This function must return a valid sensor refer-
ence (SensorRef) to Webots. The robot parameter is a robot reference previously created
through webots fast2d create robot(). The xpos, ypos and angle parameters in-
dicate the desired position and orientation of the sensor in the the local coordinate system of the
robot. The range parameter indicates the maximum range of the sensor. It is determined by
the lookupTable of the corresponding DistanceSensor in the Webots scene tree. The
aperture parameter corresponds to the value of the aperture field of the Distance-
Sensor. The numRays parameter indicates the value of the numberOfRays field of the
DistanceSensor. The rayWeights parameter is an array of numRays double-precision
floats which specifies the individual weights that must be associated with each sensor ray. The
sum of the ray weights provided by Webots is always exactly 1.0, and it is always left/right
symmetrical. For more information on the sensor weights, please refer to the description of the
DistanceSensor node in the Webots Reference Manual. In order to be consistent with the
Webots graphical representation, the plugin’s implementation of the sensors requires that:

• All the rays have the same length (the specified sensor range)

• The rays are distributed uniformly (equal angles from each other)

• The angle between the first and the last ray be exactly equal to the specified aperture

double webots fast2d sensor get activation(SensorRef sensor)

Requests the current distance measured by a sensor. The sensor parameter is a sensor refer-
ence that was created through webots fast2d create irsensor(). This function must
return the average of the weighted distances measured by the sensor rays. The distances must
be weighted using the rayWeights values that were passed to webots fast2d create -
irsensor(). Note that this function is responsible only for calculating the weighted average
distance measured by the sensor. It is Webots responsibility to compute the final activation value
(the value that will finally be returned to the controller) from the average distance and according
to the DistanceSensor’s lookup table.
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void webots fast2d object set bounding rectangle(ObjectRef object, const double x[4], const
double y[4])

Defines an object as rectangular and sets the object’s bounding rectangle. The object parame-
ter is a solid or robot reference. The x and y arrays specify the coordinates of the four corners of
the bounding rectangle in the object’s coordinate system. The sequence (x[0], y[0]), (x[1], y[1]),
(x[2], y[2]), (x[3], y[3]) is specified counter-clockwise.

void webots fast2d object set bounding radius(ObjectRef object, double radius)

Defines an object as circular and sets the objects’s bounding radius. The object parameter is
a solid or robot reference. In the Fast2D plugin, an object can be either rectangular or circular;
Webots indicates this by calling either webots fast2d object set bounding rect-
angle() or webots fast2d object set bounding radius().

void webots fast2d object set mass(ObjectRef object, double mass)

Request to set the mass of an object. The object parameter is a solid or robot reference.
The mass parameter is the object’s required mass. According to your custom implementation,
the mass of an object can be involved in the calculation of a robot’s acceleration and ability to
push other objects. The implementation of this function is optional. Note that Webots calls this
function only if the corresponding object has a Physics node. In this case the mass parameter
equals the mass field of the Physics node. A negative mass must be considered infinite. If
your model does not support the concept of mass, you should implement an empty webots -
fast2d object set mass() function.

void webots fast2d object set position(ObjectRef object, double xpos, double ypos)

Request to set the position of an object. The object parameter is a solid or robot reference.
The xpos and ypos parameters represent the required position specified in the global coor-
dinate system. This function is called by Webots during the construction of the world model.
Afterwards, the object positions are only modified by the webots fast2d step() function.
See also figure 7.2.

void webots fast2d object set angle(ObjectRef object, double angle)

Request to set the angle of an object. The object parameter is a solid or robot reference. The
angle parameter is the requested object angle specified in the global coordinate system. This
function is called by Webots during the construction of the world model. Afterwards, the object
angles are only modified by the webots fast2d step() function. See also figure 7.2.



214 CHAPTER 7. FAST2D PLUGIN

void webots fast2d robot set speed(RobotRef robot, double dx, double dy)

Request to change the speed of a robot. The robot parameter is a robot reference. The dx
and dy parameters are the two vector components of the robot’s speed in the global coordinate
system. This corresponds to change per second in the position of the robot (xpos and ypos).
More precisely: dx = v ∗ sin(α) and dy = v ∗ cos(α), where α is the robot’s orientation angle
and where v is the robot’s absolute speed which is calculated according to the wheels’ radius and
rotation speed. For more information, see the description of the DifferentialWheels node
and the differential wheels set speed() function in the Webots Reference Manual.

void webots fast2d robot set angular speed(RobotRef object, double da)

Request to change the angular speed of a robot. The robot parameter is a robot reference. The
da parameter indicates the requested angular speed. A robot’s angular speed is the speed of its
rotation around its center in radians per second.

void webots fast2d object get transform(ObjectRef object, double *xpos, double *ypos,
double *angle)

Reads the current position and angle of an object. The object parameter is a robot or solid
reference. The xpos, ypos and angle parameters are the pointers to double values where
this function should write the values. These parameters are specified according to the global
coordinate system.

7.4.4 Fast2D Plugin Execution Scheme

This section describes the sequence used by Webots for calling the plugin functions. Please refer
to the diagram in figure 7.2.

1. The plugin is loaded. Go to step 2.

2. The webots fast2d init() function is called. Go to step 3 or 5.

3. The world model is created. This is achieved through a sequence of calls to the functions
webots fast2d create *(), webots fast2d set *() and webots fast2d -
add *(). Question marks are used to represent a choice among several functions names.
Although the exact sequence is unspecified, for each object it is guarantied that: the cor-
responding webots fast2d create *() function is called first, the corresponding
webots fast2d set *() functions are called next and that the corresponding we-
bots fast2d add *() function is called last. Go to step 4 or 5.



7.4. DEVELOPING YOUR OWN FAST2D PLUGIN 215

Figure 7.2: Fast2D Plugin Execution Scheme
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4. A simulation step is carried out. This is achieved through an unspecified sequence of calls
to webots fast2d step(), webots fast2d set speed, webots fast2d set -
angular speed() and webots fast2d get transform(). Go to step 4 or 5.

5. The webots fast2d cleanup() function is called. Go to step 2 or 6.

6. The plugin is unloaded. Go to step 1.

7.4.5 Fast2D Execution Example

This section shows an example of a Webots scene tree and the corresponding Fast2D calls that
are carried out when the world is interpreted using Fast2D. Ellipses represent omitted code or
parameters. Examine this example carefully. In keeping with what was explained earlier, you
will notice that, when transformed from 3D to Fast2D:

• The objects rotation angles are negated

• The objects’ y-coordinates (height and elevation) are ignored

• The 3D z-axis becomes the Fast2D y-axis

Solid {
translation 0.177532 0.03 0.209856
rotation 0 1 0 0.785398
...
boundingObject Box {

size 0.2 0.06 0.2
}

}

DifferentialWheels {
translation -0.150197 0 0.01018
rotation 0 1 0 -4.85101
children [

...
DistanceSensor {

translation -0.0245 0.0145 -0.012
rotation 0 1 0 3.0543
...
lookupTable [

0 1023 0
0.05 0 0.01

]
aperture 0.5

}
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]
...
boundingObject Transform {

translation 0 0.011 0
children [

Cylinder {
height 0.022
radius 0.0285

}
]

}
...
}

webots_fast2d_init()
webots_fast2d_create_solid()
webots_fast2d_object_set_bounding_polygon(...)
webots_fast2d_object_set_position(..., xpos=0.177532, ypos=0.209856)
webots_fast2d_object_set_angle(..., angle=-0.785398)
webots_fast2d_add_object()

webots_fast2d_create_robot()
webots_fast2d_object_set_bounding_radius(..., radius=0.0285)
webots_fast2d_object_set_position(..., xpos=-0.150197, ypos=0.01018)
webots_fast2d_object_set_angle(..., angle=4.85101)
webots_fast2d_add_object()

webots_create_irsensor(..., xpos=-0.0245, ypos=-0.012, angle=-3.0543,
range=0.05, aperture=0.5, numRays=1, ...)

Finally, note that the largest input value of the DistanceSensor’s lookup table (0.05) be-
comes the sensor’s range in Fast2D.

You will find further information about the DifferentialWheels and DistanceSensor
nodes and controller API in the Webots Reference Manual.
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Chapter 8

Webots World Files

8.1 Generalities

Webots world files must use the .wbt file name extension. The first line of a .wbt file uses this
header:

#VRML_SIM V6.0 utf8

where the version 6.0 specifies that the file can be open with Webots 6 and Webots 7. Although
the header specifies utf8, at the moment only ascii is supported.

The comments placed just below the header store the window configuration associated with this
world.

One (and only one) instance of each of the WorldInfo, ViewPoint and Background
nodes must be present in every .wbt file. For example:

#VRML_SIM V6.0 utf8

WorldInfo {
info [

"Description"
"Author: first name last name <e-mail>"
"Date: DD MMM YYYY"

]
}
Viewpoint {

orientation 1 0 0 -0.8
position 0.25 0.708035 0.894691

}
Background {

skyColor [
0.4 0.7 1

219
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]
}
PointLight {

ambientIntensity 0.54
intensity 0.5
location 0 1 0

}

8.2 Nodes and Keywords

8.2.1 VRML97 nodes

Webots implements only a subset of the nodes and fields specified by the VRML97 standard. In
the other hand, Webots also adds many nodes, which are not part of the VRML97 standard, but
are specialized to model robotic experiments.

The following VRML97 nodes are supported by Webots:

Appearance, Background, Box, Color, Cone, Coordinate, Cylinder, Di-
rectionalLight, ElevationGrid, Fog, Group, ImageTexture, Indexed-
FaceSet, IndexedLineSet, Material, PointLight, Shape, Sphere, Spot-
Light, TextureCoordinate, TextureTransform, Transform, Viewpoint
and WorldInfo.

Please refer to chapter 3 for a detailed description of Webots nodes and fields. It specifies which
fields are actually used. For a comprehensive description of the VRML97 nodes, you can also
refer to the VRML97 documentation.

The exact features of VRML97 are subject to a standard managed by the International Standards
Organization (ISO/IEC 14772-1:1997). You can find the complete specification of VRML97 on
the Web3D Web site1.

8.2.2 Webots specific nodes

In order to describe more precisely robotic simulations, Webots supports additional nodes that
are not specified by the VRML97 standard. These nodes are principally used to model commonly
used robot devices. Here are Webots additional nodes:

Accelerometer, Camera, Charger, Compass, Connector, Differential-
Wheels, DistanceSensor, Emitter, GPS, Gyro, HyperGate, LED, Light-
Sensor, Pen, Physics, Receiver, Robot, Servo, Solid, Supervisor and
TouchSensor.

Please refer to chapter 3 for a detailed description of Webots nodes and fields.
1http://www.web3d.org

http://www.web3d.org
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8.2.3 Reserved keywords

These reserved keywords cannot be used in DEF or PROTO names:

DEF, USE, PROTO, IS, TRUE, FALSE, NULL, field, vrmlField, SFNode,
SFColor, SFFloat, SFInt32, SFString, SFVec2f, SFVec3f, SFRotation,
SFBool, MFNode, MFColor, MFFloat, MFInt32, MFString, MFVec2f and MF-
Vec3f.

8.3 DEF and USE

A node which is named using the DEF keyword can be referenced later by its name in the same
file with USE statements. The DEF and USE keywords can be used to reduce redundancy in
.wbt and .proto files. DEF name are limited in scope to a single .wbt or .proto file. If
multiple nodes are given the same DEF name, each USE statement refers to the closest node with
the given DEF name preceding it in the .wbt or .proto file.

[DEF defName] nodeName { nodeBody }

USE defName

Although it is permitted to name a Solid using the DEF keyword, USE
statements are not allowed for Solid nodes and derived nodes. Indeed,
the ability for identical solids to occupy the same position is useless, if not
hazardous, in a physics simulation.
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Chapter 9

Other APIs

Webots allows to program controllers in some other languages than C. This chapter describes the
API of these other languages. Each section corresponds to one language and each subsection to
a device. This chapter should be used with the chapter 3 of this document which describes the C
functions. Generally speaking, each C function has one and only one counterpart for in a specific
language.

9.1 C++ API

The following tables describes the C++ classes and their functions.

#include <webots/Accelerometer.hpp>
class Accelerometer : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
const double *getValues() const;
};
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#include <webots/Camera.hpp>
class Camera : public Device {

enum {COLOR, RANGE FINDER, BOTH};
virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
double getFov() const;
virtual void setFov(double fov);
int getWidth() const;
int getHeight() const;
double getNear() const;
double getMaxRange() const;
int getType() const;
const unsigned char *getImage() const;
static unsigned char imageGetRed(const unsigned char *image,
int width, int x, int y);

static unsigned char imageGetGreen(const unsigned char *image,
int width, int x, int y);

static unsigned char imageGetBlue(const unsigned char *image,
int width, int x, int y);

static unsigned char imageGetGrey(const unsigned char *image,
int width, int x, int y);

const float *getRangeImage() const;
static float rangeImageGetDepth(const float *image,
int width, int x, int y);

int saveImage(const std::string &filename, int quality) const;
};

#include <webots/Compass.hpp>
class Compass : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
const double *getValues() const;
};
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#include <webots/Connector.hpp>
class Connector : public Device {

virtual void enablePresence(int ms);
virtual void disablePresence();
int getPresence() const;
virtual void lock();
virtual void unlock();
};

#include <webots/Device.hpp>
class Device {

const std::string &getName() const;
int getType() const;
};

#include <webots/DifferentialWheels.hpp>
class DifferentialWheels : public Robot {
DifferentialWheels();
virtual ˜DifferentialWheels();
virtual void setSpeed(double left, double right);
virtual void enableEncoders(int ms);
virtual void disableEncoders();
int getEncodersSamplingPeriod();
double getLeftEncoder() const;
double getRightEncoder() const;
virtual void setEncoders(double left, double right);
};
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#include <webots/Display.hpp>
class Display : public Device {

enum {RGB, RGBA, ARGB, BGRA};
int getWidth() const;
int getHeight() const;
virtual void setColor(int color);
virtual void setAlpha(double alpha);
virtual void setOpacity(double opacity);
virtual void drawPixel(int x1, int y1);
virtual void drawLine(int x1, int y1, int x2, int y2);
virtual void drawRectangle(int x, int y, int width, int height);
virtual void drawOval(int cx, int cy, int a, int b);
virtual void drawPolygon(const int *x, const int *y, int size);
virtual void drawText(const std::string &txt, int x, int y);
virtual void fillRectangle(int x, int y, int width, int height);
virtual void fillOval(int cx, int cy, int a, int b);
virtual void fillPolygon(const int *x, const int *y, int size);
ImageRef *imageCopy(int x, int y, int width, int height) const;
virtual void imagePaste(ImageRef *ir, int x, int y);
ImageRef *imageLoad(const std::string &filename) const;
ImageRef *imageNew(int width, int height, const void *data, int format) const;
void imageSave(ImageRef *ir, const std::string &filename) const;
void imageDelete(ImageRef *ir) const;
};

#include <webots/DistanceSensor.hpp>
class DistanceSensor : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
double getValue() const;
};
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#include <webots/Emitter.hpp>
class Emitter : public Device {

enum {CHANNEL BROADCAST};
virtual int send(const void *data, int size);
int getChannel() const;
virtual void setChannel(int channel);
double getRange() const;
virtual void setRange(double range);
int getBufferSize() const;
};
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#include <webots/Field.hpp>
class Field {

enum { SF BOOL, SF INT32, SF FLOAT, SF VEC2F, SF VEC3F, SF ROTATION,
SF COLOR, SF STRING, SF NODE, MF, MF INT32, MF FLOAT, MF VEC2F,
MF VEC3F, MF COLOR, MF STRING, MF NODE };

int getType() const;
std::string getTypeName() const;
int getCount() const;
bool getSFBool() const;
int getSFInt32() const;
double getSFFloat() const;
const double *getSFVec2f() const;
const double *getSFVec3f() const;
const double *getSFRotation() const;
const double *getSFColor() const;
std::string getSFString() const;
Node *getSFNode() const;
int getMFInt32(int index) const;
double getMFFloat(int index) const;
const double *getMFVec2f(int index) const;
const double *getMFVec3f(int index) const;
const double *getMFColor(int index) const;
std::string getMFString(int index) const;
Node *getMFNode(int index) const;
void setSFBool(bool value);
void setSFInt32(int value);
void setSFFloat(double value);
void setSFVec2f(const double values[2]);
void setSFVec3f(const double values[3]);
void setSFRotation(const double values[4]);
void setSFColor(const double values[3]);
void setSFString(const std::string &value);
void setMFInt32(int index, int value);
void setMFFloat(int index, double value);
void setMFVec2f(int index, const double values[2]);
void setMFVec3f(int index, const double values[3]);
void setMFColor(int index, const double values[3]);
void setMFString(int index, const std::string &value);
void importMFNode(int position, const std::string &filename);
};
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#include <webots/GPS.hpp>
class GPS : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
const double *getValues() const;
};

#include <webots/Gyro.hpp>
class Gyro : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
const double *getValues() const;
};

#include <webots/ImageRef.hpp>
class ImageRef {
};

#include <webots/InertialUnit.hpp>
class InertialUnit : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
const double *getRollPitchYaw() const;
};

#include <webots/LED.hpp>
class LED : public Device {

virtual void set(int value);
};

#include <webots/LightSensor.hpp>
class LightSensor : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
double getValue() const;
};
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#include <webots/utils/Motion.hpp>
class Motion {
Motion(const std::string &fileName);
virtual ˜Motion();
bool isValid() const;
virtual void play();
virtual void stop();
virtual void setLoop(bool loop);
virtual void setReverse(bool reverse);
bool isOver() const;
int getDuration() const;
int getTime() const;
virtual void setTime(int time);
};

#include <webots/Node.hpp>
class Node {

enum { NO NODE, APPEARANCE, BACKGROUND, BOX, COLOR, CONE,
COORDINATE, CYLINDER, DIRECTIONAL LIGHT, ELEVATION GRID,
EXTRUSION, FOG, GROUP, IMAGE TEXTURE, INDEXED FACE SET,
INDEXED LINE SET, MATERIAL, POINT LIGHT, SHAPE, SPHERE,
SPOT LIGHT, SWITCH, TEXTURE COORDINATE, TEXTURE TRANSFORM,
TRANSFORM, VIEWPOINT, WORLD INFO, CAPSULE, PLANE, ROBOT,
SUPERVISOR, DIFFERENTIAL WHEELS, SOLID, PHYSICS, CAMERA ZOOM,
CHARGER, DAMPING, CONTACT PROPERTIES, ACCELEROMETER,
CAMERA, COMPASS, CONNECTOR, DISPLAY, DISTANCE SENSOR,
EMITTER, GPS,GYRO, LED, LIGHT SENSOR, MICROPHONE, PEN,
RADIO, RECEIVER, SERVO, SPEAKER, TOUCH SENSOR };
int getType() const;
std::string getTypeName() const;
Field *getField(const std::string &fieldName) const;
const double *getPosition() const;
const double *getOrientation() const;
};

#include <webots/Pen.hpp>
class Pen : public Device {

virtual void write(bool write);
virtual void setInkColor(int color, double density);
};
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#include <webots/Receiver.hpp>
class Receiver : public Device {

enum {CHANNEL BROADCAST};
virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
int getQueueLength() const;
virtual void nextPacket();
const void *getData() const;
int getDataSize() const;
double getSignalStrength() const;
const double *getEmitterDirection() const;
virtual void setChannel(int channel);
int getChannel() const;
};
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#include <webots/Robot.hpp>
class Robot {

enum {MODE SIMULATION, MODE CROSS COMPILATION,
MODE REMOTE CONTROL};
enum {KEYBOARD END, KEYBOARD HOME, KEYBOARD LEFT,
KEYBOARD UP, KEYBOARD RIGHT, KEYBOARD DOWN,
KEYBOARD PAGEUP, KEYBOARD PAGEDOWN,
KEYBOARD NUMPAD HOME, KEYBOARD NUMPAD LEFT,
KEYBOARD NUMPAD UP, KEYBOARD NUMPAD RIGHT,
KEYBOARD NUMPAD DOWN, KEYBOARD NUMPAD END,
KEYBOARD KEY, KEYBOARD SHIFT, KEYBOARD CONTROL,
KEYBOARD ALT};
Robot();
virtual ˜Robot();
virtual int step(int ms);
Accelerometer *getAccelerometer(const std::string &name);
Camera *getCamera(const std::string &name);
Compass *getCompass(const std::string &name);
Connector *getConnector(const std::string &name);
Display *getDisplay(const std::string &name);
DistanceSensor *getDistanceSensor(const std::string &name);
Emitter *getEmitter(const std::string &name);
GPS *getGPS(const std::string &name);
Gyro *getGyro(const std::string &name);
InertialUnit *getInertialUnit(const std::string &name);
LED *getLED(const std::string &name);
LightSensor *getLightSensor(const std::string &name);
Pen *getPen(const std::string &name);
Receiver *getReceiver(const std::string &name);
Servo *getServo(const std::string &name);
TouchSensor *getTouchSensor(const std::string &name);
virtual void batterySensorEnable(int ms);
virtual void batterySensorDisable();
int getBatterySensorSamplingPeriod();
virtual double batterySensorGetValue();
double getBasicTimeStep() const;
int getMode() const;
std::string getModel() const;
std::string getName() const;
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std::string getProjectPath() const;
bool getSynchronization() const;
double getTime() const;
virtual void keyboardEnable(int ms);
virtual void keyboardDisable();
virtual int keyboardGetKey();
};

#include <webots/Servo.hpp>
class Servo : public Device {

virtual void setPosition(double position);
virtual void setVelocity(double vel);
virtual void setAcceleration(double force);
virtual void setMotorForce(double motor force);
virtual void setControlP(double p);
virtual void enablePosition(int ms);
virtual void disablePosition();
int getPositionSamplingPeriod();
double getPosition() const;
virtual void enableMotorForceFeedback(int ms);
virtual void disableMotorForceFeedback();
int getMotorForceFeedbackSamplingPeriod();
double getMotorForceFeedback() const;
virtual void setForce(double force);
};
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#include <webots/Supervisor.hpp>
class Supervisor : public Robot {
Supervisor();
virtual ˜Supervisor();
void exportImage(const std::string &file, int quality) const;
Node *getRoot();
Node *getFromDef(const std::string &name);
virtual void setLabel(int id, const std::string &label, double xpos, double ypos,
double size, int color, double transparency);

virtual void simulationQuit(int status);
virtual void simulationRevert();
virtual void simulationPhysicsReset();
void startMovie(const std::string &file,
int width, int height, int type, int quality) const;
void stopMovie() const;
};

#include <webots/TouchSensor.hpp>
class TouchSensor : public Device {

virtual void enable(int ms);
virtual void disable();
int getSamplingPeriod();
double getValue() const;
const double *getValues() const;
};
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9.2 Java API

The following tables describes the Java classes and their methods.

import com.cyberbotics.webots.controller.Accelerometer;
public class Accelerometer extends Device {

public void enable(int ms);
public void disable();
int getSamplingPeriod();
public double[] getValues();
}
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import com.cyberbotics.webots.controller.Camera;
public class Camera extends Device {

public final static int COLOR, RANGE FINDER, BOTH;
public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double getFov();
public void setFov(double fov);
public int getWidth();
public int getHeight();
public double getNear();
public double getMaxRange();
public int getType();
public int[] getImage();
public static int imageGetRed(int[] image, int width, int x, int y);
public static int imageGetGreen(int[] image, int width, int x, int y);
public static int imageGetBlue(int[] image, int width, int x, int y);
public static int imageGetGrey(int[] image, int width, int x, int y);
public static int pixelGetRed(int pixel);
public static int pixelGetGreen(int pixel);
public static int pixelGetBlue(int pixel);
public static int pixelGetGrey(int pixel);
public float[] getRangeImage();
public static float rangeImageGetDepth(float[] image,
int width, int x, int y);

public int saveImage(String filename, int quality);
}

import com.cyberbotics.webots.controller.Compass;
public class Compass extends Device {

public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double[] getValues();
}
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import com.cyberbotics.webots.controller.Connector;
public class Connector extends Device {

public void enablePresence(int ms);
public void disablePresence();
public int getPresence();
public void lock();
public void unlock();
}

import com.cyberbotics.webots.controller.Device;
public class Device {

public String getName();
public int getType();
}

import com.cyberbotics.webots.controller.DifferentialWheels;
public class DifferentialWheels extends Robot {

public DifferentialWheels();
protected void finalize();
public void setSpeed(double left, double right);
public void enableEncoders(int ms);
public void disableEncoders();
public int getEncodersSamplingPeriod();
public double getLeftEncoder();
public double getRightEncoder();
public void setEncoders(double left, double right);
}
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import com.cyberbotics.webots.controller.Display;
public class Display extends Device {

public final static int RGB, RGBA, ARGB, BGRA;
public int getWidth();
public int getHeight();
public void setColor(int color);
public void setAlpha(double alpha);
public void setOpacity(double opacity);
public void drawPixel(int x1, int y1);
public void drawLine(int x1, int y1, int x2, int y2);
public void drawRectangle(int x, int y, int width, int height);
public void drawOval(int cx, int cy, int a, int b);
public void drawPolygon(int[] x, int[] y);
public void drawText(String txt, int x, int y);
public void fillRectangle(int x, int y, int width, int height);
public void fillOval(int cx, int cy, int a, int b);
public void fillPolygon(int[] x, int[] y);
public ImageRef imageCopy(int x, int y, int width, int height);
public void imagePaste(ImageRef ir, int x, int y);
public ImageRef imageLoad(String filename);
public ImageRef imageNew(int width, int height, int[] data, int format);
public void imageSave(ImageRef ir, String filename);
public void imageDelete(ImageRef ir);
}

import com.cyberbotics.webots.controller.DistanceSensor;
public class DistanceSensor extends Device {

public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double getValue();
}
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import com.cyberbotics.webots.controller.Emitter;
public class Emitter extends Device {

public final static int CHANNEL BROADCAST;
public int send(byte[] data);
public int getChannel();
public void setChannel(int channel);
public double getRange();
public void setRange(double range);
public int getBufferSize();
}
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import com.cyberbotics.webots.controller.Field;
public class Field {

public final static int SF BOOL, SF INT32, SF FLOAT,
SF VEC2F, SF VEC3F, SF ROTATION, SF COLOR, SF STRING,
SF NODE, MF, MF INT32, MF FLOAT, MF VEC2F, MF VEC3F,
MF COLOR, MF STRING, MF NODE;
public int getType();
public String getTypeName();
public int getCount();
public bool getSFBool();
public int getSFInt32();
public double getSFFloat();
public double[] getSFVec2f();
public double[] getSFVec3f();
public double[] getSFRotation();
public double[] getSFColor();
public String getSFString();
public Node getSFNode();
public int getMFInt32(int index);
public double getMFFloat(int index);
public double[] getMFVec2f(int index);
public double[] getMFVec3f(int index);
public double[] getMFColor(int index);
public String getMFString(int index);
public Node getMFNode(int index);
public void setSFBool(bool value);
public void setSFInt32(int value);
public void setSFFloat(double value);
public void setSFVec2f(double values[2]);
public void setSFVec3f(double values[3]);
public void setSFRotation(double values[4]);
public void setSFColor(double values[3]);
public void setSFString(String value);
public void setMFInt32(int index, int value);
public void setMFFloat(int index, double value);
public void setMFVec2f(int index, double values[2]);
public void setMFVec3f(int index, double values[3]);
public void setMFColor(int index, double values[3]);
public void setMFString(int index, String value);
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public void importMFNode(int position, String filename);
}

import com.cyberbotics.webots.controller.GPS;
public class GPS extends Device {

public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double[] getValues();
}

import com.cyberbotics.webots.controller.Gyro;
public class Gyro extends Device {

public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double[] getValues();
}
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import com.cyberbotics.webots.controller.ImageRef;
public class ImageRef {
}

import com.cyberbotics.webots.controller.InertialUnit;
public class InertialUnit extends Device {

public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double[] getRollPitchYaw();
}

import com.cyberbotics.webots.controller.LED;
public class LED extends Device {

public void set(int state);
}

import com.cyberbotics.webots.controller.LightSensor;
public class LightSensor extends Device {

public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double getValue();
}

import com.cyberbotics.webots.controller.Motion;
public class Motion {

public Motion(String fileName);
protected void finalize();
public bool isValid();
public void play();
public void stop();
public void setLoop(bool loop);
public void setReverse(bool reverse);
public bool isOver();
public int getDuration();
public int getTime();
public void setTime(int time);
}
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import com.cyberbotics.webots.controller.Node;
public class Node {

public final static int NO NODE, APPEARANCE, BACKGROUND,
BOX, COLOR, CONE, COORDINATE, CYLINDER, DIRECTIONAL LIGHT,
ELEVATION GRID, EXTRUSION, FOG, GROUP, IMAGE TEXTURE,
INDEXED FACE SET, INDEXED LINE SET, MATERIAL, POINT LIGHT,
SHAPE, SPHERE, SPOT LIGHT, SWITCH, TEXTURE COORDINATE,
TEXTURE TRANSFORM, TRANSFORM, VIEWPOINT, WORLD INFO,
CAPSULE, PLANE, ROBOT, SUPERVISOR, DIFFERENTIAL WHEELS, SOLID,
PHYSICS, CAMER ZOOM, CHARGER, DAMPING,
CONTACT PROPERTIES, ACCELEROMETER, CAMERA, COMPASS,
CONNECTOR, DISPLAY, DISTANCE SENSOR, EMITTER, GPS, GYRO, LED,
LIGHT SENSOR, MICROPHONE, PEN, RADIO, RECEIVER, SERVO,
SPEAKER, TOUCH SENSOR;
public int getType();
public String getTypeName();
public Field getField(String fieldName);
public double[] getPosition();
public double[] getOrientation();
}

import com.cyberbotics.webots.controller.Pen;
public class Pen extends Device {

public void write(bool write);
public void setInkColor(int color, double density);
}

import com.cyberbotics.webots.controller.Receiver;
public class Receiver extends Device {

public final static int CHANNEL BROADCAST;
public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public int getQueueLength();
public void nextPacket();
public byte[] getData();
public int getDataSize();
public double getSignalStrength();
public double[] getEmitterDirection();
public void setChannel(int channel);
public int getChannel();
}
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import com.cyberbotics.webots.controller.Robot;
public class Robot {

public final static int MODE SIMULATION,
MODE CROSS COMPILATION, MODE REMOTE CONTROL;
public final static int KEYBOARD END, KEYBOARD HOME,
KEYBOARD LEFT, KEYBOARD UP, KEYBOARD RIGHT,
KEYBOARD DOWN, KEYBOARD PAGEUP, KEYBOARD PAGEDOWN,
KEYBOARD NUMPAD HOME, KEYBOARD NUMPAD LEFT,
KEYBOARD NUMPAD UP, KEYBOARD NUMPAD RIGHT,
KEYBOARD NUMPAD DOWN, KEYBOARD NUMPAD END,
KEYBOARD KEY, KEYBOARD SHIFT,
KEYBOARD CONTROL, KEYBOARD ALT;
public Robot();
protected void finalize();
public int step(int ms);
public Accelerometer getAccelerometer(String name);
public Camera getCamera(String name);
public Compass getCompass(String name);
public Connector getConnector(String name);
public Display getDisplay(String name);
public DistanceSensor getDistanceSensor(String name);
public Emitter getEmitter(String name);
public GPS getGPS(String name);
public Gyro getGyro(String name);
public InertialUnit getInertialUnit(String name);
public LED getLED(String name);
public LightSensor getLightSensor(String name);
public Pen getPen(String name);
public Receiver getReceiver(String name);
public Servo getServo(String name);
public TouchSensor getTouchSensor(String name);
public void batterySensorEnable(int ms);
public void batterySensorDisable();
public int getBatterySensorSamplingPeriod();
public double batterySensorGetValue();
public double getBasicTimeStep();
public int getMode();
public String getModel();
public String getName();
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public String getProjectPath();
public bool getSynchronization();
public double getTime();
public void keyboardEnable(int ms);
public void keyboardDisable();
public int keyboardGetKey();
}

import com.cyberbotics.webots.controller.Servo;
public class Servo extends Device {

public void setPosition(double position);
public void setVelocity(double vel);
public void setAcceleration(double force);
public void setMotorForce(double motor force);
public void setControlP(double p);
public void enablePosition(int ms);
public void disablePosition();
public int getPositionSamplingPeriod();
public double getPosition();
public void enableMotorForceFeedback(int ms);
public void disableMotorForceFeedback();
public int getMotorForceFeedbackSamplingPeriod();
public double getMotorForceFeedback();
public void setForce(double force);
}
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import com.cyberbotics.webots.controller.Supervisor;
public class Supervisor extends Robot {

public Supervisor();
protected void finalize();
public void exportImage(String file, int quality);
public Node getRoot();
public Node getFromDef(String name);
public void setLabel(int id, String label, double xpos, double ypos,
double size, int color, double transparency);

public void simulationQuit(int status);
public void simulationRevert();
public void simulationPhysicsReset();
public void startMovie(String file, int width, int height, int type, int quality);
public void stopMovie();
}

import com.cyberbotics.webots.controller.TouchSensor;
public class TouchSensor extends Device {

public void enable(int ms);
public void disable();
public int getSamplingPeriod();
public double getValue();
public double[] getValues();
}
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9.3 Python API

The following tables describes the Python classes and their methods.

from controller import Accelerometer
class Accelerometer (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getValues(self)
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from controller import Camera
class Camera (Device) :

COLOR, RANGE FINDER, BOTH
def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getFov(self)
def setFov(self, fov)
def getWidth(self)
def getHeight(self)
def getNear(self)
def getMaxRange(self)
def getType(self)
def getImage(self)
def getImageArray(self)
def imageGetRed(image, width, x, y)
imageGetRed = staticmethod(imageGetRed)
def imageGetGreen(image, width, x, y)
imageGetGreen = staticmethod(imageGetGreen)
def imageGetBlue(image, width, x, y)
imageGetBlue = staticmethod(imageGetBlue)
def imageGetGrey(image, width, x, y)
imageGetGrey = staticmethod(imageGetGrey)
def getRangeImage(self)
def getRangeImageArray(self)
def rangeImageGetDepth(image, width, x, y)
rangeImageGetDepth = staticmethod(rangeImageGetDepth)
def saveImage(self, filename, quality)

from controller import Compass
class Compass (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getValues(self)
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from controller import Connector
class Connector (Device) :

def enablePresence(self, ms)
def disablePresence(self)
def getPresence(self)
def lock(self)
def unlock(self)

from controller import Device
class Device :

def getName(self)
def getType(self)

from controller import DifferentialWheels
class DifferentialWheels (Robot) :

def init (self)
def del (self)
def setSpeed(self, left, right)
def enableEncoders(self, ms)
def disableEncoders(self)
def getEncodersSamplingPeriod(self)
def getLeftEncoder(self)
def getRightEncoder(self)
def setEncoders(self, left, right)
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from controller import Display
class Display (Device) :

RGB, RGBA, ARGB, BGRA
def getWidth(self)
def getHeight(self)
def setColor(self, color)
def setAlpha(self, alpha)
def setOpacity(self, opacity)
def drawPixel(self, x1, y1)
def drawLine(self, x1, y1, x2, y2)
def drawRectangle(self, x, y, width, height)
def drawOval(self, cx, cy, a, b)
def drawPolygon(self, x, y)
def drawText(self, txt, x, y)
def fillRectangle(self, x, y, width, height)
def fillOval(self, cx, cy, a, b)
def fillPolygon(self, x, y)
def imageCopy(self, x, y, width, height)
def imagePaste(self, ir, x, y)
def imageLoad(self, filename)
def imageNew(self, data, format)
def imageSave(self, ir, filename)
def imageDelete(self, ir)

from controller import DistanceSensor
class DistanceSensor (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getValue(self)

from controller import Emitter
class Emitter (Device) :

CHANNEL BROADCAST
def send(self, data)
def getChannel(self)
def setChannel(self, channel)
def getRange(self)
def setRange(self, range)
def getBufferSize(self)
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from controller import Field
class Field :

SF BOOL, SF INT32, SF FLOAT, SF VEC2F, SF VEC3F,
SF ROTATION, SF COLOR, SF STRING, SF NODE, MF,
MF INT32, MF FLOAT, MF VEC2F, MF VEC3F, MF COLOR,
MF STRING, MF NODE
def getType(self)
def getTypeName(self)
def getCount(self)
def getSFBool(self)
def getSFInt32(self)
def getSFFloat(self)
def getSFVec2f(self)
def getSFVec3f(self)
def getSFRotation(self)
def getSFColor(self)
def getSFString(self)
def getSFNode(self)
def getMFInt32(self, index)
def getMFFloat(self, index)
def getMFVec2f(self, index)
def getMFVec3f(self, index)
def getMFColor(self, index)
def getMFString(self, index)
def getMFNode(self, index)
def setSFBool(self, value)
def setSFInt32(self, value)
def setSFFloat(self, value)
def setSFVec2f(self, values)
def setSFVec3f(self, values)
def setSFRotation(self, values)
def setSFColor(self, values)
def setSFString(self, value)
def setMFInt32(self, index, value)
def setMFFloat(self, index, value)
def setMFVec2f(self, index, values)
def setMFVec3f(self, index, values)
def setMFColor(self, index, values)
def setMFString(self, index, value)
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def importMFNode(self, position, filename)

from controller import GPS
class GPS (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getValues(self)

from controller import Gyro
class Gyro (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getValues(self)
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from controller import ImageRef
class ImageRef :

from controller import InertialUnit
class InertialUnit (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getRollPitchYaw(self)

from controller import LED
class LED (Device) :

def set(self, state)

from controller import LightSensor
class LightSensor (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getValue(self)

from controller import Motion
class Motion :

def init (self, fileName)
def del (self)
def isValid(self)
def play(self)
def stop(self)
def setLoop(self, loop)
def setReverse(self, reverse)
def isOver(self)
def getDuration(self)
def getTime(self)
def setTime(self, time)
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from controller import Node
class Node :

NO NODE, APPEARANCE, BACKGROUND, BOX, COLOR, CONE,
COORDINATE, CYLINDER, DIRECTIONAL LIGHT, ELEVATION GRID,
EXTRUSION, FOG, GROUP, IMAGE TEXTURE, INDEXED FACE SET,
INDEXED LINE SET, MATERIAL, POINT LIGHT, SHAPE, SPHERE,
SPOT LIGHT, SWITCH, TEXTURE COORDINATE, TEXTURE TRANSFORM,
TRANSFORM, VIEWPOINT, WORLD INFO, CAPSULE, PLANE, ROBOT,
SUPERVISOR, DIFFERENTIAL WHEELS, SOLID, PHYSICS, CAMERA ZOOM,
CHARGER, DAMPING, CONTACT PROPERTIES, ACCELEROMETER,
CAMERA, COMPASS, CONNECTOR, DISPLAY, DISTANCE SENSOR,
EMITTER, GPS, GYRO, LED, LIGHT SENSOR, MICROPHONE, PEN, RADIO,
RECEIVER, SERVO, SPEAKER, TOUCH SENSOR
def getType(self)
def getTypeName(self)
def getField(self, fieldName)
def getPosition(self)
def getOrientation(self)

from controller import Pen
class Pen (Device) :

def write(self, write)
def setInkColor(self, color, density)

from controller import Receiver
class Receiver (Device) :

CHANNEL BROADCAST
def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getQueueLength(self)
def nextPacket(self)
def getData(self)
def getDataSize(self)
def getSignalStrength(self)
def getEmitterDirection(self)
def setChannel(self, channel)
def getChannel(self)
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from controller import Robot
class Robot :

MODE SIMULATION, MODE CROSS COMPILATION,
MODE REMOTE CONTROL
KEYBOARD END, KEYBOARD HOME, KEYBOARD LEFT, KEYBOARD UP,
KEYBOARD RIGHT, KEYBOARD DOWN, KEYBOARD PAGEUP,
KEYBOARD PAGEDOWN, KEYBOARD NUMPAD HOME,
KEYBOARD NUMPAD LEFT, KEYBOARD NUMPAD UP,
KEYBOARD NUMPAD RIGHT, KEYBOARD NUMPAD DOWN,
KEYBOARD NUMPAD END, KEYBOARD KEY, KEYBOARD SHIFT,
KEYBOARD CONTROL, KEYBOARD ALT
def init (self)
def del (self)
def step(self, ms)
def getAccelerometer(self, name)
def getCamera(self, name)
def getCompass(self, name)
def getConnector(self, name)
def getDisplay(self, name)
def getDistanceSensor(self, name)
def getEmitter(self, name)
def getGPS(self, name)
def getGyro(self, name)
def getInertialUnit(self, name)
def getLED(self, name)
def getLightSensor(self, name)
def getPen(self, name)
def getReceiver(self, name)
def getServo(self, name)
def getTouchSensor(self, name)
def batterySensorEnable(self, ms)
def batterySensorDisable(self)
def getBatterySensorSamplingPeriod(self)
def batterySensorGetValue(self)
def getBasicTimeStep(self)
def getMode(self)
def getModel(self)
def getName(self)
def getProjectPath(self)



256 CHAPTER 9. OTHER APIS

def getSynchronization(self)
def getTime(self)
def keyboardEnable(self, ms)
def keyboardDisable(self)
def keyboardGetKey(self)

from controller import Servo
class Servo (Device) :

def setPosition(self, position)
def setVelocity(self, vel)
def setAcceleration(self, force)
def setMotorForce(self, motor force)
def setControlP(self, p)
def enablePosition(self, ms)
def disablePosition(self)
def getPositionSamplingPeriod(self)
def getPosition(self)
def enableMotorForceFeedback(self, ms)
def disableMotorForceFeedback(self)
def getMotorForceFeedbackSamplingPeriod(self)
def getMotorForceFeedback(self)
def setForce(self, force)
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from controller import Supervisor
class Supervisor (Robot) :

def init (self)
def del (self)
def exportImage(self, file, quality)
def getRoot(self)
def getFromDef(self, name)
def setLabel(self, id, label, xpos, ypos, size, color, transparency)
def simulationQuit(self, status)
def simulationRevert(self)
def simulationPhysicsReset(self)
def startMovie(self, file, width, height, type, quality)
def stopMovie(self)

from controller import TouchSensor
class TouchSensor (Device) :

def enable(self, ms)
def disable(self)
def getSamplingPeriod(self)
def getValue(self)
def getValues(self)



258 CHAPTER 9. OTHER APIS

9.4 Matlab API

The following tables describes the Matlab functions.

% Accelerometer :
wb accelerometer enable(tag, ms)
wb accelerometer disable(tag)
period =wb accelerometer get sampling period(tag)
[x y z] = wb accelerometer get values(tag)

% Camera :
WB CAMERA COLOR
WB CAMERA RANGE FINDER
WB CAMERA BOTH
wb camera enable(tag, ms)
wb camera disable(tag)
period =wb camera get sampling period(tag)
fov = wb camera get fov(tag)
wb camera set fov(tag, fov)
width = wb camera get width(tag)
height = wb camera get height(tag)
near = wb camera get near(tag)
type = wb camera get type(tag)
image = wb camera get image(tag)
image = wb camera get range image(tag)
max range = wb camera get max range(tag)
wb camera save image(tag, ’filename’, quality)

% Compass :
wb compass enable(tag, ms)
wb compass disable(tag)
period = wb compass get sampling period(tag)
[x y z] = wb compass get values(tag)
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% Connector :
wb connector enable presence(tag, ms)
wb connector disable presence(tag)
presence = wb connector get presence(tag)
wb connector lock(tag)
wb connector unlock(tag)

% Device :
wb device get name(tag)
wb device get type(tag)

% DifferentialWheels :
wb differential wheels set speed(left, right)
wb differential wheels enable encoders(ms)
wb differential wheels disable encoders()
period =wb differential wheels get encoders sampling period()
left = wb differential wheels get left encoder()
right = wb differential wheels get right encoder()
wb differential wheels set encoders(left, right)



260 CHAPTER 9. OTHER APIS

% Display :
RGB
RGBA
ARGB
BGRA
width = wb display get width(tag)
height = wb display get height(tag)
wb display set color(tag, [r g b])
wb display set alpha(tag, alpha)
wb display set opacity(tag, opacity)
wb display draw pixel(tag, x, y)
wb display draw line(tag, x1, y1, x2, y2)
wb display draw rectangle(tag, x, y, width, height)
wb display draw oval(tag, cx, cy, a, b)
wb display draw polygon(tag, [x1 x2 ... xn], [y1 y2 ... yn])
wb display draw text(tag, ’txt’, x, y)
wb display fill rectangle(tag, x, y, width, height)
wb display fill oval(tag, cx, cy, a, b)
wb display fill polygon(tag, [x1 x2 ... xn], [y1 y2 ... yn])
image = wb display image copy(tag, x, y, width, height)
wb display image paste(tag, image, x, y)
image = wb display image load(tag, ’filename’)
image = wb display image new(tag, width, height, data ,format)
wb display image save(tag, image, ’filename’)
wb display image delete(tag, image)

% DistanceSensor :
wb distance sensor enable(tag, ms)
wb distance sensor disable(tag)
period =wb distance sensor get sampling period(tag)
value = wb distance sensor get value(tag)

% Emitter :
WB CHANNEL BROADCAST
wb emitter send(tag, data)
wb emitter set channel(tag, channel)
channel = wb emitter get channel(tag)
range = wb emitter get range(tag)
wb emitter set range(tag, range)
size = wb emitter get buffer size(tag)
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% GPS :
wb gps enable(tag, ms)
wb gps disable(tag)
period =wb gps get sampling period(tag)
[x y z] = wb gps get values(tag)

% Gyro :
wb gyro enable(tag, ms)
wb gyro disable(tag)
period =wb gyro get sampling period(tag)
[x y z] = wb gyro get values(tag)

% InertialUnit :
wb inertial unit enable(tag, ms)
wb inertial unit disable(tag)
period =wb inertial unit get sampling period(tag)
[roll pitch yaw] = wb inertial unit get roll pitch yaw(tag)

% LED :
wb led set(tag, state)

% LightSensor :
wb light sensor enable(tag, ms)
wb light sensor disable(tag)
period =wb light sensor get sampling period(tag)
value = wb light sensor get value(tag)

% Motion :
motion = wbu motion new(’filename’)
wbu motion delete(motion)
wbu motion play(motion)
wbu motion stop(motion)
wbu motion set loop(motion, loop)
wbu motion set reverse(motion, reverse)
over = wbu motion is over(motion)
duration = wbu motion get duration(motion)
time = wbu motion get time(motion)
wbu motion set time(motion, time)
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Node:
WB NODE NO NODE, WB NODE APPEARANCE, WB NODE BACKGROUND,
WB NODE BOX, WB NODE COLOR, WB NODE CONE,
WB NODE COORDINATE, WB NODE CYLINDER,
WB NODE DIRECTIONAL LIGHT, WB NODE ELEVATION GRID,
WB NODE EXTRUSION, WB NODE FOG, WB NODE GROUP,
WB NODE IMAGE TEXTURE, WB NODE INDEXED FACE SET,
WB NODE INDEXED LINE SET, WB NODE MATERIAL,
WB NODE POINT LIGHT, WB NODE SHAPE, WB NODE SPHERE,
WB NODE SPOT LIGHT, WB NODE SWITCH,
WB NODE TEXTURE COORDINATE, WB NODE TEXTURE TRANSFORM,
WB NODE TRANSFORM, WB NODE VIEWPOINT, WB NODE WORLD INFO,
WB NODE CAPSULE, WB NODE PLANE, WB NODE ROBOT,
WB NODE SUPERVISOR, WB NODE DIFFERENTIAL WHEELS,
WB NODE SOLID, WB NODE PHYSICS, WB NODE CAMERA ZOOM,
WB NODE CHARGER, WB NODE DAMPING,
WB NODE CONTACT PROPERTIES, WB NODE ACCELEROMETER,
WB NODE CAMERA, WB NODE COMPASS, WB NODE CONNECTOR,
WB NODE DISPLAY, WB NODE DISTANCE SENSOR, WB NODE EMITTER,
WB NODE GPS, WB NODE GYRO, WB NODE LED,
WB NODE LIGHT SENSOR, WB NODE MICROPHONE,WB NODE PEN,
WB NODE RADIO, WB NODE RECEIVER, WB NODE SERVO,
WB NODE SPEAKER, WB NODE TOUCH SENSOR

% Pen :
wb pen write(tag, write)
wb pen set ink color(tag, [r g b], density)
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% Receiver :
WB CHANNEL BROADCAST
wb receiver enable(tag, ms)
wb receiver disable(tag)
period =wb receiver get sampling period(tag)
length = wb receiver get queue length(tag)
wb receiver next packet(tag)
size = wb receiver get data size(tag)
data = wb receiver get data(tag)
strength = wb receiver get signal strength(tag)
[x y z] = wb receiver get emitter direction(tag)
wb receiver set channel(tag, channel)
channel = wb receiver get channel(tag)
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% Robot :
WB MODE SIMULATION,
WB MODE CROSS COMPILATION,
WB MODE REMOTE CONTROL
WB ROBOT KEYBOARD END
WB ROBOT KEYBOARD HOME
WB ROBOT KEYBOARD LEFT
WB ROBOT KEYBOARD UP
WB ROBOT KEYBOARD RIGHT
WB ROBOT KEYBOARD DOWN
WB ROBOT KEYBOARD PAGEUP
WB ROBOT KEYBOARD PAGEDOWN
WB ROBOT KEYBOARD NUMPAD HOME
WB ROBOT KEYBOARD NUMPAD LEFT
WB ROBOT KEYBOARD NUMPAD UP
WB ROBOT KEYBOARD NUMPAD RIGHT
WB ROBOT KEYBOARD NUMPAD DOWN
WB ROBOT KEYBOARD NUMPAD END
WB ROBOT KEYBOARD KEY
WB ROBOT KEYBOARD SHIFT
WB ROBOT KEYBOARD CONTROL
WB ROBOT KEYBOARD ALT
wb robot step(ms)
tag = wb robot get device(’name’)
wb robot battery sensor enable(ms)
wb robot battery sensor disable()
period =wb robot get battery sensor sampling period()
value = wb robot battery sensor get value()
step = wb robot get basic time step()
mode = wb robot get mode()
model = wb robot get model()
name = wb robot get name()
path = wb robot get project path()
sync = wb robot get synchronization()
time = wb robot get time()
wb robot keyboard enable(ms)
wb robot keyboard disable()
key = wb robot keyboard get key()
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% Servo :
wb servo set position(tag, position)
wb servo set velocity(tag, vel)
wb servo set acceleration(tag, acc)
wb servo set motor force(tag, force)
wb servo set control p(tag, p)
wb servo enable position(tag, ms)
wb servo disable position(tag)
period =wb servo get position sampling period(tag)
position = wb servo get position(tag)
wb servo enable motor force feedback(tag, ms)
wb servo disable motor force feedback(tag)
period =wb servo get motor force feedback sampling period(tag)
force = wb servo get motor force feedback(tag)
wb servo set force(tag, force)
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% Supervisor :
WB SF BOOL, WB SF INT32, WB SF FLOAT, WB SF VEC2F,
WB SF VEC3F, WB SF ROTATION, WB SF COLOR, WB SF STRING,
WB SF NODE, WB MF, WB MF INT32, WB MF FLOAT, B MF VEC2F,
WB MF VEC3F, WB MF COLOR, WB MF STRING, WB MF NODE
wb supervisor export image(’filename’, quality)
node = wb supervisor node get root()
node = wb supervisor node get from def(’def’)
wb supervisor set label(id, ’text’, x, y, size, [r g b], transparency)
wb supervisor simulation quit(status)
wb supervisor simulation revert()
wb supervisor simulation physics reset()
wb supervisor start movie(’filename’, width, height, type, quality)
wb supervisor stop movie()
type = wb supervisor field get type(field)
name = wb supervisor field get type name(field)
count = wb supervisor field get count(field)
b = wb supervisor field get sf bool(field)
i = wb supervisor field get sf int32(field)
f = wb supervisor field get sf float(field)
[x y] = wb supervisor field get sf vec2f(field)
[x y z] = wb supervisor field get sf vec3f(field)
[x y z alpha] = wb supervisor field get sf rotation(field)
[r g b] = wb supervisor field get sf color(field)
s = wb supervisor field get sf string(field)
node = wb supervisor field get sf node(field)
i = wb supervisor field get mf int32(field, index)
f = wb supervisor field get mf float(field, index)
[x y] = wb supervisor field get mf vec2f(field, index)
[x y z] = wb supervisor field get mf vec3f(field, index)
[r g b] = wb supervisor field get mf color(field, index)
s = wb supervisor field get mf string(field, index)
node = wb supervisor field get mf node(field, index)
wb supervisor field set sf bool(field, value)
wb supervisor field set sf int32(field, value)
wb supervisor field set sf float(field, value)
wb supervisor field set sf vec2f(field, [x y])
wb supervisor field set sf vec3f(field, [x y z])
wb supervisor field set sf rotation(field, [x y z alpha])
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wb supervisor field set sf color(field, [r g b])
wb supervisor field set sf string(field, ’value’)
wb supervisor field set mf int32(field, index, value)
wb supervisor field set mf float(field, index, value)
wb supervisor field set mf vec2f(field, index, [x y])
wb supervisor field set mf vec3f(field, index, [x y z])
wb supervisor field set mf color(field, index, [r g b])
wb supervisor field set mf string(field, index, ’value’)
wb supervisor field import mf node(field, position, ’filename’)
type = wb supervisor node get type(node)
name = wb supervisor node get type name(node)
field = wb supervisor node get field(node, ’field name’)
position = wb supervisor node get position(node)
orientation = wb supervisor node get orientation(node)

% TouchSensor :
wb touch sensor enable(tag, ms)
wb touch sensor disable(tag)
period =wb touch sensor get sampling period(tag)
value = wb touch sensor get value(tag)
[x y z] = wb touch sensor get values(tag)
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