From Webots 5 to Webots 6

What changed in Webots API ?
Yvan Bourquin

Cyberbotics Ltd.

Summary

In the transition from Webots 5 to Webots 6 an important cleanup and redesign of Webots APIs
(Application Programming Interfaces) was undertaken. All C functions were renamed and several were
deprecated. In addition, an entirely new JAVA API was added and replaces the JAVA API of Webots 5.
The C++ and Python APIs were also largely modified. The deprecated functions and methods of
Webots 5 are no longer documented in Webots 6. This document explains how to port existing Webots
5 code to Webots 6.

C controller API

Controllers using the C API and compiled with Webots 5 will usually work right away with Webots 6
thanks to a binary compatibility layer. Recompiling these controllers with Webots 6 will print a bunch
of deprecation warnings. Despite the warnings the recompilation will usually not give any error and
will run unmodified. For a transitional period the deprecated C API of Webots 5 will remain functional
in Webots 6. However, on the long run, it is recommended to adapt your code to Webots 6 API.

In the case you are porting a C++ controller using the C API you will have to add this flag to your
project's Makefile for Webots 6:

Webots 6
CFLAGS=-I"$(WEBOTS HOME PATH)/include/controller/c"

The reason is that in Webots 6, unlike Webots 5, the C API is not automatically enabled for C++
controller code. Instead, the default API for C++ controller is now the C++ API.

JAVA controller API
e Webots 6 JAVA API was completely redesigned

Webots 5 JAVA API is entirely deprecated. Recompiling the Webots 5 JAVA controllers will give
deprecation warnings when compiled with Webots 6. However the controllers should compile and run
unmodified. For a transitional period the deprecated JAVA API will remain functional.

Python and C++ controller APIs
e Webots 6 C++ and Python APIs were completely redesigned

11/07/08 Page 1 of 15



You will need to adapt your C++ and Python controllers when upgrading to Webots 6. Unlike the C and
JAVA API, there are no transitional compatibility layer.

Physics plugin API
e Physics plugins will need to be recompiled for Webots 6 !

Executing in Webots 6 a plugin that was compiled with Webots 5 will usually give this error message:
[WARNING] Error while loading required plugin: "my physics"
[WARNING] physics/my physics/my physics.so: undefined symbol: dWebotsConsolePrint

Just recompiling the plugin will fix the problem. The recompilation should normally not produce any
error because the physics plugin API remained unchanged from Webots 5 to Webots 6.

World files
e Webots 5 .wbt files can be opened with Webots 6
e Webots 6 .wbt files cannot be opened with Webots 5

The CustomRobot node was renamed Robot. When a Webots 5 .wbt file is opened and saved with
Webots 6, all CustomRobot nodes are automatically renamed Robot for compatibility.

Several other things have changed in the .wbt file format, these are the most important changes:

The version number in the file header:

Webots 5 Webots 6
#VRML SIM V5.0 utf8 #VRML SIM V6.0 utf8

The “follow object” state is now saved in the Viewpoint node instead of in a comment:

Webots 5 Webots 6
#!robotView: "ghostdog" Viewpoint {

follow "ghostdog"

The GUI layout and list of open files in no longer saved in the .wbt file. This information is now saved
in separate “project” files (hidden):

11/07/08 Page 2 of 15



Webots 5 Webots 6

#!mainWindow: 0 0 0.5 0.7 Now saved separately in “project” files
#!sceneTreeWindow: 0 0.7 0.5 0.3 0.25

#!textEditorWindow: 0.5 0 0.5 0.7 0.37 0O
"controllers/ghostdog/ghostdog.c"

#!1logWindow: 0.5 0.7 0.5 0.3

11/07/08 Page 3 of 15




C controller API

Function, type and constant names

To avoid name space clashes, in Webots 6, a prefix was added to the names of all functions, types and
constants. Examples:

Webots S (deprecated) Webots 6
robot get device() wb _robot get device()
DeviceTag WbDeviceTag
NodeRef WbNodeRef
SERVO INFINITY WB_SERVO INFINITY
CHANNEL BROADCAST WB_CHANNEL BROADCAST

Includes

In Webots 6, the C header files must now be included from the “webots” folder instead of the “device”
folder. Examples:

Webots 5 (deprecated) Webots 6

#include <device/light sensor.h> #include <webots/light sensor.h>
#include <webots/utils/motion.h>

These two different folders contain distinct sets of header files. The “device” folder contains Webots 5
deprecated header files that will issue warnings, while the “webots” folder contains Webots 6 new
header files.

C Program Structure

In Webots 6, the initialization and cleanup code does no longer need to be placed in special functions.
The robot live(), robot run() and robot die() functions are deprecated. Instead it is now
required to call wb_robot init() before, and wb _robot cleanup() after, any other call to a Webots
function. Here is an example:

Webots 5 (deprecated) Webots 6

#include <device/robot.h> #include <webots/robot.h>
#include <device/distance sensor.h> |#include <webots/distance sensor.h>

#define STEP 16 #define STEP 16

static DeviceTag ds; int main() {

wb _robot init();

static void reset() {
ds=robot get device(“ds”); WbDeviceTag ds=wb robot get device(“ds”);

11/07/08 Page 4 of 15




distance sensor _enable(ds, STEP); wb _distance sensor _enable(ds, STEP);

}
do {
static void cleanup() { /* sense & actuate */
/* your cleanup code here */ double v;
} v=wb distance sensor get value(ds);
}
static int run(int ms) { while (wb robot step(STEP) != -1);
/* sense & actuate */
unsigned short v; /* your cleanup code here */
v=distance sensor get value(ds);
return STEP; wb_robot cleanup();
} return 0;

int main() {
robot live(reset);
robot die(cleanup);
robot run(run);
return 0;

The wb _robot step() function returns -1 to indicate that Webots 6 will terminate the controller (this
happens when the user opens a world file, reverts the simulation or quits Webots). Checking for this
condition is the only way to be informed of the upcoming controller termination and to have a chance to
cleanup: close files and free data, etc. This method now replaces the previous mechanism based on
robot die().

In case a cleanup is not necessary, the simpler alternative below can also be used. Note that in this case
it is not necessary to call wb_robot cleanup().

Webots 5 (deprecated) Webots 6
#include <device/robot.h> #include <webots/robot.h>
#include <device/light sensor.h> #include <webots/light sensor.h>
#define STEP 16 #define STEP 16
static DeviceTag ls; int main() {
wb robot init();
static void reset() { WbDeviceTag ls=wb robot get device(“ls”);
ls = robot get device(“ls”); wb light sensor enable(ls, STEP);
light sensor _enable(ls, STEP);
} for (;;) {
/* sense & actuate */
int main() { double v;
robot live(reset); v = wb _light sensor get value(ls);
for (;;) { wb_robot step(STEP);
/* sense & actuate */ }
unsigned short v; return 0;
v = light sensor get value(ls); |}
robot step(STEP);
}
return 0;

11/07/08 Page 5 of 15




Webots S (deprecated) Webots 6

Floating point values

Webots 5 C, C++ and JAVA API used have the float type (32 bit) to represent floating point values. In
Webots 6 this was systematically changed to double (64 bit). Most functions like the examples below

will recompile without any problem with Webots 6.

Webots 5 (deprecated)

void servo set position(DeviceTag tag, float pos)
float servo get position(DeviceTag tag)

Webots 6

void wb_servo_set position(WbDeviceTag tag, double pos)
double wb servo get position(WbDeviceTag tag)

However functions returning float* will cause some trouble because Webots 6 equivalents now return
double* which is not compatible. Fortunately there were only two functions of this type in Webots 5
(see below). You will have to update your code if you used one of them:

Webots S (deprecated)

const float *accelerometer get values(DeviceTag tag)
const float *receiver get emitter direction(DeviceTag tag)

Webots 6

const double *wb accelerometer get values(WbDeviceTag tag)
const double *wb receiver get emitter direction(WbDeviceTag tag)

Printing to Webots console

Webots 6 automatically redirects the standard output and error streams of controllers to the built-in
console. So any method for printing to the standard output and error streams can now be used in
controller code. This replaces the robot console printf() function of Webots 5.

Webots 6
printf(“Hello!"”);

Webots 5 (deprecated)

C robot console printf(“Hello!”);

printf(“Hello!"”);

C++ |robot console printf(“Hello!”);
cout << “Hello!”;

11/07/08 Page 6 of 15




LookupTables and related functions

In Webots 5 all the function based on lookup tables used to return unsigned short values. In Webots
6 the equivalent functions now return double values. This change is backwards compatible; it may
produce compilation warnings but it will normally not affect the behavior of your controllers.

Webots 5 (deprecated)

unsigned short distance sensor get value(DeviceTag tag)
unsigned short light sensor get value(DeviceTag tag)
unsigned short touch sensor get value(DeviceTag tag)

Webots 6

double wb distance sensor get value(WbDeviceTag tag)
double wb light sensor get value(WbDeviceTag tag)
double wb touch sensor get value(WbDeviceTag tag)

Note that, in order to be consistent with the function return values, the output values (second column)
of all lookup tables in Webots 6 are now interpreted as double values (see below). As a consequence
lookup tables can now also return negative values.

lookupTable [
-19.62 -19.62 0.01
19.62 19.62 0.01

]

Supervisor functions

Webots 5 supervisor functions for accessing nodes in the scene tree are now deprecated. There are two
reasons for this deprecation: first, users often misunderstood how to setup the parameters and when to
call these function. Second, these functions worked only with a small subset of all nodes and fields

types.

In Webots 6 a new set of functions is available and offers more flexibility. In particular it is now
possible to read every field and every node of the scene tree.

Webots 5 (deprecated)

NodeRef supervisor node get from def(const char *DEF)
bool supervisor node was found(NodeRef)

Webots 6

WbNodeRef wb supervisor node get root()

WbNodeRef wb supervisor node get from def(const char *def)

WbNodeType wb supervisor node get type(WbNodeRef node)

const char *wb supervisor node get name(WbNodeRef)

WbFieldRef wb supervisor node get field(WbNodeRef node, const char *field name)
WbFieldType wb supervisor field get type(WbFieldRef field)

const char *wb supervisor field get type name(WbFieldRef field)

int wb_supervisor field get count(WbFieldRef field)

11/07/08 Page 7 of 15



There is a new set of field “accessor” functions: four functions for each type of field: one “getter”, one
“setter”, one “single” and one “multiple” field variation.

Webots 5 (deprecated)

supervisor field set(NodeRef, FieldType,const void *data)
supervisor field get(NodeRef, FieldType, void *data, unsigned short ms)

Webots 6

wb supervisor field get sf bool() wb _supervisor field get mf bool()

wb supervisor field get sf int32() wb supervisor field get mf int32()

wb supervisor field get sf float() wb supervisor field get mf float()

wb supervisor field get sf vec2f() wb supervisor field get mf vec2f()

wb supervisor field get sf vec3f() wb supervisor field get mf vec3f()

wb supervisor field get sf rotation() wb _supervisor field get mf rotation()
wb_supervisor field get sf color() wb_supervisor field get mf color()

wb supervisor field get sf string() wb supervisor field get mf string()
wb supervisor field get sf node() wb supervisor field get mf node()

wb supervisor field set sf bool() wb supervisor field set mf bool()

wb supervisor field set sf int32() wb supervisor field set mf int32()

wb superv1sor field _set sf _float() wb superv1sor field set mf _float()

wb supervisor field set sf vec2f() wb supervisor field set mf vec2f()

wb superv1sor field _set sf ~vec3f() wb superv1sor field set mf _vec3f()
wb_supervisor field set sf rotation() wb_supervisor fleld set “mf _rotation()
wb supervisor field set sf color() wb supervisor field set mf color()
wb_supervisor field set sf string() wb supervisor field set mf string()

Here are some examples showing how to port existing Supervisor code to the new API. The first
example shows how to read the position of a robot:

Webots S (deprecated)

static float translation[3];
static void reset() {
// this must be done once only

NodeRef robot = supervisor node get from def(“MY ROBOT");
supervisor field get(robot, SUPERVISOR FIELD TRANSLATION, translation, STEP);

}
static int run(int ms) {
// this is done repeatedly

robot console printf(“MY ROBOT is at position: %g %g %g\n”,
translation[0], translation[1l], translation[2]);

Webots 6

11/07/08 Page 8 of 15



// do this once only
WbNodeRef robot = wb_supervisor_node_get_ from_def(“MY_ROBOT");
WbFieldRef trans field = wb supervisor node get field(robot, “translation”);

for (;3) Ao

// this is done repeatedly
const double *translation = wb supervisor field get sf vec3f(trans field);
printf(“MY ROBOT is at position: %g %g %g\n”,

translation[0], translation[1l], translation[2]);

Note that the ms (STEP) parameter has disappeared in Webots 6, because the new functions return the
result synchronously. This second example shows how to change the position of a robot:

Webots 5 (deprecated)

static NodeRef robot = NULL;
static void reset() {

}}.do this once only
robot = supervisor node get from def(“MY ROBOT”);

}
static int run(int ms) {
)}ldo this repeatedly

float pos[3] = { 0.0, 1.0, 4.0 };
supervisor field set(robot, SUPERVISOR FIELD TRANSLATION, pos);

}

Webots 6

)).need to do this once only
WbNodeRef robot = wb supervisor node get from def(“MY _ROBOT"”);
WbFieldRef trans field = wb supervisor node get field(robot, “translation”);

for Gi) A
)}ldo this repeatedly

double pos[3] = { 0.0, 1.0, 4.0 };
wb supervisor field set sf vec3f(trans field, pos);

This third example show how to change the controller of a robot:

11/07/08 Page 9 of 15




Webots S (deprecated)

NodeRef robot = supervisor node get from def(“MY ROBOT"”);

supervisor robot set controller(robot, “braitenberg”);

Webots 6

WbNodeRef robot = wb supervisor node get from def(“MY ROBOT"”);
WbFieldRef controller_field = wb_supervisor_node get field(robot, “controller”);

\;/t.);supe rvisor field set sf string(controller field, “braitenberg”);

GPS functions

In Webots 6, the concept of “matrix” was removed from the GPS device. So the gps_get matrix() and
gps_euler() functions are deprecated. As a consequence in Webots 6, the GPS device can no longer
give rotational information; it only gives positional information (like a real world GPS). The rotation of
an object must now be estimated either by using the new Compass device, or with the new
wb supervisor field get sf rotation() function.

Webots 5 (deprecated) Webots 6
gps_get matrix() wb compass get values()
gps_euler() wb supervisor field get sf rotation()

The three access macros (below) were removed because they became obsolete as a consequence of the
removal of gps _get matrix(). They are now replaced by the new wb _gps get values() function.

Webots 5 (deprecated) Webots 6

#define gps position x() wb _gps _get values()
#define gps position y()
#define gps position z()

This example shows the difference between Webots 5 and Webots 6:

Webots 5 (deprecated) Webots 6
const float *matrix; const double *pos;
matrix = gps get matrix(gps); pos = wb gps get values(gps);
float x = gps _position x(matrix); double x = pos[0];
float y = gps _position y(matrix); double y = pos[1];
float z = gps position z(matrix); double z = pos[2];

Note that the returned vector (pos) is a pointer to internal data managed by the GPS node. It is illegal to
free this pointer. Furthermore the returned vector (pos) has exactly three components, therefore only

11/07/08 Page 10 of 15



the indexes 0, 1 and 2 are valid to access it:

‘double wrong = pos[3]; // WRONG WRONG WRONG !

Accelerometer functions

In Webots 6, the following macros were removed:

Webots S (deprecated)

#define accelerometer value x()
#define accelerometer value y()
#define accelerometer value z()

It is now recommended to access the returned values directly as shown here:

Webots S (deprecated)

const float *acc = accelerometer get values(tag);

float xacc = accelerometer value x(acc);
float yacc = accelerometer value y(acc);
float zacc = accelerometer value z(acc);

Webots 6

const double *acc = wb accelerometer get values(tag);

double xacc = acc[0];
double yacc = acc[1];
double zacc = acc[2];

Note that the returned vector (acc) is a pointer to internal data managed by the Accelerometer node. It
is illegal to free this pointer. Furthermore the returned vector (acc) has exactly three components,
therefore only the indexes 0, 1 and 2 are valid to access it:

‘double wrong = acc[3]; // WRONG WRONG WRONG !

Emitter/Receiver functions

The emitter send packet() function was renamed wb _emitter send().

Webots 5 (deprecated) Webots 6

emitter send packet() wb emitter send()

Pen functions

In Webots 6, the color passed to the wb_pen set ink color() function must now be specified as a
single int argument instead of three floats (RGB) as it was in Webots 5. The int contains the bit
values for the red green and blue components each specified with 8 bits. For example: 0x000000 is
black, Oxffffff is white, 0xff0000 is red, 0x00ff00 is green, 0x0000ff blue, etc.

Webots 5 (deprecated)

void pen set ink color(DeviceTag,float red,float green,float blue,float density);

11/07/08 Page 11 of 15



Webots 6

void wb pen set ink color(WbDeviceTag, int color, double density);

Here is an example:

Webots 5 (deprecated)
pen set ink color(tag, 1.0, 0.0, 0.0, 1.0); // red and opaque

Webots 6
wb _pen set ink color(tag, 0xffee00, 1.0); // red and opaque

CustomRobot functions

All the custom robot *() functions are deprecated. In particular, the custom robot move() function
was deprecated because it was inconsistent with the fact that a real robot can not “magically” move

itself to a random location.

Randomly moving a robot is now reserved to Supervisor controllers and must be achieved through the
wb supervisor field set sf vec3f() and / or wb supervisor field set sf rotation()

functions:

Webots S (deprecated)

void custom robot move(float tx, float ty, float tz, float rx, float ry, float
rz, float alpha)

Webots 6

void wb supervisor field set sf vec3f(WbFieldRef field, const double *values)
void wb supervisor field set sf rotation(WbFieldRef field, const double *values)

Similarly the two functions below were removed because a real robot controller cannot apply a random
force to its own body. There is no controller API replacement for these functions. If you want to add
random forces or torques to your simulation your are now advised to do this with a physics plugin:

Webots 5 (deprecated)

custom robot set rel force and torque()
custom robot set abs force and torque()

Webots 6

// There is no replacement in the controller API

// You need to use these ODE functions in the physics plugin
dBodyAddForce()

dBodyAddTorque()

dBodyAddRelForce()

dBodyAddRelTorque()

11/07/08 Page 12 of 15




JAVA Language API

JAVA Program Structure

In the Webots 5 JAVA API, all the methods (~130) were contained in a single class named Controller.
In Webots 6, this was completely redesigned in order to offer a more object-oriented structure. The Java
API is now automatically generated from the C++ API using SWIG. Note that the C++, Python and

JAVA APIs now offer exactly the same structure and functionality.

The Controller class is now replaced by the new Robot class and each device is now defined in its
own class. For example there is now a class for DistanceSensor, Servo, etc... These new device

classes provide operations such as enable(), disable(), getValue() etc.

The new Robot class has now dedicated methods to get the various device instances. This replaces the
previous Controller.robot get device() method and also the “device tags” that are now

completely encapsulated in the device classes. Please have a look at Illustration 1.

Webots 5 Controller.reset() and Controller.die() methods are deprecated. The program

structure of Webots 6 JAVA controllers looks now different:

Webots S (deprecated)

import com.cyberbotics.webots.Controller;
public class MyController extends Controller {

private int tag;
private final int STEP = 64;

public static void reset() {
tag = get device("ls");
}

public static void die() {
// your cleanup code here

}

public static void main(String[] args) {
for (;;) {
/* sense & actuate */
int v = light sensor get value(tag);
robot step(STEP);
}
}
}

Webots 6

import com.cyberbotics.webots.controller.Robot;
import com.cyberbotics.webots.controller.LightSensor;

public class MyRobot extends Robot {

private LightSensor 1s;

11/07/08

Page 13 of 15




private final int STEP = 64;

public MyRobot() {

super();

1s = getLightSensor("ls");
}

public void run() {
do {
/* sense & actuate */
double v = 1s.getValue();
} while (step(STEP) !'= -1);

// your cleanup code here

}

public static void main(String[] args) {
MyRobot robot = new MyRobot();

robot.run();

}

}

Printing to Webots console

Webots 6 automatically redirects the standard output and error streams of the controllers to the console.
So any method for printing to the standard output and error streams can now be used in controller code.
This replaces the robot console printf() and robot console println() methods (Controller

class) of Webots 5:

Webots 5 (deprecated)

Webots 6

robot console print(“Hello!”);
robot console println(“Hello!”);

System.out.print(“Hello!”);
System.out.println(“Hello!");
System.out.printf(“Hello!"”);

11/07/08

Page 14 of 15




C++ and Python APIs

Webots 6 Python and C++ APIs were completely redesigned. You will need to adapt your controller
code when upgrading to Webots 6. Unlike the C and JAVA API, the backwards compatibility is not

ensured. This is the simplified class diagram of Webots 6:

Robot

+Robot (
+...(0)

+...()

)

+getLED(string):

+step(int): int

LED

i

DifferentialWheels

+DifferentialWheels()
+setSpeed(int,int): void
+...0)

Supervisor

Device

+getName(): string

+Supervisor()
+simulationRevert(): void
+...0)

+getRoot(): Node
+getFromDef(): Node

LED

... OtherDevices ...

+set(int)

Node

+...()

+getField(string): Field

Field

+...()

+getSFVec2f(): double

Hllustration 1: Simplified class diagram for the C++, JAVA and Python APIs of Webots 6

11/07/08

Page 15 of 15



	From Webots 5 to Webots 6
	What changed in Webots API ?
	Summary
	C controller API
	JAVA controller API
	Python and C++ controller APIs
	Physics plugin API
	World files

	C controller API
	Function, type and constant names
	Includes
	C Program Structure
	Floating point values
	Printing to Webots console
	LookupTables and related functions
	Supervisor functions
	GPS functions
	Accelerometer functions
	Emitter/Receiver functions
	Pen functions
	CustomRobot functions

	JAVA Language API
	JAVA Program Structure
	Printing to Webots console

	C++ and Python APIs


