Webots User Guide

release 7.0.2

Copyright (¢) 2012 Cyberbotics Ltd.
All Rights Reserved

www.cyberbotics.com

November 16, 2012

Permission to use, copy and distribute this documentation for any purpose and without fee is
hereby granted in perpetuity, provided that no modifications are performed on this documenta-
tion.

The copyright holder makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding this manual and the associated software. This manual is provided on an as-is basis.
Neither the copyright holder nor any applicable licensor will be liable for any incidental or con-
sequential damages.

The Webots software was initially developed at the Laboratoire de Micro-Informatique (LAMI)
of the Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes
no warranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with the use and exploitation of this software.

Trademark information

Aibo™is a registered trademark of SONY Corp.

Radeon™is a registered trademark of ATI Technologies Inc.

GeForce™is a registered trademark of nVidia, Corp.

Java™is a registered trademark of Sun MicroSystems, Inc.
Khepera™and Koala™are registered trademarks of K-Team S.A.
Linux™is a registered trademark of Linus Torvalds.

Mac OS X™js a registered trademark of Apple Inc.

Mindstorms™and LEGO™ are registered trademarks of the LEGO group.
IPR™is a registered trademark of Neuronics AG.

Ubuntu™is a registered trademark of Canonical Ltd.

Visual C++™, Windows™, Windows 98™, Windows ME™, Windows NT™, Windows 2000™,
Windows XP™and Windows Vista™Windows 7™ are registered trademarks of Microsoft Corp.

UNIX™;s a registered trademark licensed exclusively by X/Open Company, Ltd.

Foreword

Webots is a three-dimensional mobile robot simulator. It was originally developed as a research
tool for investigating various control algorithms in mobile robotics.

This user guide will get you started using Webots. However, the reader is expected to have a
minimal knowledge in mobile robotics, in C, C++, Java, Python or MATLAB programming, and
in VRML97 (Virtual Reality Modeling Language).

Webots 7 features a new layout of the user interface with many facilities integrated, such as a
source code editor, motion editor, etc.

We hope that you will enjoy working with Webots 7.

Thanks

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, the Webots User Guide, the Webots Reference Manual, and the Webots
web site, including Yvan Bourquin, Fabien Rohrer, Jean-Christophe Fillion-Robin, Jordi Porta,
Emanuele Ornella, Yuri Lopez de Meneses, Sébastien Hugues, Auke-Jan Ispeert, Jonas Buchli,
Alessandro Crespi, Ludovic Righetti, Julien Gagnet, Lukas Hohl, Pascal Cominoli, Stéphane
Mojon, Jérdme Braure, Sergei Poskriakov, Anthony Truchet, Alcherio Martinoli, Chris Cianci,
Nikolaus Correll, Jim Pugh, Yizhen Zhang, Anne-Elisabeth Tran Qui, Grégory Mermoud, Lu-
cien Epinet, Jean-Christophe Zufferey, Laurent Lessieux, Aude Billiard, Ricardo Tellez, Gerald
Foliot, Allen Johnson, Michael Kertesz, Simon Garnieri, Simon Blanchoud, Manuel Jodao Fer-
reira, Rui Picas, José Afonso Pires, Cristina Santos, Michal Pytasz and many others.

Moreover, many thanks are due to Cyberbotics’s Mentors: Prof. Jean-Daniel Nicoud (LAMI-
EPFL), Dr. Francesco Mondada (EPFL), Dr. Takashi Gomi (Applied Al, Inc.).

Finally, thanks to Skye Legon and Nathan Yawn, who proofread this guide.

Contents

1 Installing Webots

1.1
1.2

1.3

1.4

1.5

2.1

System requirementso Lo u e e e e e e e e e
Installation procedure L. e
L2.1 Linux . . . oo oo e e e e e e
1.2.2 Windows 7, Vista, XP
1.23 MacOS X . . . e
Webots license system e
1.3.1 Licenseagreement i
1.3.2 License Setup v v v v vt i e e e e e e e e e e e e e e
1.33 Donglesetup e
1.3.4 Dongleusage e
Verifying your graphics driver installation
1.4.1 Supported graphicscards
1.4.2 Unsupported graphicscards
1.43 Upgrading your graphics driver
1.4.4 Hardware acceleration tips oL
Translating Webots to your own language

Getting Started with Webots

Introduction to Webots Lo
2.1.1 Whatis Webots?
2.1.2 WhatcanIdo with Webots?
2.1.3 Whatdo I need to know to use Webots?

30

2.2

2.3

24

2.5

2.6

CONTENTS

2.1.4 Webots simulation oL L 30
2.1.5 Whatisaworld? 31
2.1.6 Whatisacontroller? L L oL 31
2.1.7 WhatisaSupervisor? 31
Starting Webots 32
221 Linux e 32
222 MacOS X . .. e 32
223 Windowso e 32
2.2.4 Command Line Arguments, 32
The User Interface 33
23.1 FileMenu. 33
232 EditMenu 35
233 ViewMenu 35
234 SimulationMenuo Lo 37
235 BuildMenu 38
23.6 RobotMenu 38
237 ToolsMenu e 38
238 WizardsMenuo 39
239 Helpmenu 39
2.3.10 Speedometer and Virtual Time 40
The3D Window 40
24.1 Selectinganobject Lo 40
24.2 Navigationinthescene L oL 40
243 Movingasolidobject. 41
2.44 Applying a force to a solid object with physics 42
2.4.5 Applying a torque to a solid object with physics 42
The Scene Tree L e 42
2.5.1 Buttons of the Scene Tree Window 42
Citing Webots e e e 44
2.6.1 Citing Cyberbotics’ website, 45

2.6.2 Citing a reference journal paper about Webots 45

CONTENTS 9

3 Sample Webots Applications 47
3.1 Samples e e e e e 47
3.1.1 blimp.lisswbt 48

3.1.2 gantry.wbt. 49

3.1.3 hexapod.wbt 50

3.1.4 humanoid.wbt 51
3.1.5 moon.wbt . ..ol 52

3.1.6 ghostdog.wbt 53

3.1.7 salamanderwbt 54

3.1.8 soccerwbt. 55

3.1.9 sojourner.wbt 56
3.1.10 yamor.wbto e e e e e 57
3.1.11 stewart platform.wbt 58

3.2 Webots Devices L 59
3.2.1 battery.wbt 59

322 bumper.wbt e 60

323 camera.wbt e 61
324 connectorwbt e 62

3.2.5 distance_sensor.wbt Lo 63

3.2.6 emitter_receiverwbt Lo oL 64

3277 encoders.wbt 65

3.2.8 forcesensor.wbt 66

329 gps.wbt . .. 67
3.2.10 led.wbt 68
3.2.11 lightsensor.wbt. e 69
3212 pen.wbt e 70
3.2.13 range finderwbt L 71

33 HowTo e 72
33.1 binocularwbt 72

332 bipedwbt 73

3.3.3 force_control.wbt 74

10

34
3.5

CONTENTS
3.3.4 inverted_pendulum.wbt Lo o 75
33,5 physics.wbt . . . L e 76
3.3.6 supervisor.wbt L. e e 77
3.3.7 texture_change.wbt L o 78
33.8 town.wbt 79
Geometries ot i e e e e e e e e 80
RealRobots o 81
3.5.1 aibo_ers210rough.wbt 81
3.5.2 aiboers7.wbt 82
353 alicewbt . ..o 83
354 boebot.wbt 84
355 e-puckwbt . ..o 85
35.6 e-pucklinewbt 86
3.5.7 e-puckline.demo.wbt, 87
3.5.8 hemisson_cross_compilation.wbt o000 88
359 hoap2sumo.wbt L 89
3.5.10 hoap2_walk.wbt. 90
3.5.11 ipr_collaboration.wbt oL 91
3.5.12 dprcube.wbt 92
3.5.13 iprfactory.wbt 93
3.5.14 ipromodels.wbt 94
3.5.15 kheperawbto L 95
3.5.16 khepera2Z.wbt L 96
3.5.17 khepera3.wbt 97
3.5.18 khepera fast2d.wbt L 98
3.5.19 khepera_gripper.wbt Lo 99
3.5.20 khepera gripper_ camera.wbt oL L L., 100
3.5.21 khepera k213.wbt 101
3.5.22 khepera pipe.wbt 102
3.5.23 khepera_tcpip.wbt 103
3.5.24 koalawbt 104

CONTENTS 11

3.5.25 magellan.wbt L 105
3.5.26 pioneer2.wbt 106
3.5.27 rover.wbt L e e 107
3528 scout2.wbt 108
3,529 shrimp.wbt 109
3.5.30 bioloid.wbt 110

4 Language Setup 113
4.1 Introduction e e e e 113
4.2 Controller Start-up 113
43 Using C o e e e e 114
43.1 Introduction. e 114

43.2 C/C++ Compiler Installation 115

4.4 Using CH+. . . o o oo e e e 115
441 Introduction. i e e e e 115

442 C++ Compiler Installation 116

443 Source CodeoftheC++API 116

45 UsinglJava. o e e e e 116
45.1 Introduction. 116

4.5.2 Java and Java Compiler Installation 116

453 Link withexternaljarfiles 118

454 Source CodeoftheJava APl 118

46 UsingPython 119
4.6.1 Introduction. e 119

4.6.2 PythonInstallation, 119

4.6.3 Source Code of the Python API 120

47 Using MATLAB™ | 121
47.1 Introduction to MATLAB™ 121

472 How torunthe Examples? 121

473 MATLAB™Installation 121

474 Compatibility Issues 122

12

CONTENTS

4.8 UsingROS e e 123
48.1 WhatisROS? 123

482 ROSforWebots 123

483 UsingROSwithWebots 124

4.9 Interfacing Webots to third party software with TCP/IP 124
4.9.1 OVEIVIEW o it e e e e e e 124

4.9.2 Mainadvantageso Lol e e e 124

493 Limitations e e e e e e e e e e e 125
Development Environments 127
5.1 Webots Built-in Editor o 127
5.1.1 Compiling with the Source Code Editor 127

5.2 The standard File Hierarchy of a Project 129
5.2.1 The Root Directory of a Project 129

522 TheProjectFiles 130

5.2.3 The "controllers” Directory, 130

5.3 Compiling Controllers ina Terminal 130
53.1 MacOSXandLinux 131

532 Windows e 131

5.4 Using Webots Makefiles, 131
54.1 Whatare Makefileso o oo 131

5.4.2 Controller with Several Source Files (C/C++) 132

5.4.3 Using the Compiler and Linker Flags (C/C++) 133

5.5 Debugging C/C++ Controllers 134
5.5.1 Controller processes v v v v i v i e e 134

5.5.2 Using the GNU debugger with acontroller 135

5.6 Using Visual C++with Webots 137
5.6.1 Introduction. e 137

5.6.2 Configuration e 137

5.7 Starting Webots Remotely (ssh) 139

5.7.1 Usingthesshcommand 139

CONTENTS 13

5.7.2 Terminating the sshsession 140

5.8 Transfertoyourownrobot o 141
5.8.1 Remotecontrol 141

5.8.2 Cross-compilation 142

5.8.3 Imterpreted language Lo 143

6 Programming Fundamentals 145
6.1 Controller Programming o 145
6.1.1 HelloWorld Example 145

6.1.2 Reading Sensors 146

6.1.3 Using Actuators i i e e e 148

6.1.4 How touse wb_robotstep(), 150

6.1.5 Using Sensors and Actuators Together 150

6.1.6 Using Controller Arguments v ... 152

6.1.7 Controller Termination 153

6.2 Supervisor Programming e 155
6.2.1 Introduction. 155

6.2.2 Tracking the Positionof Robots 155

6.2.3 Setting the Positionof Robots 156

6.3 Using Numerical Optimization Methods 158
6.3.1 Choosing the correct Supervisor approach 158

6.3.2 Resettingtherobot 160

6.4 C++/Java/Python e e 163
6.4.1 Classesand Methods 164

6.4.2 Controller Class it 164

643 C++Example 166

6.44 JavaExample e 167

6.4.5 PythonExample L. 168

6.5 Matlab 168
6.5.1 Using the MATLAB™desktop 169

6.6 Controllerplugin e e 170

14

CONTENTS

6.6.1 Fundamentals 170

6.6.2 Robotwindowplugin., 171

6.6.3 Remote-control plugin L oo oL 173

6.7 Webots Plugins L 175
6.7.1 Physicsplugin 175

6.7.2 Fast2Dplugin. 175

6.7.3 Soundplugin 175
Tutorials 177
7.1 PrerequiSites o L oL e e e e e e e e e e 178
7.1.1 Imstall Webots 178

7.1.2 Create a directory for all your Webots files 178

7.1.3 Start Webots 178

7.14 Createanew Project oL 179

7.1.5 The Webots Graphical User Interface (GUI) 179

7.2 Tutorial 1: Your first Simulation in Webots (20 minutes) 179
7.2.1 Createanew World L o L 181

722 Addane-puckRobot oL 182

7.2.3 Createanew Controller, 184

724 Conclusion e 186

7.3 Tutorial 2: Modification of the Environment (20 minutes) 186
7.3.1 Anew Simulation oL 186

732 TheSolidNode 186

7.3.3 Observationofthe Floor 188

734 CreateaBall 188

7.3.5 GEOmMEtries v v i e e e e e e e e e e 188

7.3.6 DEF-USEmechanism 189

737 AddWalls.o 191

7.3.8 Efficiency 192

7.3.9 Conclusion 192

7.4 Tutorial 3: Appearance (15 minutes) 192

CONTENTS 15

7.5

7.6

1.7

7.8

74.1 Newsimulation 193
742 Lights o 193
7.4.3 Modify the Appearance of the Walls 193
744 AddaTexturetotheBall 194
7.4.5 Rendering Options 195
74.6 Conclusion L 195
Tutorial 4: More about Controllers (20 minutes) 195
7.5.1 New World and new Controller 196
7.5.2 Understand the e-puck Model 196
7.53 ProgramaController L o 197
7.54 The ControllerCode, 201
7.5.5 Conclusion L 203
Tutorial 5: Compound Solid and Physics Attributes (15 minutes) 203
7.6.1 Newsimulation L 204
7.6.2 Compound Solido 204
7.6.3 Physics Attributes L oL 205
7.64 TheRotationField 0. 206
7.6.5 How to choose bounding Objects? 206
7.6.6 Contactso e e e e e e e e 207
7.6.7 basicTimeStep, ERPandCFM 207
7.6.8 Minor physics Parameters L 0oL 208
7.69 Conclusion e 208
Tutorial 6: 4-WheelsRobot oL 208
7.7.1 Newsimulation L 208
7.7.2 Separating the Robotin SolidNodes 210
7.7.3 Rotational Servos Lo 211
774 Sensorsol e e e e 212
7775 Controller L 212
7.77.6 Conclusion 213

Going Further e 214

16 CONTENTS
8 Robots 215
8.1 Usingthee-puckrobot 215
8.1.1 Overviewoftherobot 215
8.1.2 Simulationmodel 216
8.1.3 Controlinterface 221
82 Usingthe Naorobot. i it ittt 224
8.2.1 Introduction. 224
8.2.2 Using Webots with Choregraphe 224
8.2.3 Usingmotionboxes 225
824 Usingthecameras 225
8.2.5 Using Several Naorobots 226
8.2.6 Getting the right speed for realistic simulation 226
827 KnownProblems o 227
82.8 SourceCode 227
8.3 Using the Pioneer 3-AT and Pioneer 3-DX robots 228
8.3.1 Pioneer3-AT 228
832 Pioneer3-DX 230
9 Webots FAQ 235
9.1 General e 235
9.1.1 What are the differences between Webots FREE, Webots EDU and We-
bots PRO? 235
9.1.2 HowcanlIreportabugin Webots? 235
9.1.3 Isit possible to use Visual C++ to compile my controllers? 236
9.2 Programming e e e e e e e e e e e e e e e 236
9.2.1 How can I get the 3D position of a robot/object? 236
9.2.2 How can I get the linear/angular speed/velocity of a robot/object? 237
9.23 HowcanlIresetmyrobot?, 238
9.2.4 What does this mean: “Could not find controller {...} Loading void con-
troller instead.” ? L Lo 238
9.2.5 What does this mean: “Warning: invalid WbDeviceTag in API function

CONTENTS 17
9.2.6 Isitpossible to apply a (user specified) force toarobot? 240
9.2.7 How can Idraw in the 3D window? 241

9.2.8 What does this mean: “The time step used by controller {...} is not a
multiple of WorldInfo.basicTimeStep!”? 241
9.29 How canIdetectcollisions?, 242
9.2.10 Why does my camera window stay black? 243
9.3 Modeling 243
9.3.1 My robot/simulation explodes, what should I do? 243
9.3.2 How to make replicable/deterministic simulations? 244
9.3.3 How to remove the noise from the simulation? 245
9.3.4 Howcanlcreate apassivejoint? 245
9.3.5 Isitpossible fix/immobilize one part of arobot? 245
9.3.6 Should I specify the "mass” or the ’density” in the Physics nodes? 246
9.3.7 How to get a realisitc and efficient rendering? 246
9.4 Speed/Performance 247
9.4.1 Why is Webots slow on my computer? 247
9.4.2 How can I change the speed of the simulation? 247
9.4.3 How can I make movies that play at real-time (faster/slower)? 248
10 Known Bugs 251
10.1 General e e e 251
10.1.1 Intel GMA graphicscards 251
10.1.2 Virtualization L 251
10.1.3 Collisiondetection e 251
102 MacOS X . . . o o e e 252
10.2.1 Anti-aliasing e e 252
103 Linux o e e e e e e 252
10.3.1 Windowrefresh L 252

1032 ssh-x o e 252

18

CONTENTS

Chapter 1

Installing Webots

This chapter explains how to install Webots and the USB dongle on your computer.

1.1 System requirements

The following hardware is required to run Webots:

o A fairly recent PC or Macintosh computer with at least a 2 GHz dual core CPU clock speed
is a minimum requirement. A quad-core CPU is however recommended.

e An nVidia or ATT OpenGL capable graphics adapter with at least 256 MB of RAM is
required. We do not recommend any other graphics adapters, including Intel graphics
adapters, as they often lack a good OpenGL support which may cause 3D rendering prob-
lems and application crashes. For Linux systems, we recommend only nVidia graphics
cards. Webots is known to work well on all the graphics cards included in fairly recent
Apple computers.

The following operating systems are supported:

e Linux: Webots is officially supported on the latest Ubuntu releases, but it is also known
to run on most recent major Linux distributions, including RedHat, Mandrake, Debian,
Gentoo, SuSE, and Slackware. We recommend using a recent version of Linux. Webots is
provided for both Linux 32 (i386) and Linux 64 (x86-64) systems.

e Windows: Webots runs on Windows 7, Windows Vista and Windows XP. It is not sup-
ported on Windows 98, ME, 2000 or NT4.

e Macintosh: Webots runs on Mac OS X 10.7 ”Lion” and 10.8 "Mountain Lion”. Webots
may work but is not officially supported on earlier versions of Mac OS X. Since version

19

20 CHAPTER 1. INSTALLING WEBOTS

6.3.0, Webots is compiled exclusively for Intel Macs, it does not run on old PowerPC
Macs. To use Webots on a PowerPC Mac, you need Webots 6.2.4 (or earlier), these older
versions were compiled as Universal Binary.

Other versions of Webots for other UNIX systems (Solaris, Linux PPC, Irix) may be available
upon request.

1.2 Installation procedure

Usually, you will need to be “administrator” to install Webots. Once installed, Webots can be
used by a regular, unprivileged user. To install Webots, please follow this procedure:

1. Uninstall completely any old version of Webots that may have been installed on your
computer previously.

2. Install the evaluation version of Webots for your operating system as explained below.

3. Setup your Webots USB dongle according the instructions described in the next section.

The evaluation version will become an EDU or PRO version after installing

the dongle. After installation, the most important Webots features will be

available, but some third party tools (such as Java, Python, or MATLAB™)
note may be necessary for running or compiling specific projects. The chapter 4
covers the set up of these tools.

1.2.1 Linux

Webots will run on most recent Linux distributions running glibc2.3. This includes fairly recent
Ubuntu, Debian, Fedora, SuSE, RedHat, etc. Webots comes in two different package types:
.tar.bz2 (tarball) or .deb which are suitable for most Linux systems. These package are located
on the Webots DVD in the 1 inux/webots folder, or can be downloaded from our web site'.
Please select among the following ways to install Webots.

@ Some of the following commands requires the root privileges. You can get
these privileges by preceding all the commands by the sudo command.

note

"http://www.cyberbotics.com/linux

http://www.cyberbotics.com/linux

1.2. INSTALLATION PROCEDURE 21

Webots will run much faster if you install an accelerated OpenGL drivers. If
you have a nVidia or ATI graphics card, it is highly recommended that you
install the Linux graphics drivers from these manufacturers to take the full

note advantage of the OpenGL hardware acceleration with Webots. Please find

instructions here section 1.4.

@ Webots needs the mencoder Linux package to create MPEG-4 movies. You

should install it if you want to create MPEG-4 movies of your simulations.
note

Using Advanced Packaging Tool (APT)

The advantage of this solution is that Webots will be updated with the system updates. This
installation requires the root privileges.

First of all, you may want to configure your apt package manager by adding this line:

deb http://www.cyberbotics.com/debian/ binary-i386/

or

deb http://www.cyberbotics.com/debian/ binary-amd64/

inthe /etc/apt/sources. list configuration file. Then update the APT packages by using
apt—-get update

Optionally, Webots can be autentified thanks to the Cyberbotics.asc signature file which
can be downloaded here?, using this command:

apt-key add /path/to/Cyberbotics.asc

Then proceed to the installation of Webots using:

apt—-get install webots

Synaptic Package Manager. But only a command line procedure is docu-
note mented here.

@ This procedure can also be done using any APT front-end tool such as the

’http://www.cyberbotics.com/linux

http://www.cyberbotics.com/linux

22 CHAPTER 1. INSTALLING WEBOTS

From the tarball package

This procedure explains how to install Webots from the tarball package (having the .tar.bz2
extension). The tarball package can be installed without the root privileges. It can be uncom-
pressed anywhere using the tar xjf command line. Once uncompressed, it is recommended
to set the WEBOTS_HOME environment variable to point to the webots directory obtained from
the uncompression of the tarball:

tar xjf webots-7.0.2-1386.tar.bz2

or

tar xjf webots-7.0.2-x86-64.tar.bz2

and

export WEBOTS_HOME=/home/username/webots

The export line should however be included in a configuration script like /etc/profile, so
that it is set properly for every session.

Some additional libraries are needed in order to properly run Webots. In particular libjpeg62 and
mencoder have to be installed on the system.

From the DEB package

This procedure explains how to install Webots from the DEB package (having the . deb exten-
sion). This can be done using dpkg with the root privileges:

dpkg -1 webots_7.0.2_1386.deb

or

dpkg —-i webots_7.0.2_amd64.deb

1.2.2 Windows 7, Vista, XP

1. Uninstall any previous release of Webots from the Start menu, Control Panel, Add / Remove
Programs. You may also use the Start menu, Cyberbotics, Uninstall Webots.

2. Get the webots—7.0.2_setup.exe installation file either from the Webots DVD (in
the windows /webot s folder) or from our web site?.

3. Double click on this file.

4. Follow the installation instructions.

3http://www.cyberbotics.com/windows/

http://www.cyberbotics.com/windows/

1.3. WEBOTS LICENSE SYSTEM 23

If you observe 3D rendering anomalies or Webots crashes, it is strongly recommend to upgrade
your graphics driver. The safest way to update drivers is to uninstall the current drivers, reboot
into VGA mode, install the new drivers, and reboot again.

1.2.3 MacOS X

1. Getthe webots—7.0.2.dmg installation file from the Webots DVD (in the mac/webots
folder).

2. Double click on this file. This will mount on the desktop a volume named Webot s con-
taining the Webot s folder.

3. Move this folder to your /Applications folder or wherever you would like to install
Webots.

To play back the MPEG-4 movies generated by Webots, you will need to
install either the VLC application or the FlipAMac WMV component for
note QuickTime. Both are freely available from the Internet.

1.3 Webots license system

Starting with Webots 7, a new license system was introduced to facilitate the use of Webots,
which replaces the previous system. Webots licenses can now be setup on an unlimited number
of computers, allowing you to use Webots seamlessly on any computer (office, home, travel,
etc.). This new system relies on a license server located on Cyberbotics servers and accessible
through an Internet connection. If you would like to use Webots while not connected to the
Internet, you should purchase a USB dongle to transfer your Internet license to this dongle. Your
license can also be transfered back to the license server if needed.

Cyberbotics license servers are located in Switzerland on a highly reliable

network featuring a 99.9% up-time. However, if for some reason our servers
would fail, a security system will allow you to run Webots even in case of
note server failure, by connecting automatically to an alternate server located in

the Cloud (Google App Engine).

1.3.1 License agreement

Please read your license agreement carefully before using Webots. This license is provided
within the software package. By using the software and documentation, you agree to abide by
all the provisions of this license.

24 CHAPTER 1. INSTALLING WEBOTS

1.3.2 License setup

A Webots license is originally associated with an e-mail address which corresponds to a user
account on Cyberbotics’s web site.

When Webots is started for the first time, it invites you to register a user account on Cyberbotics’s
web site (if not already done) and to enter the corresponding license information in the Webots
Preferences. You can always modify the license information from the Webots Preferences avail-
able in the Tools menu.

To enable your Internet license from the Webots Preferences, select the License tab and check
the box entitled Use license server. Then, enter your e-mail address and password corresponding
to your user account, select a license type (Webots PRO, Webots EDU or another license type
if available) and click on the OK button. After some networking, Webots should display your
license information and you should be able to start using Webots.

If you are using a proxy to access the Internet, you may need to configure it in
the Network tab of the Webots Preferences before attempting to connect to the
license server. The proxy configuration should be the same as the one defined
@ in your system or web browser. HTTP proxy should contain the IP address of
the proxy including the port, i.e., for example 123.456.789.012:8080. For an
anonymous proxy, you should leave the username and password fields empty.
Otherwise, you should enter your proxy username and password. If you need
assistance while doing this, please contact your local system administrator.

hote

The Synchronization field of the License tab in the Webots Preferences defines
how frequently Webots checks the license server. Setting this field to a small
value will cause more networking activity, but will allow you to release the
license quickly after a crash. This will allow you in turn to restart Webots
note quicker on another machine. For example, if you select 5 minutes, you may
have to wait for up to 5 minutes if you crashed Webots on a machine and want
to restart it on another.

1.3.3 Dongle setup

The Webots USB dongle (see Figure figure 1.1) is automatically recognized under Windows
and Mac OS X. No driver installation is necessary. Under, Linux it works for the root user
without installing any driver. However, to make it work for any Linux user, you should follow
the installation procedure located in the 1inux/webots/driver_usb_dongle folder of
the Webots DVD or on our web site*. On some Linux systems, it may be necessary to set a
global environment variable with the following command line:

‘http://www.cyberbotics.com/dvd/linux/webots/driver_usb_dongle/

http://www.cyberbotics.com/dvd/linux/webots/driver_usb_dongle/

1.3. WEBOTS LICENSE SYSTEM 25

Figure 1.1: The Webots USB dongle

export USB_DEVFS_PATH=/proc/bus/usb

This should be set globally in /etc/profile, so that you don’t have to set it for every user
when they log on.

1.3.4 Dongle usage

If you purchased a USB dongle, it should originally be empty, i.e., contain no license information.
In order to transfer your license information into the dongle, you should first setup your license
as described earlier in this chapter. Once active, Webots should display a new item in the Tools
menu entitled Transfer license from server to dongle.... If you select this menu item, you will
be asked to insert your dongle in your computer and Webots will transfer your license from
the server to the dongle. Depending on your Internet connection, this operation could take a
few seconds. Once completed, Webots doesn’t need an Internet connection any more. You can
quit Webots, unplug the dongle, plug it on another computer not connected to the Internet and
start Webots on that computer. Webots will read the license information automatically from the
dongle.

@ The Webots USB dongle should be plugged in before you start Webots and

should not be removed until after you close the program.
note

To move the license back to the Internet license server, simply start Webots with the dongle
inserted and go to the Tools to select Transfer license from dongle to server...

The license information securely stored on the Cyberbotics server or en-
crypted on the USB dongle contains your name, organization, country, type of
license, expiration date of your Premier service (for support and upgrades),

note etc. This information is displayed in the About... box available from the Help

menu of Webots.

26 CHAPTER 1. INSTALLING WEBOTS

If your rights changed, for example because you renewed your Premier service for support and
upgrades or you upgraded from Webots EDU to Webots PRO, then you can update the informa-
tion on your Webots dongle simply by transfering the license back to the server and transfering
it again down to your USB dongle.

If you need further information about license issues, please send an e-mail to:

<license@cyberbotics.com>

1.4 Verifying your graphics driver installation

1.4.1 Supported graphics cards

Webots officially supports only recent nVidia and ATT graphics adapters. So it is recommended to
run Webots on computers equipped with such graphics adapters and up-to-date drivers provided
by the card manufacturer (i.e., nVidia or ATI). Such drivers are often bundled with the operating
system (Windows, Linux and Mac OS X), but in some case, it may necessary to fetch it from the
web site of the card manufacturer.

1.4.2 Unsupported graphics cards

Webots may nevertheless work with other graphics adapters, in particular the Intel GMA graphics
adapters. However this is unsupported and may work or not, without any guarantee. Some users
reported success with some Intel GMA graphics cards after installing the latest version of the
driver. Graphics drivers from Intel may be obtained from the Intel download center web site”.
Linux graphics drivers from Intel may be obtained from the Intel Linux Graphics web site®.

1.4.3 Upgrading your graphics driver

On Linux and Windows, you should make sure that the latest graphics driver is installed. On
the Mac the latest graphics driver are automatically installed by the Software Update, so Mac
users are not concerned by this section. Note that Webots can run up to 10x slower without

appropriate driver. Updating your driver may also solve various problems, i.e., odd graphics
rendering or Webots crashes.

Linux

On Linux, use this command to check if a hardware accelerated driver is installed:

Shttp://downloadcenter.intel.com
Shttp://intellinuxgraphics.org

http://downloadcenter.intel.com
http://intellinuxgraphics.org

1.4. VERIFYING YOUR GRAPHICS DRIVER INSTALLATION 27

$ glxinfo | grep OpenGL

If the output contains the string "NVIDIA”, ”ATT”, or "Intel”, this indicates that a hardware
driver is currently installed:

$ glxinfo | grep OpenGL

OpenGL vendor string: NVIDIA Corporation

OpenGL renderer string: GeForce 8500 GT/PCI/SSEZ2
OpenGL version string: 3.0.0 NVIDIA 180.44

If you read "Mesa”, ”Software Rasterizer” or "GDI Generic”, this indicates that the hardware
driver is currently not installed and that your computer is currently using a slow software emula-
tion of OpenGL:

$ glxinfo | grep OpenGL

OpenGL vendor string: Mesa project: www.mesa3d.org
OpenGL renderer string: Mesa GLX Indirect

OpenGL version string: 1.4 (1.5 Mesa 6.5.2)

In this case you should definitely install the hardware driver.

On Ubuntu the driver can usually be installed automatically by using the menu : System > Ad-
ministration > Hardware Drivers. Otherwise you can find out what graphics hardware is installed
on your computer by using this command:

$ lspci | grep VGA
01:00.0 VGA compatible controller: nVidia Corporation GeForce 8500 GT
(rev al)

Then you can normally download the appropriate driver from the graphics hardware manufac-
turer’s website: http://www.nvidia.com’ for an nVidia card or http://www.amd.com® for a ATI
graphics card. Please follow the manufacturer’s instructions for the installation.

Windows

1. Right-click on My Computer.
2. Select Properties.
3. Click on the Device Manager tab.

4. Click on the plus sign to the left of Display adapters. The name of the driver ap-
pears. Make a note of it.

"http://www.nvidia.com
$http://www.amd.com

http://www.nvidia.com
http://www.amd.com

28 CHAPTER 1. INSTALLING WEBOTS

5. Go to the web site of your card manufacturer: http://www.nvidia.com® for an nVidia card
or http://www.amd.com'” for a ATI graphics card.

6. Download the driver corresponding to your graphics card.

7. Follow the instructions from the manufacturer to install the driver.

1.4.4 Hardware acceleration tips
Linux

Depending on the graphics hardware, there may be a huge performance drop of the rendering
system (up to 10x) when compiz is on. Also compiz may cause some display bug where the main
window of Webots is not properly refreshed. Hence, on Ubuntu (or other Linux) we recommend
to deactivate compiz (System > Preferences > Appearance > Visual Effects = None).

1.5 Translating Webots to your own language

Webots is translated into French, German, Spanish, Chinese and Japanese (and partially into
Italian). However, since Webots is always evolving, including new text or changing existing
wording, these translations may not always be complete or accurate. As a user of Webots, you
are very welcome to help us fix these incomplete or inaccurate translations. This is actually a
very easy process which merely consists of editing a UTF-8 XML file, and processing it with a
small utility. Your contribution is likely to be integrated into the upcoming releases of Webots,
and your name acknowledged in this user guide.

Even if your language doesn’t appear in the current Webots Preferences panel, under the General
tab, you can very easily add it. To proceed with the creation of a new translation or the improve-
ment of an existing one, please follow the instructions located in the readme . txt file in the
Webots/resources/translations folder. Don’t forget to send us your translation files!

http://www.nvidia.com
Ohttp://www.amd. com

http://www.nvidia.com
http://www.amd.com

Chapter 2

Getting Started with Webots

This chapter gives an overview of Webots windows and menus.

2.1 Introduction to Webots

2.1.1 What is Webots?

Webots is a professional mobile robot simulation software package. It offers a rapid prototyp-
ing environment, that allows the user to create 3D virtual worlds with physics properties such
as mass, joints, friction coefficients, etc. The user can add simple passive objects or active ob-
jects called mobile robots. These robots can have different locomotion schemes (wheeled robots,
legged robots, or flying robots). Moreover, they may be equipped with a number of sensor and
actuator devices, such as distance sensors, drive wheels, cameras, servos, touch sensors, emit-
ters, receivers, etc. Finally, the user can program each robot individually to exhibit the desired
behavior. Webots contains a large number of robot models and controller program examples to
help users get started.

Webots also contains a number of interfaces to real mobile robots, so that once your simulated
robot behaves as expected, you can transfer its control program to a real robot like e-puck,
DARwIn-OP, Nao, etc. Adding new interfaces is possible through the related sytem.

2.1.2 What can I do with Webots?

Webots is well suited for research and educational projects related to mobile robotics. Many
mobile robotics projects have relied on Webots for years in the following areas:

e Mobile robot prototyping (academic research, the automotive industry, aeronautics, the
vacuum cleaner industry, the toy industry, hobbyists, etc.)

29

30 CHAPTER 2. GETTING STARTED WITH WEBOTS

Robot locomotion research (legged, humanoids, quadrupeds robots, etc.)

Multi-agent research (swarm intelligence, collaborative mobile robots groups, etc.)

Adaptive behavior research (genetic algorithm, neural networks, Al, etc.).

Teaching robotics (robotics lectures, C/C++/Java/Python programming lectures, etc.)

Robot contests (e.g. www.robotstadium.org! or www.ratslife.org?)

2.1.3 What do I need to know to use Webots?

You will need a minimal amount of technical knowledge to develop your own simulations:

e A basic knowledge of the C, C++, Java, Python or Matlab programming language is nec-
essary to program your own robot controllers. However, even if you don’t know these
languages, you can still program the e-puck and Hemisson robots using a simple graphical
programming language called BotStudio.

e If you don’t want to use existing robot models provided within Webots and would like to
create your own robot models, or add special objects in the simulated environments, you
will need a basic knowledge of 3D computer graphics and VRML97 description language.

That will allow you to create 3D models in Webots or import them from 3D modelling
software.

2.1.4 'Webots simulation

A Webots simulation is composed of following items:

1. A Webots world file (.wbt) that defines one or several robots and their environment. The
.wbt file does sometime depend on exernal prototypes files (.proto) and textures.

2. One or several controller programs for the above robots (in C/C++/Java/Python/Matlab).

3. An optional physics plugin that can be used to modify Webots regular physics behavior (in
C/C++).

"http://www.robotstadium.org
nttp://www.ratslife.org

http://www.robotstadium.org
http://www.ratslife.org

2.1. INTRODUCTION TO WEBOTS 31

2.1.5 Whatis a world?

A world, in Webots, is a 3D description of the properties of robots and of their environment.
It contains a description of every object: position, orientation, geometry, appearance (like color
or brightness), physical properties, type of object, etc. Worlds are organized as hierarchical
structures where objects can contain other objects (like in VRML97). For example, a robot can
contain two wheels, a distance sensor and a servo which itself contains a camera, etc. A world
file doesn’t contain the controller code of the robots; it only specifies the name of the controller
that is required for each robot. Worlds are saved in . wbt files. The . wbt files are stored in the
worlds subdirectory of each Webots project.

2.1.6 What is a controller?

A controller is a computer program that controls a robot specified in a world file. Controllers
can be written in any of the programming languages supported by Webots: C, C++, Java, Python
or MATLAB™. When a simulation starts, Webots launches the specified controllers, each as a
separate process, and it associates the controller processes with the simulated robots. Note that
several robots can use the same controller code, however a distinct process will be launched for
each robot.

Some programming languages need to be compiled (C and C++) other languages need to be
interpreted (Python and MATLAB™) and some need to be both compiled and interpreted (Java).
For example, C and C++ controllers are compiled to platform-dependent binary executables
(for example . exe under Windows). Python and MATLAB™controllers are interpreted by the
corresponding run-time systems (which must be installed). Java controller need to be compiled
to byte code (. class files or . jar) and then interpreted by a Java Virtual Machine.

The source files and binary files of each controller are stored together in a controller directory. A
controller directory is placed in the cont rollers subdirectory of each Webots project.

2.1.7 What is a Supervisor?

The Supervisor is a privileged type of Robot that can execute operations that can normally only
be carried out by a human operator and not by a real robot. The Supervisor is normally associated
with a controller program that can also be written in any of the above mentioned programming
languages. However in contrast with a regular Robot controller, the Supervisor controller will
have access to privileged operations. The privileged operations include simulation control, for
example, moving the robots to a random position, making a video capture of the simulation, etc.

32 CHAPTER 2. GETTING STARTED WITH WEBOTS

2.2 Starting Webots

The first time you start Webots it will open the "Welcome to Webots!” menu with a list of possible
starting points.

2.2.1 Linux

Open a terminal and type webot s to launch Webots.

222 MacOSX

Open the directory in which you installed the Webots package and double-click on the Webots
icon.

2.2.3 Windows

From Windows Start menu, go to the Program Files > Cyberbotics menu and click on the Webots
7.0.2 menu item.

2.2.4 Command Line Arguments

Following command line options are available when starting Webots from a Terminal (Linux/-
Mac) or a Command Prompt (Windows):

SYNOPSIS: webots [options] [worldfile]

OPTIONS:
——-minimize minimize Webots window on startup
—--mode=<mode> choose startup mode (overrides application
preferences)
argument <mode> must be one of: stop, realtime, run
or fast
(Webots PRO is required to use: —--mode==run or —--mode
=fast)
—-help display this help message and exit
——version display version information and exit
—-—stdout redirect the controller stdout to the terminal
—-—stderr redirect the controller stderr to the terminal

The optional wor1dfile argument specifies the name of a .wbt file to open. If it is not speci-
fied, Webots attempts to open the most recently opened file.

2.3. THE USER INTERFACE 33

The ——minimize option is used to minimize (iconize) Webots window on startup. This also
skips the splash screen and the eventual Welcome Dialog. This option can be used to avoid
cluttering the screen with windows when automatically launching Webots from scripts. Note
that Webots PRO does automatically enable the Fast mode when ——minimize is specified.

The ——mode=<mode> option can be used to start Webots in the specified execution mode.
The four possible execution modes are: stop, realtime, run and fast; they correspond
to the simulation control buttons of Webots’ graphical user interface. This option overrides, but
does not modify, the startup mode saved in Webots’ preferences. For example, type webots
-—-mode=stop filename.wbt to start Webots in stop mode. Note that run and fast
modes are only available in Webots PRO.

The —--stdout and ——stderr options have the effect of redirecting Webots console output to
the calling terminal or process. For example, this can be used to redirect the controllers output to
a file or to pipe it to a shell command. ——stdout redirects the stdout stream of the controllers,
while ——stderr redirects the stderr stream. Note that the stderr stream may also contain
Webots error or warning messages.

2.3 The User Interface

Webots GUI is composed of four principal windows: the 3D window that displays and allows
to interact with the 3D simulation, the Scene tree which is a hierarchical representation of the
current world, the Text editor that allows to edit source code, and finally, the Console that displays
both compilation and controller outputs.

The GUI has nine menus: File, Edit, View, Simulation, Build, Robot, Tools, Wizards and Help.

2.3.1 File Menu

The File menu allows you to perform usual file operations: loading, saving, etc.

m The New World menu item (and button) opens a new world in the simulation window
containing only an ElevationGrid, displayed as a chessboard of 10 x 10 squares on a surface
of I mx 1m.

ﬂ The Open World... menu item (and button) opens a file selection dialog that allows you to
choose a . wbt file to load.

I-_II The Save World menu item (and button) saves the current world using the current filename
(the filename that appears at the top of the main window). On each Save the content of the . wbt
file is overwritten and no backup copies are created by Webots, therefore you should use this
button carefully and eventually do safety copies manually.

34 CHAPTER 2. GETTING STARTED WITH WEBOTS

File Edit t To d

Scene Tree ¥ 5 oo M oE S D » M M 0:00:26:560 0.70x Fmrnriarbavi s wreeal projects/contests/robotst... @ &
X BB x F Fda - O a | s [@@ da
+ @ soccerField o € 0 . Team'l

nao_soccer _supervisor.c 8 | nao_team_0.cpp 3 nao_teal a

163 .
164 static const char *get team name(int team color)
165 return team_names[control_data.teams[team_colo
166 }

167

168 eate and initialize a Robot struct

169 static Robot *robot new(WbNodeRef node) {

+ @ Walls
+ @ DEF YELLOW_GOAL Goal
+ @ DEF BLUE_GOAL Goal
+ @ DEF BALL Ball
- @& Supervisor
@ translation 00 0
Q:rotation01 00

@scalel11 178 Robot *robot = malloc(sizeof(Robot));

+ @ children 171 robot->translation = wb_supervisor node get fi
@ name "soccer referee” 172 robot->rotation = wb_supervisor_node_get_field
@ model " 173 robot->waist band color = wb supervisor node g

174 robot->position = NULL;

175

176 fi t el

177 wbFieldRef controllerField = wb supervisor nod
178 const char *controller = wb_supervisor_field g
179 if (strstr(controller, "nac"))

180 robot->model = NAO;

181 else

182 robot->model = DARWIN;

183

184 return robot;

185 Y

@ description "

@ contactMaterial "default”

@ boundingObject NULL

@ physics NULL

@ locked FALSE

@ controller "nao_soccer_supervisor"
@ controllerArgs ™"

@ synchronization TRUE

@ battery

@ cpuConsumption 0

calfrnllicinn FAL SFE
rotation (Rotation)

X ‘0 'm Console [=)E)
‘7' INFO: nao team 1: Starting: ""/home/stefania/develop/webotsd/projects/contests/robotstadium/controllers/nao team 1/nac_team 1"
y |1 - m 31"
:7* [nao_soccer supervisor] KICK-OFF!
z \0 _m [nao_soccer_supervisor] RED TOUCH
—_—, [nao_soccer supervisor] RED TOUCH
angle ‘_0 | rad [nao_soccer_supervisor] RED TOUCH

Figure 2.1: Webots GUI

@ The Save World As... menu item (and button) saves the current world with a new filename
entered by the user. Note that a . wbt file should always be saved in a Webots project directory,
and in the wor1ds subdirectory, otherwise it will not be possible to reopen the file.

#

“* | The Revert World menu item (and button) reloads the current world from the saved version
and restarts the simulation from the beginning.

The New Text File menu item (and button) opens an empty text file in the text editor.

e

The Open Text File... menu item (and button) opens a file selection dialog that allows you
to choose a text file (for example a . java file) to load.

The Save Text File menu item (and button) saves the current text file.

The Save All Text Files menu item saves all the opened and unsaved text files.

K

The Save Text File As... menu item (and button) saves the current text file with a new
filename entered by the user.

Y

J The Revert Text File menu item (and button) reloads the text file from the saved version.

2.3. THE USER INTERFACE 35

The Print Preview... menu item opens a window allowing you to manage the page layout in order
to print files from the text editor.

The Print... menu item opens a window allowing you to print the current file of the text editor.

The Import VRML 2.0... menu item adds VRMLO97 objects at the end of the scene tree. These
objects come from a VRMLO97 file you must specify. This feature is useful for importing complex
shapes that were modeled in a 3D modelling program, then exported to VRML97 (or VRML 2.0).
Most 3D modelling software, like 3D Studio Max, Maya, AutoCAD, Pro Engineer, AC3D, or Art
Of Illusion, include the VRML97 (or VRML 2.0) export feature. Be aware that Webots cannot
import files in VRML 1.0 format. Once imported, these objects appear as Group, Transform
or Shape nodes at the bottom of the scene tree. You can then either turn these objects into
Webots nodes (like Solid, DifferentialWheels, etc.) or cut and paste them into the
children list of existing Webots nodes.

The Export VRML 2.0... item allows you to save the currently loaded world as a .wrl file,
conforming to the VRMLO97 standard. Such a file can, in turn, be opened with any VRML97
viewer. This is especially useful for publishing Webots-created worlds on the Web.

The Make Movie... item allows you to create MPEG movies (Linux and Mac OS X) or AVI
movies (Windows).

The Take Screenshot... item allows you to take a screenshot of the current view in Webots. It
opens a file dialog to save the current view as a PNG or JPG image.

The Quit Webots terminates the current simulation and closes Webots.

2.3.2 Edit Menu

The Edit menu provides usual text edition functions to manipulate files opened in the Text editor,
such as Copy, Paste, Cut, etc.

2.3.3 View Menu

The View menu allows to control the viewing in the simulation window.

The Follow Object menu item allows to switch between a fixed (static) viewpoint and a viewpoint
that follows a mobile object (usually a robot). If you want the viewpoint to follow an object, first
you need to select the object with the mouse and then check the Follow Object menu item. Note
that the Follow Object state is saved in the . wbt file.

The Restore Viewpoint item restores the viewpoint’s position and orientation to their initial set-
tings when the file was loaded or reverted. This feature is handy when you get lost while navi-
gating in the scene, and want to return to the original viewpoint.

The Projection radio button group allows to choose between the Perspective Projection (default)
and the Orthographic Projection mode for Webots simulation window. The perspective mode

36 CHAPTER 2. GETTING STARTED WITH WEBOTS

corresponds to a natural projection: in which the farther an object is from the viewer, the smaller
it appears in the image. With the orthographic projection, the distance from the viewer does
not affect how large an object appears. Furthermore, with the orthographic mode, lines which
are parallel in the model are drawn parallel on the screen, therefore this projection is sometimes
useful during the modelling phase. No shadows are rendered in the orthographic mode.

The Rendering radio button group allows to choose between the Regular Rendering (default),
the High Quality Rendering and the Wireframe modes for Webots simulation window. In regular
mode, the objects are rendered with their geometrical faces, materials, colors and textures, in the
same way they are usually seen by an eye or a camera. The high quality mode is identical to the
regular mode except the diffuse and specular lights are rendered per-pixel instead of per-vertex
by using a shader. This rendering mode is slightly less efficient (if the shadows are activated)
but is more realistic. In wireframe mode, only the segments of the renderable primitives are
rendered. This mode can be useful to debug your meshes. If the wireframe mode and the View
> Optional Rendering > Show All Bounding Objects toggle button are both activated, then only
bounding objects are drawn (not the renderable primitives). This can be used to debug a problem
with the collision detection.

Finally, the Optional Rendering submenu allows to display, or to hide, supplementary informa-
tion. These rendering are displayed only in the main rendering and hide in the robot camera.
They are used to understand better the behavior of the simulation.

The Show Coordinate System allows to display, or to hide, the global coordinate system at the
bottom right corner of the 3D window as red, green and blue arrows representing the x, y and z
axes respectively.

The Show All Bounding Objects allows to display, or to hide, all the bounding objects (defined in
the boundingObject fields of every Solid node). Bounding objects are represented by white lines.
These lines turn rose when a collision occurs.

The Show Contact Points allows to display, or to hide, the contact points generated by the colli-
sion detection engine. Contact points that do not generate a corresponding contact force are not
shown. A contact force is generated only for objects simulated with physics (Physics node
required). A step is required for taking this operation into account.

The Show Connector axes allows to display, or to hide, the connector axes. The rotation align-
ments are depicted in black while the y and z axes respectively in green and blue.

The Show Servo axes allows to display, or to hide, the servo axes. The servo axes are represented
by black lines.

The Show Camera frustums allows to display, or to hide, the OpenGL culling frustum for every
camera in the scene, using a magenta wire frame. The OpenGL culling frustum is a truncated
pyramid corresponding to the field of view of a camera. The back of the pyramid is not repre-
sented because the far plane is set to infinity. More information about this concept is available in
the OpenGL documentation.

The Show Distance Sensor rays allows to display, or to hide, the rays casted by the distance

2.3. THE USER INTERFACE 37

sensor devices. These rays are drawn as red lines (which become green beyond collision points).
Their length corresponds to the maximum range of the device.

The Show Light Sensor rays allows to display, or to hide, the rays casted by the light sensor
devices. These rays are drawn as yellow lines.

The Show Lights allows to display, or to hide, the lights (including PointLights and SpotLights).
DirectionalLights aren’t represented. PointLights and SpotLights are represented by a colored
circle surrounded by a flare.

The Show Center Of Mass and Support Polygon allows to display, or to hide, both the global
center of mass of a selected solid (with non NULL Physics node) and its support polygon. By
support polygon we mean the projection of the convex hull of the solid’s contact points on the
horizontal plane which contains the lowest one. In addition, the projection of the center of mass
in the latter plane is rendered in green if it lies inside the support polygon (static equilibrium),
red otherwise. This rendering option can be activated only for solids with no other solid at their
top.

2.3.4 Simulation Menu

The Simulation menu is used to control the execution of the simulation.

| The Stop menu item (and button) pauses the simulation.

Ib The Step menu item (and button) executes one basic time step of simulation. The duration
of this step is defined in the basicTimeStep field of the WorldInfo node, and can be
adjusted in the scene tree window to suit your needs.

ﬂ The Real-time menu item (and button) runs the simulation at real-time until it is interrupted
by Stop or Step. In run mode, the 3D display of the scene is refreshed every n basic time steps,
where 7 is defined in the displayRefresh field of the Wor1dInfo node.

h’ The Run menu item (and button) is like Real-time, except that it runs as fast as possible
(Webots PRO only).

4

—~ " | The Fast menu item (and button) is like Run, except that no graphical rendering is per-
formed (Webots PRO only). As the graphical rendering is disabled (black screen) this allows
for a faster simulation and therefore this is well suited for cpu-intensive simulations (genetic
algorithms, vision, learning, etc.).

38 CHAPTER 2. GETTING STARTED WITH WEBOTS

2.3.5 Build Menu

The Build menu provides the functionality to compile (or cross-compile) controller code. The
build menu is described in more details here.

2.3.6 Robot Menu

The Robot menu is active only when a robot is selected in the 3D window or when there is only
one robot in the simulation.

The Edit Controller menu item opens the source file of the controller of the selected robot.

The Show Robot Window menu item opens a Robot Window. The type of the window depends
on the type of robot, in particular Webots has specific windows for e-puck, Khepera and Aibo
robots. Each type of robot window allows some level of interaction with the robot sensors and
actuators.

2.3.7 Tools Menu

The Tools menu allows you to open various Webots windows.

The Scene Tree menu item opens the Scene Tree window in which you can edit the virtual
world. Alternatively it is also possible to double-click on some of the objects in the main window:
this automatically opens the Scene Tree with the corresponding object selected.

The Text Editor menu item opens the Webots text editor. This editor can be used for editing and
compiling controller source code.

The Console menu item opens the Webots Console, which is a read-only console that is used to
display Webots error messages and controller outputs.

The Restore Layout menu item restores the factory layout of the panes of the main window.
The Clear Console menu item clears the console.
The Edit Physics Plugin menu item opens the source code of the physics plugin in the text editor.

The Preferences item pops up a window:

e The Language option allows you to choose the language of Webots user interface (restart
needed).

e The Startup mode allows you to choose the state of the simulation when Webots is started
(stop, realtime, run, fast; see the Simulation menu).

e The Editor font defines the font to be used in Webots text editor. It is recommended to
select a fixed width font for better source code display. The default value for this font is
“default”.

2.3. THE USER INTERFACE 39

e The Java command defines the Java command used to launch the Java Virtual Machine
(JVM) for the execution of Java controllers. Typically, it should be set to java under
Linux and Mac OS X and to javaw.exe under Windows. It may be useful to change it
to java.exe on Windows to display the DOS console in which JVM messages may be
printed. Also, it may be useful to add extra command line options to the java command,
like java —-Xms6144k. Please note that the —~classpath option is automatically ap-
pened to the specified java command in order to find all the necessary libraries for execu-
tion of a Webots controller. If you need to add extra values to the —classpath option,
set them in your CLASSPATH environment variable (see subsection 4.5.3), and Webots
will append them to its —~classpath option.

2.3.8 Wizards Menu

The Wizards menu makes it easier to create new projects and new controllers.

The New Project Directory... menu item first prompts you to choose a filesystem location and
then it creates a project directory. A project directory contains several subdirectories that are
used to store the files related to a particular Webots project, i.e. world files, controller files, data
files, plugins, etc. Webots remembers the current project directory and automatically opens and
saves any type of file from the corresponding subdirectory of the current project directory.

The New Robot Controller... menu item allows you to create a new controller program. You will
first be prompted to choose between a C, C++, Java, Python or MATLAB™controller. Then,
Webots will ask you to enter the name of your controller and finally it will create all the necessary
files (including a template source code file) in your current project directory.

The New Physics Plugin... menu item will let you create a new physics plugin for your project.
Webots asks you to choose a programming language (C or C++) and a name for the new physics
plugin. Then it creates a directory, a template source code file and a Makefile in your current
project.

2.3.9 Help menu

In the Help menu, the About... item opens the About ... window that displays the license
information.

The Webots Guided Tour... menu item starts a guided tour that demonstrates Webots capabilies
through a series of examples.

The OpenGL Information... menu item gives you information about your current OpenGL hard-
ware and driver. It can be used to diagnose rendering problems.

The remaining menu items bring up various information as indicated, in the form of HTML
pages, PDF documents, etc.

40 CHAPTER 2. GETTING STARTED WITH WEBOTS

PP WP 0:00:11:232 0.97x

Figure 2.2: Speedometer

2.3.10 Speedometer and Virtual Time

A speedometer (see figure 2.2) indicates the speed of the simulation on your computer. It is
displayed on the 3D Window toolbar, and indicates how fast the simulation runs compared to real
time. In other words, it represents the speed of the virtual time. If the value of the speedometer
is 2, it means that your computer simulation is running twice as fast as the corresponding real
robots would. This information is valid both in Run mode and Fast mode.

To the left of the speedometer, the virtual time is displayed using following format:
H:MM:SS:MMM

where H is the number of hours (may be several digits), MM is the number of minutes, SS is the
number of seconds, and MMM is the number of milliseconds (see figure 2.2). If the speedometer
value is greater than one, the virtual time is progressing faster than real time.

The basic time step for simulation can be set in the basicTimeStep field of the WorldInfo
node in the scene tree window. It is expressed in virtual time milliseconds. The value of this time
step defines the length of the time step executed during the Step mode. This step is multiplied
by the displayRefresh field of the same Wor1ldInfo node to define how frequently the
display is refreshed.

2.4 The 3D Window

2.4.1 Selecting an object

A single mouse click allows to select a solid object. The bounding object of a selected solid
is represented by white lines. These lines turn rose if the solid is colliding with another one.
Selecting a robot enables the Show Robot Window item in the Tools menu. Double-clicking on a
solid object opens the Scene Tree or Robot Window.

2.4.2 Navigation in the scene

Dragging the mouse while pressing a mouse button moves the camera of the 3D window.

2.4. THE 3D WINDOW 41

e Camera rotation: In the 3D window, press the left button and drag the mouse to select an
object and rotate the viewpoint about it. If no object is selected, the camera rotates about
the origin of the world coordinate system.

e Camera translation: In the 3D window, press the right button and drag the mouse to trans-
late the camera with the mouse motion.

e Zooming / Camera rotation: In the 3D window, press both left and right mouse buttons
simultaneously (or just the middle button) and drag the mouse vertically, to zoom in and
out. Dragging the mouse horizontally will rotate the camera about the viewing axis. Alter-
natively, the mouse wheel alone can also be used for zooming.

the mouse button to translate the camera according to the mouse motion.
Hold the control key (Ctrl) down and press the mouse button to zoom / rotate
the camera with the mouse motion.

@ If you are a Mac user with a single button mouse, hold the Alt key and press

note

2.4.3 Moving a solid object

To move an object: hold down the Shift key, then select the object and drag the mouse.

e Translation: To move an object parallel to the ground: hold down the shift key, press the
left mouse button and drag.

e Rotation: To rotate an object: hold down the shift key, press the right mouse button and
drag. The object’s rotation axis (X, y or z) can be changed by releasing and quickly re-
pressing the shift key.

e Lift: To raise or lower and object: hold down the Shift key, press both left and right mouse
buttons (or the middle button) and drag. Alternatively, the mouse wheel combined with
the Shift key can also be used.

If you are a Mac user with a single button mouse, hold the Shift key and the
Control key (Ctrl) down and press the mouse button to rotate the selected
object according to mouse motion. Hold the Shift key and the Command key

note (key with Apple symbol) down and press the mouse button to lift the selected

object according to mouse motion.

42 CHAPTER 2. GETTING STARTED WITH WEBOTS

2.4.4 Applying a force to a solid object with physics

To apply a force to an object, place the mouse pointer where the force will apply, hold down
the Alt key and left mouse button together while dragging the mouse. Linux users should also
hold down the Control key (Ctrl) together with the Alt key. This way your are drawing a 3D-
vector whose end is located in the plane parallel to the view which passes through the point of
application. The intensity of the applied force is directly proportional to the cube of the length
of this vector.

2.4.5 Applying a torque to a solid object with physics

To apply a torque to an object, place the mouse pointer on it, hold down the Alt key and right
mouse button together while dragging the mouse. Linux users should also hold down the Control
key (Ctrl) together with the Alt key. Also, Mac OS X users with a one-button mouse should hold
down the Control key (Ctrl) to emulate the right mouse button. This way your are drawing a 3D-
vector with origin the center of mass and whose end is located in the plane parallel to the view
which passes through this center. The object is prompted to turn around the vector direction,
the intensity of the applied torque being directly proportional to the product of the mass by the
length of the 3D-vector.

In stop mode, you can simultaneously add a force and a torque to the same
selected solid. Camera rotation can be useful when checking wether your
note force / torque vector has the desired direction.

2.5 The Scene Tree

As seen in the previous section, to access to the Scene Tree Window you can either choose Scene
Tree in the Tools menu, or use the mouse pointer to double-click on an object. The scene tree
contains the information that describes a simulated world, including robots and environment,
and its graphical representation. The scene tree of Webots is structured like a VRML97 file. It
is composed of a list of nodes, each containing fields. Fields can contain values (text strings,
numerical values) or other nodes.

This section describes the user interface of the Scene Tree, gives an overview of the VRML97
nodes and Webots nodes.

2.5.1 Buttons of the Scene Tree Window

Nodes can be expanded with a double-click. When a field is selected, its value can be edited at
the bottom of the Scene Tree. All changes will be immediately reflected in the 3D window. The
following buttons are available to edit the world:

2.5. THE SCENE TREE

Scene Tree ES]

¥ B E X X FYa oaHoa

» @ Worldinfo
» @ Viewpoint
» @ Background
» @ DirectionalLight
» @ DirectionalLight
» @ SoccerField
@ walls
» @ DEF YELLOW_GOAL Goal
» @ DEF BLUE_GOAL Goal
» & DEF BALL Ball
v & DARwWINOP
@& translation -0.413972 0.346131 -0.3968...
& rotation 0 1 0 1.0562
@ controller "sample”
& controllerArgs ""
@ synchronization TRUE
& name "DARWIN-OP"
& plasticColor 0.301961 0.301961 0.301961
& camerawindowPosition 0 0
& cameraPixelSize 1
& cameraWidth 160
& cameraHeight 120
rotation (Rotation)

x|0—_ m
y|1—f m
z|0—f m
angle|Wt rad

Figure 2.3: Scene Tree Window

»

43

44 CHAPTER 2. GETTING STARTED WITH WEBOTS

Cut: Cuts the selected object.

Copy: Copies the selected object.

@ |@ |

Paste: Pastes the copied or cut object.

Note that the first three nodes of the Scene Tree (WorldInfo, Viewpoint, and Back-—
ground) cannot be cut, copied or pasted. One single instance of each of these nodes must be
present in every Webots world, and in that precise order.

X

_" " | Delete: Deletes the selected object.

+
Reset to default: Resets a field to its default value.

t+
E Transform: Allows you to change the type of some nodes.

-

New node: Adds a new node or object. For nodes, this triggers a dialog that will let you
choose a node type from a list. The new node is created with default values that can be modified
afterwards. You can only insert a node suitable for the corresponding field.

Export: Exports a node into an ascii file. Exported nodes can then be imported in other
worlds.

<

—— |Import: Imports a previously exported node into the scene tree.

?

Help: Context sensitive help for the currently selected node.

We recommend to use the Scene Tree to write Webots world files. However,
because the nodes and fields are stored in a human readable form, it is also
possible to edit world files with a regular text editor. Some search and replace

note operations may actually be easier that way. Please refer to Webots Reference

Manual for more info on the available nodes and the world file format.

2.6 Citing Webots

If you write a scientific paper or describe your project involving Webots on a web page, we will
greatly appreciate if you can add a reference to Webots. For example by explicitly mentioning

2.6. CITING WEBOTS 45

Cyberbotics’ web site or by referencing a journal paper that describes Webots. To make this
simpler, we provide here some citation examples, including BibTex entries that you can use in
your own documents.

2.6.1 Citing Cyberbotics’ web site

This project uses Webots®, a commercial mobile robot simulation software developed by Cyber-
botics Ltd.

This project uses Webots (http://www.cyberbotics.com), a commercial mobile robot simulation
software developed by Cyberbotics Ltd.

The BibTex reference entry may look odd, as it is very different from a standard paper citation
and we want the specified fields to appear in the normal plain citation mode of LaTeX.

@MISC{Webots,
AUTHOR = {Webots},
TITLE = {http://www.cyberbotics.com},
NOTE = {Commercial Mobile Robot Simulation Software},
EDITOR = {Cyberbotics Ltd.},
URL = {http://www.cyberbotics.com}

}
Once compiled with LaTeX, it should display as follows:

References

[1] Webots. http://www.cyberbotics.com. Commercial Mobile Robot Simulation Software.

2.6.2 Citing a reference journal paper about Webots

A reference paper was published in the International Journal of Advanced Robotics Systems.
Here is the BibTex entry:

@ARTICLE {Webots04,

AUTHOR = {Michel, 0.},

TITLE = {Webots: Professional Mobile Robot Simulation},
JOURNAL = {Journal of Advanced Robotics Systems},

YEAR = {2004},

VOLUME = {1},

NUMBER = {1},

PAGES = {39--42},

URL = {http://www.ars—-journal.com/International-Journal-of-

Advanced-Robotic-Systems/Volume—-1/39-42.pdf}

3http://www.cyberbotics.com

http://www.cyberbotics.com

46

CHAPTER 2. GETTING STARTED WITH WEBOTS

Chapter 3

Sample Webots Applications

This chapter gives an overview of sample worlds provided with the Webots package. The
examples world can be tried easily; the .wbt files are located in various worlds directories
of the webots/projects directory. The controller code is located in the corresponding
controllers directory. This chapter provides each example a with short abstract only. More
detailed explanations can be found in the source code.

3.1 Samples

This section provides a list of interesting worlds that broadly illustrate Webots capabilities. Sev-
eral of these examples have stemmed from research or teaching projects. You will find the
corresponding . wbt files in the projects/samples/demos/worlds directory, and their
controller source code in the projects/samples/demos/controllers directory. For
each demo, the world file and its corresponding controller have the same name.

47

48 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.1: blimp_lis.wbt

3.1.1 blimp lis.wbt

Keywords: Flying robot, physics plugin, keyboard, joystick

This is an example of the flying blimp robot developed at the Laboratory of Intelligent Systems
(LIS) at EPFL. You can use your keyboard, or a joystick to control the blimp’s motion across
the room. Use the up, down, right, left, page up, page down and space (reset) keys. Various
Transform and IndexedFaceSet nodes are used to model the room using textures and
transparency. A physics plugin is used to add thrust and other forces to the simulation.

3.1. SAMPLES 49

Figure 3.2: gantry.wbt

3.1.2 gantry.wbt

Keywords: Gantry robot, gripper, Hanoi towers, linear Servo, recursive algorithm

In this example, a gantry robot plays “Towers of Hanoi” by stacking three colored boxes. The
gantry robot is modeled using a combination of linear and rotational Servo devices. A recursive
algorithm is used to solve the Hanoi Towers problem.

50 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.3: hexapod.wbt

3.1.3 hexapod.wbt

Keywords: Legged robot, alternating tripod gait, linear Servo

In this example, an insect-shaped robot is made of a combination of linear and rotational Servo
devices. The robot moves using an alternating tripod gait.

3.1. SAMPLES

Figure 3.4: humanoid.wbt

3.1.4 humanoid.wbt

Keywords: Humanoid, QRIO robot

In this example, a humanoid robot performs endless gymnastic movements.

51

52 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.5: moon.wbt

3.1.5 moon.wbt

Keywords: DifferentialWheels, Koala, keyboard, texture

In this example, two Koala robots (K-Team) circle on a moon-like surface. You can modify
their trajectories with the arrow keys on your keyboard. The moon-like scenery is made of
IndexedFaceSet nodes. Both robots use the same controller code.

3.1. SAMPLES 53

Figure 3.6: ghostdog.wbt

3.1.6 ghostdog.wbt

Keywords: Quadruped, legged robot, dog robot, passive joint, spring and damper

This example shows a galloping quadruped robot made of active hip joints and passive knee
joints (using spring and dampers). The keyboard can be used to control the robot’s direction
and to change the amplitude of the galloping motion. Each knee is built of two embedded Servo
nodes, one active and one passive, sharing the same rotation axis. The passive Servo simulates
the spring and damping. The active Servo is not actuated in this demo but it could be used for
controlling the knee joints.

54 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.7: salamander.wbt

3.1.7 salamander.wbt

Keywords: Salamander robot, swimming robot, amphibious robot, legged robot, physics plugin,
buoyancy

A salamander-shaped robot walks down a slope and reaches a pool where it starts to swim. The
controller uses two different types of locomotion: it walks on the ground and swims in the water.
This demo uses a physics plugin to simulate propulsive forces caused by the undulations of the
body and the resistance caused by the robot’s shape. In addition, the buoyancy of the robot’s
body is also simulated using Archimedes’ principle.

3.1. SAMPLES 55

Figure 3.8: soccer.wbt

3.1.8 soccer.wbt

Keywords: Soccer, Supervisor, DifferentialWheels, label

In this example, two teams of simple DifferentialWheels robots play soccer. A Super-—
visor is used as the referee; it counts the goals and displays the current score and the remaining
time in the 3D view. This example shows how a Supervisor can be used to read and change
the position of objects.

56 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

CHH Hesso

Nicolas Uebelhart
3001 2004

USAGE: use the
space bar an

Figure 3.9: sojourner.wbt

3.1.9 sojourner.wbt

Keywords: Sojourner, Passive joint, planetary exploration robot, keyboard, IndexedFaceSet

This is a realistic model of the ”Sojourner” Mars exploration robot (NASA). A large obstacle is
placed in front of the robot so that it is possible to observe how the robot manages to climb over
it. The keyboard can be used to control the robot’s motion.

3.1. SAMPLES 57

Figure 3.10: yamor.wbt

3.1.10 yamor.wbt

Keywords: Connector, modular robots, self-reconfiguring robot

In this example, eight ”Yamor” robot modules attach and detach to and from each other us-
ing Connector devices. Connector devices are used to simulate the mechanical connections
of docking systems. In this example, the robot modules go through a sequence of loops and
worm-like configurations while changing their mode of locomotion. All modules use the same
controller code, but their actual module behaviour is chosen according to the name of the module.

58 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.11: stewart_platform.wbt

3.1.11 stewart_platform.wbt

Keywords: Stewart platform, linear motion, physics plugin, ball joint, universal joint

This is an example of a Stewart platform. A Stewart platform is a kind of parallel manipulator
that uses an octahedral assembly of linear actuators. It has six degrees of freedom (x, y, z,
pitch, roll, and yaw). In this example, the Stewart platform is loaded with a few stacked boxes,
then the platform moves and the boxes stumble apart. This simulation uses a physics plugin
to attach both ends of the linear actuators (hydraulic pistons) to the lower and the upper parts
of the Stewart platform. The .wbt file of this demo is generated using a simple C program:
generate_platform.c which is distributed with Webots.

3.2. WEBOTS DEVICES 59

Webots M ™ -

Figure 3.12: battery.wbt
3.2 Webots Devices

This section provides a simple example for each Webots device. The world files are located in the
projects/samples/devices/worlds directory, and their controllers in the projects/
samples/devices/controllers directory. The world files and the corresponding con-
troller are named according to the device they exemplify.

3.2.1 battery.wbt

Keywords: Battery, Charger, DifferentialWheels

In this example, a robot moves in a closed arena. The energy consumed by the wheel motors
slowly discharges the robot’s battery. When the battery level reaches zero, the robot is powered
off. In order to remain powered, the robot must recharge its battery at energy chargers. Chargers
are represented by the semi-transparent colored cylinders in the four corners of the arena. Only
a full charger can recharge the robot’s battery. The color of a charger changes with its energy
level: it is red when completely empty and green when completely full.

60 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.13: bumper.wbt

3.2.2 bumper.wbt

Keywords: TouchSensor, bumper, DifferentialWheels

In this example, a robot moves in a closed arena filled with obstacles. Its “bumper” Touch-
Sensor is used to detect collisions. Each time a collision is detected, the robot moves back and
turns a bit.

3.2. WEBOTS DEVICES 61

Figure 3.14: camera.wbt

3.2.3 camera.wbt

Keywords: Camera, image processing, Differential Wheels

In this example, a robot uses a camera to detect colored objects. The robot analyses the RGB
color level of each pixel of the camera images. It turns and stops for a few seconds when it has
detected something. It also prints a message in the Console explaining the type of object it has
detected. You can move the robot to different parts of the arena (using the mouse) to see what it
is able to detect.

62 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.15: connector.wbt

3.2.4 connector.wbt

Keywords: Connector, Servo, IndexedLineSet, USE, DEF, DifferentialWheels

In this example, a light robot (light blue) is lifted over two heavier robots (dark blue). All
three robots are equipped with a Connector placed at the tip of a moveable handle (Servo).
An IndexedLineSet is added to every Connector in order to show the axes. When the
simulation starts, the light robot approaches the first heavy robot and their connectors dock to
each other. Then both robots rotate their handles simultaneously, and hence the light robot gets
passed over the heavy one. Then the light robot gets passed over another time the second heavy
robot and so on ... All the robots in this simulation use the same controller; the different behaviors
are selected according to the robot’s name.

3.2. WEBOTS DEVICES 63

Figure 3.16: distance_sensor.wbt

3.2.5 distance_sensor.wbt

Keywords: DistanceSensor, Braitenberg, DifferentialWheels

In this example, a robot has eight DistanceSensors placed at regular intervals around its
body. The robot avoids obstacles using the Braitenberg technique.

64 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.17: emitter_receiver.wbt

3.2.6 emitter_receiver.wbt

Keywords: DifferentialWheels, Emitter, Receiver, infra-red transmission, USE, DEF

In this example, there are two robots: one is equipped with an Emitter, the other one with a
Receiver. Both robots move among the obstacles while the emitter robot sends messages to
the receiver robot. The range of the Emit ter device is indicated by the radius of the transparent
sphere around the emitter robot. The state of the communication between the two robots is dis-
played in the Console. You can observe that when the receiver robot enters the receiver’s sphere,
and that at the same time there is no obstacle between the robots, then the communication is
established, otherwise the communication is interrupted. Note that the communication between
“infra-red” Emitters and Receivers can be blocked by an obstacle, this is not the case with
“radio” Emitters and Receivers.

3.2. WEBOTS DEVICES 65

Figure 3.18: encoders.wbt

3.2.7 encoders.wbt

Keywords: DifferentialWheels, encoders

This example demonstrates the usage of the wheel encoders of Di fferentialWheels robots.
The controller randomly chooses target encoder positions, then it rotates its wheels until the en-
coder values reach the chosen target position. Then the encoders are reset and the controller
chooses new random values. The robot does not pay any attention to obstacles.

66 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

e e

Figure 3.19: force_sensor.wbt

3.2.8 force_sensor.wbt

Keywords: Force, TouchSensor, DifferentialWheels

This example is nearly the same as bumper . wbt (see subsection 3.2.2). The only difference is
that this robot uses a “force” TouchSensor instead of a "bumper”. So this robot can measure
the force of each collision, which is printed in the Console window.

3.2. WEBOTS DEVICES 67

Figure 3.20: gps.wbt

3.2.9 gps.wbt

Keywords: GPS, Supervisor, DifferentialWheels, keyboard

This example shows two different techniques for finding out the current position of a robot. The
first technique consists in using an on-board GP S device. The second method uses a Supervi-
sor controller that reads and transmits the position info to the robot. Note that a Supervisor
can read (or change) the position of any object in the simulation at any time. This example im-
plements both techniques, and you can choose either one or the other with the keyboard. The ’G’
key prints the robot’s GPS device position. The ’S’ key prints the position read by the Supervisor.

68 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.21: led.wbt

3.2.10 led.wbt

Keywords: LED, DifferentialWheels

In this example, a robot moves while randomly changing the color of three LEDs on the top of
its body. The color choice is printed in the Console.

3.2. WEBOTS DEVICES 69

Figure 3.22: light_sensor.wbt

3.2.11 light sensor.wbt

Keywords: LightSensor, PointLight, lamp, light following

In this example, the robot uses two Light Sensors to follow a light source. The light source
can be moved with the mouse; the robot will follow it.

70 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.23: pen.wbt

3.2.12 pen.wbt

Keywords: Pen, keyboard

In this example, a robot uses a Pen device to draw on the floor. The controller randomly chooses
the ink color. The ink on the floor fades slowly. Use the Y’ and "X’ keys to switch the Pen on
and off.

3.2. WEBOTS DEVICES 71

-
_

Figure 3.24: range_finder.wbt

3.2.13 range finder.wbt

Keywords: Range-finder, Camera, DifferentialWheels

In this example, the robot uses a “range-finder” Camera to avoid obstacles. The “range-finder”
measures the distance to objects, so the robot knows if there is enough room to move forward.

72 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.25: binocular.wbt

3.3 How To

This section gives various examples of complexe behaviours and/or functionalities. The world
files are located in the projects/samples/howto/world directory, and their controllers
in the projects/samples/howto/controllers directory. For each, the world file and
its corresponding controller are named according to the behaviour they exemplify.

3.3.1 binocular.wbt

Keywords: Stereovision, Stereoscopy, Camera

This example simply shows how to equip a robot with two Cameras for stereovision. The
example does not actually perform stereovision or any form of computer vision.

3.3. HOW TO 73

Figure 3.26: biped.wbt

3.3.2 Dbiped.wbt

Keywords: Humanoid robot, biped robot, power off, passive joint

In this example, a biped robot stands up while his head rotates. After a few seconds, all the
motors (Servo) are turned off and the robot collapses. This example illustrates how to build a
simple articulated robot and also how to turn off motor power.

74 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.27: force_control.wbt

3.3.3 force_control.wbt

Keywords: Force control, linear Servo, spring and damper

This world shows two boxes connected by a linear Servo. Here, the purpose is to demonstrate
the usage of the wb_servo_set_force () function to control a Servo with a user specified
force. In this example, wb_servo_set_force () is used to simulate the effect of a spring and
a damper between the two boxes. When the simulation starts, the servo motor force is used to
move the boxes apart. Then the motor force is turned off and boxes oscillate for a while now
according to the spring and damping equations programmed in the controller.

3.3. HOW TO 75

Figure 3.28: inverted_pendulum.wbt

3.3.4 inverted pendulum.wbt

Keywords: Inverted pendulum, PID, linear Servo

In this example, a robot moves from left to right in order to keep an inverted pendulum upright.
This is known as the “Inverted Pendulum Problem”, and it is solved in our example by using a
PID (Proportional Integral Differential) controller.

76 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

A

arynre iivi

-

Figure 3.29: physics.wbt

3.3.5 physics.wbt

Keywords: Physics plugin, OpenGL drawing, flying robot, Emitter, Receiver

In this example, a robot flies using a physics plugin. This plugins is an example of:

how to access Webots objects in the physics plugin

how to exchange information with the controller

how to add custom forces

how to move objects

how to handle collisions

how to draw objects using OpenGL

3.3. HOW TO 77

Figure 3.30: supervisor.wbt

3.3.6 supervisor.wbt

Keywords: Supervisor, DifferentialWheels, soccer, label, import node, restart simulation, screen-
shot, change controller

This shows a simple soccer game with six robots and a referee. The Supervisor code demon-
strates the usage of several Supervisor functions. For example, the Supervisor inserts
a second ball to the simulation, changes its color, takes a picture of the 3D view, restarts the
simulation, etc. In addition the Supervisor also plays the role of a soccer referee: it displays
the current score, places the players to their initial position when a goal is scored, etc.

78 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.31: texture_change.wbt

3.3.7 texture_change.wbt

Keywords: Supervisor, texture, wb_supervisor_field_set_*(), Camera

In this example, a robot moves forward and backward in front of a large textured panel. The robot
watches the panel with its Camera. Meanwhile a Supervisor switches the image displayed
on the panel.

3.3. HOW TO 79

Figure 3.32: town.wbt

3.3.8 town.wbt

Keywords: Transform, USE, DEF

This example shows a complex city model built with various Transform nodes. The model
makes a intensive use of the DEF and USE VRML keywords.

80 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.4 Geometries

This section shows the geometric primitives available in Webots. The world files for these exam-
ples are located in the sample/geometries/worlds directory.

In this directory, you will find the following world files :

e box.wbt

e cone.wbt

e convex_polygon.wbt

e cylinder.wbt

e high resolution_indexedfaceset.wbt
e non_convex_polygon.wbt

e physics_primitives.wbt

e polyhedra.wbt

e sphere.wbt

o textured_shapes.wbt

e webots_box.wbt

3.5. REAL ROBOTS 81

Figure 3.33: aibo_ers210_rough.wbt

3.5 Real Robots

This section discusses worlds containing models of real robots. The world files for these exam-
ples are located in the robots/ (robot_name) /worlds directory, and the corresponding
controllers are located in the robots/ (robot_name) /controllers directory.

3.5.1 aibo_ers210_rough.wbt

Keywords: Aibo, Legged robot, uneven ground, IndexedFaceSet, texture

In this example, you can see a silver Aibo ERS-210 robot walking on an uneven floor while a
ball rolls and falls off. The uneven floor is principally made of a IndexedFaceSet.

82 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.34: aibo_ers7.wbt

3.5.2 aibo_ers7.wbt

Keywords: Aibo, ERS-7, legged robot, soccer field, Charger, toys, beacon, bone

In this example, you can see a silver Aibo ERS-7 robot walking on a textured soccer field. On
this field you can also see its toys : a ball, a charger and a bone.

3.5. REAL ROBOTS 83

Figure 3.35: alice.wbt

3.5.3 alice.wbt

Keywords: Alice, Braitenberg, DistanceSensor

In this example, you can see an Alice robot moving inside an arena while avoiding the walls.
Its world file is in the others/worlds directory. Like many others, this example uses the
braitenberg controller.

84 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Webots™

Figure 3.36: boebot.wbt

3.5.4 boebot.wbt

Keywords: BoeBot, DistanceSensor, LED

In this example, BoeBot moves inside an arena while avoiding the walls. When the robot detects
an obstacle with one of its Di stanceSensors, it turns the corresponding LED on.

3.5. REAL ROBOTS 85

Figure 3.37: e-puck.wbt

3.5.5 e-puck.wbt

Keywords: DifferentialWheels, texture, Braitenberg, Accelerometer, Odometry, E-puck

In this example, you can see the e-puck robot avoiding obstacles inside an arena by using the
Braitenberg technique. The odometry of the e-puck is computed at each simulation steps. The ac-
celerometer values and an estimation the coverage distance and the orientation of the e-puck are
displayed. The source code for this controller is in the resources/projects/default/
controllers/braitenberg directory.

86 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Webots™

Figure 3.38: e-puck_line.wbt

3.5.6 e-puck line.wbt

Keywords: DifferentialWheels, line following, texture, behavior-based robotics, E-puck

In this example, you can see the E-puck robot following a black line drawn on the ground. In
the middle of this line there is an obstacle which the robot is unable to avoid. This example
has been developed as a practical assignment on behavior-based robotics. When completed, the
controller should allow the E-puck robot to avoid this obstacle and recover its path afterwards. A
solution for this assignment is shown in the world e-puck_line_demo.wbt (see subsection 3.5.7).
The source code for this controller is in the e-puck_1ine directory.

3.5. REAL ROBOTS 87

Webots™

Figure 3.39: e-puck_line_demo.wbt

3.5.7 e-puck line_ demo.wbt

Keywords: DifferentialWheels, line following, texture, behavior-based robotics, E-puck

This example is the solution for the assignment given in the e-puck_line_demo.wbt ex-
ample (see subsection 3.5.6). In this case, you can see that the robot avoids the obstacle, then
recovers its path along the line. As the controller used in this world is the solution to the assign-
ment, the source code is not distributed.

88 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

4
Figure 3.40: hemisson_cross_compilation.wbt

3.5.8 hemisson_cross_compilation.wbt

Keywords: DifferentialWheels, Pen, cross-compilation, texture, Hemisson

In this example, a Hemisson robot moves on a white floor while avoiding the obstacles. Its Pen
device draws a black line which slowly fades. This example is a cross-compilation example for
the real Hemisson robot. The source code for this controller is in the hemisson directory.

3.5. REAL ROBOTS &9

Webots™

Figure 3.41: hoap2_sumo.wbt

3.5.9 hoap2_sumo.wbt

Keywords: Robot node, humanoid, texture, dancing, Hoap 2, IndexedFaceSet, Servo, active
joint, force, TouchSensor

In this example, a Hoap2 robot from Fujitsu performs the Shiko dance (the dance which sumos
perform before a match). This robot is equipped with TouchSensors on the soles of its feet;
it measures and logs the pressure exerted by its body on the ground. The source code for this
controller is in the hoap2 directory.

90 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.42: hoap2_walk.wbt

3.5.10 hoap2_walk.wbt

Keywords: Robot node, humanoid, texture, walking, Hoap 2, IndexedFaceSet, Servo, active
joint, force, TouchSensor

In this example, a Hoap2 robot from Fujitsu walks straight forward on a tatami. This robot is
equipped with TouchSensors on the soles of its feet; it measures and logs the pressure exerted
by its body on the ground. The source code for this controller is in the hoap?2 directory.

3.5. REAL ROBOTS 91

Figure 3.43: ipr_collaboration.wbt

3.5.11 ipr_collaboration.wbt

Keywords: Robot node, robotic arm, collaboration, TCP/IP, client program, IPR, IndexedFace-
Set, Servo, active joint

In this example, two IPR robots from Neuronics work together to put three red cubes into a
basket which is on the opposite side of the world. All the IPR robots use the same controller,
whose source code is in the ipr_serial directory. This particular example uses, in addition
to this controller, a client program which coordinates the movements of the robots. The source
code for this clientisinthe ipr_serial/client/ipr_collaboration.c file.

92 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

|
Webots™

Figure 3.44: ipr_cube.wbt

3.5.12 ipr_cube.wbt

Keywords: Robot node, robotic arm, TCP/IP, client program, IPR, IndexedFaceSet, Servo, ac-
tive joint

In this example, an IPR robots from Neuronics moves a small red cube onto a bigger one. All the
IPR robots use the same controller, whose source code is in the ipr_serial directory. This

example also uses a client program which drives the movements of the robot. The source code
of this client is in the ipr_serial/client/ipr_cube. c file.

3.5. REAL ROBOTS 93

Figure 3.45: ipr_factory.wbt

3.5.13 ipr_factory.wbt

Keywords: Robot node, Supervisor, conveyor belt, robotic arm, TCP/IP, client program, IPR,
IndexedFaceSet, Servo, active joint

In this example, two IPR robots from Neuronics take industrial parts from a conveyor belt and
place them into slots. One of the robots detects the objects using an infrared sensor on the
conveyor belt, while the other one waits. All the IPR robots use the same controller, whose
source code is in the ipr_serial directory. This example also uses a client program which
coordinates the movements of the robots. The source code for this client is in the file ipr_
serial/client/ipr_factory.c.

94 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

-

i

Figure 3.46: ipr_models.wbt

3.5.14 ipr_models.wbt

Keywords: Robot node, robotic arm, TCP/IP, IPR, IndexedFaceSet, Servo, active joint

In this example, you can see all the different types of IPR model provided by Webots : HD6M 180,
HD6Ms180, HD6M90 and HD6Ms90. This world is intended to be the example from which you
can copy the models of IPR robots into your own worlds. All the IPR robots use the same
controller, whose source code is in the ipr_serial directory.

3.5. REAL ROBOTS 95

Webots™

Figure 3.47: khepera.wbt

3.5.15 Kkhepera.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, texture, Khepera

In this example, you can see a Khepera robot from K-Team moving inside an arena while
avoiding the walls. Like many other examples, this one uses the braitenberg controller.
The source code for this controller is located in the resources/projects/default/
controllers/braitenberg directory.

96 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.48: khepera2.wbt

3.5.16 Kkhepera2.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, texture, Khepera Il

In this example, you can see a Khepera II robot from K-Team moving inside an arena while
avoiding the walls. Like many other examples, this one uses the braitenberg controller. The
source code for this controller is in the resources/projects/default/controllers/
braitenberg directory.

3.5. REAL ROBOTS 97

Figure 3.49: khepera3.wbt

3.5.17 Khepera3.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, texture, Khepera I11

In this example, you can see a Khepera III robot from K-Team moving inside an arena while
avoiding the walls. Like many other examples, this one uses the braitenberg controller. The
source code for this controller is in the resources/projects/default/controllers/
braitenberg directory.

98 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.50: khepera_fast2d.wbt

3.5.18 Kkhepera fast2d.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, custom Fast2D plugin, Khepera

In this example, you can see two Khepera robots from K-Team moving inside an arena while
avoiding each other and the walls. As this world is using a Fast2D plugin, it is a good example
of how to use one of these plugins in Webots. This type of plugin allows very fast simulation
by using only two dimensions; height and elevation are ignored when simulating the movements
and collisions of the robots. The plugin used in this world is the enki plugin, whose source
code is not provided by Webots. Like many other examples, this one uses the braitenberg
controller. The source code for this controller is in the resources/projects/default/
controllers/braitenberg directory. You will find more information about the Fast2D
plugin in Webots Reference Manual.

3.5. REAL ROBOTS 99

Figure 3.51: khepera_gripper.wbt

3.5.19 Khepera_gripper.wbt

Keywords: DifferentialWheels, Gripper, Khepera

In this example, you can see a Khepera robot from K-Team equipped with a gripper. The robot
uses its gripper to grab a stick, move a bit with it and drop it on the ground. This behavior is
repeated endlessly. The source code for this controller is in the khepera_gripper directory.

100 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Webots™ -

Figure 3.52: khepera_gripper_camera.wbt

3.5.20 Kkhepera gripper_camera.wbt

Keywords: DifferentialWheels, Gripper, Camera, Khepera

In this example, you can see a Khepera robot from K-Team equipped with a gripper and a Cam—
era device. The robot uses its gripper to grab a stick, move a bit with it and drop it on the floor.
This behavior is repeated endlessly. In this world, the robot does not analyse the images it takes
with its camera. The source code for this controller is in the khepera_gripper directory.

3.5. REAL ROBOTS 101

tsTM

Figure 3.53: khepera_k213.wbt

3.5.21 Kkhepera k213.wbt

Keywords: DifferentialWheels, DistanceSensor, K213, linear Camera, Khepera

In this example, you can see a Khepera robot from K-Team equipped with a K213 Camera
device. This camera is a linear vision turret with greyscale images. Using this device, the robot
is able to translate the information contained in the image into text and print this result in the
Console window. When you load this world, the robot will not begin to move immediately. It
will give you enough time to read the explanations printed in the Console window concerning
this world. The source code for this controller is in the khepera_k213 directory.

102 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.54: khepera_pipe.wbt

3.5.22 Kkhepera pipe.wbt

Keywords: DifferentialWheels, UNIX pipe, client program, Khepera

In this example, you can see a Khepera robot from K-Team inside an arena. The controller for
this robot opens a UNIX pipe in order to receive commands using the Khepera serial communi-
cation protocol. This example is provided with a sample client program which interacts with the
controller of the robot to make it move straight forward until it detects an obstacle. This client
program client must be launched separately from Webots. The source code for this controller
and for the client program are in the pipe directory.

@ As this example is based on standard UNIX pipes, it does not work under
Windows.

3.5. REAL ROBOTS 103

Figure 3.55: khepera_tcpip.wbt

3.5.23 Khepera_tcpip.wbt

Keywords: DifferentialWheels, TCP/IP, client program, Khepera

In this example, you can see a Khepera robot from K-Team inside an arena. The controller
for this robot acts as a TCP/IP server, waiting for a connection. Through this connection, the
robot can receive commands using the Khepera serial communication protocol. This example is
provided with a sample client program which displays a command prompt, with which you can
control the movements of the robot. This client program c1ient must be launched separately
from Webots. The source code for this controller and for the client program are in the tcpip
directory.

104 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.56: koala.wbt

3.5.24 Kkoala.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, Koala

In this example, you can see a Koala robot from K-Team moving inside an arena while avoiding
the walls. Like many other examples, this one uses the braitenberg controller. The source
code for this controller is located in the resources/projects/default/controllers/
braitenberg directory.

3.5. REAL ROBOTS 105

Figure 3.57: magellan.wbt

3.5.25 magellan.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, Magellan

In this example, you can see a Magellan robot moving inside an arena while avoiding the
walls. As this robot is no longer produced, its world file is in the others/worlds direc-
tory. Like many other examples, this one uses the braitenberg controller. The source code
for this controller is located in the resources/projects/default/controllers/
braitenberg directory.

106 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.58: pioneer2.wbt

3.5.26 pioneer2.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, Pioneer 2

In this example, you can see a Pioneer 2 robot from ActivMedia Robotics moving inside an
arena while avoiding the walls. Like many other examples, this one uses the braitenberg
controller. The source code for this controller is in the resources/projects/default/
controllers/braitenberg directory.

3.5. REAL ROBOTS 107

Figure 3.59: rover.wbt

3.5.27 rover.wbt

Keywords: DifferentialWheels, bumper, TouchSensor; line following, Rover, Java

In this example you can see the Mindstorms Rover robot from LEGO following a black line
drawn on the ground. In the middle of this line there is an obstacle which the robot navigates
around after detecting a collision with it. The robot will then recover its path. As this robot is
a Mindstorms robot, its world file and its controller are in the mindstorms directory. This
example is written both in Java and C, as a reference for translating Webots code from one
language to another. The source code for this controller is in the Rover directory.

108 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Figure 3.60: scout2.wbt

3.5.28 scout2.wbt

Keywords: DifferentialWheels, DistanceSensor, Braitenberg, Scout 2

In this example, a Scout 2 robot moves inside an arena while avoiding the walls. Its world file
is in the others/worlds directory. Like many other examples, this one uses the braitenberg
controller. The source code for this controller is in the resources/projects/default/
controllers/braitenberg directory.

3.5. REAL ROBOTS 109

Figure 3.61: shrimp.wbt

3.5.29 shrimp.wbt

Keywords: Robot node, custom ODE plugin, keyboard, passive joint, uneven ground sponginess,
Shrimp, linear Servo

This example contains a model of the Shrimp robot, which is a mobile platform for rough terrain
from Bluebotics'. It has 6 wheels and a passive structure which allows it to adapt to the terrain
profile and climb obstacles. It can also turn on the spot. In this example the robot will first move
on its own to the center of the world; then you may drive it yourself using the keyboard. To find
out which keys will allow you to perform these operations, please read the explanation message
printed at the beginning of the simulation in the Console window.

Because of its particular structure, this model is also an example of custom ODE plugins for:
e how to create and manage ODE joints
e how to add custom force

e how to create spongy tires

The source code for this controller is in the projects/robots/shrimp/controllers/
shrimp directory, and the ODE plugin is in the projects/robots/shrimp/plugins/
physics/shrimp directory.

"http://www.bluebotics.ch

http://www.bluebotics.ch

110 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

(b)

Figure 3.62: bioloid.wbt

3.5.30 bioloid.wbt

Keywords: Robot node, legged robot, Servo, Bioloid, Camera, DistanceSensor, keyboard, mod-
ular robots, walking

In this example, the four-legged robot model (Figure figure 3.62 (a)) corresponds to a real Bi-
oloid? robot (Figure figure 3.62 (b)) developed by and commercially available from Tribotix®.
This dog-robot model was build from the Bioloid Comprehensive Kit.

Both the visual aspect and the physical properties of the real robot have been modeled. The
physical dimensions, friction coefficients and mass distribution have been estimated after various
measurements on the components of the real robot.

The source code for the controller of the robot, as well as the model of the robot are located
under the Webots installation directory, in the projects/robots/bioloid sub folder:

e controllers/bioloid/: controller directory.

e worlds/bioloid.wbt: world definition file containing a Bioloid dog robot.

Using the keyboard, the user can control the quadruped robot by setting the walking direction
(forward or backwards) and also the heading direction (right or left). Keyboard actions include:

e Right Arrow: Turn right

http://www.robotis.com
3http://www.tribotix.com

http://www.robotis.com
http://www.robotis.com
http://www.tribotix.com

3.5. REAL ROBOTS 111

o Left Arrow: Turn left
e B: Walk backwards

o F: Walk forward

The walking gait used in the controller relies on an inverse kinematics model. Further details
are available from BIRG web site*. The included controller illustrates a trotting gait showing
the best performance so far. The turning capabilities of the robot are based on the stride length
modulation. When the robot is asked to turn right, the stride length of the right side and left side
are respectively decreased and increased. During the walk, the extremity of each leg is describing
an ellipsoid, the diameters of these ellipsoids are updated according to the stride length to allow
the robot to turn either right or left.

Other keyboard actions are also provided to fine-tune the frequency and the stride length factor:

e Q: Increase frequency
e W: Decrease frequency
e S: Increase stride length factor

e A: Decrease stride length factor

‘http://birg.epfl.ch/page66584.html

http://birg.epfl.ch/page66584.html

112 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Chapter 4

Language Setup

Webots controllers can be written in C/C++, Java, Python or MATLAB™. This chapter explains
how to install the software development kits for the programming language of your choice.

4.1 Introduction

Webots can execute controllers written in compiled (C/C++, Java) or interpreted (Python, MATLAB™)
languages. The compilation or interpretation process requires extra software that must usually

be installed separately. Only when using C/C++ on the Windows platform it is not necessary

to install a separate C/C++ compiler; on this platform Webots comes with a pre-installed and
preconfigured copy of the MinGW C/C++ compiler. For any other language or platform the soft-

ware development tools must be installed separately. Note that Webots uses very standard tools

that may already be present in a standard installation. Otherwise the instructions in this chapter

will advise you about the installation of your software development tools.

4.2 Controller Start-up

The .wbt file contains the name of the controller that needs to be started for each robot. The
controller name is platform and language independent field; for example when a controller name
is specified as ’xyz_controller” in the .wbt file, this does not say anything about the controller’s
programming language or platform. This is done deliberately to ensure the platform and pro-
gramming language independence of .wbt files.

So when Webots tries to start a controller it must first determine what programming language is
used by this controller. So, Webots looks in the project’s controllers directory for a subdi-
rectory that matches the controller name. Then, in this controller directory, it looks for a file that
matches the controller name. For example if the controller name is ’xyz_controller”, then Webots

113

114 CHAPTER 4. LANGUAGE SETUP

looks for these files in the specified order, in the PROJECT_DIRECTORY/controllers/
xyz_controller directory.

1. xyz_controller[.exe] (a binary executable)

2. xyz_controller.class (a Java bytecode class)
3. xyz-controller.jar (a Java .jar file)

4. xyz_controller.bsg (a Webots/BotStudio file)
5. xyz_controller.py (a Python script)

6. xyz_controller.m (a MATLAB™script)

The first file that is found will be executed by Webots using the required language interpreter
(java, python, matlab). So the priority is defined by the file extension, e.g. it won’t be possible to
execute xyz_controller.mif a file named xyz_controller.py is also present in the
same controller directory. In the case that none of the above filenames exist or if the required
language interpreter is not found, an error message will be issued and Webots will start the void
controller instead.

language: Java
In the Java case there are two options. The controller can be placed in a
@ .classfileorina . jar file. If a .class file is used, it must be named
xyz_controller.class. Ifa . jar file is used it must be named xy z__
controller. jar and it must contain a class named xyz_controller
that Webots will attempts to start.

note

4.3 Using C

4.3.1 Introduction

The C API (Application Programming Interface) is composed of a set of about 200 C functions
that can be used in C or C++ controller code. This is the low level interface with the Webots
simulator; all other APIs are built over the C API. A majority of Webots controller examples are
written in C, therefore the C API is Webots de facto standard API. Although less represented in
the controller examples, the other APIs offer exactly the same functionality as the C API.

4.4. USING C++ 115

4.3.2 C/C++ Compiler Installation
Windows Instructions

The Windows version of Webots comes with a pre-installed copy of the MinGW C/C++ compiler,
so there is usually no need to install a separate compiler. The MinGW compiler is a port of the
GNU Compiler Collection (gcc) on the Windows platform. The advantage of using the MinGW
compiler will be the better portability of your controller code. If you develop your code with
MinGW it will be straightforward to recompile it on the other Webots supported platforms: Mac
OS X and Linux. However, if you prefer using the Visual C++ compiler you will find instructions
there.

Mac OS X Instructions

In order to compile C/C++ controllers on the Mac, you will need to install Apple Xcode. Xcode is
a suite of tools, developed by Apple, for developing software for Mac OS X. Xcode is free and is
usually included with every copy of the Mac OS X installation DVD. Otherwise Xcode can also
be downloaded from the Apple Developer Connection! website. Webots will need principally the
gcc (GNU C Compiler) and make commands of Xcode. In the Xcode installer it is important to
check the "UNIX Development Support” checkbox: otherwise the necessary commands won’t
be installed in /usr/bin and so Webots may be unable to find them.

Linux Instructions

For compiling C controllers, Webots will need the GNU C Compiler and GNU Make utility.
On Linux, these tools are often pre-installed, otherwise you will need to install them separately
(gcc and make packages). For C++ you will also need the GNU C++ Compiler (g++ package).
Optionally you can also install the GNU Debugger (gdb package).

4.4 Using C++

4.4.1 Introduction

The C++ API is a wrapper of the C API described in the previous section. The major part of
the C functions has been wrapped in a function of a specific class. It is currently composed of a
set of about 25 classes having about 200 public functions. The classes are either representations
of a node of the scene tree (such as Robot, LED, etc.) or either utility classes (such as Motion,
ImageRef, etc.). A complete description of these functions can be found in the reference guide
while the instructions about the common way to program a C++ controller can be found in the
chapter 6.

1http://developer.apple.com/

http://developer.apple.com/

116 CHAPTER 4. LANGUAGE SETUP
4.4.2 C++ Compiler Installation

Please refer to the instructions for the C Compiler installation here.

4.4.3 Source Code of the C++ API

The source code of the C++ API is available in the Webots release. You may be interested in
looking through the directory containing the header files (include/controllers/cpp)in
order to get the precise definition of every classes and functions although the reference guide
offers a clean description of the public functions. This directory is automatically included when
the C++ controller is compiled.

For users who want to use a third-party development environment, it is useful to know that the
shared library (CopController.dll, 1ibCppController.so,or libCppController.
dylib) is located in the 1ib subdirectory of your Webots directory. This directory is automat-
ically included when the C++ controller is linked.

For advanced users who want to modify the C++ API, the C++ sources and the Makefile are
located in the projects/languages/cpp/src directory.

4.5 Using Java

4.5.1 Introduction

The Java API has been generated from the C++ API by using SWIG. That implies that their
class hierarchy, their class names and their function names are almost identical. The Java API
is currently composed of a set of about 25 classes having about 200 public functions located in
the package called com.cyberbotics.webots.controller. The classes are either representations of
a node of the scene tree (such as Robot, LED, etc.) or either utility classes (such as Motion,
ImageRef, etc.). A complete description of these functions can be found in the reference guide
while the instructions about the common way to program a Java controller can be found in the
chapter 6.

4.5.2 Java and Java Compiler Installation

In order to develop and run Java controllers for Webots it is necessary to have the Java Develop-
ment Kit (JDK), version 1.6 or later installed on your system.

4.5. USING JAVA 117

Windows and Linux Instructions

On Windows or Linux the Java Development Kit (JDK) can be downloaded for free from the Sun
Developer Network?. Make sure you choose the most recent release and the Standard Edition
(SE) of the JDK. For Windows, make also sure you have selected the 32 bit version since webots
is incompatible with the 64 bit version. Then follow the installation instructions attending the
package.

After installation you will need to set or change your PATH environment variable so that Webots
is able to access the java or (javaw) and javac commands. The java command is the
Java Virtual Machine (JVM); it is used for executing Java controllers in Webots. The javac
command is the Java compiler; it is used for compiling Java controllers in Webots text editor.
On Linux, you can set the PATH by adding this line to your ~/ .bashrc or equivalent file.

$ export PATH=/usr/lib/jvm/java-XXXXXX/bin:S$PATH

Where java-XXXXXX should correspond to the actual name of the installed JDK package.
On Windows, the PATH variable must be set using the Environment Variables dialog.

On Windows XP, this dialog can be opened like this: Choose Start > Settings > Control Panel,
and double-click System. Select the Advanced tab and then Environment Variables.

On Windows Vista and Windows 7 the dialog can be opened like this: Choose Start > Computer >
System Properties > Advanced system settings > Advanced tab and then Environment Variables.
In the dialog, in the User variables for ... section, look for a variable named PATH. Add the bin

path of the installed SDK to the right end of PATH variables. If the PATH variable does not exist
you should create it. A typical value for PATH is:

C:\Program Files\Java\ jdk—-XXXXXXX\bin

Where jdk-XXXXXX stands for the actual name of the installed JDK package.
Then, you need to restart Webots so that the change is taken into account.

Note that the PATH can also be set globally for all users. On Linux this can be achieved by
adding it in the /etc/profile file. On Windows this can be achieved by adding it to the Path
variable in the System variables part of the Environment Variables dialog.

Mac OS X Instructions

Mac OS X comes with preinstalled and preconfigured Java Runtime Environment (JRE) and
Java Development Kit (JDK). So you don’t need to download or install it. However you will
need to install the XCode Development Tools in order to be able to access the make command.
You will also need the XCode Development Tools if you want to compile C or C++ controllers.
The XCode tools can be found on your Mac OS X installation DVD, otherwise they can also be
downloaded for free from the Apple Developer Connection®.

’http://www.oracle.com/technetwork/java/javase/downloads
3http://developer.apple.com/

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://developer.apple.com/

118 CHAPTER 4. LANGUAGE SETUP

Troubleshooting the Java installation

If a Java controller fails to execute or compile, check that the java, respectively the javac
commands are reachable. You can verify this easily by opening a Terminal (Linux and Mac OS
X) or a Command Prompt (Windows) and typing java or javac. If these commands are not
reachable from the Terminal (or Command Prompt) they will not be reachable by Webots. In this
case check that the JDK is installed and that your PATH variable is defined correctly as explained
above.

If you run into an error message that looks approximately like this:

Native code library failed to load. See the chapter on Dynamic Linking
Problems in the SWIG Java documentation for help.
java.lang.UnsatisfiedLinkError: libJavaController.jnilib: no suitable
image found.

this is due to a 32-bit/64-bit incompatibility between Java Virtual Machine (JVM) and Webots.
On Mac OS X this problem should disappear after you upgrade to a recent version of Webots
(6.3.0 or newer). On Windows, Webots is only compatible with 32-bit versions of Java, so for
example, a 64-bit Windows you need to install a 32-bit version of Java to execute Java controllers.
On Linux (and Mac OS X) you should be able to solve this problem by replacing the default
”java” command string by ”java -d32” or “’java -d64” in the dialog Tools > Preferences > General
> Java command.

4.5.3 Link with external jar files

When a Java controller is either compiled or executed, respectively the java and the javac
commands are executed with the ~classpath option. This option is filled internally with the
location of the controller library, the location of the current controller directory, and the content
of the CLASSPATH environment variable. In order to include third-party jar files, you should
define (or modify) this environment variable before running Webots (see the previous section in
order to know how to set an environment variable). Under windows, the CLASSPATH seems
like this,

$ set CLASSPATH=C:\Program Files\java\jdk\bin;relative\mylib. jar

while under Linux and Mac OS X, it seems like this:

$ export CLASSPATH=/usr/lib/jvm/Jjava/bin:relative/mylib. jar

An alternative to this is to define the CLASSPATH variable into the Makefile, and to put all the
jar at the root of the controller directory.

4.5.4 Source Code of the Java API

The source code of the Java API is available in the Webots release. You may be interested
in looking through the directory containing the Java files (projects/languages/java/

4.6. USING PYTHON 119

src/SWIG_generated_files) in order to get the precise definition of every classes and
functions although these files have been generated by SWIG and are difficult to read.

For users who want to use a third-party development environment, it can be useful to know that
the package of the Java API (Controller. jar)is located in the 1ib directory.

For advanced users who want to modify the Java API, the SWIG script (controller.1i), the
java sources and the Makefile are located in the projects/languages/java/src direc-
tory.

4.6 Using Python

4.6.1 Introduction

The Python API has been generated from the C++ API by using SWIG. That implies that their
class hierarchy, their class names and their function names are almost identical. The Python API
is currently composed of a set of about 25 classes having about 200 public functions located in
the module called controller. The classes are either representations of a node of the scene tree
(such as Robot, LED, etc.) or either utility classes (such as Motion, ImageRef, etc.). A complete
description of these functions can be found in the reference guide while the instructions about
the common way to program a Python controller can be found in chapter 6.

4.6.2 Python Installation

Version

The Python API of Webots is built with Python 2.7. Python 2.7 or earlier versions are there-
fore recommended although more recent versions can work without guarantee. Python 3 is not
supported.

Mac OS X and Linux Instructions

Most of the Linux distribution have Python already installed. Same thing for the Macs. How-
ever, we recommend you to check your Python version and to upgrade Python if its version is
under 2.7. In order to find the Python executable, Webots parses the directories of the PATH
environment variable and looks for python2.* executable files. If your Python executable file is
accessible from a command prompt, it implies that Python is correctly installed. You can check
that by executing this command:

$ python2.X

120 CHAPTER 4. LANGUAGE SETUP

where the X character is replaced by an integer greater than or equal to 6. If Python is not well in-
stalled, this command should inform you that the executable is not found. In this case, check first
that Python 2.7 is installed, then check that the executable called python2.7 is somewhere (typi-
cally /usr/bin/python?2.7) and finally check that the PATH environment variable includes
the path to the Python executable. More information on the Python official web site?.

Windows Instructions

For the Windows users, you need to install Python on your computer by getting and executing
the right graphical installer which can be downloaded from the Python official web site. Make
sure you have selected the 32 bit version since webots is incompatible with the 64 bit version.
After the installation, you will need to set or change your PATH environment variable so that
Webots is able to access the python command.

The PATH variable must be set using the Environment Variables dialog. On Windows XP, this
dialog can be opened like this: Choose Start, Settings, Control Panel, and double-click System .
Select the Advanced tab and then Environment Variables.

On Windows Vista, the dialog can be opened like this: Choose Start, Computer, System Proper-
ties, Advanced system settings, Advanced tab and then Environment Variables.

In the dialog, in the User variables for ... section, look for a variable named PATH. Add the bin
path of Python to the right end of the list of paths. If the PATH variable does not exist you should
create it. A typical value for PATH is:

C:\PythonXX\bin

Where XX stands for the version of Python.

Then, you need to restart Webots so that the change is taken into account.

You can check the Python version by executing this command in a command prompt:

$ python --version

This command should display the Python version. If Python is not installed (or not correctly

installed), this command should inform you that python is not found. More information on the
Python official web site.

4.6.3 Source Code of the Python API

For advanced users who want to modify the Python API, the SWIG script (controller.1i),
and the Makefile are located in the projects/languages/python/src directory while
the generated library is located in the 1ib.

‘http://www.python.org/

http://www.python.org/
http://www.python.org/
http://www.python.org/

4.7. USING MATLAB™ 121

4.7 Using MATLAB™

4.7.1 Introduction to MATLAB™

MATLAB™is a numerical computing environment and an interpreted programming language.
MATLAB™allows easy matrix manipulation, plotting of functions and data, implementation

of algorithms and creation of user interfaces. You can get more information on the official
MathWorks® web site. MATLAB™ s widely used in robotics in particular for its Image Pro-
cessing, Neural Networks and Genetics Algorithms toolboxes. Webots allows to directly use
MATLAB™scripts as robot controller programs for your simulations. Using the MATLAB ™ interface,
it becomes easy to visualize controller or supervisor data, for example, processed images, sensor
readings, the performance of an optimization algorithm, etc., while the simulation is running. In
addition, it becomes possible to reuse your existing MATLAB™code directly in Webots.

4.7.2 How to run the Examples?

If MATLAB™is already installed, you can directly launch one of the MATLAB™examples. For
doing that, start Webots and open the world file projects/languages/matlab/worlds/
e-puck_matlab.wbt orthe world file projects/robots/nao/worlds/nao2_matlab.
wbt in your Webots installation directory. Webots automatically starts MATLAB™when it de-
tects an m-file in a controller directory. Note that the m-file must be named after its directory

in order to be identified as a controller file by Webots. So, for example, if the directory is
named my_controller, then the controller m-file must be named my_controller/my_
controller.m.

No special initialization code is necessary in the controller m-file. In fact Webots calls an in-
termediate 1auncher.m file that sets up the Webots controller environment and then calls
the controller m-file. In particular the 1auncher .m file loads the library for communicating
with Webots and adds the path to API m-files. The MATLAB™API m-files are located in the
lib/matlab directory of Webots distribution. These are readable source files; please report
any problem, or possible improvement about these files.

4.7.3 MATLAB™]nstallation

In order to use MATLAB™controllers in Webots, the MATLAB™software must be installed
(The MathWorks™license required).

Webots must be able to access the mat 1ab executable (usually a script) in order to run controller
m-files. Webots looks for the matlab executable in every directory of your PATH (or Path on
Windows) environment variable. Note that this is similar to calling mat 1ab from a terminal (or

Shttp://www.mathworks.com

http://www.mathworks.com

122 CHAPTER 4. LANGUAGE SETUP

Command Prompt on Windows), therefore, if MATLAB™can be started from a terminal then it
can also be started from Webots.

On Windows, the MATLAB™installer will normally add MATLAB™s bin directories to your
Path environment variable, so usually Webots will be able to locate MATLAB™after a standard
installation. However, in case it does not work, please make sure that your Path contains this
directory (or something slightly different, according to your MATLAB™version):

Path=C:\Program Files\MATLAB\R2009b\bin

On Linux, the MATLAB™ installer does normally suggest to add a symlink to the matlab
startup script in the /usr/local/bin directory. This is a good option to make mat 1ab glob-
ally accessible. Otherwise you can create the link at anytime afterwards with this shell command
(please change according to your actual MATLAB™ installation directory and version):

$ sudo 1ln -s /usr/local/MATLAB/R2010b/bin/matlab /usr/local/bin/matlab

Similarly, on Mac OS X, if Webots is unable to find the mat 1ab startup script then you should
add a symlink in /usr/bin:

$ sudo 1ln -s /Applications/MATLAB_R201lb.app/bin/matlab /usr/bin/
matlab

4.7.4 Compatibility Issues

Note that 32-bit versions of Webots are not compatible with 64-bit versions of MATLAB™and
vice-versa. On Windows, Webots comes only in 32-bit flavour and therefore it can only inter-
operate with a-32 bit version of MATLAB™. So for example on a 64-bit Windows, you will
need to install a 32-bit version of MATLAB™to inter-operate with Webots. On Linux, the 32-
bit version of Webots can only inter-operate with a 32-bit version of MATLAB™ and the 64-bit
version of Webots can only inter-operate with a 64-bit version of MATLAB™. On Mac OS X,
there is only one version of Webots but that version is compatible with both 32-bit and 64-bit
installations of MATLAB™,

On some platform the MATLAB™interface needs perl and gcc to be installed separately.
These tools are required because MATLAB™’s 1oadlibrary () function will need to re-
compile Webots header files on the fly. According to MATLAB™’s documentation this will be
the case on 64-bit systems, and hence we advice 64-bit Webots users (on Linux) to make sure
that these packages are installed on their systems.

On some Mac OS X systems the MATLAB ™ interface will work only if you install the Xcode de-

velopment environment, because gcc is required. An error message like this one, is a symptom
of the above described problem:

error using ==> calllib
Method was not found.

error in ==> launcher at 66
calllib(’libController’,’wb_robot_init’);

4.8. USING ROS 123

4.8 Using ROS

4.8.1 Whatis ROS?

ROS® (Robot Operating System) is a framework for robot software development, providing op-
erating system-like functionality on top of a heterogenous computer cluster. ROS was originally
developed in 2007 by the Stanford Artificial Intelligence Laboratory. As of 2008, development
continues primarily at Willow Garage’.

ROS provides standard operating system services such as hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between processes,
and package management. It is based on a graph architecture where processing takes place in
nodes that may receive, post and multiplex sensor, control, state, planning, actuator and other
messages. The library is geared towards a Unix-like system and is supported under Linux, ex-
perimental on Mac OS X and has partial functionality under Windows.

ROS has two basic “sides”: The operating system side, ros, as described above and ros-pkg, a
suite of user contributed packages (organized into sets called stacks) that implement functionality
such as simultaneous localization and mapping, planning, perception, simulation etc.

ROS is released under the terms of the BSD license, and is open source software. It is free for
commercial and research use. The ros-pkg contributed packages are licensed under a variety of
open source licenses.

4.8.2 ROS for Webots

ROS can be used with Webots by implementing Webots controllers as ROS nodes that can re-
ceive messages from other ROS nodes (to send motor commands to simulated robots) and send
messages to other ROS nodes (to read sensor data). A Webots controller ROS node therefore
behaves very similarly to a real device ROS node (running on a real robot).

Using Python

Such a ROS node can be easily implemented in Python by importing both ROS libraries (roslib,
rospy) and Webots libraries (controller) in a Webots robot controller (or supervisor controller).

Using C++

It is also possible to implement such a ROS node in C++ using the roscpp library. However,
in this case, you need to setup a build configuration to handle both the rosmake from ROS

Shttp://www.ros.org/
"http://www.willowgarage.com/

http://www.ros.org/
http://www.willowgarage.com/

124 CHAPTER 4. LANGUAGE SETUP

and the Makefile from Webots to have the resulting binary linked both against the Webots
libController and the roscpp library. An example of such an implementation is included
in the Webots distribution (see below).

4.8.3 Using ROS with Webots

A sample C++ ROS node running as a Webots controller is provided in the Webots distribution
for Linux and Mac OS X. It is located in the Webots projects/languages/ros folder and
contains a world file named joystick.wbt and a controller named joyst ick which allows
the user to drive a simulated robot using a joystick through the ROS joy node. This controller
is a very simple example of a ROS node running as a Webots controller. It could be used as
a starting point to develop more complex interfaces between Webots and ROS. The controller
directory includes all the Make fi1le machinery to call the build tools used by ROS and Webots
to produce the controller binary. The ros folder also includes a README . t xt file with detailed
installation and usage instructions.

4.9 Interfacing Webots to third party software with TCP/IP

4.9.1 Overview

Webots offers programming APIs for following languages: C/C++, Java, Python and MATLAB™.
It is also possible to interface Webots with other programming languages of software packages,
such as Lisp™, LabView™, etc. Such an interface can be implemented through a TCP/IP pro-
tocol that you can define yourself. Webots comes with an example of interfacing a simulated
Khepera robot via TCP/IP to any third party program able to read from and write to a TCP/IP
connection. This example world is called khepera_tcpip.wbt, and can be found in the
projects/robots/khepera/kheperal/worlds directory of Webots. The simulated
Khepera robot is controlled by the t cpip controller which is in the controllers directory
of the same project. This small C controller comes with full source code in tcpip.c, so that
you can modify it to suit your needs. A client example is provided in client.c. This client
may be used as a model to write a similar client using the programming language of your third
party software. This has already been implemented in Lisp™and MATLAB™by some Webots
users.

4.9.2 Main advantages

There are several advantages of using such an interface. First, you can have several simulated
robots in the same world using several instances of the same tcpip controller, each using a
different TCP/IP port, thus allowing your third party software to control several robots through

4.9. INTERFACING WEBOTS TO THIRD PARTY SOFTWARE WITH TCP/IP 125

several TCP/IP connections. To allow the t cpip process to open a different port depending on
the controlled robot, you should give a different name to each robot and use the robot _get -
name () in the tcpip controller to retrieve this name and decide which port to open for each
robot.

The second advantage is that you can also control a real robot from your third party software
by simply implementing your library based on the given remote control library. Switching to
the remote control mode will redirect the input/output to the real robot through the Inter-Process
Communication (IPC). An example of remote control is implemented for the EPuck robot in the
file projects/robots/e-puck/worlds/e—puck.wbt directory of Webots.

The third advantage is that you can spread your controller programs over a network of com-
puters. This is especially useful if the controller programs perform computationally expensive
algorithms such as genetic algorithms or other learning techniques.

Finally, you should set the controlled robot to synchronous or asynchronous mode depending
on whether or not you want the Webots simulator to wait for commands from your controllers.
In synchronous mode (with the synchronization field of the robot equal to TRUE), the
simulator will wait for commands from your controllers. The controller step defined by the
robot_step parameter of the tcpip controller will be respected. In asynchronous mode
(with the synchronization field of the robot set to FALSE), the simulator will run as fast
as possible, without waiting for commands from your controllers. In the latter case, you may
want to run the simulation in real time mode so that robots will behave like real robots controlled
through an asynchronous connection.

4.9.3 Limitations

The main drawback of TCP/IP interfacing is that if your robot has a camera device, the protocol
must send the images to the controller via TCP/IP, which might be network intensive. Hence it is
recommended to have a high speed network, or use small resolution camera images, or compress
the image data before sending it to the controller. This overhead is negligible if you use a low
resolution camera such as the Khepera K213 (see example projects/robots/khepera/
kheperal/worlds/khepera_k213.wbt).

126 CHAPTER 4. LANGUAGE SETUP

Chapter 5

Development Environments

This chapter indicates how to use the built-in development environment or third-party environ-
ments for developing Webots controllers.

5.1 Webots Built-in Editor

Webots source code editor is a multi-tab text editor specially adapted for developing Webots con-
trollers. It is usually recommended to use this editor as it makes the compilation straightforward.
The editor features syntax highlighting for Webots supported language (C/C++, Java, Python and
MATLAB™) and auto-completion for Webots C API.

5.1.1 Compiling with the Source Code Editor

The Source Code Editor can be used to compile C/C++ or Java source files into binary executable
or bytecode (Java) files that can be executed in a simulation. The compilation output is printed
to Webots console; errors and warnings appear in red. If you double-click an error message,
Webots will highlight the corresponding source line in the editor.

Note that, for compiling source code it is necessary to have the appropriate development tools
installed. You will find information on the development tools here.

(L:EI The Compile button launches the compilation of the currently selected source file. Only the
current file is compiled, not the whole project. Webots invokes gcc, g++ or javac depending
on the extension of currently selected source file.

Builds the whole project by invoking make in the selected file’s directory. With C/C++,
the Build button compiles and links the whole project into an executable file. C/C++ source file

127

128

fusr/local/webots/projects/robots/e-puck/controllersfe-puck_crosscompilation/e-puck_crosscompilation.c E3]

CHAPTER 5. DEVELOPMENT ENVIRONMENTS

o asdsc B G@dad

braitenberg.c 38 e-puck.c 38 e-puck crosscompilation.c ¥

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
33
54
35
56
37

long int sum;

double count;

int camera width,camera height;
initialize Webots

wb_robot init();

* get and enable devices */
char text[5] = "led@";
for(it=0; it<NB LEDS; it++) {
led[it] = wb robot get device(text);
text[3]++;
wb led set(led[it],OFF);
}
char textPS[] = "ps@";
for (it=0; it<NB DIST SENS; it++) {
ps[it] = wb_robot get device(textPS);
textPs[2]++;
wb distance sensor enable(ps[it],2*TIME STEP);
}

char textLs[] = "ls@8";

for (it=0;it<NB LIGHT SENS;it++) {
1s[it] = wb robot get device(textLS);
textLs[2]++;
wb light sensor enable(ls[it], 2*TIME STEP);

}
wb differential wheels enable encoders{TIME STEP);
wh differential wheels set encoders(9.0,0.0);

Figure 5.1: Webots Text Editor

5.2. THE STANDARD FILE HIERARCHY OF A PROJECT 129

dependencies are automatically generated and updated when necessary. With Java, the Build
button compiles the whole project into bytecode (.class files).

¥

ar

t=-= | The Clean button invokes make clean to delete the intermediate compilation files in the
current file’s directory. The source files remain untouched.

The Make JAR file menu rebuilds the whole project and packs all the .class in a . jar. Thisis a
convenience function that can be used to pack a complete controller prior to uploading it to one
of our online contest website.

o
2
[

i
(‘“’E:b The Cross-compile button allows to cross-compile the current text editor’s file. Note that
a specific Makefile is required in the controller’s directory for performing this operation. For an
e-puck robot, this Makefile must be named Makefile.e-puck.

¥
ﬁ The Cross-compilation clean menu allows you to clean the cross-compilation files. Note
that a specific Makefile is required in the controller’s directory for performing this operation. For
an e-puck robot, this Makefile must be named Makefile.e-puck.

5.2 The standard File Hierarchy of a Project

Some rules have to be followed in order to create a project which can be used by Webots. This
section describes the file hierarchy of a simple project.

5.2.1 The Root Directory of a Project

The root directory of a project contains at least a directory called worlds containing a single
world file. But several other directories are often required:

e controllers: this directory contains the controllers available in each world files of the
current project. The link between the world files and this directory is done through the
controller field of the Robot node (explained in the reference manual). More information
about this directory in the following subsections.

e protos: this directory contains the prototypes available for each world files of the current
project.

e plugins: this directory contains the plugins available in the current project. The link
between the world files and this directory is done through the physics, the fast2d or the
sound field of the WordInfo node (explained in the reference manual).

130 CHAPTER 5. DEVELOPMENT ENVIRONMENTS

e worlds: this directory contains the world files, the project files (see below) and the tex-
tures (typically in a subdirectory called textures).

@ Note that the directories can be created by using the wizard New Project

Directory described in chapter 2.
note

5.2.2 The Project Files

The project files contain information about the GUI (such as the perspective). These files are
hidden. Each world file can have one project file. If the world file is named myWor1dFile.
whbt, its project file is named .myWorldFile.wbproj. This file is written by Webots when
a world is correctly closed. Removing it allows you to retrieve the default perspective.

5.2.3 The ”controllers” Directory

This directory contains the controllers. Each controller is defined in a directory. A controller is
referenced by the name of the directory. Here is an example of the controllers directory having
one simple controller written in C which can be edited and executed.

controllers/

controllers/simple_controller/
controllers/simple_controller/Makefile
controllers/simple_controller/simple_controller.c
controllers/simple_controller/simple_controller|[.exe]

@ The main executable name must be identical to the directory name.

note

@ You can create all the files needed by a new controller using the wizard New
Robot Controller described in chapter 2.

note

5.3 Compiling Controllers in a Terminal

It is possible to compile Webots controllers in a terminal instead of the built-in editor. In this
case you need to define the WEBOTS_HOME environment variable and make it point to Webots
installation directory. The WEBOTS_HOME variable is used to locate Webots header files and
libraries in the Makefiles. Setting an environment variable depends on the platform (and shell),
here are some examples:

5.4. USING WEBOTS MAKEFILES 131

5.3.1 Mac OS X and Linux

These examples assume that Webots is installed in the default directory. On Linux, type this:

$ export WEBOTS_HOME=/usr/local/webots

or add this line to your ~/ .bash_profile file. On Mac OS X, type this:
$ export WEBOTS_HOME=/Applications/Webots

or add this line to your -~/ .profile file.

Once WEBOTS_HOME is defined, you should be able to compile in a terminal, with the make
command. Like with the editor buttons, it is possible to build the whole project, or only a single
binary file, e.g.:

S make

$ make clean

S make my_robot.class

$ make my_robot.o

5.3.2 Windows

On Windows you must use the MSYS terminal to compile the controllers. MSYS is a UNIX-like

terminal that can be used to invoke MinGW commands. It can be downloaded from http://sourceforge.net'.
You will also need to add the bin directory of MinGW to your PATH environment variable.
MinGW is located in the mingw subdirectory of Webots distribution. When set correctly, the
environment variable should be like this:

WEBOTS_HOME=C:\Program Files\Webots

PATH=C:\program Files\Webots\mingw\bin;C:\...

Once MSYS is installed and the environment variables are defined, you should be able to compile
controllers by invoking mingw32-make in the MSYS terminal, e.g.:

$ mingw32-make

$ mingw32-make clean

$ mingw32-make my_robot.class
$ mingw32-make my_robot.o

5.4 Using Webots Makefiles

5.4.1 What are Makefiles

The compilation of Webots C/C++ and Java controllers can be configured in the provided Make-
files. A controller’s Makefile is a configuration file used by the make utility and that optionally

'http://sourceforge.net

http://sourceforge.net

132 CHAPTER 5. DEVELOPMENT ENVIRONMENTS

specifies a list of source files and how they will be compiled and linked to create the executable
program.

Note that Python and MATLAB™ are interpreted languages and therefore they don’t need Make-
files. So if you are using any of these programming languages or Visual C++ then you can ignore
this section.

When using C/C++ or Java, the presence of a Makefile in the controller directory is neces-
sary. If the Makefile is missing Webots will automatically propose to create one. This Makefile
can be modified with a text editor; its purpose is to define project specific variables and to in-
clude the global Makefile.include file. The global Makefile.include file is stored
in WEBOTS_HOME /resources/projects/default/controllers directory; it con-
tains the effective build rules and may vary with the Webots version. Note that Webots Makefiles
are platform and language independent.

5.4.2 Controller with Several Source Files (C/C++)

If a controller requires several C/C++ source files they need to be specified in the Makefile. The
name of each source file must be listed, using one of these variables:

Variable Usage

C_SOURCES Specifies a list of .c sources files
CPP_SOURCES | Specifies a list of .cpp source files
CC_SOURCES | Specifies a list of .cc source files

Table 5.1: Webots Makefile Variables

Every source file specified using these variables, will be added to the controller build. In addition
dependency files will be automatically generated by the make command in order to minimize
the build. Note that these variables should not be used in any language other than C or C++.

For example, if a controller has several . c source files, then this can be specified like this in the
controller’s Makefile:

C_SOURCES = my_controller.c my_second_file.c my_third file.c

If a project has several . cpp source files, then this can be specified like this:

CPP_SOURCES = my_controller.cpp my_second_file.cpp my_third file.cpp

Same thing for .cc source files. Important: the build rules require that one of the source files
in the list must correspond to the controller name (i.e. controller directory name), e.g. if the
controller directory is my_controller then the list must contain either my_controller.
c,my_controller.cppormy_controller.cc accordingly.

5.4. USING WEBOTS MAKEFILES 133

5.4.3 Using the Compiler and Linker Flags (C/C++)

These two variables can be used to pass flags to the gcc compiler or linker.

Variable Usage
CFLAGS Specifies a list of flags that will be passed to the gcc/g++ compiler
LIBRARIES | Specifies a list of flags that will be passed to the linker

Table 5.2: Webots Makefile Variables

Adding an External Library (C/C++)

Webots C/C++ controllers are regular binary executable files that can easily be compiled and
linked with external libraries. To add an external library it is only necessary to specify the path
to the header files, and the path and name of the library in the controller’s Makefile. For example
the —Idir flag can be used to add a directory to search for include files. The LIBRARIES variable
can be used to pass flags to the linker. For example the —Ldir flag can be used to add a directory
to search for static or dynamic libraries, and the —1 flag can be used to specify the name of a
library that needs to be linked with the controller.

For example, let’s assume that you would like to add an external library called XYZLib. And let’s
assume that the library’s header files and . d11 file are located like this (Windows):

C:\Users\YourName\XYZLib\include\XYZLib.h
C:\Users\YourName\XYZLib\1ib\XYZLib.d1l1l

Then here is how this should be specified in the Makefile:

CFLAGS = -IC:\Users\YourName\XYZLib\include
LIBRARIES = -LC:\Users\YourName\XYZLib\1lib -1XYZLib

The first line tells gcc where to look for the #include<XYZLib.h> file. The second line tells gcc
to link the executable controller with the XYZLib.d11 and where that . d11 can be found. Note
that this would be similar on Linux and Mac OS X, you would just need to use UNIX-compatible
paths instead. If more external libraries are required, it is always possible to use additional —T,
—-L and -1 flags. For more information on these flags, please refer to the gcc man page.

Using Webots C API in a C++ Controller

Normally, C++ controllers use Webots C++ APIL. The C++ APl is a set of C++ classes provided
by C++ header files, e.g. #include <webots/Robot.hpp>. If you prefer, C++ control-
lers can use Webots C API instead. The C APl is a set of C functions starting with the wb prefix
and provided by C header files, e.g. #include <webots/robot.h>. To use the C APl in
a C++ controller you need to add this line in your controller Makefile:

USE_C_APTI =1

134 CHAPTER 5. DEVELOPMENT ENVIRONMENTS

Adding Debug Information

If you need to debug your controller, you need to recompile it with the —g flag, like this:

CFLAGS = —g

This will instruct gcc to add debugging information so that the executable can be debugged
using gcc. Please find more info on debugging controllers in the next section. The default
CFLAGS is empty and hence no debug information is generated.

C/C++ Code Optimization

If you need to optimize your controller code, you can use the -01, -02 or -03 flags. For
example:

CFLAGS = -03

This will result in a slightly longer compilation time for a more efficient (faster) code. The
default CFLAGS is empty and hence the code is not optimized by default. For more information
on these flags, please refer to the gcc man page.

5.5 Debugging C/C++ Controllers

5.5.1 Controller processes

In the Webots environment, the Webots application and each robot C/C++ controller are executed
in distinct operating system processes. For example, when the soccer . wbt world is executed,
there is a total of eight processes in memory; one for Webots, six for the six player robots, and
one for the supervisor. To debug a C/C++ controller with Visual C++, please see here.

When a controller process performs an illegal instruction, it is terminated by the operating system
while the Webots process and the other controller processes remain active. Although Webots is
still active, the simulation blocks because it waits for data from the terminated controller. So if
you come across a situation where your simulation stops unexpectedly, but the Webots GUI is
still responsive, this usually indicates the crash of a controller. This can easily be confirmed by
listing the active processes at this moment: For example on Linux, type:

$ ps -e

12751 pts/1 00:00:16 webots

13294 pts/1 00:00:00 soccer_player
13296 pts/1 00:00:00 soccer_player
13297 pts/1 00:00:00 soccer_player
13298 pts/1 00:00:00 soccer_player

13299 pts/1 00:00:00 soccer_player

5.5. DEBUGGING C/C++ CONTROLLERS 135

13300 pts/1 00:00:00 soccer_player
13301 pts/1 00:00:00 soccer_supervisor <defunct>

On Mac OS X, use rather ps —x and on Windows use the Task Manager for this. If one of
your robot controllers is missing in the list (or appearing as <defunct>) this confirms that it
has crashed and therefore blocked the simulation. In this example the soccer_supervisor
has crashed. Note that the crash of a controller is almost certainly caused by an error in the
controller code, because an error in Webots would have caused Webots to crash. Fortunately, the
GNU debugger (gdb) can usually help finding the reason of the crash. The following example
assumes that there is a problem with the soccer_supervisor controller and indicates how
to proceed with the debugging.

5.5.2 Using the GNU debugger with a controller

The first step is to recompile the controller code with the -g flag, in order to add debugging
information to the executable file. This can be achieved by adding this line to the controller’s
Makefile:

CFLAGS = —g

Then you must recompile the controller, either by using the Clean and Build buttons of the Webots
text editor or directly in a terminal:

S make clean
S make

Note that, the -g flag should now appear in the compilation line. Once you have recompiled the
controller, hit the Stop and Revert buttons. This stops the simulation and reloads the freshly com-
piled versions of the controller. Now find the process ID (PID) of the soccer_supervisor
process, using ps —e (Linux) or ps -x (Mac OS X), or using the Task Manager (Windows).
The PID is in the left-most column of output of ps as shown above. Then open a terminal and
start the debugger by typing:

$ gdb
(gdb) attach PID

(gdb) cont
Continuing.

Where PID stands for the PID of the soccer_supervisor process. The attach command
will attach the debugger to the soccer_supervisor process and interrupt its execution.
Then the cont command will instruct the debugger to resume the execution of the process. (On

136 CHAPTER 5. DEVELOPMENT ENVIRONMENTS

Windows you will need to install the gdb.exe file separately and use an MSYS console to
achieve this.)

Then hit the Run button to start the simulation and let it run until the controller crashes again.
The controller’s execution can be interrupted at any time (Ctrl-C), in order to query variables, set
up break points, etc. When the crash occurs, gdb prints a diagnostic message similar to this:

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread -1208314144 (LWP 16448)]
0x00cd6dd5 in _IO_str_overflow_internal () from /lib/tls/libc.so.6

This indicates the location of the problem. You can examine the call stack more precisely by
using the where command of gdb. For example type:

(gdb) where

#0 0x00cd6dd5 in _IO _str_overflow_internal() from /lib/tls/libc.so.6
#1 0x00cd596f in _TI0_default_xsputn_internal () from /lib/tls/libc.so.6
#2 0x00cca9cl in _IO_padn_internal () from /lib/tls/libc.so.6

#3 0x00cbl7ea in vfprintf() from /lib/tls/libc.so.6

#4 0x00ccb9cb in vsprintf () from /lib/tls/libc.so.6

#5 0x00cb8d4b in sprintf () from /lib/tls/libc.so.6

#6 0x08048972 in run(ms=0) at soccer_supervisor.c:106

#7 0x08048b0a in main() at soccer_supervisor.c:140

By examining carefully the call stack you can locate the source of the error. In this example we
will assume that the sprintf () function is OK, because it is in a system library. Therefore it
seems that the problem is caused by an illegal use of the sprintf () function in the run ()
function. The line 106 of the source file soccer_supervisor.c must be examined closely.
While the controller is still in memory you can query the values of some variables in order to
understand what happened. For example, you can use the frame and print commands:

(gdb) frame 6

#6 0x08048953 in run (ms=0) at soccer_supervisor.c:106

106 sprintf (time_string, "%$02d:%02d", (int) (time / 60),
(int) time % 60);

(gdb) print time_string

$1 = 0x0

The frame command instructs the debugger to select the specified stack frame, and the print
command prints the current value of an expression. In this simple example we clearly see that the
problem is caused by a NULL (0x0) time_string argument passed to the sprintf () function.
The next steps are to: fix the problem, recompile the controller and revert the simulation to give
it another try. Once it works correctly you can remove the -g flag from the Makefile.

5.6. USING VISUAL C++ WITH WEBOTS 137

5.6 Using Visual C++ with Webots

5.6.1 Introduction

Microsoft Visual C++ is an integrated development environment (IDE) for C/C++ available on
the Windows platform. On Windows, Visual C++ is a possible alternative to using Webots built-
in gcc (MinGW) compiler. Visual C++ can be used to develop controllers using Webots C or
C++ API. The developer must choose one of these two APIs as they cannot be used together in
controller code. The C API is composed of .h files that contains flat C functions that can be
used in C or C++ controllers. The C++ API is composed of . hpp files that contain C++ classes
and methods that can be used in C++ controllers only.

Two Visual C++ projects examples are included in Webots distribution: webots\projects\
robots\khr-2hv\controllers\khr2\khr2.vcprojandwebots\projects\robots\
khr-2hv\plugins\physics\khr2\physics.vcproj. However in principle any C or

C++ controller from Webots distribution can be turned into a Visual C++ project.

5.6.2 Configuration

When creating a Webots controller with Visual C++, it is necessary to specify the path to Webots
.hand/or . hpp files. It is also necessary to configure the linker to use the Controller.1lib
import library from Webots distribution. The Controller.1ib files is needed to link with
the Controller.d11 file that must be used by the controller in order to communicate with
Webots.

The following procedure (Visual C++ 2008 Express) explains how to create a Visual C++ con-
troller for Webots. Note that the resulting . exe file must be launched by Webots; it cannot be
run from Visual C++.

1. Copy a Webots project from Webots distribution to your Document s folder, or create an
empty project directory using Webots menu: Wizard > New Project Directory... Either way,
the project directory must contain the controllers and worlds subdirectories.

2. Start Visual C++ and select: File > New > Project... Then choose these settings:

Project type: General

Template: Empty Project

Name: MyController (for example)

Location: C:\Users\MyName\Documents\MyProject\controllers (for
example)

Where "MyController” is the name of a new or already existing controller directory, and
where “Location” must indicate the cont rollers subdirectory of your Webots project
directory.

138

CHAPTER 5. DEVELOPMENT ENVIRONMENTS

3. Then you can add a C or C++ source file to your project: Choose either: Project > Add

Existing Item or Project > Add New Item > C++ File (.cpp). In the second case you can copy
the content of one of the C/C++ examples of Webots distribution.

Note that if you copied C code from Webots examples to Visual C++, it is highly recom-
mended to change the source file extension from .c to .cpp. The reason is that Webots
examples are written for the gcc compiler which uses a more modern version of the C
language than Visual C++. By changing the file extension to .cpp you will instruct Visual
C++ to compile the file in C++ mode (/TP) which is more tolerant with gcc code. If you
don’t do it, you may run into error messages like these:

MyController.c(24): error C2275: ’'WbDeviceTag’ : illegal use of
this type as an expression

MyController.c(24): error C2146: syntax error : missing ’';’
before
identifier "ir0’

Now we can set up the project configuration for Webots. Select the Project > Properties
menu. In the Property Pages, in the Configuration Properties, enter following configura-
tion:

C/C++ > General > Additional Include Directories:
C:\Program Files\Webots\include\controller\c

This will tell Visual C++ where to find Webots C API (.h files).

By default Visual C++ places the .exe file in a Debug or Release subdirectory. How-
ever order to be executed by Webots, the .exe file must be placed directly at the root of the
MyController directory. So in this example the .exe should be there: MyProject\
controllers\MyController\MyController.exe. Consequently the linker out-
put file should be configured like this:

Linker > General > Output File: $(ProjectName) .exe

Now we need to tell Visual C++ to use the Controller.1lib import library:

Linker > Input > Additional Dependencies:
Controller.lib

Linker > General > Additional Library Directories:
C:\Program Files\Webots\1lib

. If you want to use the C API, you should skip step 5 and go directly to step 6. If you want

to use the C++ API follow these instructions:
In Property Pages, in the Configuration Properties, add the path to Webots .hpp files:

C/C++ > General > Additional Include Directories:
C:\Program Files\Webots\include\controller\c
C:\Program Files\Webots\include\controller\cpp

5.7. STARTING WEBOTS REMOTELY (SSH) 139

Now you should have the path to both the .h and the .hpp files.

Then you need to add Webots C++ wrappers to your project. The C++ wrappers are .cpp
files that implement the interface between the C++ API and the C API. You can proceed
like this:

In Visual C++, in the Solution Explorer: right-mouse-click on the Sources Files folder,
then select Add > New Filter. This should create a NewFilter1 subfolder in your Sources
Files folder. Then select the NewFilter1 and with the right-mouse-button: choose the Add
> Existing Item... menu. In the file dialog, go to the C:\ProgramFiles\Webots\
projects\languages\cpp\src directory, then select all the .cpp files (but no other
file) in that directory and hit the Add button. This should add the Accelerometer.
cpp, Camera.cpp, Compass . cpp, etc. source files to your project.

6. Now you should be able to build your controller with the Build > Build MyController
menu item (or the F7 key). This should generate the MyProject\controllers\
MyController\MyController.exe file.

7. Now we can switch to Webots in order to test the .exe controller. Start Webots and ver-
ify that your robot is associated with the correct controller: In the Scene tree, expand the
robot node and check the controller field. It should be: controller "MyCon-
troller". Otherwise you should change it: hit the ... (ellipsis) button, this opens a
selection dialog. In the selection dialog choose "MyController”. Then hit the Save button
in Webots main window. Finally you can hit the Run button to start the simulation. At this
point the simulation should be using your Visual C++ controller.

8. If you want to debug your controller with Visual C++ you can attach the debugger to
the running controller process. Proceed like this: In Webots, hit the Stop button then
the Revert button. Then, in Visual C++, use the Debug > Attach to Process... menu. In
the dialog choose the MyController.exe_webots process. Still in Visual C++, you can now
add breakpoints and watches in the controller code. Then, in Webots, hit the Run button
to resume the simulation. Now the controller should stop when it reaches one of your
breakpoints.

5.7 Starting Webots Remotely (ssh)

Webots can be started on a remote computer, by using ssh (or a similar) command. However,
Webots will work only if it can get a X11 connection to a X-server running locally (on the same
computer). It is currently not possible to redirect Webots graphical output to another computer.

5.7.1 Using the ssh command

Here is the usual way to start from computer A, a Webots instance that will run on computer B:

140 CHAPTER 5. DEVELOPMENT ENVIRONMENTS

$ ssh myname@computerB.org
$ export DISPLAY=:0.0
$ webots —--mode=fast --stdout --stderr myworld.wbt

The first line logs onto computer B. The 2nd line sets the DISPLAY variable to the display 0 (and
screen 0) of computer B. This will indicate to all X11 applications (including Webots) that they
needs to connect to the X-server running on the local computer: computer B in this case. This
step 1s necessary because the DISPLAY variable is usually not set in an ssh session.

The last line starts Webots: the —mode=fast option enables the Fast simulation mode, which
is available only with Webots PRO. The —mode=fast option makes the simulation run as fast as
possible, without graphical rendering, which is fine because the graphical output won’t be visible
anyway from computer A. Options —stdout and —stderr are used to redirect Webots’ output to
the standard streams instead of Webots console, otherwise the output would not be visible on
computer A.

At this point, Webots will start only if a X-server with proper authorizations is running on com-
puter B. To ensure that this is the case, the simplest solution is to have an open login session on
computer B, i.e., to have logged in using the login screen of computer B, and not having logged
out. Unless configured differently, the ssh login and the screen login session must belong to the
same user, otherwise the X-server will reject the connection. Note that the xhost + command
can be used to grant access to the X-server to another user. For security reasons, the screen of
the open session on computer B can be locked (e.g. with a screen-saver): this won’t affect the
running X-server.

5.7.2 Terminating the ssh session

A little problem with the above approach is that closing the s sh session will kill the remote jobs,
including Webots. Fortunately it is easy to overcome this problem by starting the Webots as a
background job and redirecting its output to a file:

ssh myname@computerB.org

export DISPLAY=:0.0

webots —--mode=fast —--stdout --stderr myworld.wbt &> out.txt &
exit

o »r U

The &> sign redirects into a text file the output that would otherwise appear in the s sh terminal.
The & sign starts Webots as a background job: so the user can safely exit the ssh session, while
Webots keeps running.

In this case the decision to terminate the job is usually made in the Supervisor code according
to simulation specific criteria. The wb_supervisor_simulation_quit () function can be
used to automatically terminate Webots when the job is over.

5.8. TRANSFER TO YOUR OWN ROBOT 141
5.8 Transfer to your own robot

In mobile robot simulation, it is often useful to transfer the results onto real mobile robots.
Webots was designed with this transfer capability in mind. The simulation is as realistic as
possible, and the programming interface can be ported or interfaced to existing, real robots.
Webots already comprises transfer systems for a number of existing robots including e-puck™,
Khepera™, Hemisson™, LEGO Mindstorms™, Aibo™, etc. This section explains how to de-
velop your own transfer system to your own mobile robot.

Since the simulation is only an approximation of the physics of the real robot, some tuning is
always necessary when developing a transfer mechanism for a real robot. This tuning will affect
the simulated model so that it better matches the behavior of the real robot.

5.8.1 Remote control
Overview

Often, the easiest way to transfer your control program to a real robot is to develop a remote
control system. In this case, your control program runs on the computer, but instead of sending
commands to and reading sensor data from the simulated robot, it sends commands to and reads
sensor data from the real robot. Developing such a remote control system can be achieved in a
very simple way by writing your own implementation of the Webots API functions as a small
library. For example, you will probably have to implement the wbo_differential wheels -
set_speed () function to send a specific command to the real robot with the wheel speeds as
an argument. This command can be sent to the real robot via the serial port of the PC, or any
other PC-robot interface you have. You will probably need to make some unit conversions, since
your robot may not use the same units of measurement as the ones used in Webots. The same
applies for reading sensor values from the real robot.

Developing a custom library

Once you have created a number of C functions implementing the Webots functions, you need to
redirect outputs and inputs to the real robot. You will then be able to reuse your Webots controller
without changing a line of code, and even without recompiling it: Instead of linking the object
file with the Webots Cont roller dynamic library, you will link it with your own C functions.
For your convenience, you may want to create a static or dynamic library containing your own
robot interface.

Special functions

The wb_robot_live () function must be the first called function. It performs the controller
library’s initialization.

142 CHAPTER 5. DEVELOPMENT ENVIRONMENTS

The wb_robot_step () function should be called repeatedly (typically in an infinite loop). It
requests that the simulator performs a simulation step of ms milliseconds; that is, to advance the
simulation by this amount of time.

The wb_robot_cleanup () function should be called at the end of a program in order to leave
the controller cleanly.

Running your real robot

Once linked with your own library, your controller can be launched as a stand alone application to
control your real robot. It might be useful to include in your library or in your Webots controller
some graphical representation to display sensor values, motor commands or a stop button.

Such a remote control system can be implemented in C as explained here; however, it can also be
implemented in Java using the same principle by replacing the Controller. jar Webots file
by your own robot specific Controller. jar file and using this one to drive the real robot.

5.8.2 Cross-compilation
Overview

Developing a cross-compilation system will allow you to recompile your Webots controller for
the embedded processor of your own real robot. Hence, the source code you wrote for the Webots
simulation will be executed on the real robot itself, and there is no need to have a permanent PC
connection with the robot as with the remote control system. This is only possible if the processor
on your robot can be programmed respectively in C, C++, Java or Python. It is not possible for
a processor that can be programmed only in assembler or another specific language. Webots
includes the source code of such a cross-compilation system for the e-puck and the Hemisson
robot. Samples are located in the projects/robots directory.

Developing a custom library

Unlike the remote control system, the cross-compilation system requires that the source code
of your Webots controller be recompiled using the cross-compilation tools specific to your own
robot. You will also need to rewrite the Webots include files to be specific to your own robot.
In simple cases, you can just rewrite the Webots include files you need, as in the hemisson
example. In more complex cases, you will also need to write some C source files to be used as
a replacement for the Webots Cont roller library, but running on the real robot. You should
then recompile your Webots controller with your robot cross-compilation system and link it with
your robot library. The resulting file should be uploaded onto the real robot for local execution.

5.8. TRANSFER TO YOUR OWN ROBOT 143

Examples

Webots support cross-compilation for several existing commercial robots. For the e-puck™robot,
this system is fully integrated in the Webots GUI and need no modification in the code. For the
Hemisson™robot, this system needs a few include files to replace the Webots API include files.
For the Khepera™robot, a specific C library is used in addition to specific include files. For the
LEGO Mindstorms™robot, a Java library is used, and the resulting binary controller is executed
on the real robot using the LeJOS Java virtual machine.

5.8.3 Interpreted language

In some cases, it may be better to implement an interpreted language system. This is useful if
your real robot already uses an interpreted language, like Basic or a graph based control lan-
guage. In this case, the transfer is very easy since you can directly transfer the code of your
program that will be interpreted to the real robot. The most difficult part may be to develop a
language interpreter in C or Java to be used by your Webots controller for controlling the simu-
lated robot. Such an interpreted language system was developed for the Hemisson™robot with
the BotStudio™system.

144 CHAPTER 5. DEVELOPMENT ENVIRONMENTS

Chapter 6

Programming Fundamentals

This chapter introduces the basic concepts of programming with Webots. Webots controllers can
be written in C/C++, Java, Python or MATLAB™. Besides their syntactic differences all these
languages share the same low-level implementation. As long as the sequence of function/method
calls does not vary, every programming language will yield exactly the same simulation results.
Hence the concepts explained here with C examples also apply to C++/Java/Python/Matlab.

6.1 Controller Programming
The programming examples provided here are in C, but same concepts apply to C++/Java/Python/Matlab.

6.1.1 Hello World Example

The tradition in computer science is to start with a "Hello World!” example. So here is a “Hello
World!” example for a Webots controller:

1 |#include <webots/robot.h>
2 |#include <stdio.h>

3

4 |int main() {

5 wb_robot_init ();

6

7 while (1) {

8 printf ("Hello World!\n");
9 wb_robot_step (32);

10 }

11

12 return 0;

13 |}

145

146 CHAPTER 6. PROGRAMMING FUNDAMENTALS

This code repeatedly prints "Hello World!" to the standard output stream which is redi-
rected to Webots console. The standard output and error streams are automatically redirected to
Webots console for all Webots supported languages.

Webots C API (Application Programming Interface) is provided by regular C header files. These
header files must be included using statements like #include <webots/xyz.h> where
xyz represents the name of a Webots node in lowercase. Like with any regular C code it is
also possible to include the standard C headers, e.g. #include <stdio.h>. A call to the
initialization function wb_robot_init () is required before any other C API function call.
This function initializes the communication between the controller and Webots. Note that wb_—
robot_init () exists only in the C API, it does not have any equivalent in the other supported
programming languages.

Usually the highest level control code is placed inside a for or a while loop. Within that loop
there is a call to the wb_robot _step () function. This function synchronizes the controller’s
data with the simulator. The function wb_robot_step () needs to be present in every controller
and it must be called at regular intervals, therefore it is usually placed in the main loop as in the
above example. The value 32 specifies the duration of the control steps, i.e. the function wb_—
robot_step () shall compute 32 milliseconds of simulation and then return. This duration
specifies an amount of simulated time, not real (wall clock) time, so it may actually take 1
millisecond or one minute of CPU time, depending on the complexity of the simulated world.

Note that in this "Hello World!” example the while loop has no exit condition, hence the return
statement is never reached. It is usual to have an infinite loop like this in the controller code: the
result is that the controller runs as long as the simulation runs.

6.1.2 Reading Sensors

Now that we have seen how to print a message to the console, we shall see how to read the
sensors of a robot. The next example does continuously update and print the value returned by a
DistanceSensor:

#include <webots/robot.h>
#include <webots/distance_sensor.h>
#include <stdio.h>

#define TIME_STEP 32

int main () {
wb_robot_init ();

(IR e R R N O R S

—_
S O

WbDeviceTag ds = wb_robot_get_device ("my_distance_sensor");
whb_distance_sensor_enable(ds, TIME_STEP) ;

—_ -
N —

—
98]

while (1) {

6.1. CONTROLLER PROGRAMMING 147

14 whb_robot_step (TIME_STEP) ;

15 double dist = wb_distance_sensor_get_value (ds);
16 printf ("sensor_value_is, %f\n", dist);

17 }

18

19 return 0;

20 |}

As you can notice, prior to using a device, it is necessary to get the corresponding device tag
(WoDeviceTagq); this is done using the wb_robot _get_device () function. The WoDe-
viceTag is an opaque type that is used to identify a device in the controller code. Note that
the string passed to this function, “my_distance_sensor” in this example, refers to a device name
specified in the robot description (.wbt or .proto file). If the robot has no device with the
specified name, this function returns 0.

Each sensor must be enabled before it can be used. If a sensor is not enabled it returns undefined
values. Enabling a sensor is achieved using the corresponding wb_x_enable () function, where
the star (*) stands for the sensor type. Every wb_x_enable () function allows to specify an
update delay in milliseconds. The update delay specifies the desired interval between two updates
of the sensor’s data.

In the usual case, the update delay is chosen to be similar to the control step (TIME_STEP)
and hence the sensor will be updated at every wb_robot_step (). If, for example, the update
delay is chosen to be twice the control step then the sensor data will be updated every two wb_—
robot_step (): this can be used to simulate a slow device. Note that a larger update delay
can also speed up the simulation, especially for CPU intensive devices like the Camera. On the
contrary, it would be pointless to choose an update delay smaller than the control step, because it
will not be possible for the controller to process the device’s data at a higher frequency than that
imposed by the control step. It is possible to disable a device at any time using the corresponding
wb_»_disable () function. This may increase the simulation speed.

The sensor value is updated during the call to wb_robot_step (). The call to wb_dis-
tance_sensor_get_value () retrieves the latest value.

Note that some device return vector values instead of scalar values, for example these functions:

I |const double *wb_gps_get_values (WbDeviceTag tag);
2 |const double *wb_accelerometer_get_values (WoDeviceTag tag);
3 |const double *wb_gyro_get_values (WboDeviceTag tag);

Each function returns a pointer to three double values. The pointer is the address of an array
allocated by the function internally. These arrays should never be explicitly deleted by the con-
troller code. They will be automatically deleted when necessary. The array contains exactly three
double values. Hence accessing the array beyond index 2 is illegal and may crash the controller.
Finally, note that the array elements should not be modified, for this reason the pointer is declared
as const. Here are correct examples of code using these functions:

148 CHAPTER 6. PROGRAMMING FUNDAMENTALS

I |const double *xpos = wb_gps_get_values (gps);

3|// OK, to read the values they should never be explicitly
deleted by the controller code.

4 |printf ("MY_ROBOT, _,is_at _position:_%g_%g,.%9\n", pos[0], pos[l],
pos([2]);

// OK, to copy the values
double x, vy, z;

x = pos[0];

y = pos[l];

10 |z pos(2]1;

11
12 |// OK, another way to copy the values

13 |double a[3] = { pos[0], pos[l], pos[2] };
14
15 |// OK, yet another way to copy these values
16 |double b[31];

17 |memcpy (b, pos, sizeof (b));

O 00 3 O\ W

And here are incorrect examples:

Il |const double *pos = wb_gps_get_values (gps);

2

3 |pos[0] = 3.5; // ERROR: assignment of read-only location
4 |double a = pos([3]; // ERROR: index out of range

5 |delete [] pos; // ERROR: illegal free

6 |free (pos); // ERROR: illegal free

6.1.3 Using Actuators

The example below shows how to make a servo motor oscillate with a 2 Hz sine signal.

Just like sensors, each Webots actuator must be identified by a WoDeviceTag returned by
the wb_robot_get_device () function. However, unlike sensors, actuators don’t need to be
expressly enabled; they actually don’t have wb_*_enable () functions.

To control a motion, it is generally useful to decompose that motion in discrete steps that corre-
spond to the control step. As before, an infinite loop is used here: at each iteration a new target
position is computed according to a sine equation. The wbo_servo_set_position () function
stores a new position request for the corresponding servo motor. Note that wb_servo_set_po-
sition () stores the new position, but it does not immediately actuate the motor. The effective
actuation starts on the next line, in the call to wb_robot_step (). The wb_robot_step ()

6.1. CONTROLLER PROGRAMMING 149

function sends the actuation command to the Servo but it does not wait for the Servo to com-
plete the motion (i.e. reach the specified target position); it just simulates the motor’s motion for
the specified number of milliseconds.

I |#include <webots/robot.h>

2 |#include <webots/servo.h>

3 |#include <math.h>

4

5 |#define TIME_STEP 32

6

7 |int main () {

8 wb_robot_init () ;

9

10 WbDeviceTag servo = wb_robot_get_device ("my_servo");
11

12 double F = 2.0; // frequency 2 Hz

13 double t = 0.0; // elapsed simulation time
14

15 while (1) {

16 double pos = sin(t = 2.0 » M_PI * F);
17 wb_servo_set_position (servo, pos);

18 wb_robot_step (TIME_STEP) ;

19 t += (double)TIME_STEP / 1000.0;

20 }

21

22 return 0;

23 |}

When wb_robot_step () returns, the motor has moved by a certain (linear or rotational)
amount which depends on the target position, the duration of the control step (specified with
wb_robot_step ()), the velocity, acceleration, force, and other parameters specified in the
.wbt description of the Servo. For example, if a very small control step or a low motor ve-
locity is specified, the motor will not have moved much when wb_robot _step () returns. In
this case several control steps are required for the Servo to reach the target position. If a longer
duration or a higher velocity is specified, then the motor may have fully completed the motion
when wb_robot_step () returns.

Note that wb_servo_set_position () only specifies the desired target position. Just like
with real robots, it is possible (in physics-based simulations only), that the Servo is not able to
reach this position, because it is blocked by obstacles or because the motor’s torque (maxForce)
is insufficient to oppose to the gravity, etc.

If you want to control the motion of several Servos simultaneously, then you need to specify
the desired position for each Servo separately, using wb_servo_set _position (). Then
you need to call wo_robot_step () once to actuate all the Servos simultaneously.

150 CHAPTER 6. PROGRAMMING FUNDAMENTALS

6.1.4 How to use wb_robot_step()

Webots uses two different time steps:

e The control step (the argument of the wb_robot _step () function)

e The simulation step (specified in the Scene Tree: WorldInfo.basicTimeStep)

The control step is the duration of an iteration of the control loop. It corresponds to the parameter
passed to the wb_robot _step () function. The wb_robot_step () function advances the
controller time of the specified duration. It also synchronizes the sensor and actuator data with
the simulator according to the controller time.

Every controller needs to call wo_robot_step () at regular intervals. If a controller does
not call wb_robot_step () the sensors and actuators won’t be updated and the simulator will
block (in synchronous mode only). Because it needs to be called regularly, wo_robot _step ()
is usually placed in the main loop of the controller.

The simulation step is the value specified in WorldInfo.basicTimeStep (in milliseconds).
It indicates the duration of one step of simulation, i.e. the time interval between two computations
of the position, speed, collisions, etc. of every simulated object. If the simulation uses physics
(vs. kinematics), then the simulation step also specifies the interval between two computations
of the forces and torques that need to be applied to the simulated rigid bodies.

The execution of a simulation step is an atomic operation: it cannot be interrupted. Hence a
sensor measurement or a motor actuation can only take place between two simulation steps. For
that reason the control step specified with each wb_robot_step () must be a multiple of the
simulation step. So for example, if the simulation step is 16 ms, then the control step argument
passed to wb_robot_step () can be 16, 32, 64, 128, etc.

6.1.5 Using Sensors and Actuators Together

Webots and each robot controller are executed in separate processes. For example, if a simulation
involves two robots, there will be three processes in total: one for Webots and two for the two
robots. Each controller process exchanges sensors and actuators data with the Webots process
during the calls to wb_robot_step (). So for example, wb_servo_set _position () does
not immediately send the data to Webots. Instead it stores the data locally and the data are
effectively sent when wb_robot_step () is called.

For that reason the following code snippet is a bad example. Clearly, the value specified with the
first call to wb_servo_set position () will be overwritten by the second call:

1 |wh_servo_set_position(my_leg, 0.34); // BAD: ignored
2 |wb_servo_set_position(my_leg, 0.56);
3 |wb_robot_step (40);

6.1. CONTROLLER PROGRAMMING

Similarly this code does not make much sense either:

151

while (1) {
double dl = wb_distance_sensor_get_value (dsl);
double d2 = wb_distance_sensor_get_value (dsl);
if (d2 < d1) // WRONG: d2 will always equal dl here

avoidCollision () ;
wb_robot_step (40) ;

~N NN R W

since there was no call to wb_robot_step () between the two sensor readings, the values
returned by the sensor cannot have changed in the meantime. A working version would look like

this:
1 |while (1) {
2 double dl = wb_distance_sensor_get_value (dsl);
3 wh_robot_step (40) ;
4 double d2 = wb_distance_sensor_get_value (dsl);
5 if (d2 < dl)
6 avoidCollision () ;
7 wb_robot_step (40) ;
8 |}

However the generally recommended approach is to have a single wb_robot_step () call in
the main control loop, and to use it to update all the sensors and actuators simultaneously, like

this:
1 |while (1) {
2 readSensors () ;
3 actuateMotors () ;
4 wb_robot_step (TIME_STEP) ;
51}

Note that it may also be judicious to move wb_robot _step () to the beginning of the loop, in
order to make sure that the sensors already have valid values prior to entering the readSen-
sors () function. Otherwise the sensors will have undefined values during the first iteration of

the loop, hence:

while (1) {
wb_robot_step (TIME_STEP) ;
readSensors () ;
actuateMotors () ;

N B~ W N =

Here is a complete example of using sensors and actuators together. The robot used here is
aDifferentialWheels using differential steering. It uses two proximity sensors (Dis-—

tanceSensor) to detect obstacles.

152 CHAPTER 6. PROGRAMMING FUNDAMENTALS

I [#include <webots/robot.h>

2 |#include <webots/differential_ wheels.h>

3 |#include <webots/distance_sensor.h>

4

5 |#define TIME_STEP 32

6

7 |int main () {

8 wb_robot_init ();

9

10 WbDeviceTag left_sensor = wb_robot_get_device ("left_sensor");

11 WbDeviceTag right_sensor = wb_robot_get_device ("right_sensor"

) ;

12 whb_distance_sensor_enable(left_sensor, TIME_STEP);

13 wb_distance_sensor_enable (right_sensor, TIME_STEP);

14

15 while (1) {

16 wb_robot_step (TIME_STEP) ;

17

18 // read sensors

19 double left_dist = wb_distance_sensor_get_value(left_sensor
)i

20 double right_dist = wb_distance_sensor_get_value (
right_sensor);

21

22 // compute behavior

23 double left = compute_left_speed(left_dist, right_dist);

24 double right = compute_right_speed(left_dist, right_dist);

25

26 // actuate wheel motors

27 wb_differential_wheels_set_speed(left, right);

28 }

29

30 return 0;

31 |}

6.1.6 Using Controller Arguments

In the . wbt file, it is possible to specify arguments that are passed to a controller when it starts.
They are specified in the controllerArgs field of the Robot, Supervisor or Dif-
ferentialWheels node, and they are passed as parameters of the main () function. For
example, this can be used to specify parameters that vary for each robot’s controller.

For example if we have:

6.1. CONTROLLER PROGRAMMING 153

Robot {
controllerArgs "one two three"

}

and if the controller name is "demo”, then this sample controller code:

1 |#include <webots/robot.h>
2 |#include <stdio.h>
3
4 |int main (int argc, const char xargv[]) {
5 wb_robot_init ();
6
7 int 1i;
8 for (i = 0; 1 < argc; i++)
9 printf ("argv[%i]=%s\n", i, argv[il]);
10
11 return 0;
12 |}
will print:
argv[0]=demo
argv[l]=one
argv([2]=two
argv[3]=three

6.1.7 Controller Termination

Usually a controller process runs in an endless loop: it is terminated (killed) by Webots when
the user reverts (reloads) the simulation or quits Webots. The controller cannot prevent its own
termination but it can be notified shortly before this happens. The wb_robot_step () function
returns -1 when the process is going to be terminated by Webots. Then the controller has 1 second
(clock time) to save important data, close files, etc. before it is effectively killed by Webots. Here
is an example that shows how to detect the upcoming termination:

#include <webots/robot.h>
#include <webots/distance_sensor.h>
#include <stdio.h>

#define TIME_STEP 32

int main () {
wb_robot_init ();

O 00 3 O DN B~ W~

154 CHAPTER 6. PROGRAMMING FUNDAMENTALS

10 WbDeviceTag ds = wb_robot_get_device ("my_distance_sensor");
11 wb_distance_sensor_enable(ds, TIME_STEP);

12

13 while (wb_robot_step(TIME_STEP) != -1) {

14 double dist = wb_distance_sensor_get_value();
15 printf ("sensor_value_is_$f\n", dist);

16 }

17

18 // Webots triggered termination detected!

19

20 saveExperimentData () ;

21

22 wb_robot_cleanup () ;

23

24 return 0;

25 |}

In some cases, it is up to the controller to make the decision of terminating the simulation. For
example in the case of search and optimization algorithms: the search may terminate when a
solution is found or after a fixed number of iterations (or generations).

In this case the controller should just save the experiment results and quit by returning from the
main () function or by calling the exit () function. This will terminate the controller process
and freeze the simulation at the current simulation step. The physics simulation and every robot
involved in the simulation will stop.

// freeze the whole simulation
if (finished) {
saveExperimentData () ;
exit (0);

O N O R

If only one robot controller needs to terminate but the simulation should continue with the other
robots, then the terminating robot should call wb_robot _cleanup () right before quitting:

// terminate only this robot controller
if (finished) {
saveExperimentsData () ;
wb_robot_cleanup();
exit (0);

AN N AW =

Note that the exit status as well as the value returned by the main () function are ignored by
Webots.

6.2. SUPERVISOR PROGRAMMING 155

6.2 Supervisor Programming

The programming examples provided here are in C, but same concepts apply to C++/Java/Python/Matlab.

6.2.1 Introduction

The Supervisor is a special kind of Robot. In object-oriented jargon we would say that
the Supervisor class inherits from the Robot class or that the Supervisor class extends
the Robot class. The important point is that the Supervisor node offers the wb_supervi-
sor_x () functions in addition to the regular wo_robot _* () functions. These extra functions
can only be invoked from a controller program associated with a Supervisor node, not with
a Robot or a DifferentialWheels node. Note that Webots PRO is required to create
Supervisor nodes or use the wb_supervisor_x () functions.

In the Scene Tree, a Supervisor node can be used in the same context where a Robot node
is used, hence it can be used as a basis node to model a robot. But in addition, the wb_super—
visor_* () functions can also be used to control the simulation process and modify the Scene
Tree. For example the Supervisor can replace human actions such as measuring the distance
travelled by a robot or moving it back to its initial position, etc. The Supervisor can also take
a screen shot or a video of the simulation, restart or terminate the simulation, etc. It can read or
modify the value of every fields in the Scene Tree, e.g. read or change the position of robots, the
color of objects, or switch on or off the light sources, and do many other useful things.

One important thing to keep in mind is that the Supervisor functions correspond to function-
alities that are usually not available on real robots; they rather correspond to a human intervention
on the experimental setup. Hence, the Robot vs. Supervisor distinction is intentional and
aims at reminding the user that Supervisor code may not be easily transposed to real robots.

Now let’s examine a few examples of Supervisor code.

6.2.2 Tracking the Position of Robots

The Supervisor is frequently used to record robots trajectories. Of course, a robot can find
its position using a GPS, but when it is necessary to keep track of several robots simultaneously
and in a centralized way, it is much simpler to use a Supervisor.

The following Supervisor code shows how to keep track of a single robot, but this can easily
be transposed to an arbitrary number of robots. This example code finds a WoNodeRef that
corresponds to the robot node and then a WoFieldRef that corresponds to the robot’s trans-—
lation field. At each iteration it reads and prints the field’s values.

1 |#include <webots/robot.h>
2 |#include <webots/supervisor.h>
3 |#include <stdio.h>

156 CHAPTER 6. PROGRAMMING FUNDAMENTALS

int main () {
wb_robot_init ();

// do this once only

O 0 3N L B~

WbNodeRef robot_node = wb_supervisor_node_get_from_def ("
MY_ROBOT") ;

10 WhFieldRef trans_field = wb_supervisor_node_get_field(

robot_node, "translation");

11

12 while (1) {

13 // this is done repeatedly

14 const double xtrans = wb_supervisor_field_get_sf_vec3f(
trans_field);

15 printf ("MY_ROBOT, ,is_at _position: %g,_%9.,%g\n", trans[0],
trans[1l], trans[2]);

16 wb_robot_step (32);

17 }

18

19 return 0;

20 |}

Note that a Supervisor controller must include the supervisor.h header file in addition to
the robot . h header file. Otherwise the Supervisor works like a regular Robot controller
and everything that was explained in the ”Controller Programming” section does also apply to
”Supervisor Programming”.

As illustrated by the example, it is better to get the WoNodeRefs and WoFieldRefs only
once, at the beginning of the simulation (keeping the invariants out of the loop). The call to
wb_supervisor_node_get_from. def () searches for an object named "MY _ROBOT” in
the Scene Tree. Note that the name in question is the DEF name of the object, not the name
field which is used to identify devices. The function returns a WoNodeRe £ which is an opaque
and unique reference to the corresponding Scene Tree node. Then the call to wb_supervi-
sor_-node_get_field() finds a WbFieldRef in the specified node. The “translation” field
represents the robot’s position in the global (world) coordinate system.

In the while loop, the call to wo_supervisor_field.get_sf_vec3f () is used to read
the latest values of the specified field. Note that, unlike sensor or actuator functions, the wb_su-—
pervisor_field « () functions are executed immediately: their execution is not postponed
to the next wb_robot _step () call.

6.2.3 Setting the Position of Robots

Now let’s examine a more sophisticated Supervisor example. In this example we seek to
optimize the locomotion of a robot: it should walk as far as possible. Suppose that the robot’s

6.2. SUPERVISOR PROGRAMMING 157

locomotion depends on two parameters (a and b), hence we have a two-dimensional search space.

In the code, the evaluation of the a and b parameters is carried out in the the while loop. The
actuateServos () function here is assumed to call wo_servo_set _postion () for each
Servo involved in the locomotion. After each evaluation the distance travelled by the robot is
measured and logged. Then the robot is moved (translation) back to its initial position (0, 0.5,
0) for the next evaluation. To move the robot we need the wb_supervisor_x () functions and
hence the base node of this robot in the Scene Tree must be a Supervisor and not a Robot.

#include <webots/robot.h>
#include <webots/supervisor.h>
#include <stdio.h>

#include <math.h>

#define TIME_STEP 32

0O DN kW~

int main() {
wh_robot_init ();

—_—
— O O

// get handle to robot’s translation field

WbNodeRef robot_node = wb_supervisor_node_get_from_def ("
MY_ROBOT") ;

13 WhFieldRef trans_field = wb_supervisor_node_get_field(

robot_node, "translation");

—_
\]

14
15 double a, b, t;
16 for (a = 0.0; a < 5.0; a += 0.2) {

17 for (b = 0.0; b < 10.0; b += 0.3) {

18 // evaluate robot during 60 seconds (simulation time)

19 for (t = 0.0; t < 60.0; t += TIME_STEP / 1000.0) {

20 actuateServos(a, b, t);

21 wb_robot_step (TIME_STEP) ;

22 }

23

24 // compute travelled distance

25 const double xpos = wb_supervisor_field_get_sf_vec3f (
trans_field);

26 double dist = sqgrt(pos[0] * pos[0] + pos[2] * pos[2]);

27 printf ("a=%g, _b=%g_—->_dist=%g\n", a, b, dist);

28

29 // reset robot position

30 const double INITIAL[3] = { 0, 0.5, 0 };

31 wb_supervisor_field_set_sf_vec3f (trans_field, INITIAL);

32 }

33 }

34

35 return 0;

158 CHAPTER 6. PROGRAMMING FUNDAMENTALS

36’}

As in the previous example, the trans_field variable is a WoFieldRef that identifies the
translation field of the robot. In this example the t rans_field is used both for getting
(wb_supervisor _field get_sf vec3f ()) and for setting (wb_supervisor_ field -
set_sf_vec3f) the field’s value.

Please note that the program structure is composed of three nested for loops. The two outer
loops change the values of the a and b parameters. The innermost loop makes the robot walk
during 60 seconds. One important point here is that the call to wb_robot_step () is placed in
the innermost loop. This allows the servo positions to be updated at each iteration of the loop. If
whb_robot_step () was placed anywhere else, this would not work.

6.3 Using Numerical Optimization Methods

6.3.1 Choosing the correct Supervisor approach

There are several approaches to using optimization algorithms in Webots. Most approaches need
a Supervisor and hence Webots PRO is usually required.

A numerical optimization can usually be decomposed in two separate tasks:

1. Running the optimization algorithm: Systematical Search, Random Search, Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO), Simulated Annealing, etc.

2. Running the robot behavior with a set of parameters specified by the optimization algo-
rithm.

One of the important things that needs to be decided is whether the implementation of these two
distinct tasks should go into the same controller or in two separate controllers. Let’s discuss both
approaches:

Using a single controller

If your simulation needs to evaluate only one robot at a time, e.g. you are optimizing the lo-
comotion gait of a humanoid or the behavior of a single robot, then it is possible to have both
tasks implemented in the same controller; this results in a somewhat simpler code. Here is a
pseudo-code example for the systematical optimization of two parameters a and b using only
one controller:

1 |#include <webots/robot.h>
2 |#include <webots/supervisor.h>

3

6.3. USING NUMERICAL OPTIMIZATION METHODS 159

4 |#define TIME_STEP 5

5

6 |int main() {

7 wb_robot_init ();

8 double a, b, time;

9 for (a = 0.5; a < 10.0; a += 0.1) {

10 for (b = 0.1; b < 5.0; b += 0.5) {

11 resetRobot (); // move robot to initial position

12

13 // run robot simulation for 30 seconds

14 for (time = 0.0; time < 30.0; time += TIME_STEP / 1000.0)
{

15 actuateMotors(a, b, time);

16 wb_robot_step (TIME_STEP) ;

17 }

18

19 // compute and print fitness

20 double fitness = computeFitness|();

21 printf ("with_parameters:_%g_%g, fitness_was:_%$g\n", a, b,
fitness);

22 }

23 }

24

25 wb_robot_cleanup () ;

26 return 0;

27 |}

In this example the robot runs for 30 simulated seconds and then the fitness is evaluated and
the robot is moved back to it initial position. Note that this controller needs to be executed
in a Supervisor in order to access the wb_supervisor_field_* () functions that are
necessary to read and reset the robot’s position. So when using this approach, the robot must
be based on a Supervisor node in the Scene Tree. Note that this approach is not suitable to
optimize a DifferentialWheels robot, because due to the class hierarchy, a robot cannot
beaDifferentialWheels and a Supervisor at the same time.

Using two distinct types of controllers

If, on the contrary, your simulation requires the simultaneous execution of several robots, e.g.
swarm robotics, or if your robot is a DifferentialWheels, then it is advised to use two
distinct types of controller: one for the optimization algorithm and one for the robot’s behavior.
The optimization algorithm should go in a Supervisor controller while the robots’ behavior
can go in a regular (non-Supervisor) controller.

Because these controllers will run in separate system processes, they will not be able to access
each other’s variables. Though, they will have to communicate by some other means in order to

160 CHAPTER 6. PROGRAMMING FUNDAMENTALS

specify the sets of parameters that need to be evaluated. It is possible, and recommended, to use
Webots Emitters and Receivers to exchange information between the Supervisor and
the other controllers. For example, in a typical scenario, the Supervisor will send evaluation
parameters (e.g., genotype) to the robot controllers. The robot controllers listen to their Re—
ceivers, waiting for a new set of parameters. Upon receipt, a robot controller starts executing
the behavior specified by the set of parameters. In this scenario, the Supervisor needs an
Emitter and each individual robot needs a Receiver.

Depending on the algorithms needs, the fitness could be evaluated either in the Supervisor or
in the individual robot controllers. In the case it is evaluated in the robot controller then the fitness
result needs to be sent back to the Supervisor. This bidirectional type of communication
requires the usage of additional Emitters and Receivers.

6.3.2 Resetting the robot

When using optimization algorithm, you will probably need to reset the robot after or before
each fitness evaluation. There are several approaches to resetting the robot:

Using the wb_supervisor_field_set_*() and wb_supervisor_simulation_physics_reset() func-
tions

You can easily reset the position, orientation and physics of the robot using the wb_supervi-
sor_field.set... () andwb_supervisor_simulation_physics_reset () functions,
here is an example:

1|// get handles to the robot’s translation and rotation fields
2 |WbNodeRef robot_node = wb_supervisor_node_get_from_def ("

MY_ ROBOT") ;

3 |[WbFieldRef trans_field = wb_supervisor_node_get_field(
robot_node, "translation");

4 |WoFieldRef rot_field = wb_supervisor_node_get_field(robot_node,
"rotation");

5

6 |// reset the robot

7 |const double INITIAL_TRANS[3] = { 0, 0.5, 0 };

8 |const double INITIAL _ROT[4] = { 0, 1, 0, 1.5708 };
9

wb_supervisor_field_set_sf_vec3f(trans_field, INITIAL_TRANS);
10 |wb_supervisor_field_set_sf_ rotation(rot_field, INITIAL_ROT);
11 |wb_supervisor_simulation_physics_reset ();

The drawback with the above method is that it only resets the robot’s main position and orien-
tation. This may be fine for some types of optimization, but insufficient for others. Although
it is possible to add more parameters to the set of data to be reset, it is sometimes difficult to
reset everything. Neither Servo positions, nor the robot controller(s) are reset this way. The

6.3. USING NUMERICAL OPTIMIZATION METHODS 161

Servo positions should be reset using the wb_servo_set_position () and the robot con-
troller should be reset by sending a message from the supervisor process to the robot controller
process (using Webots Emitter / Receiver communication system). The robot controller
program should be able to handle such a message and reset its state accordingly.

Using the wb_supervisor_simulation_revert() function

This function restarts the physics simulation and all controllers from the very beginning. With
this method, everything is reset, including the physics and the Servo positions and the con-
trollers. But this function does also restart the controller that called wb_supervisor_sim—
ulation_revert (), this is usually the controller that runs the optimization algorithm, and
as a consequence the optimization state is lost. Hence for using this technique, it is necessary
to develop functions that can save and restore the complete state of the optimization algorithm.
The optimization state should be saved before calling wb_supervisor_simulation_re-
vert () and reloaded when the Supervisor controller restarts. Here is a pseudo-code exam-
ple:

1 |#include <webots/robot.h>

2 |#include <webots/supervisor.h>

3

4 |void run_robot (const double params[]) {

5 read_sensors (params) ;

6 compute_behavior (params) :

7 actuate_motors (params) ;

8 11}

9

10 |void evaluate_next_robot () {

11 const double xparams = optimizer get_next_parameters();
12 ce

13 // run robot for 30 seconds

14 double time;

15 for (time = 0.0; time < 30.0; time += TIME_STEP / 1000.0) {
16 run_robot (params) ;

17 wb_robot_step (TIME_STEP) ;

18 }

19 e

20 // compute and store fitness

21 double fitness = compute_fitness();

22 optimizer_set_fitness (fitness);

23 e

24 // save complete optimization state to a file
25 optimizer_save_state ("my_state_file.txt");

26 cen

27 // start next evaluation

28 wb_supervisor_simulation_revert ();

162 CHAPTER 6. PROGRAMMING FUNDAMENTALS

29 wb_robot_step (TIME_STEP) ;
30 exit (0);
31 |}

32

33 |int main () {

34 wb_robot_init ();

35

36 // reload complete optimization state

37 optimizer_load_state ("my_state_file.txt");
38

39 if (optimizer_has_more_parameters ())

40 evaluate_next_robot () ;

41

42 wb_robot_cleanup () ;
43 return 0;
44 |}

If this technique is used with Genetic Algorithms for example, then the function optimizer -
save_state () should save at least all the genotypes and fitness results of the current GA
population. If this technique is used with Particle Swarm Optimization, then the optimizer_—
save_state () function should at least save the position, velocity and fitness of all particles
currently in the swarm.

By starting and quitting Webots

Finally, the last method is to start and quit the Webots program for each parameter evaluation.
This may sound like an overhead, but in fact Webots startup time is usually very short compared
to the time necessary to evaluate a controller, so this approach makes perfectly sense.

For example, Webots can be called from a shell script or from any type of program suitable for
running the optimization algorithm. Starting Webots each time does clearly revert the simulation
completely, so each robot will start from the same initial state. The drawback of this method is
that the optimization algorithm has to be programmed outside of Webots. This external program
can be written in any programming language, e.g. shell script, C, PHP, perl, etc., provided that
there is a way to call webots and wait for its termination, e.g. like the C standard system ()
does. On the contrary, the parameter evaluation must be implemented in a Webots controller.

With this approach, the optimization algorithm and the robot controller(s) run in separate system
processes, but they must communicate with each other in order to exchange parameter sets and
fitness results. One simple way is to make them communicate by using text files. For example,
the optimization algorithm can write the genotypes values into a text file then call Webots. When
Webots starts, the robot controller reads the genotype file and carries out the parameter evalu-
ation. When the robot controller finishes the evaluation, it writes the fitness result into another
text file and then it calls the wb_supervisor_simulation_quit () function to terminate

6.4. C++/JAVA/PYTHON 163

Webots. Then the control flow returns to the optimization program that can read the resulting
fitness, associate it with the current genotype and proceed with the next genotype.

Here is a possible (pseudo-code) implementation for the robot evaluation controller:

I [#include <webots/robot.h>

2 |#include <webots/supervisor.h>

3

4 |#define TIME_STEP 10

5

6 |double genotype [GENOME_SIZE];

7

8 |int main () {

9 wb_robot_init ();

10 . ..

11 genotype_read ("genotype.txt", genotype);

12 . ..

13 // run evaluation for 30 seconds

14 for (double time = 0.0; time < 30.0; time += TIME_STEP /
1000.0) {

15 read_sensors (genotype) ;

16 actuate_motors (time, genotype);

17 wb_robot_step (TIME_STEP) ;

18 }

19 ..

20 double fitness = compute_fitness();

21 fitness_save (fitness, "fitness.txt");

22

23 wb_supervisor_simulation_quit ();

24 wb_robot_step (TIME_STEP) ;

25 return 0;

26 |}

You will find complete examples of simulations using optimization techniques in Webots dis-
tribution: look for the worlds called advanced_particle_swarm_optimization.wbt
and advanced_genetic_algorithm.wbt located in the WEBOTS_HOME/projects/
samples/curriculum/worlds directory. These examples are described in the Advanced
Programming Exercises of Cyberbotics’ Robot Curriculum’.

6.4 C++/Java/Python

This section explains the main differences between the C API and the C++/Java/Python APIs.

'nttp://en.wikibooks.org/wiki/Cyberbotics’ _Robot_Curriculum

http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum

164 CHAPTER 6. PROGRAMMING FUNDAMENTALS

Webots
(binary interface)

A

C API
(implemented in

libController)

l Matlab API l C++ API l

I\

Java API Python API
(SWIG generated) (SWIG generated)

Figure 6.1: Webots APIs Overview

6.4.1 Classes and Methods

C++, Java and Python are object-oriented programming languages and therefore the correspond-
ing Webots APIs are organized in classes. The class hierarchy is built on top of the C API and
currently contains about 25 classes and 200 methods (functions).

The Java and Python APIs are automatically generated from the C++ API using SWIG. Therefore
the class and method names, as well as the number of parameters and their types, are very similar
in these three languages.

The naming convention of the C++/Java/Python classes and methods directly matches the C API
function names. For example, for this C function: double wb_distance_sensor_get_-
value (WbDeviceTag tag) there will be a matching C++/Java/Python method called get -
Value () located in a class called DistanceSensor. Usually the C++/Java/Python methods
have the same parameters as their C API counterparts, but without the WoDeviceTag parame-
ter.

6.4.2 Controller Class

The C++/Java/Python controller implementation should be placed in a user-defined class derived
from one of the Webots class: Robot, DifferentialWheels or Supervisor. Itis
important that the controller class is derived from the same class as that used in Scene Tree, oth-
erwise some methods may not be available or may not work. For example, if in the Scene Tree a
robot is of type DifferentialWheels, then the corresponding C++/Java/Python controller

6.4. C++/JAVA/PYTHON 165

Robot
+Robot () Device
+getLED(string): LED
+...() +getName(): string
+step(int): int
+...0)

i

Supervisor
DifferentialWheels
+Supervisor() LED .
+DifferentialWheels () +simulationRevert(): void ..« OtherDevices ...
+setSpeed(int,int): void +...() +set(int)
+...() +getRoot(): Node

+getFromDef(): Node

Node Field

+getField(string): Field +getSFVec2f(): double
+...0) +...0)

Figure 6.2: A small subset of Webots oriented-object APIs

class must extend the DifferentialWheels class. If in the Scene Tree a robot is of type
Supervisor, then the C++/Java/Python controller class must be derived from the Supervi-
sor class, etc.

As you can see in figure 6.2, both Di fferentialWheels and Supervisor are subclasses
of the Robot class. Hence it is possible to call the Robot’s methods, such as, e.g., step ()
or getLED (), fromthe DifferentialWheels and Supervisor controllers. But it is not
possible to call the Supervisor methods from a DifferentialWheels controller, and
vice versa. For example it won’t be possible to call simulationRevert () fromaDiffer—
entialWheels controller.

Generally, the user-defined controller class should have a run () function that implements the
main controller loop. That loop should contains a call to the Robot’s step () method. Then
the only responsibility of the controller’s main () function is to create an instance of the user-
defined controller class, call its run () method and finally delete (C++ only) the instance: see
examples below. Note that the controller should never create more than one instance of a derived
class, otherwise the results are undefined.

Note that unlike the C API, the C++/Java/Python APIs don’t have (and don’t need) functions like
whb_robot_init () and wb_robot_cleanup (). The necessary initialization and cleanup
routines are automatically invoked from the constructor and destructor of the base class.

In C++/Java/Python, each Webots device is implemented as a separate class, there is a Dis-—
tanceSensor class, a TouchSensor class, a Servo class, etc. The various devices in-

166

CHAPTER 6. PROGRAMMING FUNDAMENTALS

stances can be obtained with dedicated methods of the Robot class, like getDistanceSen-
sor (), getTouchSensor (), etc. There is no WoDeviceTag in C++/Java/Python.

6.4.3 C++ Example

O 0 9N DN B~ W~

L L L LW LW LW LW L L W DN DN NN DN NN D = = = = = e e e e
O 00 1 QAN WU A WD~ OOV WA WNRFR OOV IONWUN A WND—~O

#include <webots/Robot.hpp>
#include <webots/LED.hpp>
#include <webots/DistanceSensor.hpp>

using namespace webots;

#define TIME_STEP 32

class MyRobot : public Robot {
private:

LED *led;
DistanceSensor =*distanceSensor;

public:
MyRobot () : Robot () {
led = getLED ("ledName");
distanceSensor = getDistanceSensor ("distanceSensorName");

distanceSensor—>enable (TIME_STEP) ;

virtual “MyRobot () {
// Enter here exit cleanup code

void run () {
// Main control loop
while (step(TIME_STEP) != -1) {
// Read the sensors
double val = distanceSensor->getValue();

// Process sensor data here

// Enter here functions to send actuator commands
led->set (1) ;

}i

int main(int argc, char x*argv) {

6.4. C++/JAVA/PYTHON

40 MyRobot *robot = new MyRobot ();

41 robot—->run () ;
42 delete robot;
43 return 0;

44 |1

167

6.4.4 Java Example

like:

I |import com.cyberbotics.webots.controller. *;

2

3 |public class MyRobot extends Robot {

4 private LED led;

5 private DistanceSensor distanceSensor;

6 private static final int TIME_STEP = 32; // milliseconds
7

8 public MyRobot () {

9 super () ;

10 led = getLED ("my_led");

11 distanceSensor = getDistanceSensor ("my_distance_sensor");
12 distanceSensor.enable (TIME_STEP) ;

13 }

14

15 public void run() {

16 // main control loop

17 while (step(TIME_STEP) != -1) {

18 // Read the sensors, like:

19 double val = distanceSensor.getValue();
20

21 // Process sensor data here

22

23 // Enter here functions to send actuator commands,
24 led.set (1) ;

25 }

26

27 // Enter here exit cleanup code

28 }

29

30 public static void main(String[] args) {

31 MyRobot robot = new MyRobot () ;

32 robot.run () ;

33 }

34 |}

168 CHAPTER 6. PROGRAMMING FUNDAMENTALS

6.4.5 Python Example

1 |from controller import =

2

3 |class MyRobot (Robot):

4 def run (self):

5 led = self.getLed(’ ledName’)

6 distanceSensor = self.getDistanceSensor (’distanceSensorName
")

7 distanceSensor.enable (32)

8

9 while (self.step(32) != -1):

10 # Read the sensors, like:

11 val = distanceSensor.getValue ()

12

13 # Process sensor data here

14

15 # Enter here functions to send actuator commands, like:

16 led.set (1)

17

18 # Enter here exit cleanup code

19

20 |robot = MyRobot ()

21 |robot.run ()

6.5 Matlab

The MATLAB™API for Webots is very similar to the C APIL. The functions names are identical,
only the type and number of parameters differs slightly in some cases. The MATLAB™ functions
and prototypes are described in Webots Reference Manual. Note that unlike with the C API, there
are no wb_robot_init () and wb_robot_cleanup () functions in the MATLAB™API.
The necessary initialization and cleanup are automatically carried out respectively before enter-
ing and after leaving the controller code.

If the MATLAB™code uses graphics, it is necessary to call the drawnow command somewhere
in the control loop in order to flush the graphics.

Here is a simple MATLAB™ controller example:

% uncomment the next two lines to use the desktop
%desktop;
$keyboard;

O N O R S

TIME_STEP = 32;

6.5. MATLAB 169

6

7 |my_led = wb_robot_get_device ('my_led’);

8 |my_sensor = wb_robot_get_device ('my_sensor’) ;

9

10 |wb_distance_sensor_enable (my_sensor, TIME_STEP);
11

12 |while wb_robot_step (TIME_STEP) ~= -1

13 % read the sensors

14 val = wb_distance_sensor_get_value (my_sensor) ;
15

16 % Process sensor data here

17

18 % send actuator commands

19 wb_led_set (my_led, 1);

20

21 % uncomment the next line if there’s graphics to flush
22 % drawnow;

23 |end

6.5.1 Using the MATLAB™desktop

In order to avoid cluttering the desktop with too many windows, Webots starts MATLAB™with
the -nodesktop option. The -nodesktop option starts MATLAB™without user interface and there-
fore it keeps the memory usage low which is useful in particular for multi-robot experiments. If
you would like to use the MATLAB™desktop to interact with your controller you just need to
add these two MATLAB™commands somewhere at the beginning of your controller m-file:

1 |desktop;
2 |keyboard;

The desktop command brings up the MATLAB™desktop. The keyboard stops the execu-
tion of the controller and gives control to the keyboard (K>> prompt). Then MATLAB™opens
your controller m-file in its editor and indicates that the execution is stopped at the keyboard
command. After that, the controller m-file can be debugged interactively, i.e., it is possible to
continue the execution step-by-step, set break points, watch variable, etc. While debugging, the
current values of the controller variables are shown in the MATLAB™workspace. It is possible
to continue the execution of the controller by typing return at the K>> prompt. Finally the
execution of the controller can be terminated with Ct r1-C key combination.

Once the controller is terminated, the connection with Webots remains active. Therefore it be-
comes possible to issue Webots commands directly at the MATLAB™prompt, for example you
can interactively issue commands to query the sensors, etc.:

>> wb_differential_wheels_set_speed (600, 600);
>> wb_robot_step(1000);

170 CHAPTER 6. PROGRAMMING FUNDAMENTALS

>> wb_gps_get_values (gps)
ans =

0.0001 0.0030 -0.6425
>> |

It is possible to use additional keyboard statements in various places in your . m controller. So
each time MATLAB™will run into a keyboard statement, it will return control to the K>>
prompt where you will be able to debug interactively.

At this point, it is also possible to restart the controller by calling its m-file from MATLAB™ prompt.
Note that this will restart the controller only, not the whole simulation, so the current robot and
servo positions will be preserved. If you want to restart the whole simulation you need to use the
Revert button as usual.

6.6 Controller plugin

The controller functionnality can be extended with user-implemented plugins. The purpose of the
controller plugins is to facilitate the programming of robot-specific robot windows and remote-
control wrappers.

Programming controller plugin rather than programming directly in the controller is more con-
venient because it increases considerably the modularity and the scalability of the code. For
example a robot window can be used for several robots.

6.6.1 Fundamentals

Whatever its language, a controller executable is linked with the Webots controller library (lib-
Controller) at startup. A controller plugin is a shared library loaded dynamically (at runtime) by
libController after a specific event depending on its type.

The figure 6.3 shows an overview of the controller plugin system. In this figure, the dashed
arrows shows how the shared libraries are loaded, and the large dash lines represents an Inter-
Process Communication (IPC). The IPC between libController and Webots is a pipe (On Win-
dows this is a named pipe, and otherwise a local domain socket). The IPC between libRemote-
Control and the real robot is defined by the user (TCP/IP, Serial, etc.).

The system has been designed as follow. Every entities (the controller, the remote control library
and the robot window library) should only call the libController interface (Webots API) func-
tions. The controller should not be aware of its robot window and its real robot for modularity
reasons. The only exception is about the robot window library which can be aware of the re-
mote control library to initialise and monitor it. This can be done trough the libController API

6.6. CONTROLLER PLUGIN 171

Controller thread

1 » 4 libRobotWindow

Webots jannjny libController [

A 0.1% |
' v A libRemoteControl paynna| Real robot

controller

Figure 6.3: Controller plugins overview

through the wb_robot_get mode (), wb_robot_set _mode () and the wb_remote_con-
trol_custom_function () functions. Of course these rules can be easily broken because
every entities runs into the same process. However we recommend to respect them to get a good
design.

The controller plugins have been designed to be written in C/C++, because the result should be a
dynamic library. However it’s certainly possible to write them in other languages using a C/C++
wrapper inbetween.

After its loading, some controller plugin functions (entry points) are called by libController. A
set of entry points have to be defined to let the controller plugin work smoothly. Some of these
entry points are required and some are optional.

The Robot node defines the location of the controller plugin through its libRobotWindow and
its libRemoteControl fields (cf. reference manual)

The controller plugins run in the main thread of the process (also known as Gui thread): the
same a the controller executable. This implies that if an entry point of a plugin is blocking, the
controller will also be blocked. And if the plugin crashes, the controller is also crashed.

The extension of the shared library file is .dll on windows, .so on linux, and .dylib on mac. Con-
troller plugins are designed to be located in the 1ib directory of the project directory. Moreover
the shared library should be created in a subdirectory starting with the 1ib prefix, and with the
same basename as the shared library. For example: my project/lib/libmyrobotwin-
dow/libmyrobotwindow. so

Each distributed shared library is built thanks to a Makefile which includes this file: SWEBOTS _—
HOME/resources/projects/default/lib/Makefile.include

6.6.2 Robot window plugin

The robot window plugin allows to create simply and efficiently custom robot windows. The
robot windows can be open by double-clicking on the virtual robot, or by selecting the Robot —
Show Robot Window menu item.

172 CHAPTER 6. PROGRAMMING FUNDAMENTALS

The robotWindow field of the Robot node allows to select which robot window (cf. documen-
tation in the reference manual).

The entry points of the robot window controller plugin are:

e bool wbw_init (int argc, char =xargv[], int pipeHandle)

This is the first function called by libController. Its aim is to initialize the graphical user
interface without showing it. The arguments argc and argv are the standard arguments used
to launch the controller (The first argument is the controller name, and then it’s the content
of the Robot controllerArgs field). The pipeHandle argument corresponds to the id of the
pipe between the controller and Webots. This will be useful in the wbw _(pre_)update _gui()
functions.

e void wbw_cleanup ()
This is the last function called by libController. Its aim is to cleanup the library (destroy
the GUI, release the memory, store the current library state, etc.)

e void wbw_pre_update_gui ()

This function is called before wow_update_gui () to inform its imminent call. Its pur-
pose is to inform that from this moment, the pipe answering from Webots to the controller
can receive data. If data is comming from the Webots pipe wbow_update_gui () should
return as soon as possible.

e void wbw_update_gui ()
The aim of this function is to process the GUI events until something is available on the
Webots pipe.

e void wbw_read_sensors ()

This function is called when it’s time to read the sensors values from the Webots API.

For example in this function the wb_distance_sensor_get_value () function can
be call.

e void wbw_write_actuators ()
This function is called when it’s time to write the actuator commands from the Webots API.
For example in this function the wo_servo_set _position () function can be call.

e void wbw_show ()

This function is called when the GUI should be show. This can occur either when the user
double-click on the virtual robot, either when he selects the Robot — Show Robot Window
menu item, or either at controller startup if the showRobotWindow field of the Robot node
is enabled.

The internal behavior of the wb_robot_step () call is the key point to understand how the
different entry points of the robot window plugin are called (pseudo-code):

6.6. CONTROLLER PLUGIN 173

wh_robot_step () {
wbw_write_actuators ()
wbw_pre_update_gui ()
write_request_to_webots_pipe ()
wbw_update_gui () // returns when something on the pipe
read_request_to_webots_pipe ()
wbw_read_sensors ()

[CIIEN e R R N O R S

As the Qt libraries are included in Webots (used by the Webots GUI), and all our samples are
based on it, we recommend to choose also this framework to create your GUI. The Make-
file.include mentionned above allows you to linked efficiently with the Qt framework
embedded in Webots.

If the robot window cannot be loaded (bad path, bad initialization, etc.), a generic robot win-
dow is open instead. This generic robot window display several sensors and actuators. The
source code of this robot window is a good demonstrator of the robot window plugin abilities.
All the source code is located there: SWEBOTS_HOME/resources/projects/default-
/lib/libgenericwindow

Other samples can be found:
SWEBOTS_HOME/resources/projects/default/lib/libbotstudio
SWEBOTS_HOME/resources/projects/robots/e—-puck/lib/libepuckwindow

6.6.3 Remote-control plugin

The remote-control plugin allows to create simply and efficiently an interface using the Webots
API to communicate with a real robot. The main purpose of a remote-control library is to wrap
all the Webots API functions used by the robot with a protocol communicating to the real robot.
Generally, a program (client) runs on the real robot, and decodes the communication protocol to
dialog with the real robot devices.

The remote-control library is initialized when an entity calls the wb_robot_set _mode () lib-
Controller function. This entity is typically libRobotWindow, because it’s quite convenient to
use the GUI to initialize the communication (i.e. entering the IP address of the robot, etc.)

There are two entry points to the remote-control library:

e bool wbr_init (WorInterface #*ri)

This function is called by libController to initialize the remote control library. It is called
after the first wb_robot_set_mode () call. The aim of this function is to map the func-
tions given into the WorInterface structure with functions inside the remote-control
library.

174

CHAPTER 6. PROGRAMMING FUNDAMENTALS

void wbr_cleanup ()

This function is called by libController to cleanup the library.

The WorInterface structure has several functions (mandatory) which have to be mapped to
let the remote-control library runs smoothly. Here they are:

bool wbr_start (void =xargqg)

This function is called when the connection with the real robot should start. The return
value of this function should inform if the connection has been a success or not. The argu-
ment matches with the argument given to wb_robot_set_mode () when initializing the
remote-control. As the robot window library is often responsible in calling wb_robot _—
set_mode (), the structure passed between them should match.

void wbr_stop ()

This function is called when the connection with the real robot should stop. Typically a
command stopping the real robot actuators should be sent just before stopping the connec-
tion.

bool wbr_has_failed()

This function is called very often by libController to check the validity of the connection.
The value returned by this function should always match with the connection validity.
void wbr_stop_actuators ()

This function is called to stop the actuators of the real robot. This is called when the user
pressed the stop button of the simulator.

int wbr_robot_step (int period)

This function is called when the controller enters in the step loop. The aim of this function
is to send the actuator commands and then to read the vaues of the enabled sensors. The
timing problem should be solved there. The robot should wait at least period milliseconds,
and returns the delta time if this period is exceeded.

As said above, all the Webots API functionnalities that should work with the real robot have to
be wrapped into the remote-control library. To achieve this:

The internal state of the libController has to be setup to match with the current state of the
robot.

Typically, when the value of a sensor is known the corresponding wbr_sensor_set_—
value () has to be called.
The commands send to the libController have to be wrapped.

Typically, when the command of an actuator is setup the corresponding wbr_actua-
tor_set_value () is called, and has to be send to the real robot.

6.7. WEBOTS PLUGINS 175

This file contains the complete definition of the remote control API and of the WorInterface
structure: SWEBOTS_HOME/include/controller/c/webots/remote_control.h

For example, if you want to be able to use the distance sensor of the real robot, you have to wrap
the wor_set _refresh_rate () function (to set the internal state of the remote control library
to read this distance sensor only when required), and to calls wor_distance_sensor_set_—
value () into the remote-control library when the distance sensor is refresh (typically into the
wbr_robot_step () function).

A complete sample (communicating with the e-puck robot using bluetooth) can be found in this
directory:

SWEBOTS_HOME/resources/projects/robots/e-puck/lib/libbluetooth

6.7 Webots Plugins

Webots functionality can be extended with user-implemented plugins. Currently there are three
types of plugins: physics, Fast2D and sound.

6.7.1 Physics plugin

The physics plugin offers the possibility to add custom ODE instructions to the default physics
behavior of Webots. For instance it is possible to add or measure forces. By adding forces, it is
possible to simulate new types of environments or devices. For example, a wind can be simulated
as a constant unidirectional force applied to each object in the world and proportional to the size
of the object. The reactor of an airplane can be simulated by adding a force of varying intensity,
etc.

6.7.2 Fast2D plugin

The Fast2D plugin offers a way to bypass the standard 3D and physics-based simulation mode.
By using this plugin it is possible to write simple 2D kinematic algorithms to control the 2D
motion of robots. Webots distribution provides an already implemented version of the Fast2d
plugin called “enki”. The “enki” plugin was named after the Enki 2D robot simulator; please
find more info on Enki there: http://home.gna.org/enki/.

6.7.3 Sound plugin

The sound plugin offers a programming interface for implementing sound propagation algorithm.
The sound simulation is based on sound samples that are propagated from Speaker toMicro-
phone nodes. Webots distribution provides an already implemented version of the sound plugin

http://home.gna.org/enki/

176 CHAPTER 6. PROGRAMMING FUNDAMENTALS
called ”swis2d”. The ”swis2d” plugin was developed in collaboration with the Swarm-Intelligent
Systems Group at the EPFL, Switzerland.

Webots distribution comes with some implementations and usage examples for these plugins.
You will find more info on this topic in Webots Reference Manual.

Chapter 7

Tutorials

The aim of this chapter is to explain the fundamental concepts of Webots required to create your
own simulations. Learning is focused on the modeling of robots and of their environment, as well
as on the programming of robot controllers. You will also learn where to find the documentation
to go further.

This chapter is suitable for absolute beginners in Webots. A background in programming is nev-
ertheless required. The examples are written in C language. If you are not familiar with the C
language, you should be able to understand this chapter anyway, because the C programs below
are very simple. Except for programming, you don’t need any particular knowledge to go through
the tutorials included in this chapter. However a basic background knowledge in robotics, mathe-
matics, modeling and tree representation might turn out to be helpful. Experienced Webots users
may skip the first tutorials. However, we would recommend them to read at least the introduction
and conclusion of these tutorials.

Each section of this chapter (except the first one and the last one) is a tutorial. Each tutorial
has a precise educational objective explained in the first paragraph. The acquired concepts are
then summarized in the conclusion subsection. A tutorial is designed as a sequence of interactive
steps. The knowledge acquired in a tutorial is often required to continue with the next tutorial.
Therefore we strongly recommend you to respect their natural order. Moreover we recommend
you to ensure you understood all the concepts of a tutorial before proceeding further.

A Webots PRO license or a 30-days trial license is required to follow all the tutorials. However,
an EDU license is sufficient to follow about 95% of this chapter, as it won’t allow you to program
supervisor processes and physics plugins.

The last section will provide you with some hints to address problems that are not covered in this
chapter.

The solutions of the tutorials are located into the projects/samples/tutorials subdi-
rectory of the Webots installation directory.

We hope you will enjoy your first steps with Webots. Meanwhile, we would really appreciate to
receive your feedback regarding this chapter.

177

178 CHAPTER 7. TUTORIALS

7.1 Prerequisites

In this section, you will learn how to setup your Webots environment. It is obviously a necessary
step to get started with the tutorials.

7.1.1 Install Webots

Webots has to be installed on your computer.

Install Webots by following the instructions given in chapter 1.

hands-on

7.1.2 Create a directory for all your Webots files

The first step is to create a directory which will contain all your files related to Webots.

where you have the writing rights (for example, your [My]Documents di-
rectory). Create there a directory that will contain all your Webots projects,
and name it my_webots_projects.

@ From your operating system interface, choose a location on your hard disk

hands-on

7.1.3 Start Webots

You need to learn how to launch Webots.

Start Webots by following the instructions given in section 2.2.

If it’s the first time you start Webots, a welcome dialog box invites you to
choose a demo simulation. Choose any of them, but it’s a good opportunity to
hands-on take a look at our guided tour (also available using the Help > Webots Guided
Tour... menu).

Now a simulation is running.

7.2. TUTORIAL 1: YOUR FIRST SIMULATION IN WEBOTS (20 MINUTES) 179

7.1.4 Create a new Project

The freshly created my_webots_projects directory will contain all your Webots projects.
Your first Webots project will be the tutorials of this chapter. So let’s create now a project named
tutorials which will contain all the simulations of this chapter.

As mentioned earlier in this chapter, the solutions of the tutorials are included
in the projects/samples/tutorials subdirectory of Webots. Don’t
look at it now! Hopefully, your own tutorials directory should be pretty
similar to that one at the end.

@

note

A project is a directory containing all the files related to a set of simulations.
It is the highest container in Webots. Two simulations should reside in the
same project if they share some content (robots, source code, 3D shapes,
etc.).

H

theory

In Webots, open the wizard by selecting the Wizards > New Project Directory...
menu item. From this wizard, follow the instructions to create a new project
named tutorials in the my_webots_projects directory created be-
fore.

&

hands-on

From your desktop, open the project directory and observe its subdirectories.
We will soon explain the purpose of each directory.

©

note

7.1.5 The Webots Graphical User Interface (GUI)

The Webots main window is shown in figure 7.1. Make sure you understand well how the Webots
main window is divided into subwindows before continuing. A more detailed description of the
Webots GUI is provided in section 2.3.

7.2 Tutorial 1: Your first Simulation in Webots (20 minutes)

In this first tutorial, you will create your first simulation. This simulation will contain a simple
environment (a floor and a light), a predefined robot (e-puck) and a controller program that will
make the robot move (see figure 7.2). The objective of this tutorial is to familiarize yourself with
the user interface and with the basic concepts of Webots.

180 CHAPTER 7. TUTORIALS

© ©© /usr/local/

File Edit View ¢
Scene Tree

% x + F %hoa
+ @ Worldinfo

+ @ Viewpoint

+ @ Background

+ @ PointLight

- @ DEF FLOOR Solid

P% o B H S I P M W 00000000 ox X Editor 2z
» candgs B ege-

@ translation -0.5 0 -0.5
@ rotation0 100
@scale111
+ @ children
@ name "solid"
@ model "
@ description ™"
@ contactMaterial "default"
+ @ boundingObject Transform
@ physics NULL
@ locked FALSE

translation (Vector3)

x ‘ m Console
N Co—
SET—

Figure 7.1: The Webots main window splits into four dockable subwindows: the scene tree view
on the left hand side (including a panel at the bottom for editing fields values), the 3D view in
the center, the text editor on the right hand side, and the console at bottom of the window. Note
that some of these subwindows have a toolbar with buttons. The main menus appear on the top
of the main window. The virtual time counter and the speedometer are displayed in the right part
of the 3D view toolbar. The status text is displayed in the bottom left of the main window.

Figure 7.2: What you should see at the end of the tutorial.

7.2. TUTORIAL 1: YOUR FIRST SIMULATION IN WEBOTS (20 MINUTES)

7.2.1 Create a new World

In this subsection, we will create a new simulation. The content of a simulation is stored in a
world file. This world file contains all the information related to your simulation, i.e. where are
the objects, how do they look like, how do they interact with each other, what is the color of the

sky, where is the gravity vector, etc.

Q|

N

theory

A world is defined by a tree of nodes. Each node has some customizable
properties called fields. A world is stored in a file having the .wbt suffix.
The format of this file is derived from the VRML language, and is human
readable. The world files must be stored directly in the project subdirectory
called worlds.

Webots is currently open and runs an arbitrary simulation.

= =
2 2
3 3
a 2
e ¢
) o
3 =1

A new world is now open. It contains a checkerboard floor with a point light above it. Your

Stop the current simulation by clicking on the Stop button of the 3D view. The
simulation is stopped if the virtual time counter on the 3D view toolbar is
stable.

Create a new world by selecting the File > New World menu item.

environment should look like the one depicted in the figure 7.1.

&

hands-on

&

hands-on

©

note

Save the new world into your project by selecting the File > Save
World As... menu item. Using the dialog box save the world
into the my_webots_projects/tutorials/worlds/my_first_
simulation.wbt file location.

Revert the simulation by selecting the File > Revert World menu item.

You can change the viewpoint of the 3D view by using the mouse buttons (left
button, right button and the wheel).

182 CHAPTER 7. TUTORIALS

Webots nodes stored in world files are organized in a tree structure called
the scene tree. The scene tree can be viewed in two subwindows of the main

\’Ig window: the 3D view (at the center of the main window) is the 3D represen-
7 tation of the scene tree and the scene tree view (on the left) is the hierarchical

th . . .
eor representation of the scene tree. The scene tree view is where the nodes and
the fields can be modified.
In the 3D view, click on the floor to selected it. When it is selected the floor is
surrounded by white lines and the corresponding node is selected in the scene
hands-on tree view. Now click on the blue sky to unselect the floor.

7.2.2 Add an e-puck Robot

The e-puck is a small robot having differential wheels, 10 LEDs, and several sensors including 8
distance sensors and a camera. In this tutorial we are only interested in using its wheels. We will
learn how to use some other e-puck features in the other tutorials.

Now we are going to add an e-puck model to the world. Make sure that the simulation is stopped
and that the virtual time elapsed is 0.

When a Webots world is modified with the intention of being saved, it is fun-

damental that the simulation is first stopped and reverted to its initial state,

\’Ig i.e. the virtual time counter on the 3D view toolbar should show 0:00:00:000.

7 Otherwise at each save, the position of each 3D objects can accumulate er-

rors. Therefore, any modification of the world should be performed in that
order: stop, revert, modify and save the simulation.

As we don’t need to create the e-puck robot from scratch, we will just have to import a special
EPuck node (in fact: a prototype). A prototype is an abstract assamblage of several nodes.
Prototypes are defined in separate . proto, but this will be explained in more details later. For
now consider the EPuck node as a black box that contains all the necessary nodes to define a
e-puck robot.

Select the last node of the scene tree view (called FLOOR). In order to add the
EPuck node, click on the Add New button at the top of the scene tree view. In
the open dialog box, and choose PROTO (Webots) > robots > e-
hands-on puck > EPuck (DifferentialWheels). Then save the simulation.

7.2. TUTORIAL 1: YOUR FIRST SIMULATION IN WEBOTS (20 MINUTES) 183

Now if you run the simulation, the robot moves: that’s because the robot uses
a default controller with that behavior. Please stop and revert the simulation
note before going on.

@

Using the mouse, it is possible to change the robot’s position in the 3D view.
The robot can be moved parallel to the floor using: SHIFT + left-clicking +
drag.

The robot can be moved up or down using: SHIFT + mouse-wheel.

The robot can be rotated: SHIFT + right-clicking + drag. The rotation axis
can be set by hitting the SHIFT key twice.

Finally, you can add a force to the robot: CTRL + ALT + left-clicking + drag.

Q)

hote

Starting the simulation by pressing the Run button will make Webots running
the simulation as fast as possible. In order to obtain a real-time simulation
speed, the Real-Time button has to be pressed.

Now we are going to modify the world and decrease the step of the physics simulation: this will
increase the accuracy of the simulation.

In the scene tree view, expand the WorldInfo node (the first node). Set its
basicTimeStep field to 16. Then save the simulation.

&

hands-on

Just after you added the EPuck node, two black superimposed windows appeared in the upper
left corner of the 3D view. They show the content of Camera and Display nodes, but they will
stay black until not explicitly used during a simulation. Their type is specified by the border
color: magenta for a Camera window and cyan for a Display window. In order to hide them, you
simply have to set the pixelSize equal to 0. Then, if you want to re-enable them, you have
to set this field value to a positive number. Detailed definitions can be found in chapter 3 of the
Reference Manual'.

In this tutorial we will not use the Camera and the Display devices of the
EPuck. So we can hide the two windows by expanding the EPuck node and
setting the fields camera pixelSize and display_pixelSize to 0.
hands-on Don’t forget to revert the simulation before changing the values and to save
it after the modifications.

'"http://www.cyberbotics.com/reference/

http://www.cyberbotics.com/reference/

184 CHAPTER 7. TUTORIALS

7.2.3 Create a new Controller

We will now program a simple controller that will just make the robot move forwards. As there
is no obstacle, the robot will go forwards for ever. Firstly we will create and edit the C controller,
then we will link it to the robot.

A controller is a program that defines the behavior of a robot. Webots contro-
llers can be written in the following programming languages: C, C++, Java,
Python, Matlab, etc. Note that C, C++ and Java controllers need to be com-
piled before they can be run as robot controllers. Python and Matlab contro-
llers are interpreted languages so they will run without being compiled. The
controller field of a robot specifies which controller is currently linked
with to it. Plase take notice that a controller can be used by several robots,
but a robot cans use only one controller at a time.

H

theory

Each robot controller is executed in a separate child process spawned by
Webots. Controllers don’t share the same address space, and they can run in
note different processor cores.

©

Other languages than C are available but may require a setup. Please refer
to the language chapter to setup the other languages (see chapter 4).

©

note

Create a new C controller called epuck_go_forwards using the Wizards > New
Robot Controller... menu. This will create a new epuck_go_forwards
directory in my_webots_projects/tutorials/controllers. Se-
lect the option asking you to open the source file in the text editor.

&

hands-on

The new C source file is displayed in Webots text editor window. This C file can be compiled
without any modification, however the code has no real effect. We will now link the EPuck node
with the new controller before modifying it.

Link the EPuck node with the epuck_go_forwards controller. This can be
done in the scene tree view by selecting the controller field of the EPuck
node, then use the field editor at the bottom of the scene tree view: push

hands-on the Select... button and then select epuck_go_forwards in the list. Once the

controller is linked, save the world.

7.2. TUTORIAL 1: YOUR FIRST SIMULATION IN WEBOTS (20 MINUTES) 185

Modify the program by inserting an include statement (#include
<webots/differential wheels.h>), and by applying a differen-
tial wheels command (wb_differential _ wheels_set_speed (100,
100)):

#include <webots/robot.h>

// Added a new include file
#include <webots/differential wheels.h>

#define TIME_STEP 64

0NN kAW~

int main(int argc, char *#*argv)

{

—_
S O

wh_robot_init ();

hands-on 11
12 // set up the speeds
13 wh_differential wheels set_speed (100, 100);
14
15 do {
16 } while (wb_robot_step (TIME_STEP) != -1);
17
18 wh_robot_cleanup();
19
20 return 0;
21 |}
Save the modified source code (File > Save Text File), and compile it (Build
> Build). Fix any compilation error if necessary. When Webots proposes to
hands-on revert the simulation, choose Yes.

If everything is ok, your robot should go forwards.

In the controllers directory of your project, a directory containing
the epuck_go_forwards controller has been created. The epuck_go_
forwards directory contains an epuck_go_forwards binary file gen-

note erated after the compilation of the controller. Note that the controller direc-

tory name should match with the binary name.

186 CHAPTER 7. TUTORIALS
7.2.4 Conclusion

We hope you enjoyed creating your first simulation. You have been able to set up your environ-
ment, to add a robot and to program it. The important thing is that you learnt the fundamental
concepts summarized below:

A Webots world is made of nodes organized in a VRML-like tree structure. A world is saved
in a .wbt file stored in a Webots project. The project also contains the robot controllers which
are the programs that define the robots behavior. Robot controllers can be written in C (or other
languages). C controllers have to be compiled before they can be executed. Controllers are linked
to robots via the controller fields of the robot nodes.

7.3 Tutorial 2: Modification of the Environment (20 minutes)

In this tutorial, we will teach you how to create simple objects in the environment. The first step
will be to create a ball which will interact with the environment. We will tackle several concepts
related to the nodes: what is their meaning, how to create them, how they have to be affiliated,
etc. Moreover we will see how to set up physics.

Several kinds of nodes will be introduced. We won’t define each of them precisely. Their detailed
definition can be found in chapter 3 of the Reference Manual. Having the nodes chart diagram
(chapter 2 of the Reference Manual) in front of you, will also help understanding the nodes
inheritance relationship.

7.3.1 A new Simulation

First we create a new simulation based on the one created in Tutorial 1.

Make sure the my_first_simulation.wbt world file is open, and that
the simulation is stopped and is at a virtual time of 0. Using the File > Save
hands-on World As... menu, save the simulation as obstacles.wbt.

7.3.2 The Solid Node

This subsection introduces the most important node in Webots: the So1id node. But let’s start
with a definition.

http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/

7.3. TUTORIAL 2: MODIFICATION OF THE ENVIRONMENT (20 MINUTES) 187

physics boundingObject

Physics Solid

Geometry

children

Shape

geometry

Geometry

Figure 7.3: The simplest model of a rigid body in Webots having a graphical representation
(Shape), a physical bound (boundingObject) and being in the dynamical environment (Physics).

A rigid body is a body in which deformation can be neglected. The distance
between any two given points of a rigid body remains constant in time re-
\’/_ gardless of external forces exerted on it. Soft bodies and articulated objects
@ are not rigid bodies, e.g. these are not rigid bodies: a rope, a tyre, a sponge
theory and an articulated robot arm. However an articulated entity can be broken
into of several undividable rigid bodies. For example a table, a robot finger
phalanx or a wheel are undividable rigid bodies.

The physics engine of Webots is designed for simulating rigid bodies. An important steps, when
designing a simulation, is to break up the various entities into undividable rigid bodies.

, In Webots there is a direct matching between a rigid body and a Solid node. A
7 Solid node (or a node which inherits the Solid node) will be created for each
theory rigid body.

To define a rigid body, you will have to create a Solid node. Inside this node you will find differ-
ent subnodes corresponding to the characteristics of the rigid body. The figure 7.3 depicts a rigid
body and its subnodes. The graphical representation of the Solid is defined by the Shape nodes
populating its children list. The collision bounds are defined by its boundingObject
field. The graphical representation and the collision shape are often but not necessarily identical.
Finally the physics field defines if the object belongs to the dynamical or to the statical envi-
ronment. All these subnodes are optional, but the physics field needs the boundingObject
to be defined.

The Geometry box (in figure 7.3) stands for any kind of geometrical primitive. In fact it can be
substituted by a Sphere, a Box, a Cylinder, etc.

188 CHAPTER 7. TUTORIALS

7.3.3 Observation of the Floor

The defaut checkerboard floor is built as a rigid body pinned on the statical environment, i.e.
without Physics node.

In the scene tree view, recursively expand all the nodes of the Solid node
called FLOOR and compare its hierarchy with the schema depicted in figure

7.3.
@ Observe that the physics node is not set (NULL), thus making this object
static. Also notice that the graphical representation contains an Elevation-
Grid in order to display checkerboard tiles and that the boundingObject
contains a Plane that defines a flat collision ground. Note that the graphical
and physical definition differ.

note

7.3.4 Create a Ball

We will now add a ball to the simulation. That ball will be modeled as a rigid body as shown in
the figure 7.3. As Geometry nodes we will use Spheres.

In the scene tree view, select the last node and add a Solid node using the
Add New button. Similarly select the children field of the Solid node, and
add a Shape node to it. Add a Sphere node as the geomet ry field of the just
created Shape node. Add another Sphere node to the boundingObject
field of the Solid. Finally add a Physics node to the physics field of the
Solid. By modifying the translation field of the Solid node, place the
ball in front of the robot (at {0, 0.1, -0.2} for example). Save the simulation.
The result is depicted in figure 7.4.

hands-on

by adding a force to it (CTRL + ALT + left-click + drag). The contact points
between the ball and the floor can be displayed as cyan lines by enabling the
View > Optional Rendering > Show Contact Points menu item.

@ When the simulation is started, the ball hits the floor. You can move the ball

note

7.3.5 Geometries

To define the ball, we used the Sphere node in two different contexts: for the graphical repre-
sentation (children) and to define the physical bounds (boundingObject). All Geometry
node (such as the Sphere node) can be used in a graphical context. However, only a subset

7.3. TUTORIAL 2: MODIFICATION OF THE ENVIRONMENT (20 MINUTES) 189

200 /my_webots_proj

File

&

+ @
-@

Edit View Simulation Build Rot

Scene Tree

Bl x £ F %o oa

EPuck

Solid

@ translation 00.1-0.2
@ rotation0100
@scalelll

- @ children

- & Shape
@ appearance NULL
- @ geometry DEF BALL_GEOMETRY Sphere
@ radius 0.1
@ subdivision 1
@ name "solid"
@ model "
@ description ""
@ contactMaterial "default”
@ boundingObject USE BALL_GEOMETRY

+ @ physics Physics

@ locked FALSE

subdivision (Integer)

ds/obstacles.wbt - Webots PRO 7.0.0

Help

% o o B 2 1P P PP WP 0:00:00:000 Ox

N

of them can be used in a physical context. Take a look at the schema of the chapter 2 of the

Figure 7.4: Your first rigid body in Webots.

Reference Manual to now which primitive you can use.

We want now to reduce the size of the Sphere and to increase its graphical quality by increasing

the number of triangles used to represent it.

hands-on

For each Sphere node defining the ball, set its radius field to 0.05 and its
subdivision field to 2. Refer to the Reference Manual to understand what
the subdivision field stands for.

7.3.6 DEF-USE mechanism

We will see in this subsection a mechanism which can be useful to avoid redundancy in the world

files.

The DEF-USE mechanism allows to define a node in one place and to reuse
that definition elsewhere in the Scene Tree. This avoids the duplication of
identical nodes and this allows to modify several nodes at the same time.
Here is how this works: first a node is labeled with a DEF string, and then
copies of this node are reused elsewhere with the USE keyword. Only the
fields of the DEF node can be edited, the fields of the USE nodes assume
similar values. This mechanism is dependent on the apparition order of the
nodes in the world file, because the DEF node should appear first.

http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/

190

00 - /my_webots_projects/tutori
File Edit View Simulation Build Robo

B @B X + F % oHoa ?

+ @ EPuck
- @ solid
@ translation 00.1-0.2
@ rotation01 00
@scalel111
- @& children
- @& Shape

rlds/obstacles.wbt - Webots PRO 7.0.0

Scene Tree [=]ES] O O @ |

@ appearance NULL

@ radius 0.05
@ subdivision 2
@& name "solid"
@ model "
@ description ™"
@ contactMaterial "default”
@ boundingObject USE BALL_GEOMETRY
+ @ physics Physics
@ locked FALSE
geometry Sphere

DEF | BALL_ GEOMETRY

USE count: 1

CHAPTER 7. TUTORIALS

I » » W o0:00:00:000 Ox

Figure 7.5: DEF-USE mechanism on the Sphere node called " BALL_GEOMETRY”.

The two Sphere definitions that we have used earlier to define the ball, are redundant. We will
now merge these two Spheres into only once using the DEF-USE mechanism.

hands-on

Select the first Sphere node (the child of the Shape) in the scene tree view.
The field editor of the scene tree view allows you to enter the DEF string.
Enter "BALL_GEOMETRY”. Select the boundingObject field (containing
the second Sphere node), and delete it by using the Reset to default button.
Then click on the Add New button, and select the USE > BALL_GEOMETRY
in the dialog box. The result is shown in figure 7.5.

@ Now, changing the radius field of the first Sphere node does also modify
the boundingOb ject.

7.3. TUTORIAL 2: MODIFICATION OF THE ENVIRONMENT (20 MINUTES) 191

physics boundingObject

Physics Solid

USE SO

children

DEF SO Shape

geometry

Geometry

Figure 7.6: DEF-USE mechanism applied on the Shape node of a Solid.

7.3.7 Add Walls

For convenience, the boundingOb ject field accepts also the Shape node
\’l_ (rather than the Sphere node directly). It would be also possible to use the
@ same DEF-USE mechanism at the Shape level as shown in figure 7.6. For now
theory the best advantage is to use this Shape also directly for graphical purposes.
Later this will turn out to be very useful for some sensors.

In order to verify your progression, implement by yourself four walls to surround the environ-
ment. The walls have to be defined statically to the environment, and use as much as possible
the DEF-USE mechanism at the Shape level rather than at the Geometry level. Indeed it’s more
convenient to add an intermediate Shape node in the boundingOb ject field of the Solid node.
The best Geometry primitive to implement the walls is the Box node. Only one Shape has to be
defined for all the walls. The expected result is shown in figure 7.7.

@ Add four walls without physics and using only one definition of the Shape

node.

hands-on

The solution is located in the solution directory under the obstacle.wbt.

192 CHAPTER 7. TUTORIALS

200 /my_webots_projects/tutorials/worlds/obstacles.wbt - Webots PRO 7.0.0
File Edit View Simulation Build Robot Too
TEEIE S B% & 3 B E < P P Py WP 0:00:00:000 Ox
% X + F % ¥ oa

+ @ DEF WALL_2 Solid
+ & DEF WALL_3 Solid

@ translation 0 0.05 0.5
@ rotation 0 1 0 1.5708
Pscalelll
— @ children
@ USE WALL SHAPE
@ name "solid"
@ model **
@ description ""
@ contactMaterial "default”
@ boundingObject USE WALL_SHAPE
@ physics NULL
@ locked FALSE

Solid

DEF |WALL_4

USE count: 0

Figure 7.7: The simulation state at the end of this second tutorial.

7.3.8 Efficiency

The simulation of rigid bodies is computationally expensive. The simulation

speed can be increased by minimizing the number of bounding objects, mini-

\w mizing the constraints between them (more information about the constraints

7/ in the next tutorials), and maximizing the WorldInfo.basicTimeStep parame-

ter. On each simulation, a trade-off has to be found between the simulation
speed and the realism.

7.3.9 Conclusion

At the end of this tutorial, you are able to create simple environments based on rigid bodies.
You are able to add nodes from the scene tree view and to modify their fields. You have a more
precise idea of what are the Solid, the Physics, the Shape, the Sphere and the Box nodes. You
saw also the DEF-USE mechanism that allows to reduce node redundancy of the scene tree.

7.4 Tutorial 3: Appearance (15 minutes)

The aim of this tutorial is to familiarize yourself with some nodes related to the graphical render-
ing. Good looking simulations can be created very quickly when these nodes are used adequately.

7.4. TUTORIAL 3: APPEARANCE (15 MINUTES) 193

A good graphics quality does not only enhance the user’s experience, it is also essential for simu-
lations where robots preceive their environment (camera image processing, line following, etc.).

The result at the end of this tutorial is shown in figure 7.8.

7.4.1 New simulation

@ From the results of the previous tutorial, create a new simulation called
appearance.wbt by using the File > Save World As... menu.

hands-on

742 Lights

The lighting of a world is determined by light nodes. There are three types of
light nodes: the DirectionalLight, the PointLight and the SpotLight. A Direc-
\’I_ tionalLight simulates a light which is infinitely far (ex: the sun), a PointLight
@ simulates light emitted from a single point (ex: a light bulb), and a Spot-
theory Light simulates a conical light (ex: a flashlight). Each type of light node can
cast shadows. You can find their complete documentation in the Reference
Manual.

Lights are costly in term of performances. Minimizing the number of lights
increases the rendering speed. A maximum of 8 lights is allowed (except for
the High Quality rendering mode which allows more). A PointLight is more

note efficient than a SpotLight, but less than a DirectionalLight. Note finally that

casting shadows can reduce the simulation speed drastically.

Your simulation is currently lighted by a PointLight node at the top of the scene. We want to
replace this light node by a DirectionalLight node casting shadows.

Remove the PointLight node, and add a new DirectionalLight node instead.
Setits ambientIntensity fieldto 0.5, its cast Shadows field to TRUE,
hands-on | and its direction field to {1, -2, 1}.

7.4.3 Modify the Appearance of the Walls

The aim of this subsection is to color the walls with blue.

http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/

194 CHAPTER 7. TUTORIALS

ance of the object. Among other things, this node is responsible for the color
theory and texture of objects.

\’l% The Appearance node of the Shape node determines the graphical appear-
7

In the Shape node representing graphically the first wall, add an Appearance
node to the appearance field. Then add a Material node to the material
field of the freshly created Appearance node. Set its diffuseColor field
hands-on to blue using the color selector. If the DEF-USE mechanism of the previous
tutorial has been correctly implemented, all the walls should turn blue.

7.4.4 Add a Texture to the Ball

The aim of this subsection is to apply a texture on the ball. A texture on a rolling object can help
to appreciate its movement.

Similarly add an Appearance node to the ball. Instead of a Material node,
add an ImageTexture node to the texture field of the Appearance node.
Add an item to the url field using the Add New button. Then set the value of
the newly added url item to WEBOTS_HOME/resources/projects/
default/worlds/textures/bricks.png using the file selection di-
alog.

&

hands-on

The texture URLs must be defined either relative to the wor1ds directory of
your project directory or relative to the default project directory WEBOTS_
HOME/resources/projects/default. In the default project direc-
tory you will find textures that are available for every world.

©

note

Open the bricks.png texture in an image viewer while you observe how it
is mapped onto the Sphere node in Webots.

@

note

Textures are mapped onto Geometry nodes according to predefined UV map-
ping functions described in the Reference Manual. A UV mapping function
theory maps a 2D image representation to a 3D model.

H

http://www.cyberbotics.com/reference/

7.5. TUTORIAL 4: MORE ABOUT CONTROLLERS (20 MINUTES) 195

0 © @ s=saewiasii/my webots_projects/tutorials/worlds/appearance.wbt - Webots PRO 7.0.0
File Edit View Simulation Build Robot Tools Wizards Help

Scene Tree =T = I | 2 I » M W 0:00:00:000 Ox
X + F % #a a7

+ @ EPuck
- @ DEF BALL Selid
@ translation 00.1-0.2
@ rotation0 100
@scalelll
— @ children
- @ Shape
— @ appearance Appearance
@ material NULL
— @ texture ImageTexture
-@url
"/usrflocal/webots/resources/projects/default/worlds...
@ repeatS TRUE
@ repeatT TRUE
@ filtering TRUE

url (String #1)

|/u5n’\ocaIlwebutslresuurcesfprujectsfdefauIt!worlds/textureslbr\cks.png |

[Select... 1

Figure 7.8: Simulation after having setup the Light and the Appearance nodes.

7.4.5 Rendering Options

Webots offers several rendering modes available in the View menu.

View the simulation in wireframe mode by using the View > Wireframe Ren-
dering menu item. Then restore the regular rendering mode: View > Regular
hands-on Rendering.

7.4.6 Conclusion

In this tutorial, you have learnt how to set up a good looking environment using the Appearance
node and the light nodes.

You can go further on this topic by reading the detailed description of these nodes in the Refer-
ence Manual. The subsection 9.3.7 will give you a method to efficiently setup these nodes.

7.5 Tuatorial 4: More about Controllers (20 minutes)

Now we start to tackle the topics related to programming robot controllers. We will design a
simple controller that avoids the obstacles created in the previous tutorials.

This tutorial will introduce you to the basics of robot programming in Webots. At the end of this
chapter, you should understand what is the link between the scene tree nodes and the controller

http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/

196 CHAPTER 7. TUTORIALS

API, how the robot controller has to be initialized and cleaned up, how to initialize the robot
devices, how to get the sensor values, how to command the actuators, and how to program a
simple feedback loop.

This chapter only addresses the correct usage of Webots functions. The study of robotics algo-
rithms is beyond the goals of this tutorial and so this won’t be adressed here. Some rudimentary
programming knowledge is required to tackle this chapter (any C tutorial should be a sufficient
introduction). At the end of the chapter, links to further robotics algorithmics are given.

7.5.1 New World and new Controller

Save the previous world as collision_avoidance.wbt.

hands-on
Create a new C controller called epuck_collision_avoidance using
the wizard. Modify the controller field of the EPuck node in order to link
hands-on it to the new controller.

7.5.2 Understand the e-puck Model

Controller programming requires some information related to the e-puck model. For doing the
collision avoidance algorithm, we need to read the values of its 8 infra-red distance sensors
located around its turret, and we need to actuate its two wheels. The way that the distance
sensors are distributed around the turret and the e-puck direction are depicted in figure 7.9.

The distance sensors are modeled by 8 DistanceSensor nodes in the hierarchy of the robot. These
nodes are referenced by their name fields (from ”ps0” to ”ps7”’). We will explain later how these
nodes are defined. For now, simply note that a DistanceSensor node can be accessed through the
related module of the Webots API (through the webots/distance_sensor.h include file).
The values returned by the distance sensors are scaled between 0 and 4096 (piecewise linearly to
the distance), while 4096 means that a big amount of light is measured (an obstable is close) and
0 means that no light is measured (no obstacle).

In the same way, the e-puck root node is a DifferentialWheel node and can be access by the
webots/differential_wheel.h include file. The speed is given in a number of tick-
s/seconds where 1000 ticks correspond to a complete rotation of the wheel. The values are
clamped between -1000 and 1000.

7.5. TUTORIAL 4: MORE ABOUT CONTROLLERS (20 MINUTES) 197

ps7 ps0
ps6
/51
..-':; G _'-—,.

ps5 1 LR ® L

RN 4
ps4/ >

Figure 7.9: Top view of the e-puck model. The green arrow indicates the front of the robot. The

red lines represent the directions of the infrared distance sensors. The string labels corresponds
to the distance sensor names.

ps2

The controller API is the programming interface that gives you access to
the simulated sensors and actuators of the robot. For example, including the

\’/%3 webots/distance_sensor. h file allows to use the wo_distance -
7

sensor_* () functions and with these functions you can query the values of

theory the DistanceSensor nodes. The documentation on the API functions can be
Jfound in Chapter 3 of the Reference Manual together with the description of
each node.

7.5.3 Program a Controller

We would like to program a very simple collision avoidance behavior. You will program the
robot to go forwards until an obstacle is detected by the front distance sensors, and then to turn

towards the obstacle-free direction. For doing that, we will use the simple feedback loop depicted
in the UML state machine in figure 7.10.

The complete code of this controller is given in the next subsection.

http://www.cyberbotics.com/reference/

198 CHAPTER 7. TUTORIALS

()
feedback loop

entry/ initialise devices
exit/ cleanup

. read sensors
outputs

EXIT
= 05 0-@)
step process
simulation behavior

-/
N

-

write actuators

inputs ’E
_
_ J

Figure 7.10: UML state machine of a simple feedback loop

At the beginning of the controller file, add the include directives correspond-
ing to the Robot, the DifferentialWheels and the DistanceSensor nodes in
order to be able to use the corresponding API (documented in chapter 3 of
the Reference Manual):

= 1 |#include <webots/robot.h>
2 |#include <webots/differential_ wheels.h>
3 |#include <webots/distance_sensor.h>
Just after the include statements add a macro that defines the duration of
each physics step. This macro will be used as argument to the wo_robot _—
step () function, and it will also be used to enable the devices. This dura-
tion is specified in milliseconds and it must be a multiple of the value in the
= basicTimeStep field of the WorldInfo node.

1 | #define TIME_STEP 64

The function called main () is where the controller program starts execu-
\’l— tion. The arguments passed to main() are given by the controllerArgs
@ field of the Robot node. The Webots API has to be initialized using the wo_—
theory robot_init () function and it has to be cleaned up using the wo_robot _—
cleanup () function.

http://www.cyberbotics.com/reference/

7.5. TUTORIAL 4: MORE ABOUT CONTROLLERS (20 MINUTES)

hands-on

199

Write the prototype of the main () function as follows:

1 |// entry point of the controller

2 |int main(int argc, char *=#argv)

304

4 // initialize the Webots APIT

5 wh_robot_init () ;

6 // initialize devices

7 // feedback loop

8 while (1) {

9 // step simulation

10 int delay = wh_robot_step (TIME_STEP);
11 if (delay == -1) // exit event from webots
12 break;

13 // read sensors outputs

14 // process behavior

15 // write actuators inputs

16 }

17 // cleanup the Webots API

18 wh_robot_cleanup();

19 return 0; //EXIT _SUCCESS
20 |}

A robot device is referenced by a WoDeviceTag. The WoDeviceTag is
retrieved by the wb_robot_get _device () function. Then it is used as

first argument in every function call concerning this device.

A sensor such as the DistanceSensor has to be enabled before use. The sec-
ond argument of the enable function defines at which rate the sensor will be

refreshed.

200

CHAPTER 7. TUTORIALS

sensors as follows:

Just after the comment ”// initialize devices”, get and enable the distance

1|// initialize devices
2 |int 1;
3 |WbDeviceTag ps[8];
4 | char ps_names[8][4] = {
5 "os0", "psl", "ps2", "ps3",
6 "os4", "psb5", "psé6", "ps7"

hands-on T},
8
9 |for (i=0; 1<8; i++) {
10 ps[i] = wb_robot_get_device (ps_names/[i]);
11 wh_distance_sensor_enable (ps[i], TIME_STEP);
12 |}

In the main loop, just after the comment /] read sensors outputs”, read the
distance sensor values as follows:

1 |// read sensors outputs
2 |double ps_values[8];
3 |for (i=0; i<8 ; 1i++)

hands-on , ,
4 ps_values[i] = wb_distance_sensor_get_value (ps/[

1]);

threshold) as follows:

In the main loop, just after the comment [/ process behavior”, detect if a
collision occurs (i.e. the value returned by a distance sensor is bigger than a

// detect obsctacles

bool left_obstacle =
ps_values[0] > 100.0 ||/
ps_values[1] > 100.0 |[]
ps_values[2] > 100.0;

bool right_obstacle =
ps_values([5] > 100.0 ||
ps_values[6] > 100.0 ||/
ps_values[7] > 100.0;

&)

hands-on

O 0 3N DN B~ WIN —

7.5. TUTORIAL 4: MORE ABOUT CONTROLLERS (20 MINUTES)

hands-on

hands-on

201

Finally, use the information about the obstacle to actuate the wheels as fol-

lows:
1|// init speeds
2 |double left_speed = 500;
3 |double right_speed = 500;
4 |// modify speeds according to obstacles
5|if (left_obstacle) {
6 // turn right
7 left_speed -= 500;
8 right_speed += 500;
91}
10 |else if (right_obstacle) {
11 // turn left
12 left_speed += 500;
13 right_speed —-= 500;
14 |}
15 |// write actuators inputs
16 |wb_differential_ wheels set_speed(left_speed,

right_speed) ;

Compile your code by selecting the Build > Build menu item. Compilation
errors are displayed in red in the console. If there are any, fix them and retry

to compile. Revert the simulation.

7.5.4 The Controller Code

Here is the complete code of the controller detailed in the previous subsection.

O 00 9 O DN B~ W=

—_
)

{

—_— =
W N =

#include <webots/robot.h>
#include <webots/differential_ wheels.h>
#include <webots/distance_sensor.h>

// time in [ms] of a simulation step
#define TIME_STEP 64

// entry point of the controller
int main(int argc, char xxargv)

// initialize the Webots API
whb_robot_init ();

202 CHAPTER 7. TUTORIALS

14 // internal variables

15 int 1i;

16 WbDeviceTag ps[8];

17 char ps_names[8][4] = {

18 "psO", "psl", "ps2", "ps3",

19 "ps4", "ps5", "pso6", "ps7"

20 }i

21

22 // initialize devices

23 for (i=0; i<8 ; 1i++) {

24 psl[i] = wb_robot_get_device (ps_names[i]);
25 wb_distance_sensor_enable (ps[i], TIME_STEP);
26 }

27

28 // feedback loop

29 while (1) |

30 // step simulation

31 int delay = wb_robot_step (TIME_STEP) ;
32 if (delay == -1) // exit event from webots
33 break;

34

35 // read sensors outputs

36 double ps_values([8];

37 for (1=0; 1i<8 ; i++)

38 ps_values[i] = wb_distance_sensor_get_value (ps[i]);
39

40 // detect obstacles

41 bool left_ _obstacle =

42 ps_values[0] > 100.0 ||

43 ps_values[1] > 100.0 ||

44 ps_values([2] > 100.0;

45 bool right_obstacle =

46 ps_values[5] > 100.0 ||

47 ps_values[6] > 100.0 ||

48 ps_values[7] > 100.0;

49

50 // init speeds

51 double left_speed = 500;

52 double right_speed = 500;

53

54 // modify speeds according to obstacles
55 if (left_obstacle) {

56 left_speed -= 500;

57 right_speed += 500;

58 }

7.6. TUTORIAL 5: COMPOUND SOLID AND PHYSICS ATTRIBUTES (15 MINUTES)203

59
60
61
62
63
64
65
66
67
68
69
70
71

else if (right_obstacle) {
left_speed += 500;
right_speed —-= 500;

}

// write actuators inputs
wbh_differential wheels_set_speed(left_speed, right_speed);
}

// cleanup the Webots API
wb_robot_cleanup();
return 0; //EXIT_SUCCESS

7.5.5 Conclusion

Here is a quick summary of the key points you need to understand before going on:

The controller entry point is the main () function like any standard C program.
No Webots function should be called before the call of the wb_robot_init () function.

The last function to call before leaving the main function is the wb_robot_cleanup ()
function.

A device is referenced by the name field of its device node. The reference of the node can
be retrieved thanks to the wb_robot _get_device () function.

Each controller program is executed as a child process of the Webots process. A controller
process does not share any memory with Webots (except the cameras images) and it can
run on another CPU (or CPU core) than Webots.

The controller code is linked with the 1ibController dynamic library. This library
handles the communication between your controller and Webots.

The section 6.1 explains in more detail controller programming. We invite you to read carefully
this section before going on.

7.6

Tutorial 5: Compound Solid and Physics Attributes (15
minutes)

The aim of this chapter is to explore in more detail the physics parameters by creating a solid
with several bounding objects: a dumbbell made of two spheres and one cylinder. The expected
result is depicted in figure 7.11.

204 CHAPTER 7. TUTORIALS

2 © @ ‘==sasiisia/my webots_projects/tutorials/worlds/compound_solid.wbt - Webots PRO 7.0.0

File Edit View Simulation Build Robot Tools

Scene Tree @ ® =T B |

4 B @B X £+ ¥ & -

+ & DEF WALL_4 Solid C
— 3 DEF DUMBBELL Solid
@ translation 0.201138 0.1 -0.0...
& rotation 1 0 0 1.5708
@scalell1l
+ @ children
@ name "solid"
@ model "
@& description ™"
@ contactMaterial "dumbbell”
@ boundingObject USE GO
+ @ physics Physics
@& locked FALSE

Solid

DEF | DUMBBELL

USE count: 0

Figure 7.11: Expected result at the end of the tutorial about compound solids.

7.6.1 New simulation

Start from the results of the previous tutoriala and create a new simulation
called compound_solid.wbt by using the menu File > Save World As....

hands-on

7.6.2 Compound Solid

It is possible to build Solid nodes more complex than what we have seen before by aggregating
Shape nodes. In fact, both the physical and the graphical properties of a Solid can be made of
several Shape nodes. Moreover each Shape node can be placed in a Transform node in order
to change its relative position and orientation. Group nodes can also be used to group several
subnodes.

We want to implement a dumbbell made of a handle (Cylinder) and of two weights (Sphere)
located at each end of the handle. The figure 7.12 depicts the Solid nodes and its subnodes
required to implement the dumbbell.

7.6. TUTORIAL 5: COMPOUND SOLID AND PHYSICS ATTRIBUTES (15 MINUTES)205

Physics physics Solid boundingObject] USE GO
children
DEF GO Group
children
Shape Transform Transform
children children children
Cylinder Shape Shape
children children
Sphere Sphere

Figure 7.12: Representation of the subnodes of a compound solid made of several transformed
geometries.

Create the dumbbell by following the figure 7.12. Create the handle first
without placing it in a Transform node (so the handle axis will have the same
@ direction as the y-axis of the solid). The handle should have a length of 0.1
m and a radius of 0.01 m. The weights should have a radius of 0.03 m and a
subdivision of 2. The weights can be moved at the handle extremities thanks
to the translation field of their Transform nodes.

hands-on

7.6.3 Physics Attributes

The aim of this subsection is to learn how to set some simple physics attributes of a Solid node.
The Physics node contains the parameters related to the physics of the current rigid body (Solid).

The mass of a Solid node is given by its density or mass field. Only one
of these two fields can be specified at a time (the other should be set to -1).
\’l_ When the mass is specified, it defines the total mass of the solid (in [kg]).
@ When the density is specified, its value (in [kg/m3]) is multiplied by the
theory volume of the bounding objects, and the product gives the total mass of the
solid. A density of 1000 [kg/m?] corresponds to the density of water (default
value).

Set the mass of the dumbbell to 2 [kg]. The density is not used and should be
set to -1.

hands-on

206 CHAPTER 7. TUTORIALS

the translation field of the solid). The center of mass can be modified using the

\’l— By default, the center of mass of a Solid node is set at its origin (defined by
@ centerOfMass field of the Physics node. The center of mass is specified

theery relatively to the origin of the Solid.
Let’s say that one of the weights is heavier than the other one. Move the
center of mass of the dumbbell of 0.01 [m] along the y-axis.
hands-on

Note that when the solid is selected, the center of mass is represented in the
3D view by a coordinate system which is darker than the coordinate system
representing the solid center.

7.6.4 The Rotation Field

The rotation field of the Transform node determines the rotation of this
node (and of its children) using the Euler axis and angle representation.
\’/% A Euler axis and angle rotation is defined by four components. The first
7 three components are a unit vector that defines the rotation axis. The fourth
component defines the rotation angle about the axis (in [rad]).
The rotation occurs in the sense prescribed by the right-hand rule.

Modify the rotation of the Solid node of the dumbbell in order to move the
handle’s axis (y-axis) parallel to the ground. A unit axis of (1, 0, 0) and an
hands-on angle of m/2 is a possible solution.

7.6.5 How to choose bounding Objects?

As said before, minimizing the number of bounding objects increases the simulation speed. How-
ever choosing the bounding objects primitives carefully is also crucial to increase the simulation
speed.

Using a combination of Sphere, Box, Capsule and Cylinder nodes for defining objects is very
efficient. Generally speaking, the efficiency of these primitives can be sorted like this: Sphere >
Box > Capsule > Cylinder. Where the Sphere is the most efficient. But this can be neglected for
a common usage.

7.6. TUTORIAL 5: COMPOUND SOLID AND PHYSICS ATTRIBUTES (15 MINUTES)207

The IndexdedFaceSet geometry primitive can also be used in a bounding object. But this prim-
itive is less efficient than the other primitives listed above. Moreover its behavior is sometimes
buggy. For this reasons, we don’t recommend using the IndexdedFaceSet when another solution
using a combination of the other primitives is possible.

Grounds can be defined using the Plane or the ElevationGrid primitives. The Plane node is much
more efficient than the ElevationGrid node, but it can only be used to model a flat terrain while
the ElevationGrid can be used to model an uneven terrain.

7.6.6 Contacts

When two solids collide, contacts are created at the collision points. Contact-
Properties nodes can be used to specify the desired behavior of the contacts

(e.g. the friction between the two solids).
\’I% Each solid belongs to a material category referenced by their contact—
7 Material field (’default” by default). The WorldInfo node has a con—
tactProperties field that stores a list of ContactProperties nodes. These

nodes allow to define the contact properties between two categories of Solids.

We want now to modify the friction model between the dumbbell and the other solids of the
environmnent.

Set the contactMaterial field of the dumbbell to "dumbbell”. In the
WorldInfo node, add a ContactProperties node between the “default” and
“dumbbell” categories. Try to set the coulombFriction field to 0 and

hands-on remark that the dumbbell slides (instead of rotating) on the floor because no

more friction is applied.

7.6.7 basicTimeStep, ERP and CFM

The parameters which are the most difficult to set in a simulation are the basicTimeStep,
ERP and CFM fields of the WorldInfo node. Indeed these parameters have a huge influence on
the physics simulation behavior.

The basicTimeStep field determines the duration (in [ms]) of a physics step. The bigger this
value is, the quicker the simulation is, the less precise the simulation is. We recommend values
between 8 and /6 for a regular use of Webots.

It’s more difficult to explain the behavior of the ERP and CFM fields. These values are directly
used by the physics engine to determine how the constraints are solved. The default values are

208 CHAPTER 7. TUTORIALS

well defined for a regular use of Webots. We recommend to read the Reference Manual and the
documentation of ODE? (physics engine used in Webots) to understand completely their purpose.

7.6.8 Minor physics Parameters

There exists also physics parameters which are less useful in a regular use of Webots. A complete
description of these parameters can be found in the Reference Manual. Remark simply that the
Physics, WorldInfo and ContactProperties nodes contains other fields.

Search in the Reference Manual how to add a linear damping on all the ob-
jects, how to unset the auto-disable feature and how to use the inertia matrix.

hands-on

7.6.9 Conclusion

You are now able to build a wide range of solids including those being composed of several rigid
bodies. You know that a Geometry node can be moved and rotated if it is included in a Transform
node. You are aware about all the physics parameters allowing you to design robust simulations.
The next step will be to create your own robot.

You can test your skills by creating common objects such as a table.

7.7 Tutorial 6: 4-Wheels Robot

The aim of this tutorial is to create your first robot from scratch. This robot will be made of a
body, four wheels, and two distance sensors. The result is depicted in figure 7.13. The figure
7.14 shows the robot from a top view.

7.7.1 New simulation

Save the world of the previous tutorial as 4_wheels_robot .wbt.
hands-on

Remove the nodes defining the e-puck, the ball, the dumbbell and the contact
- properties. The ground, the walls and the lighting are kept.

’http://ode-wiki.org/wiki/index.php?title=Manual

http://www.cyberbotics.com/reference/
http://ode-wiki.org/wiki/index.php?title=Manual
http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/

7.7. TUTORIAL 6: 4-WHEELS ROBOT 209

Figure 7.13: 3D view of the 4 wheels robot. Note that the coordinate system representations of
the robot body and of its wheels are oriented the same way. Their +x-vector (in red) defines the
left of the robot, their +y-vector (in green) defines the top of the robot, and their +z-vector (in
blue) defines the front of the robot. The distance sensors are oriented in a different way, their
+x-vector indicates the direction of the sensor.

-0.1 0 0.1 0.1
‘wheel3 X wheell
1L SHEm E SHIR
ds_left
- zZ
0
ds_right
- | NN | |
‘Wheel4 wheel2
-0.1

Figure 7.14: Top view of the 4 wheels robot. The grid behind the robot has a dimension of 0.2
x 0.3 [m]. The text labels correspond to the name of the devices.

210 CHAPTER 7. TUTORIALS

7.7.2 Separating the Robot in Solid Nodes

Some definitions are required before giving rules to create a robot model.

The set of all the classes derived by the Solid node is called the solid nodes. The Solid node is
inherited by the device nodes (for example: a Servo or a DistanceSensor node) and by the robot
nodes (for example: a Robot or a Differential Wheels node). You can get more information about
the node hierarchy in the Reference Manual.

together. The root node of this tree should be a robot node. A device node
theory should be the direct child of either a robot node or either a Servo node.

’ The main structure of a robot model is a tree of solid nodes directly linked
7

A Servo node is used to add a joint, i.e. one degree of freedom (DOF), be-
\’I_ tween himself and its direct parent. The parent of a Servo node is either a
ﬁ robot node or either a Servo node.

theory The number of Servo nodes of a robot is equivalent to the number of DOF of
the robot.

Having these rules in mind, we can start to design the node hierarchy used to model the robot.
The first step is to determine which part of the robot should be modeled as a solid node.

In our example, this operation is quite obvious. The robot has 4 DOF corresponding to the wheel
motors. It can be divided in five solid nodes: the body and the four wheels.

Depending on the expected application of the robot model, reducing the number of DOF when
modeling could be important to get an efficient simulation. For example, when modeling a caster
wheel, a realistic approach implies to model 2 DOF. But if this degree of precision is useless for
the simulation, a more efficient approach can be found. For example, to model the caster wheel
as a Sphere having a null friction coefficient with the ground.

The second step is to determine which solid node is the robot node (the root node). This choice
is arbitrary, but a solution is often much easier to implement. For example, in the case of an
humanoid robot, the robot node would be typically the robot chest, because the robot symmetry
facilitates the computation of the Servos translation and rotation.

In our case, the body box is obviously the better choice. The figure 7.15 depicts the solid nodes
hierarchy of the robot.

@ Add a Robot node having four Servo nodes as children at the end of the scene
tree according to figure 7.15.

hands-on

http://www.cyberbotics.com/reference/

7.7. TUTORIAL 6: 4-WHEELS ROBOT

Ro

bot

children

Servo
(WHEEL1)

Other wheels |

211

Figure 7.15: High level representation of the 4 wheels robot

USE BODY

boundingObject

Physics physics Robot boundingObject
| children
Shape Physics physics Servo
(BODY) (WHEEL_PH) (WHEEL1)
geometry | children
Box Transform
(WHEEL)
| children
Shape
| geometry
Cylinder

USE WHEEL

Other wheels
(using WHEEL
and WHEEL_PH)

Figure 7.16: Low level representation of the 4 wheels robot

hands-on

Add a Shape node containing a Box geometry to the Robot node. Set the color
of the Shape to red. Use the Shape to define also the boundingObject
field of the Robot node. The dimension of the box is (0.1, 0.05, 0.2). Add a
Physics node to the Robot. The figure 7.16 represents all the nodes defining
the robot. So far only the direct children nodes of the root Robot node are
implemented.

7.7.3 Rotational Servos

A Servo node is by default rotational (defined by its t ype field). This means that the controller
will be able to rotate the Servo. The rotation is computed by using the Euler axis and angle
representation of the Servo node (its rotat ion field). Indeed, the euler angle can be modified
by the controller. So the Servo rotation axis is the Euler axis given by the rotation field.

In our case, the rotation axis of the wheels will be along the x-axis. So the rotation field of
each Servo node is (1, 0, 0, 0) and the t ranslation field corresponds to the position of the

212 CHAPTER 7. TUTORIALS

wheels relatively to the robot origin. For example WHEEL1 is located at (0.06, 0, 0.05).

@ Setthe translation and the rotation fields of each Servo as described

above.
hands-on

We want now to implement the cylinder shape of the wheels. As the Cylinder node is defined
along the y-axis, a Transform node should encapsulate the Shape to rotate the Cylinder along the
along the x-axis.

Complete the missing nodes to get the same structure as the one depicted in
figure 7.16. Don’t forget the Physics nodes. Rotate the Transform node by an
Euler axis and angle of (0, 0, 1, Pi/2) in order to inverse the x-axis and the
hands-on y-axis. The Cylinder should have a radius of 0.04 and a height of 0.02.
Set the color of the wheels to green.

Set the name field of each Servo node from "wheell” to ”wheeld” according

to the figure 7.14. These labels will be used to reference the wheels from the
hands-on controller.

7.7.4 Sensors

The last part of the robot modeling is to add the two distance sensors to the robot. This can be
done by adding two DistanceSensor nodes as direct children of the Robot node. Note that the
distance sensor acquires its data along the +x-axis. So rotating the distance sensors in order to
point their x-axis outside the robot is necessary (see the figure 7.14).

Add the two distance sensors as explained above. The distance sensors are
at an angle to 0.3 [rad] with the robot front vector. Set their type field to
“sonar”. Set their graphical and physical shape to a cube (not transformed)
hands-on having a edge of 0.01 [m]. Set their color to blue. Set their name field
according to the labels of figure 7.14.

7.7.5 Controller

In the previous tutorials, you learnt how to setup a feedback loop and how to read the distance
sensor values. However actuating the Servo nodes is new. The following note explain how to
proceed.

7.7. TUTORIAL 6: 4-WHEELS ROBOT 213

To program the servos, the first step is to include the APl module correspond-
ing to the Servo node:

#include <webots/servo.h>
Then to get the references of the Servo nodes:

// initialize servos
WbDeviceTag wheels[4];

char wheels _names/[4][8] = {
@ "wheell", "wheell", "wheel3", "wheel4"
}i
e for (i=0; i<4 ; 1i++)
wheels[i] = wb_robot_get_device (wheels names[i]);

A servo can be actuated by setting its position, its velocity or its force (cf.
Reference Manual). Here we are interested in setting its velocity. This can be
achieve by setting its position at infinity, and by bounding its velocity:

double speed = -1.5; // [rad/s]
wb_servo_set_position (wheels[0], INFINITY);
wb_servo_set_velocity (wheels[0], speed);

Implement a controller called 4_wheels collision_avoidance
moving the robot and avoiding obstacles by detecting them by the distance
sensors.

Note that the 1lookupTable field of the DistanceSensor nodes indicates
which values are returned by the sensor (cf. Reference Manual).

hands-on Don'’t forget to set the controller field of the Robot node to indicate your
new controller.

As usual a possible solution of this exercise is located in the tutorials direc-

tory.

7.7.6 Conclusion

You are now able to design simple robot models, to implement them and to create their control-
lers.

More specifically you learnt the different kind of nodes involved in the building of the robot
models, the way to translate and rotate a solid relatively to another, the way that a rotational
servo is actuated by the controller.

http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/

214 CHAPTER 7. TUTORIALS

7.8 Going Further

You have now enough knowledge to set up your own simulation Webots. You are able to design
and implement a robot, to setup its controller and to design an environment.

However the Webots possibilities go much beyond this. Reading the documentation related with
your application in the User Guide® or in the Reference Manual is the first step to extend your
knowledge.

The algorithmic to develop your controllers is not explained in the Webots documentation. How-
ever another tutorial known as “curriculum” tackle some famous robot programming problems
through a sequence of exercises using the e-puck robot and the C language.

3http://www.cyberbotics.com/guide/

http://www.cyberbotics.com/guide/
http://www.cyberbotics.com/reference/

Chapter 8

Robots

8.1

Using the e-puck robot

In this section, you will learn how to use Webots with the e-puck robot (figure 8.1). E-puck is a
miniature mobile robot originally developed at the EPFL for teaching purposes by the designers
of the successful Khepera robot. The hardware and software of e-puck is fully open source, pro-
viding low level access to every electronic device and offering unlimited extension possibilities.
The official e-puck web site! provides the most up-to-date information about this robot. E-puck
is also available for purchase from Cyberbotics Ltd.

8.1.1 Overview of the robot

E-puck was designed to fulfill the following requirements:

Elegant design: the simple mechanical structure, electronics design and software of e-puck
is an example of a clean and modern system.

Flexibility: e-puck covers a wide range of educational activities, offering many possibilities
with its sensors, processing power and extensions.

Simulation software: e-puck is integrated with Webots simulation software for easy pro-
gramming, simulation and remote control of the (physical) robot.

User friendly: e-puck is small and easy to setup on a tabletop next to a computer. It doesn’t
need any cables, providing optimal working comfort.

Robustness and maintenance: e-puck is resilient under student use and is simple to repair.

Affordable: the price tag of e-puck is friendly to university budgets.

E-puck is equipped with a large number of devices, as summarized in table 8.1.

'nttp://www.e-puck.org

215

http://www.e-puck.org

216 CHAPTER 8. ROBOTS

Figure 8.1: The e-puck robot at work

8.1.2 Simulation model

The e-puck model in Webots is depicted in figure 8.2. This model includes support for the
differential wheel motors (encoders are also simulated), the infra-red sensors for proximity and
light measurements, the accelerometer, the camera, the 8 surrounding LEDs, the body and front
LEDs; the other e-puck devices are not yet simulated in the current model. The table table 8.2
displays the names of the simulated devices which are to be used as an argument of the function
wb_robot _get_device () (see the Robot section of Reference Manual?).

The e-puck dimensions and speed specifications are shown in table 8.3. The functions wb_—
differential wheels_set_speed(), wb.differential wheels get_left_en-
coder () andwb_differential wheels_get_right_encoder () will allow you to set
the speed of the robot and to use its encoders.

As is the case for any Differential Wheels robot set at its default position in Webots, the forward
direction of the e-puck is given by the negative z-axis of the world coordinates. This is also the
direction the eye of the camera is looking to; in keeping with the VRML standard, the direction
vector of the camera is pointing in the opposite direction, namely the direction of the positive
z-axis. The axle’s direction is given by the positive x-axis. Proximity sensors, light sensors and
LEDs are numbered clockwise; their location and orientation are shown in table 8.3 and table
8.4. The last column of table 8.4 lists the angles between the negative z-axis and the direction
of the devices, the plane 2Oz being oriented counter-clockwise. Note that the proximity sensors
and the light sensors are actually the same devices of the real robot used in a different mode,
so their direction coincide. Proximity sensors responses are simulated in accordance with the
lookup table in figure 8.3; this table is the outcome of calibration performed on the real robot.

nttp://www.cyberbotics.com/reference/

http://www.cyberbotics.com/reference/

8.1. USING THE E-PUCK ROBOT 217

Figure 8.2: The e-puck model in Webots

4095

Noise

Sensor output value
3474 |
2211 +
676 |
306 |
34 E

0 001 002 003 004 005 008 007

Figure 8.3: Proximity sensor response against distance

218

CHAPTER 8. ROBOTS

Feature Description

Size 7.4 cm in diameter, 4.5 cm high

Weight 150 g

Battery about 3 hours with the provided SWh LilON rechargeable battery

Processor Microchip dsPIC 30F6014A @ 60MHz (about 15 MIPS)

Motors 2 stepper motors with 20 steps per revolution and a 50:1 reduction gear

IR sensors 8 infra-red sensors measuring ambient light and proximity of obstacles in a
4 cm range

Camera color camera with a maximum resolution of 640x480 (typical use: 52x39
or 640x1)

Microphones 3 omni-directional microphones for sound localization

Accelerometer | 3D accelerometer along the X, Y and Z axis

LEDs 8 red LEDs on the ring and one green LED on the body

Speaker on-board speaker capable of playing WAV or tone sounds.

Switch 16 position rotating switch

Bluetooth Bluetooth for robot-computer and robot-robot wireless communication

Remote Control | infra-red LED for receiving standard remote control commands

Expansion bus | expansion bus to add new possibilities to your robot

Programming C programming with the GNU GCC compiler system

Simulation Webots EDU or PRO facilitates the programming of e-puck with a powerful
simulation, remote control and cross-compilation system.

Table 8.1: e-puck features

The resolution of the camera was limited to 52x39 pixels, as this is the maximum rectangular
image with a 4:3 ratio which can be obtained from the remote control interface with the real
robot.

The standard model of the e-puck is provided in the EPuck . proto prototype file which is lo-
cated in the resources/projects/robots/e-puck/protos directory of the Webots
distribution (see also EPuck_DistanceSensor.proto); you will find complete specifica-
tions in it.

Several simulation examples are located in the projects/robots/e-puck/worlds di-
rectory of the Webots distribution. The e-puck_1line.wbt world (see figure 8.5) especially
examplifies the use of floor sensors. Floor sensors can be added to a real e-puck robot by insert-
ing a special extension card with three sensors just below the camera of the robot. These sensors
are actually simple infra-red sensors which allow the e-puck robot to see the color level of the
ground at three locations in a line across its front. This is particularly useful for implementing
line following behaviors. The e—~puck_11ine controller program contains the source code for a
simple line following system which, as an exercise, can be improved upon to obtain the behavior
demonstrated in the e-puck_line_demo.wbt demo, in which the e-puck robot is able to
follow the line drawn on the floor, but also to avoid obstacles and return to the line following
behavior afterwards. This model was contributed by Jean-Christophe Zufferey from the EPFL,

8.1. USING THE E-PUCK ROBOT 219

Device Name

Differential wheels differential wheels

Proximity sensors psO to ps7

Light sensors 1s0 to 1s7

Floor sensors fsO, fs1 and fs2

LEDs ledO to led7 (e-puck ring), led8 (body) and led9 (front)
Camera camera

Accelerometer accelerometer

Table 8.2: Devices names

Main specifications Values

Robot radius 37 mm
Wheel radius 20.5 mm
Axle length 52 mm
Encoder resolution 159.23

Speed unit 0.00628 rad/s
Maximum angular speed 1000 units

Table 8.3: e-puck specifications

who sets up a series of exercises with Webots and extended e-puck robots.

The directory webots/projects/samples/curriculum contains a rich collection of
simulations involving the e-puck robot. You will find inside it all the worlds and controllers
corresponding to the exercices of Cyberbotics robotics curriculum?®. Written in collaboration
with professors and master students of EPFL, Cyberbotics curriculum is an educational document
intended for all level of learnings in robotics. It addresses a dozen of topics ranging from finite

state automata to particle swarm optimization, all illustated through the real or the simulated

Shttp://www.cyberbotics.com/publications/RiE2011.pdf

Device X (m) y (m) z (m) Orientation (rad)
psO 0.010 0.033 -0.030 1.27

psl 0.025 0.033 -0.022 0.77

ps2 0.031 0.033 0.00 0.00

ps3 0.015 0.033 0.030 5.21

ps4 -0.015 0.033 0.030 4.21

psS -0.031 0.033 0.00 3.14159

ps6 -0.025 0.033 -0.022 2.37

ps7 -0.010 0.033 -0.030 1.87

camera 0.000 0.028 -0.030 4.71239

Table 8.4: Devices orientations

http://www.cyberbotics.com/publications/RiE2011.pdf

220 CHAPTER 8. ROBOTS

\\m7

led0

ps5

Figure 8.4: Sensors, LEDs and camera

Webots™

Figure 8.5: An e-puck extension for line following

8.1. USING THE E-PUCK ROBOT 221

2 @ ® E-puck viewer (e-puck camera)

Camera

Floor Sensors

Accelerometer

418

x =-0.76
y = 1.69
601 439 Zz=10.9
Encoders
fdev/rfcommoO R | | Refresh ports | right = 677
| Upload to e-puck robot... | left = 1254

Figure 8.6: The e-puck control window for simulation

e-puck robot; you can browse it here*.

The e-puck models of Webots distribution are open source and you are welcome to modify them.
If you develop a useful modification and would like to share it, please let us know so that we can
improve these models using your contribution.

8.1.3 Control interface
Control window

When opening a world containing an e-puck robot, Webots displays the e-puck control window
(which also appears when you double-click on the e-puck robot). This window is depicted in fig-
ure 8.6. It allows visualizing the devices of the robot. The distance measurements are displayed
in red, outside the body of the robot. The light measurements are displayed in yellow, above the
distance measurements. The 10 LEDs are displayed in black when off and red (or green) when
on. The motor speeds are displayed in blue, and the motor position is displayed in the Encoder
box in the bottom right hand corner of the window. The camera image (if present), the floor
sensor values (if present) and the accelerometer values are displayed in the corresponding boxes
on the right side of the window.

This e-puck control window appears because the robotWindow field of the Di fferential-
Wheel node in the world file was set to "libepuckwindow”. Changing this robotWindow to
an empty string will disable this control window.

‘http://www.cyberbotics.com/curriculum

http://www.cyberbotics.com/curriculum

222 CHAPTER 8. ROBOTS

BotStudio

BotStudio is a user interface for programming graphically the e-puck thanks to a finite state
automaton. Behaviors such as wall follower, collision avoider or line follower can be imple-
mented quickly thanks to this interface. BotStudio is typically destinated for the education field,
particularly for beginners in robotics.

An automaton state of BotStudio corresponds to a state of the e-puck actuators while a transition
corresponds to a condition over its sensor values. A transition is fired when all of its conditions
are fulfilled (logical AND). A logical OR can be performed by several transitions between two
states.

The actuators available in BotStudio are the LEDs and the motors. Each automaton state have
two sliders for setting the motor speed value. Note that these values can be unset by clicking on
the cursor of the slider. Each state have also 10 square buttons for setting the LEDs states. A red
button means the LED is turned on, a black one means it is turned off and a grey one means there
is no modification.

The sensor available in BotStudio are the distance sensors and the camera. Moreover a timer can
be used to temporize the conditions by dragging the corresponding slider. Conditions over the IR
sensors can be set by dragging the 8 red sliders. A condition can be reversed by clicking on the
grey part of the slider. Finally, the camera is used for giving a clue on the front environment of
the e-puck. An algorithm is applied on the last line of the camera and returns a integer between
-10 and 10 indicating if a black line is perceived respectively at the left and at the right of the
e-puck field of view. A condition can be set on this value for getting a line follower behavior.

BotStudio is depicted in the figure figure 8.7. An example of BotStudio can be found by opening
the projects/robots/e-puck/world/e-puck_botstudio.wbt world file.

The BotStudio windows appears when the e-puck’s controller points on a .bsg file.

Bluetooth remote control

E-puck has a Bluetooth interface, allowing it to communicate with Webots. This Bluetooth
interface must be set up according to your operating system, following the instructions of the
e-puck robot. It has been tested successfully under Windows, Linux and Mac OS X. Once
properly set up, your Bluetooth connection to your e-puck should appear in the popup menu of
the control. If it doesn’t appear there, it means that your computer was not properly configured to
interface with your e-puck robot through Bluetooth. Please refer to the instructions in the e-puck
documentation.

When selecting a specific Bluetooth connection from the popup menu of the control window,
Webots will try to establish a connection with your e-puck robot. Once connected, it will display
the version of the e-puck serial communication software on the Webots console (e.g. ’Running
real e-puck (Version 1.4.3 March 2010 (Webots))’), and will switch the control to the real robot.
That is, it will send motor commands to the real robot and display sensor information (proximity,

8.1. USING THE E-PUCK ROBOT 223

| Llobstacle.bsg * - Botstudio "y, , [BEE
O 4 B B [s X +

obstacle left | I simulation B l

>8

forward

obstacle right + obstacle left

wait [EUrm right turn left walt

Welcome to BotStudio

Figure 8.7: BotStudio

light, camera image, etc.) coming from the real robot. This makes the transfer from the simula-
tion to the real robot trivially simple. Note that in the same popup menu, the Refresh ports menu
item can be used for updating the COM ports.

The remote control has two requirements: the Bluetooth must be correctly set up (computer side)
and the e-puck must be programmed with the Webots last firmware. For setting up Bluetooth,
please refer to the official e-puck website. For uploading the last firmware on your robot, switch
on your robot, press the Upload to e-puck robot... button on the control window and finally
select the select the COM port which corresponds to your robot and the transfer/e-puck/
firmware/firmware-x.x.x.hex file located in your Webots directory (x.x.x has to be
replaced by the current firmware’s version).

Cross-compilation

An alternative to the remote-control session for running the real e-puck is to cross-compile your
code and to upload it on the e-puck.

For using this feature, your code has to be written in C and to use the C Webots API. Moreover,
you need to define a specific Makefile called Makefile.e-puck in the controller directory.
This Makefile must include the following file:

include $ (WEBOTS_HOME_PATH) /transfer/e—-puck/libepuck/Makefile.include

Thanks to this, it is possible to cross-compile with Webots by using the Build > Cross-compile
menu item of the text editor. Note that the Upload to e-puck robot... button of the e-puck control
window allows you to upload a file generated by the cross-compilation extended by . hex on the
e-puck robot.

An example of cross-compilation is given in the projects/robots/e-puck/controllers/
e-puck_crosscompilation subdirectory of your Webots directory.

224 CHAPTER 8. ROBOTS

8.2 Using the Nao robot

8.2.1 Introduction

The Nao robot is a humanoid robot developed by Aldebaran Robotics®. This section explains
how to use Nao robot simulated in Webots together with the Choregraphe program of Aldebaran
Robotics®. Currently Webots supports four different models of the Nao robot: the H21 V3.3, the
H21 V4.0, the H25 V3.3 and the H25 V4.0.

The Webots installation includes several world files with Nao robots. You will find some in
this folder: WEBOTS_HOME /projects/robots/nao/worlds. The nao.wbt and nao_
indoors.wbt are meant to be used with Choregraphe (see below). The nao_demo . wbt is a
demonstration of a very simple controller that uses Webots C API instead of Choregraphe. The
nao2_matlab.wbt world is an example of programming Webots using the Matlab API.

In addition Nao robots are also used in the world files of the Robotstadium’ contest. These
files are located in this folder: WEBOTS_HOME /projects/contests/robotstadium/
worlds.

8.2.2 Using Webots with Choregraphe

These instructions have been tested with Webots 7.0.0 and Choregraphe 1.14.x.x.

Start Webots and open this world file: WEBOTS_HOME /projects/robots/nao/worlds/
nao.wbt You should see a orange Nao H25 V4.0 in an empty environment. If the simulation is
stopped, then please start it by pushing the Real-time button in Webots.

When the simulation starts the robot should move down slightly until its feet reach the floor. The
Nao was initially in ”Zero” pose, its should have moved to the ”Init” pose. If the nao robot did
not move, this is probably due to a problem with the “naoqisim” controller. The camera images
in Webots (small purple viewports) should reflect what the robot sees.

A bunch of text information should be printed to Webots console, e.g. :

[naogisim] ===== starting naogisim controller =====

[naogisim] ===== starting nao_simulation_hal =====

[naogisim] /home/yvan/develop/webotsd/resources/projects/robots/nao/
aldebaran/naogi-runtime/bin/nao_simulation_hal 9559

[naogisim] Shared memory with identifier "hal-ipc9559’ already exists.
Destroying and creating the shared memory

[naogisim] ===== starting naogi-bin =====

[naogisim] /home/yvan/develop/webotsd/resources/projects/robots/nao/
aldebaran/naogi-runtime/bin/naogi-bin -p9559

Shttp://www.aldebaran-robotics.com
Shttp://www.aldebaran-robotics.com
"http://www.robotstadium.org

http://www.aldebaran-robotics.com
http://www.aldebaran-robotics.com
http://www.aldebaran-robotics.com
http://www.robotstadium.org

8.2. USING THE NAO ROBOT 225

[naogisim] [INFO] ..::: starting NAOgi version 1.12.1 :::..
[naogisim] [INFO] Copyright (c) 2011, Aldebaran Robotics
[naogisim] [INFO] Starting ALNetwork

..more stuff omitted...

[naogisim] [INFO] NAOgi is ready...

The message "NAOQOqi is ready...” appears in the console, to indicate that NAOqi was started
correctly.

Now you can start Choregraphe. Please make sure the Choregraphe version matches the NAOqi
version printed in Webots console. In Choregraphe choose the menu Connection > Connect to....
Then in the list, select the NAOgqi that was started by Webots, on you local machine, it will have
the port number 9559, unless you change it. Note that the NAOqi will not appear in the list if the
simulation was not started in Webots.

At this point a Nao model matching the Webots model should appear in Choregraphe. The Nao in
Choregraphe and Webots should both have the same pose: the “’Init” pose. Now, in Choregraphe
toggle the ”Enslave all motors on/off” button; it should turn red.

Then double-click on any of the Nao parts in Choregraphe: a small window with control sliders
appears. Now, move any of the sliders: the motor movement in Choregraphe should be reflected
in the Webots simulation. If you open the Video monitor in Choregraphe you should see the
picture of the Nao camera simulated by Webots.

8.2.3 Using motion boxes

Now we can test some of the motion boxes of Choregraphe. We want to see if it is possible
to make the robot stand up from from the floor. In Choregraphe, select the ”Stand Up” box
from Box libraries > default. Drag and drop that box in central view. Then connect the global
“onStart” input to the ”Stand Up” box’s “onStart” input. Now, make the robot fall in Webots:
use the right-mouse-button while the shift key is down, and rotate the mouse, this makes the
robot rotate on one axis axis. Quickly release and press again the shift to change the rotation
axis. Now make sure the simulation is running, push Real-time in Webots if necessary: the robot
should fall. Once the robot is lying on the floor, push the Play button in Choregraphe. This starts
the Choregraphe ”Stand Up” box and the robot should now try to stand up, using its hands. In
order to stand up the Choregraphe program should select the most appropriate motion sequence
according to Nao’s initial situation.

8.2.4 Using the cameras

Webots simulates Nao’s top and bottom cameras. Using Aldebaran’s Choregraphe or the Monitor
programs, it is possible to switch between these cameras. In Choregraphe, use the ”Select Cam-
era” box in Box Library > Vision. The simulated camera image can be viewed in Choregraphe:

226 CHAPTER 8. ROBOTS

View > Video monitor. The resolution of the image capture can be changed in Webots using the
cameraWidth and cameraHeight fields of the robot. Note that the simulation speed de-
creases as the resolution increases. It is possible to hide the camera viewports (purple frame) in
Webots, by setting the cameraPixelSize field to 0. It is also possible to completely switch
off the simulation of the cameras by adding the ”-nocam” option before the NAOqi port number
in the controllerArgs field, e.g. ”-nocam 9559”.

8.2.5 Using Several Nao robots

It is possible to have several Nao robots in your simulation, however each Nao robot must use a
different NAOgqi port. Here how to copy a Nao and assign the NAOgqi port number:

1. Stop the simulation: push the Stop button in Webots 3D View

2. Revert the simulation: push the Revert button in Webots 3D View

3. In Webots Scene Tree, select a top level nodes, e.g. the Nao robot

4. Then push the Add New button, a dialog appears

5. In the dialog, select PROTO (Webots) > robots

6. Then select one of the Nao models from the list, the Nao is added to the current world

7. Select the Nao in the 3D view and move it away from the other one: SHIFT + left mouse
button

8. Select the controllerArgs field in the newly created robot and increase the port num-
ber, e.g. 9560

9. Save the .wbt file: push the Save button

10. Now you can push the Real-time button to run the simulation with several robots

Repeat the above procedure for each additional robot that you need. Remember that every robot
must have a different port number specified in controllerArgs.

8.2.6 Getting the right speed for realistic simulation

Choregraphe uses exclusively real-time and so the robot’s motions are meant to be carried out
in real-time. The Webots simulator uses a virtual time base that can be faster or slower than
real-time, depending on the CPU and GPU power of the host computer. If the CPU and GPU
are powerful enough, Webots can keep up with real-time, in this case the speed indicator in We-
bots shows approximately 1.0x, otherwise the speed indicator goes below 1.0x. Choregraphe’s

8.2. USING THE NAO ROBOT 227

motions will play accurately only if Webots simulation speed is around 1.0x. When Webots
simulation speed drifts away from 1.0x, the physics simulation gets wrong (unatural) and thus
Choregraphe motions don’t work as expected anymore. For example if Webots indicates 0.5x,
this means that it is only able to simulate at half real-time the motion provided by Choregraphe:
the physics simulation is too slow. Therefore it is important to keep the simulation speed as much
as possible close to 1.0x. There is currently no means of synchronizing Webots and Choregraphe,
but this problem will be addressed in a future release. It is often possible to prevent the simula-
tion speed from going below 1.0x, by keeping the CPU and GPU load as low as possible. There
are several ways to do that, here are the most effective ones:

e Switch off the simulation of the Nao cameras with the ”-nocam” option, as mentioned
above

e Increase the value of WorldInfo.displayRefesh in the Scene Tree

e Switch off the rendering of the shadows: change to FALSE the cast Shadows field of
each light source in the Scene Tree

e Reduce the dimensions of the 3D view in Webots, by manually resizing the GUI compo-
nents

e Remove unnecessary objects from the simulation, in particular objects with physics

8.2.7 Known Problems

If for some unexpected reason Webots crashes, it is possible that the hal or naogi-bin pro-
cesses remain active in memory. In this case we recommend you to terminate these processes
manually before restarting Webots.

On Windows, use the Task Manager (the Task Manager can be started by pressing Ctrl-Alt-
Delete): In the Task Manager select the Processes tab, then select each hal . exe and naogi-
bin.exe line and push the "End Process” button for each one.

On Linux, you can use the ki11all or the pkill commands, e.g.:
$ killall hal naogi-bin

8.2.8 Source Code

The interface between Choregraphe and Nao is implemented as a special Webots controller called
“naoqisim”. The “naoqisim” controller comes precompiled with each Webots distribution. How-
ever, the source code of "naoqisim” is distributed with Webots EDU and Webots PRO. The nao-
qisim” source code is located in: WEBOTS_HOME/resources/projects/robots/nao/
controllers/naogisim. Webots users can modify the source code and recompile “nao-
gisim” if necessary. If you make useful improvements to this project please drop a message to
Webots developers so that they can incorporate your changes in future versions.

228

CHAPTER 8. ROBOTS

Figure 8.8: Pioneer 3-AT, a ready-to-use all terrain base

8.3 Using the Pioneer 3-AT and Pioneer 3-DX robots

8.3.1 Pioneer 3-AT

In this section, you will learn how to use Webots simulation model of the Pioneer 3-AT robot.

(figure 8.8).

Overview of the robot

The Pioneer 3-AT robot is an all-purpose outdoor base, used for research and prototyping ap-
plications involving mapping, navigation, monitoring, reconnaissance and other behaviors. It
provides a ready-to-use set of devices listed in table 8.5.

Feature Description

Dimensions 508 mm long, 497 mm large, 277 mm high

Weight 12 kg, operating playload of 12 kg on floor

Batteries 2-4 hours, up to 3 lead acid batteries of 7.2 Ah each, 12 V

Microcontroller 32 digital inputs, 8 digital outputs, 8 analog inputs, 3 serial extension ports
/0

Skid steering drive | Turn radius: O cm, swing radius: 34 cm, max. traversable grade: 35%
Speed Max. forward/backward speed: 0.7 m/s; Rotation speed: 140 deg/s

Table 8.5: Pioneer 3-AT features

More information on the specifications and optional devices is available on Adept Mobile Robots

official webpage®.

$http://www.mobilerobots.com/ResearchRobots/ResearchRobots/P3AT.aspx

http://www.mobilerobots.com/ResearchRobots/ResearchRobots/P3AT.aspx

8.3. USING THE PIONEER 3-AT AND PIONEER 3-DX ROBOTS 229

Figure 8.9: The Pioneer 3-AT model in Webots

frontLeftWheel frontRightWheel

backLeftWheel backRightWheel

Figure 8.10: Pioneer 3-AT servo names

Simulation model

The Pioneer 3-AT model in Webots is depicted in figure 8.9. This model includes support for 4
motors and 16 sonar sensors (8 forward-facing, 8 rear-facing) for proximity measurements. The
standard model of the Pioneer 3-AT is provided in the pioneer3AT.wbt file which is located
inthe projects/robots/pioneer/pioneer3at/worlds directory of the Webots dis-
tribution.

The pioneer3at.wbt world file is a simulation example of a simple obstacle avoidance be-
havior based on the use of a SICK LIDAR (see the obstacle_avoidance_with_lidar.
c controller file in the projects/robots/pioneer/pioneer3at/controller direc-
tory).

The Pioneer 3-AT motors are Servo nodes named according to figure 8.10. The wb_set_-
servo_position () and wb_set_servo_velocity () functions allow the user to manage
the rotation of the wheels. The sonar sensors are numbered according to figure 8.11.

230 CHAPTER 8. ROBOTS

509 Sol0

soll

sol3

sold

P s0l15

s05

s02 sol

Figure 8.11: Sonar sensors positions

The angle between two consecutive sensor directions is 20 degrees except for the four side sen-
sors (s00, so7, so8 and so15) for which the angle is 40 degrees.

8.3.2 Pioneer 3-DX

In this section, you will learn how to use Webots simulation model of the Pioneer 3-DX robot.
(figure 8.12).

Overview of the robot

The base Pioneer 3-DX platform is assembled with motors featuring 500-tick encoders, 19 cm
wheels, tough aluminum body, 8 forward-facing ultrasonic (sonar) sensors, 8 optional real-facing
sonar, 1, 2 or 3 hot-swappable batteries, and a complete software development kit. The base
Pioneer 3-DX platform can reach speeds of 1.6 meters per second and carry a payload of up to
23 kg.

The Pioneer 3-DX robot is an all-purpose base, used for research and applications involving
mapping, teleoperation, localization, monitoring, reconnaissance and other behaviors. Pioneer
3-DX is provided with a ready-to-use set of devices listed in table 8.6.

More information on the specifications and optional devices is available on Adept Mobile Robots
official webpage®.

‘nttp://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

8.3. USING THE PIONEER 3-AT AND PIONEER 3-DX ROBOTS 231

Figure 8.12: Pioneer 3-DX, an all-purpose base, used for research and applications

Feature Description

Dimensions 455 mm long, 381 mm large, 237 mm high

Weight 9 kg, operating playload of 17 kg

Batteries 8-10 hours, 3 lead acid batteries of 7.2 Ah each, 12 V

Microcontroller 32 digital inputs, 8 digital outputs, 8 analog inputs, 3 serial extension ports
I/O

Skid steering drive | Turn radius: O cm, swing radius: 26.7 cm, max. traversable grade: 25%
Speed Max. forward/backward speed: 1.2 m/s; Rotation speed: 300 deg/s

Table 8.6: Pioneer 3-AT features

Simulation model

The Pioneer 3-DX model in Webots is depicted in figure 8.13. This model includes support for
two motors, the caster wheel, 7 LEDs on the control panel and 16 sonar sensors (8 forward-
facing, 8 rear-facing) for proximity measurements. The standard model of the Pioneer 3-DX is
provided in the pioneer3dx . wbt file whichis located inthe projects/robots/pioneer/
pioneer3dx/worlds directory of the Webots distribution.

The pioneer3dx.wbt world file shows a simulation example of the Braitenberg avoidance al-
gorithm based on the use of the 16 sonar sensors (see the braitenberg. c controller file in the
projects/robots/pioneer/pioneer3dx/controller directory). The pioneer3dx_
with_kinect.wbt world file in the same directory is a simple simulation example of an ob-
stacle avoidance behaviour based on a Microsoft kinect sensor (see the obstacle_avoidance_
kinect . c controller file).

The Pioneer 3-DX motors are Servo nodes named according to figure 8.14. The wb_set_-
servo_position () and wb_set_servo_velocity () functions allow the user to manage
the rotation of the wheels. The sonar sensors are numbered according to figure 8.11.

232 CHAPTER 8. ROBOTS

Figure 8.13: The Pioneer 3-DX model in Webots

rightWheel

casterWheel /

leftWheel

casterWheelRim

Figure 8.14: Pioneer 3-DX servo names

8.3. USING THE PIONEER 3-AT AND PIONEER 3-DX ROBOTS 233

The angle between two consecutive sensor directions is 20 degrees except for the four side sen-
sors (s00, so7, so8 and so15) for which the angle is 40 degrees.

234 CHAPTER 8. ROBOTS

Chapter 9

Webots FAQ

This chapter is a selection of frequently asked questions found on the Webots forum'. You may
find additional information directly in the group. Other useful sources of information about
Webots include: Webots Reference Manual® and Cyberbotics’ Robot Curriculum?.

9.1 General

9.1.1 What are the differences between Webots FREE, Webots EDU and
Webots PRO?

Webots FREE is a limited version which suits to our online programming contests: Robotsta-
dium* and Rat’s Life’. Webots EDU and Webots PRO are commercial versions of Webots, their
differences are explained here®.

9.1.2 How can I report a bug in Webots?

If you can still start Webots, please report the bug by using Webots menu: Help > Bug report....

If Webots cannot start any more, please report the bug there: http://www.cyberbotics.com/bug’.
Please include a precise description of the problem, the sequence of actions necessary to re-
produce the problem. Do also attach the world file and the controller programs necessary to
reproduce it.

"http://www.cyberbotics.com/forum
’http://www.cyberbotics.com/reference/
3http://en.wikibooks.org/wiki/Cyberbotics’ _Robot_Curriculum
‘http://www.robotstadium.org

Shttp://www.ratslife.org
Shttp://www.cyberbotics.com/products/webots/index.html
"http://www.cyberbotics.com/bug

235

http://www.cyberbotics.com/forum
http://www.cyberbotics.com/reference/
http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum
http://www.robotstadium.org
http://www.robotstadium.org
http://www.ratslife.org
http://www.cyberbotics.com/products/webots/index.html
http://www.cyberbotics.com/bug

236 CHAPTER 9. WEBOTS FAQ

Before reporting a bug, please make sure that the problem is actually caused by Webots and not
by your controller program. For example, a crash of the controller process usually indicates a bug
in the controller code, not in Webots. This situation can be identified with these two symptoms:

1. Webots GUI is visible and responsive, but the simulation is blocked (simulation time
stopped).

2. The controller process has vanished from the Task Manager (Windows) or is shows as
<defunct> when using ps -—e (Linux/Mac).

9.1.3 Isit possible to use Visual C++ to compile my controllers?

Yes. However, you will need to create your own project with all the necessary options. You will
find more detailed instructions on how to do that in section 5.6. To create the import libraries (the
* . 11ib files in Visual C++) from the x.d11 files of the lib directory of Webots, please follow
the instructions provided with the documentation of your compiler.

9.2 Programming

9.2.1 How can I get the 3D position of a robot/object?

There are different functions depending whether this information must be accessed in the con-
troller, in the Supervisor or in the physics plugin. Note that Webots PRO is required for using
Supervisor and the physics plugin functions. All the functions described below will return
the 3D position in meters and expressed in the global (world) coordinate system.

Clearly, the position of a robot can also be approximated by using odometry or SLAM techniques.
This is usually more realistic because most robots don’t have a GPS and therefore have no mean
of precisely determining their position. You will find more info about odometry and SLAM
techniques in Cyberbotics’ Robot Curriculum.

In controller code:

To get the position of a robot in the robot’s controller code: add a GP S node to the robot, then use
wb_robot_get_device (), wb_gps_enable () and wb_gps_get_values () functions.
Note that the GP S’s resolution field must be 0 (the default), otherwise the results will be noisy.
You will find more info about the GPS node and functions in Reference Manual®. Note that the
GPS can also be placed on a robot’s part (arm, foot, etc.) to get the world/global coordinates of
that particular part.

$http://www.cyberbotics.com/reference/

http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum
http://www.cyberbotics.com/reference/

9.2. PROGRAMMING 237

In Supervisor code:

1. To get the 3D position of any Transform (or derived) node in the Supervisor code:
you can use the wb_supervisor_node_get _position () function. Please check this
function’s description in the Reference Manual.

2. To get the 3D position of any Transform (or derived) node placed at the root of the
Scene Tree (the nodes visible when the Scene Tree is completely collapsed), you can use
the wb_supervisor_field get_sf vec3f () function. Here is an example.

A simulation example that shows both the GPS and the Supervisor techniques is included
in the Webots installation, you just need to open this world: SWEBOTS_HOME/projects/
samples/devices/worlds/gps.wbt.

In physics plugin code:

In the physics plugin you can use ODE’s dBodyGetPosition () function. Note that this
function returns the position of the center of mass of the body: this may be different from the
center of the Solid. Please find a description of ODE functions here’.

9.2.2 How can I get the linear/angular speed/velocity of a robot/object?

Webots provides several functions to get the 3D position of a robot or an object (see above): by
taking the first derivative of the position you can determine the velocity. There are also some
functions (see below) that can be used to get the velocity directly:

In controller code:

To get the angular velocity of a robot (or robot part) in the robot’s controller code: add a
Gyro node to the robot (or robot part), then use wb_robot_get_device (), wb_gyro -
enable () and wb_gyro_get_values () functions. You will find more info about the Gyro
node and functions in the Reference Manual.

In physics plugin code:

In the physics plugin you can use ODE’s dBodyGetLinearVel () and dBodyAngularVel ()
functions. These functions return the linear velocity in meters per second, respectively the angu-
lar velocity in radians per second. Please find a description of ODE functions here: here!?.

http://ode-wiki.org/wiki/index.php?title=Manual
Ohttp://ode-wiki.org/wiki/index.php?title=Manual

http://www.cyberbotics.com/reference/
http://ode-wiki.org/wiki/index.php?title=Manual
http://www.cyberbotics.com/reference/
http://ode-wiki.org/wiki/index.php?title=Manual

238 CHAPTER 9. WEBOTS FAQ
9.2.3 How can I reset my robot?

Please see subsection 6.3.2.

9.2.4 What does this mean: ’Could not find controller {...} Loading void
controller instead.” ?

This message means that Webots could neither find an executable file (e.g. .exe), nor an in-
terpreted language file (e.g. .class, .py, .m) to run as controller program for a robot. In fact,
Webots needs each controller file to be stored at specific location in order to be able to executed
it. The requested location is in the controllers subdirectory of the current Webots project
directory, e.g. my_project. Inside the cont rollers directory, each controller project must
be stored in its own directory which must be named precisely like the controller field of
the Robot. Inside that directory, the executable/interpretable file must also be named after the
controller field of the Robot (plus a possible extension). For example if the controller field
of the robot looks like this, in the Scene Tree:

Robot {
controller "my_controller"

then the executable/interpretable file will be searched at the following paths:

my_project/controllers/my_controller/my_controller.exe (Windows only)
my_project/controllers/my_controller/my_controller (Linux/Mac only)
my_project/controllers/my_controller/my_controller.class
my_project/controllers/my_controller/my_controller.py
my_project/controllers/my_controller/my_controller.m

If Webots does not find any file at the above specified paths, then the error message in question
is shown. So this problem often happens when you:

e Have moved the project or source files to a location that does not correspond to the above
description.

e Use an external build system, e.g. Visual Studio, that is not configured to generate the
executable file at the right location.

e Have changed the Robot’s controller field to a location where no executable/interpretable
file can be found.

e Have “reverted” the world after ’cleaning” of the controller project.

9.2. PROGRAMMING 239

9.2.5 What does this mean: ’Warning: invalid WbDeviceTag in API func-
tion call” ?

A WbDeviceTag is an abstract reference (or handle) used to identify a simulated device in
Webots. Any WoDeviceTag must be obtained from the wb_robot _get_device () function.
Then, it is used to specify a device in various Webots function calls. Webots issues this warning
when the WoDeviceTag passed to a Webots function appears not to correspond to a known
device. This can happen mainly for three reasons:

1. The WoDeviceTag is 0 and thus invalid because it was not found by wb_robot _get -
device (). Indeed, the wo_robot_get_device () function returns 0, if it cannot not
find a device with the specified name in the robot. Note that the name specified in the
argument of the wb_robot _get_device () function must correspond to the name field
of the device, not to the VRML DEF name!

2. Your controller code is mixing up two types of WoDeviceTags, for example because it
uses the WoDeviceTagof a Camerainawb_distance_sensor_* () function. Here
is an example of what is wrong:

#include <webots/robot.h>
#include <webots/camera.h>
#include <webots/distance_sensor.h>

#define TIME_STEP 32

int main () {
whb_robot_init ();
WbDeviceTag camera = wb_robot_get_device ("camera”);
whb_camera_enable (camera, TIME_STEP) ;

double value = wb_distance_sensor_get_value (camera) ; // WRONG!

3. The WwboDeviceTag may also be invalid because it is used before initialization with wb_—
robot_get_device (), or because it is not initialized at all, or because it is corrupted
by a programming error in the controller code. Here is such an example:

#include <webots/robot.h>
#include <webots/camera.h>
#include <webots/distance_sensor.h>

#define TIME_STEP 32

int main () {
whb_robot_init ();

240 CHAPTER 9. WEBOTS FAQ

WbDeviceTag distance_sensor, camera = wb_robot_get_device ("
cameram);

whb_camera_enable (camera, TIME_STEP);

whb_distance_sensor_enable (distance_sensor, TIME_STEP); //
WRONG !

9.2.6 Is it possible to apply a (user specified) force to a robot?

Yes. You need to use a physics plugin to apply user specified forces (or torques). Note that
Webots PRO is required to create a physics plugin. Then you can add the physics plugin with the
menu item: Wizards > New Physics Plugin. After having added the plugin you must compile it
using Webots editor. Then you must associate the plugin with your simulation world. This can
be done by editing the WorldInfo.physics field in the Scene Tree. Then you must modify
the plugin code such as to add the force. Here is an example:

#include <ode/ode.h>
#include <plugins/physics.h>

dBodyID body = NULL;

void webots_physics_init (dWorldID world, dSpacelID space, dJointGroupID
contactJointGroup) {
// find the body on which you want to apply a force
body = dWebotsGetBodyFromDEF ("MY_ROBOT") ;

void webots_physics_step () {

dvector3 £f;
£f10]
fl1]
fl2]

// at every time step, add a force to the body
dBodyAddForce (body, f£[0], f[1], fI[21);

}

There is more info on the plugin functions in the Reference Manual in the chapter about Physics
Plugins. Additional information about the ODE functions can be found here!'. You may also
want to study this example distributed with Webots:

Inttp://ode-wiki.org/wiki/index.php?title=Manual

http://www.cyberbotics.com/reference/
http://ode-wiki.org/wiki/index.php?title=Manual

9.2. PROGRAMMING 241

WEBOTS_HOME /projects/samples/demos/worlds/salamander.wbt

In this example, the physics plugin adds user computed forces to the robot body in order to
simulate Archimedes and hydrodynamic drag forces.

9.2.7 How can I draw in the 3D window?

There are different techniques depending on what you want to draw:

1. If you just want to add some 2d text, you can do this by using the function: wb_su-
pervisor_set_label (). This will allow you to put 2d overlay text in front of the 3d
simulation. Please lookup for the Supervisor node in the Reference Manual.

2. If you want to add a small sub-window in front of the 3d graphics, you should consider
using the Display node. This will allow you to do 2d vector graphics and text. This
is also useful for example to display processed camera images. Please lookup for the
Display node in the Reference Manual.

3. If you want add 3d graphics to the main window, this can be done by using a physics plugin
(Webots PRO required). See how to add a physics plugin in the previous FAQ question, just
above. After you have added the physics plugin you will have to implement the webots_—
physics_draw function. The implementation must be based on the OpenGL API, hence
some OpenGL knowledge will be useful. You will find an sample implementation in the
Reference Manual in the chapter about the Physics Plugin.

9.2.8 What does this mean: The time step used by controller {...} is not a
multiple of WorldInfo.basicTimeStep!”’?

Webots allows to specify the control step and the simulation step independently. The con-
trol step is the argument passed to the wb_robot_step () function, it specifies the dura-
tion of a step of control of the robot. The simulation step is the value specified in World-
Info.basicTimeStep field, it specifies the duration of a step of integration of the physics
simulation, in other words: how often the objects motion must be recomputed. The execution of
a simulation step is an atomic operation: it cannot be interrupted. Hence a sensor measurement
or a motor actuation must take place between two simulation steps. For that reason the control
step specified with each wb_robot_step () must be a multiple of the simulation step. If it is
not the case you get this error message. So, for example if the WorldInfo.basicTimeStep
is 16 (ms), then the control step argument passed to wb_robot _step () can be 16, 32, 48, 64,
80, 128, 1024, etc.

http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/

242 CHAPTER 9. WEBOTS FAQ
9.2.9 How can I detect collisions?

Webots does automatically detect collisions and apply the contact forces whenever necessary.
The collision detection mechanism is based on the shapes specified in the boundingObjects.
Now if you want to programmatically detect collision, there are several methods:

1. In controller code: you can detect collision by using TouchSensors placed around your
robot body or where the collision is expected. You can use TouchSensors of type
“bumper” that return a boolean status 1 or 0, whether there is a collision or not. In fact a
“bumper” TouchSensor will return 1 when its boundingOb ject intersects another
boundingObject and 0 otherwise.

2. In supervisor code (Webots PRO required): you can detect collisions by tracking the po-
sition of robots using the wb_supervisor_field get_= () functions. Here is a naive
example assuming that the robots are cylindrical and moving in the xz-plane.

#define ROBOT_RADIUS

int are_colliding (WbFieldRef transl, WbFieldRef trans2) {

const double xpl = wb_supervisor_field_get_sf_vec3f(transl);
const double *p2 = wb_supervisor_field _get_sf_vec3f(trans2);
double dx = p2[0] - pl[0];
double dz = p2[2] - pll2];
double dz = p2[2] - pll2];

return sqgrt(dx » dx + dz * dz) < 2.0 » ROBOT_RADIUS;

// do this once only, in the initialization

WbNodeRef robotl = wb_supervisor_node_get_from_def ("MY_ROBOT1")
’

WbNodeRef robot2 = wb_supervisor_node_get_from_def ("MY_ROBOT2")
;

WbFieldRef transl = wb_supervisor_node_get_field(robotl, "

translation");
WbFieldRef trans?2
translation");

wb_supervisor_node_get_field(robot2, "

// detect collision
if (are_colliding(transl, trans2)) {

3. In the physics plugin (Webots PRO required): you can replace or extend Webots colli-
sion detection mechanism. This is an advanced technique that requires knowledge of the

9.3. MODELING 243

ODE (Open Dynamics Engine) API'2. Your collision detection mechanism must be imple-
mented in the webots_physics_collide () function. This function is described in
the Physics Plugin chapter of the Reference Manual.

9.2.10 Why does my camera window stay black?

The content of the camera windows will appear only after all the following steps have been
completed:

1. The Camera’s name field has been specified.

2. The WoDeviceTag for the Camera has been found with the function wb_robot _get_—
device ().

3. The Camera has been enabled using the function wb_camera_enable ().

4. The function wb_camera_get_image () (or wb_camera get_range_image () for
a “range-finder” Camera) has been called.

5. Atleast one wb_robot_step () (or equivalent function) has been called.

9.3 Modeling

9.3.1 My robot/simulation explodes, what should I do?

The explosion is usually caused by inappropriate values passed to the physics engine (ODE).
There are many things you can be try to improve the stability of the simulation (adapted from
ODE’s User Guide):

1. Reduce the value of Wor1dInfo.basicTimeStep. This will also make the simulation
slower, so a tradeoff has to be found. Note that the value of the control step (wb_robot _—
step (TIME_STEP)) may have to be adapted to avoid warnings.

2. Reduce the value of the Servo.springConstant and Servo.dampingConstant
fields or avoid using springs and dampers at all.

3. Avoid large mass ratios. A Servo that connects a large and a small mass (Physics.mass)
together will have a hard time to keep its error low. For example, using a Servo to connect
a hand and a hair may be unstable if the hand/hair mass ratio is large.

2http://ode-wiki.org/wiki/index.php?title=Manual

http://ode-wiki.org/wiki/index.php?title=Manual
http://www.cyberbotics.com/reference/

244

CHAPTER 9. WEBOTS FAQ

4. Increase the value of WorldInfo.CFM. This will make the system more numerically

robust and less susceptible to stability problems. This will also make the system look more
spongy so a tradeoff has to be found.

Avoid making robots (or other objects) move faster than reasonably for the time step
(WorldInfo.basicTimeStep). Since contact forces are computed and applied only
at every time step, too fast moving bodies can penetrate each other in unrealistic ways.

Avoid building mechanical loops by using Connector nodes. The mechanical loops
may cause constraints to fight each other and generate strange forces in the system that can
swamp the normal forces. For example, an affected body might fly around as though it has
life on its own, with complete disregard for gravity.

9.3.2 How to make replicable/deterministic simulations?

In order for a Webots simulation to be replicable, the following conditions must be fulfilled:

1. Each simulation must be restarted either by pushing the Revert button, or by using the wb_—

supervisor_simulation_revert () function, or by restarting Webots. Any other
method for resetting the simulation will not reset the physics (velocity, inertia, etc.) and
other simulation data, hence the simulation state will be reset only partly. The random
seeds used by Webots internally are reset for each simulation restarted with one of the
above methods.

The synchronization flag of every robot and supervisor must be TRUE. Otherwise
the number of physics steps per control step may vary with the current CPU load and hence
the robot’s behavior may also vary.

. The controllers (and physics plugin) code must also be deterministic. In particular that

code must not use a pseudo random generator initialized with an non-deterministic seed
such as the system time. For example this is not suitable for replicable experiments:
srand (time (NULL)). Note that uninitialized variables may also be a source of un-
deterministc behavior.

. Each simulation must be executed with the same version of the Webots software and on

the same OS platform. Different OS platforms and different Webots versions may result
small numerical differences.

If the four above conditions are met, Webots simulations become replicable. This means that
after the same number of steps two simulations will have exactly the same internal state. Hence
if both simulation are saved using the Save as... button, the resulting files will be identical. This
is true independently of the simulation mode used to execute the simulation: Step, Real-Time,
Run or Fast. This is also true whether or not sensor noise is used (see below).

9.3. MODELING 245

9.3.3 How to remove the noise from the simulation?

There are two sources of noise in Webots: the sensor/actuator noise and the physics engine noise.
The amount of sensor/actuator noise can be changed (or removed) by the user (see below). The
physics engine’s noise cannot be changed because it is necessary for the realism of the simulation.
To completely remove the sensor/actuator noise the following field values must be reset:

1. In the lookupTables: the third column of each 1ookupTable in the .wbt and .proto
files must be reset to 0

2. Inthe GPS nodes: the resolution field must be reset to 0
3. Inthe Camera nodes: the colorNoise and the rangeNoi se fields must be reset to 0

4. Inthe DifferentialWheels nodes: the value of s11ipNoise must be reset to 0 and
the value of encoderNoise must be reset to -1

9.3.4 How can I create a passive joint?

First of all, any joint, passive or active, must be created by adding a Servo node in the Scene
Tree. Then you can turn a Servo into a passive joint by setting its maxForce field to O.
Alternatively, it is also possible to make a Servo become passive during the simulation; this
can be done like this:

wb_servo_set_motor_force(servo, 0.0);

The effect is similar to turning off the power of a real motor.

9.3.5 Is it possible fix/immobilize one part of a robot?

To immobilize one part of the robot, you need to fix the part to the static environment. This
must be done with a physics plugin (Webots PRO required). You can add a physics plugin with
the menu item: Wizards > New Physics Plugin. In the plugin code, you must simply add an
ODE fixed joint between the dBodyID of the robot part and the static environment. This can be
implemented like this:

#include <ode/ode.h>
#include <plugins/physics.h>

void webots_physics_init (dWorldID world, dSpacelID space, dJointGroupID
contactJointGroup) {
// get body of the robot part
dBodyID body = dWebotsGetBodyFromDEF ("MY_ROBOT_PART");

// the joint group ID is 0 to allocate the joint normally

246 CHAPTER 9. WEBOTS FAQ

dJdointID joint = dJointCreateFixed(world, 0);

// attach robot part to the static environment: 0
ddointAttach (joint, body, 0);

// fix now: remember current position and rotation
dJdointSetFixed (joint) ;

void webots_physics_step () {
// nothing to do

void webots_physics_cleanup () {
// nothing to do
}

You will find the description of Webots physics plugin API in your Reference Manual or on this
page'®. You will find the description about the ODE functions on this page'*.

9.3.6 Should I specify the ’mass” or the ”’density” in the Physics nodes?

It is more accurate to specify the mass if it is known. If you are modeling a real robot it is
sometimes possible to find the mass values in the robot’s specifications. If you specify the den-
sities, Webots will use the volume of each boundingObject multiplied by the density of
the corresponding Physics node to compute each mass. This may be less accurate because
boundingObjects are often rough approximations.

9.3.7 How to get a realisitc and efficient rendering?

The quality of the rendering depends on the Shapes resolution, on the setup of the Materials
and on the setup of the Lights.

The bigger the number of vertices is, the slower the simulation is (except obviously in fast
mode). A tradeoff has to be found between these two components. To be efficient, Shapes
should have a reasonable resolution. If a rule should be given, a Shape shouldn’t exceed 1000
vertices. Exporting a Shape from a CAD software generates often meshes having a huge reso-
lution. Reducing them to low poly meshes is recommended.

The rendering is also closely related to the Materials. To set a Material without texture,
set only its Appearance node. Then you can play with the diffuseColor field to set

Bnttp://www.cyberbotics.com/reference/chapter6.php
Yhttp://ode-wiki.org/wiki/index.php?title=Manual

http://www.cyberbotics.com/reference/
http://www.cyberbotics.com/reference/chapter6.php
http://www.cyberbotics.com/reference/chapter6.php
http://ode-wiki.org/wiki/index.php?title=Manual

9.4. SPEED/PERFORMANCE 247

its color (avoid to use pure colors, balancing the RGB components give better results). To set a
Material with texture, set only its ImageTexture node. Eventually, the specularColor
field can be set to a gray value to set a reflection on the object. The other fields (especially
the ambientIntensity and the emissiveColor fields) shouldn’t be modified except in
specific situations.

The color field of the ElevationGrid shouldn’t be use for a realistic rendering because it
is not affected by the ambient light with the same way as the other Shapes.

The High Quality Rendering mode allows to render the lights per pixel rather than per
vertex. This increases significantly the quality of the specular lights but has also a cost in term
of performances.

Here is a methodology to set up the lights:

1. Place the lights at the desired places. Often a single directional light pointing down is
sufficient.

2. Set both their ambient Intensity and their intensity fields to 0.

3. Increase the ambient Intensity of the main light. The result will be the appearance
of the objects when they are in shadows.

4. Switch on the shadows if required. The shadows are particularily costly, and are strongly
related to the Shapes resolution.

5. Increase the intensity of each lamp.

9.4 Speed/Performance

9.4.1 Why is Webots slow on my computer?

You should verify your graphics driver installation. Please find instructions here section 1.4.

On Ubuntu (or other Linux) we do also recommend to deactivate compiz (System > Preferences
> Appearance > Visual Effects = None). Depending on the graphics hardware, there may be a
huge performance drop of the rendering system (up to 10x) when compiz is on.

9.4.2 How can I change the speed of the simulation?

There are several ways to increase the simulation speed:

1. Use the Run button (Webots PRO only). This button runs the simulation as fast as possible
using all the available CPU power. Otherwise, using the Real-Time running mode, Webots
may not be using all the available CPU power in order to obtain a simulation speed that is
close to the speed of the real world’s phenomena.

248

CHAPTER 9. WEBOTS FAQ

Use the Fast button (Webots PRO only). This button runs the simulation as fast as possible
using all the available CPU power. In this mode the simulation speed is increased further
by leaving out the graphics rendering, hence the 3d window is black.

. Increase the value of Wor1dInfo.basicTimeStep. This parameter sets the granular-

ity of the physics simulation. With a higher WorldInfo.basicTimeStep, the simula-
tion becomes faster but less accurate. With a lower Wor1dInfo.basicTimeStep, the
simulation becomes slower but more accurate. There is an additional restriction: Wor1d-
Info.basicTimeStep must be chosen such as to be an integer divisor of the control
step which is the value passed as parameter to the wb_robot_step () (or equivalent)
function.

. Increase the value of WorldInfo.displayRefresh. This parameter specifies how

many WorldInfo.basicTimeStep there must be between two consecutive refresh
of the 3D scene. With a higher value, the simulation becomes faster but more flickering.
With a lower value, the simulation becomes slower but less flickering.

. Disable unnecessary shadows. Webots uses a lot of CPU/GPU power to compute how

and where the objects shadows are cast. But shadows are irrelevant for most simulation
unless they should explicitly be seen by Cameras. Unnecessary shadows can be disabled
by unchecking the cast Shadows field of light nodes: PointLight, SpotLight,
orDirectionalLight.

Simplify your simulation by removing unnecessary objects. In particular, try to minimize
the number of Physics nodes. Avoid using a Solid nodes when a Transform or a
Shape would do the trick.

. Simplify the boundingOb jects to increase the speed of the collision detection. Replace

complex primitives, like Cylinder, IndexedFaceSet and ElevationGrid by
simpler primitives, like Sphere, Capsule, Box and Plane. Avoid using a compo-
sition of primitives (in a Group or a Transform) when a single primitive would do the
trick.

9.4.3 How can I make movies that play at real-time (faster/slower)?

All movies created with Webots have a frame rate of 25 images per second. However it is possible
to control the playback speed of these movies by choosing at what intervals (of simulated time)
the images should be generated by Webots. The time interval between two generated images
is the product of the basicTimeStep and displayRefresh fields (in the WorldInfo
node). If you need a video that plays back in real-time, the chosen time interval must be 40
ms, because 25 images per second corresponds to an interval of 40 ms between two images. So
you can choose for example 10 ms for basicTimeStep and 4 for displayRefresh, so
the interval will be 10 * 4 = 40 ms, and hence the movie will play back at real-time. Similarly
any combination of basicTimeStep and displayRefresh which multiplies to 40, will

9.4. SPEED/PERFORMANCE 249

yield real-time. The movie will be faster or slower than real-time if the product is respectively
greater or less than 40. Note that modifying the basicTimeStep may have side effect on your
simulation so it is usually safer to change only displayRefresh if possible.

250 CHAPTER 9. WEBOTS FAQ

Chapter 10

Known Bugs

This chapter lists the bugs known by Cyberbotics. They are not planned to be resolved on the
short term but possible workarounds are explained.

10.1 General

10.1.1 Intel GMA graphics cards

Webots should run on any fairly recent computer equipped with a nVidia or ATI graphics card
and up-to-date graphics drivers. Webots is not guaranteed to work with Intel GMA graphics
cards: it may crash or exhibit display bugs. Upgrading to the latest versions of the Intel graphics
driver may help resolve such problems (without any guarantee). Graphics drivers from Intel may
be obtained from the Intel download center web site!. Linux graphics drivers from Intel may be
obtained from the Intel Linux Graphics web site?.

10.1.2 Virtualization
Because it highly relies on OpenGL, Webots may not work properly in virtualized environments

(such as VMWare or VirtualBox) which often lack a good OpenGL support. Hence, Webots may
exhibit some display bugs, run very slowly or crash in such environments.

10.1.3 Collision detection

Although collision detection works well generally well, Cylinder-Cylinder, Cylinder—
Capsule, IndexedFaceSet-IndexedFaceSet and IndexedFaceSet—-Cylinder

"http://downloadcenter.intel.com
http://intellinuxgraphics.org

251

http://downloadcenter.intel.com
http://intellinuxgraphics.org

252 CHAPTER 10. KNOWN BUGS

collision detection may occasionaly yield wrong contact points. Sometimes the contact points
may be slightly off the shape, therefore causing unrealistic reaction forces to be applied to the
objects. Other times there are too few contact points, therefore causing vibration or instabilities.

10.2 MacOS X

10.2.1 Anti-aliasing

Some troubles have been observed with the antialiasing feature of the Camera device on a Mac
OS X 10.6 having an ATI radeon X1600. A possible workaround is to set the camera width with
a power of two.

10.3 Linux

10.3.1 Window refresh

It may happen that the main window of Webots is not refreshed properly and appears blank at
startup or upon resize or maximization. This is caused by a conflict between the Compiz window
manager and OpenGL. Simply disabling Compiz should fix such a problem. This can be achieved
on ubuntu Linux from the System menu: Preferences > Appearance > Visual Effects > None.

10.3.2 ssh -x

There are known issues about running Webots over a ssh -x (x-tunneling) connection. This
problem is not specific to Webots but to most GLX (OpenGL on the X Window system) appli-
cations that use complex OpenGL graphics. We think this is caused by incomplete or defective
implementation of the GLX support in the graphics drivers on Linux. It may help to run the ssh
—x tunnel across two computers with the same graphics hardware, e.g., both nVidia or both ATI.
It also usually works to use Mesa OpenGL on both sides of the ssh —x tunnel, however this
solution is extremely slow.

	Installing Webots
	System requirements
	Installation procedure
	Linux
	Windows 7, Vista, XP
	Mac OS X

	Webots license system
	License agreement
	License setup
	Dongle setup
	Dongle usage

	Verifying your graphics driver installation
	Supported graphics cards
	Unsupported graphics cards
	Upgrading your graphics driver
	Hardware acceleration tips

	Translating Webots to your own language

	Getting Started with Webots
	Introduction to Webots
	What is Webots?
	What can I do with Webots?
	What do I need to know to use Webots?
	Webots simulation
	What is a world?
	What is a controller?
	What is a Supervisor?

	Starting Webots
	Linux
	Mac OS X
	Windows
	Command Line Arguments

	The User Interface
	File Menu
	Edit Menu
	View Menu
	Simulation Menu
	Build Menu
	Robot Menu
	Tools Menu
	Wizards Menu
	Help menu
	Speedometer and Virtual Time

	The 3D Window
	Selecting an object
	Navigation in the scene
	Moving a solid object
	Applying a force to a solid object with physics
	Applying a torque to a solid object with physics

	The Scene Tree
	Buttons of the Scene Tree Window

	Citing Webots
	Citing Cyberbotics' web site
	Citing a reference journal paper about Webots

	Sample Webots Applications
	Samples
	blimp_lis.wbt
	gantry.wbt
	hexapod.wbt
	humanoid.wbt
	moon.wbt
	ghostdog.wbt
	salamander.wbt
	soccer.wbt
	sojourner.wbt
	yamor.wbt
	stewart_platform.wbt

	Webots Devices
	battery.wbt
	bumper.wbt
	camera.wbt
	connector.wbt
	distance_sensor.wbt
	emitter_receiver.wbt
	encoders.wbt
	force_sensor.wbt
	gps.wbt
	led.wbt
	light_sensor.wbt
	pen.wbt
	range_finder.wbt

	How To
	binocular.wbt
	biped.wbt
	force_control.wbt
	inverted_pendulum.wbt
	physics.wbt
	supervisor.wbt
	texture_change.wbt
	town.wbt

	Geometries
	Real Robots
	aibo_ers210_rough.wbt
	aibo_ers7.wbt
	alice.wbt
	boebot.wbt
	e-puck.wbt
	e-puck_line.wbt
	e-puck_line_demo.wbt
	hemisson_cross_compilation.wbt
	hoap2_sumo.wbt
	hoap2_walk.wbt
	ipr_collaboration.wbt
	ipr_cube.wbt
	ipr_factory.wbt
	ipr_models.wbt
	khepera.wbt
	khepera2.wbt
	khepera3.wbt
	khepera_fast2d.wbt
	khepera_gripper.wbt
	khepera_gripper_camera.wbt
	khepera_k213.wbt
	khepera_pipe.wbt
	khepera_tcpip.wbt
	koala.wbt
	magellan.wbt
	pioneer2.wbt
	rover.wbt
	scout2.wbt
	shrimp.wbt
	bioloid.wbt

	Language Setup
	Introduction
	Controller Start-up
	Using C
	Introduction
	C/C++ Compiler Installation

	Using C++
	Introduction
	C++ Compiler Installation
	Source Code of the C++ API

	Using Java
	Introduction
	Java and Java Compiler Installation
	Link with external jar files
	Source Code of the Java API

	Using Python
	Introduction
	Python Installation
	Source Code of the Python API

	Using MATLAB™
	Introduction to MATLAB™
	How to run the Examples?
	MATLAB™Installation
	Compatibility Issues

	Using ROS
	What is ROS?
	ROS for Webots
	Using ROS with Webots

	Interfacing Webots to third party software with TCP/IP
	Overview
	Main advantages
	Limitations

	Development Environments
	Webots Built-in Editor
	Compiling with the Source Code Editor

	The standard File Hierarchy of a Project
	The Root Directory of a Project
	The Project Files
	The "controllers" Directory

	Compiling Controllers in a Terminal
	Mac OS X and Linux
	Windows

	Using Webots Makefiles
	What are Makefiles
	Controller with Several Source Files (C/C++)
	Using the Compiler and Linker Flags (C/C++)

	Debugging C/C++ Controllers
	Controller processes
	Using the GNU debugger with a controller

	Using Visual C++ with Webots
	Introduction
	Configuration

	Starting Webots Remotely (ssh)
	Using the ssh command
	Terminating the ssh session

	Transfer to your own robot
	Remote control
	Cross-compilation
	Interpreted language

	Programming Fundamentals
	Controller Programming
	Hello World Example
	Reading Sensors
	Using Actuators
	How to use wb_robot_step()
	Using Sensors and Actuators Together
	Using Controller Arguments
	Controller Termination

	Supervisor Programming
	Introduction
	Tracking the Position of Robots
	Setting the Position of Robots

	Using Numerical Optimization Methods
	Choosing the correct Supervisor approach
	Resetting the robot

	C++/Java/Python
	Classes and Methods
	Controller Class
	C++ Example
	Java Example
	Python Example

	Matlab
	Using the MATLAB™desktop

	Controller plugin
	Fundamentals
	Robot window plugin
	Remote-control plugin

	Webots Plugins
	Physics plugin
	Fast2D plugin
	Sound plugin

	Tutorials
	Prerequisites
	Install Webots
	Create a directory for all your Webots files
	Start Webots
	Create a new Project
	The Webots Graphical User Interface (GUI)

	Tutorial 1: Your first Simulation in Webots (20 minutes)
	Create a new World
	Add an e-puck Robot
	Create a new Controller
	Conclusion

	Tutorial 2: Modification of the Environment (20 minutes)
	A new Simulation
	The Solid Node
	Observation of the Floor
	Create a Ball
	Geometries
	DEF-USE mechanism
	Add Walls
	Efficiency
	Conclusion

	Tutorial 3: Appearance (15 minutes)
	New simulation
	Lights
	Modify the Appearance of the Walls
	Add a Texture to the Ball
	Rendering Options
	Conclusion

	Tutorial 4: More about Controllers (20 minutes)
	New World and new Controller
	Understand the e-puck Model
	Program a Controller
	The Controller Code
	Conclusion

	Tutorial 5: Compound Solid and Physics Attributes (15 minutes)
	New simulation
	Compound Solid
	Physics Attributes
	The Rotation Field
	How to choose bounding Objects?
	Contacts
	basicTimeStep, ERP and CFM
	Minor physics Parameters
	Conclusion

	Tutorial 6: 4-Wheels Robot
	New simulation
	Separating the Robot in Solid Nodes
	Rotational Servos
	Sensors
	Controller
	Conclusion

	Going Further

	Robots
	Using the e-puck robot
	Overview of the robot
	Simulation model
	Control interface

	Using the Nao robot
	Introduction
	Using Webots with Choregraphe
	Using motion boxes
	Using the cameras
	Using Several Nao robots
	Getting the right speed for realistic simulation
	Known Problems
	Source Code

	Using the Pioneer 3-AT and Pioneer 3-DX robots
	Pioneer 3-AT
	Pioneer 3-DX

	Webots FAQ
	General
	What are the differences between Webots FREE, Webots EDU and Webots PRO?
	How can I report a bug in Webots?
	Is it possible to use Visual C++ to compile my controllers?

	Programming
	How can I get the 3D position of a robot/object?
	How can I get the linear/angular speed/velocity of a robot/object?
	How can I reset my robot?
	What does this mean: "Could not find controller {...} Loading void controller instead." ?
	What does this mean: "Warning: invalid WbDeviceTag in API function call" ?
	Is it possible to apply a (user specified) force to a robot?
	How can I draw in the 3D window?
	What does this mean: "The time step used by controller {...} is not a multiple of WorldInfo.basicTimeStep!"?
	How can I detect collisions?
	Why does my camera window stay black?

	Modeling
	My robot/simulation explodes, what should I do?
	How to make replicable/deterministic simulations?
	How to remove the noise from the simulation?
	How can I create a passive joint?
	Is it possible fix/immobilize one part of a robot?
	Should I specify the "mass" or the "density" in the Physics nodes?
	How to get a realisitc and efficient rendering?

	Speed/Performance
	Why is Webots slow on my computer?
	How can I change the speed of the simulation?
	How can I make movies that play at real-time (faster/slower)?

	Known Bugs
	General
	Intel GMA graphics cards
	Virtualization
	Collision detection

	Mac OS X
	Anti-aliasing

	Linux
	Window refresh
	ssh -x

