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Topics discussed

» Coarse-grained locking
— One lock

* Fine-grained locking
— More than one lock
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Abstract Data Types

« Concrete representation:

L=l 5=kl 5—~(1]]

* Abstract Type:
_ {av b}
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Abstract Data Types

* Meaning of rep given by abstraction
map

- S((I >l 3> bl (1)) = {a,b}
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Coarse-Grained Locking
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Coarse-Grained Locking
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Coarse-Grained Locking
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Simple but hotspot + bottleneck
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Coarse-Grained Locking

* Easy, same as synchronized methods
— “One lock to rule them all ...”
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Coarse-Grained Locking

* Easy, same as synchronized methods
— “One lock to rule them all ...”

* Simple, clearly correct
— Deserves respect!

* Works poorly with contention
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Fine-grained Locking

* Requires careful thought
« Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other
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Hand-over-Hand locking
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Hand-over-Hand locking
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Hand-over-Hand locking
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Hand-over-Hand locking
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Hand-over-Hand locking
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node




Removing a Node
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Removing a Node
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Concurrent Removes
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Concurrent Removes

[[F=>la[F~blF>[0]]

Art of Multiprocessor Programming 23




Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Uh, Oh

Bad news, ¢ not removed

G}@@r@
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Hand-Over-Hand Again
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Hand-Over-Hand Again




Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Removing a Node
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Removing a Node

BE O g CIE g OIE g C1N

Art of Multiprocessor Programming 40




Removing a Node
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Removing a Node
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Removing a Node




Removing a Node

([3+C3EI3~ (360
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Removing a Node




Removing a Node
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remove(b)
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Removing a Node

acquire
Lock for




Removing a Node

Waiting to
acquire

lock for b Q @
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Removing a Node

6 6

o, *
R Art of Multiprocessor Programming 49




Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
[[3—a] ‘3 o] ]
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Remove method

public boolean remove (T item) {
int key = item.hashCode() ;
Node pred, curr;

try {

} finally {
curr.unlock () ;
pred.unlock () ;

)
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Remove method

[int key = item.hashCode() ; l

Key used to order node
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Remove method

[Node pred, curr;

Predecessor and current nodes
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Remove method

ltry {

Make sure

} finally {

locks released

curr.unlock () ;
kpred.unlock();
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Remove method

—

Everything else
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Remove method

try {
pred = head;

pred.lock() ;
curr = pred.next;
curr.lock () ;

}mfinally { ..}
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Remove method
lock pred == head

[

pred = head;
pred.lock() ;

0>

=
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Remove method

Lock current

[curr = pred.next;

curr.lock () ; %B
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Remove method

Traversing list

e

L
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Remove: searching

while (curr.key <= key) {

i1f (item == curr.item) {
pred.next = curr.next;

return true;

}

}
pred.

pred
curr
curr.

unlock () ;

= curr;
= curr.next;
lock () ;

return false;
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Remove: searching

[while (curr.key <= key) {

Search key range

%

s
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Remove: searching

[while (curr.key <= key)

At start of each loop:
curr and pred locked

[CB%]}I

L
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Remove: searching

(. . . )
if (item == curr.item) {

pred.next = curr.next;
return true;

If item found, remove node
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Remove: searching

Unlock predecessor

[pred.unlock();

L

e

Art of Multiprocessor Programming

68




Remove: searching

demote current

l

[pred = currT]

==

L
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Remove: searching

Find and lock new current

|

curr = curr.next;
curr.lock () ;

L
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Remove: searching

Lock invariant restored

r = bm—mt—] : QS
curr.lock () ; @
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Remove: searching

Otherwise, not present

[ return false;
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Why does this work?

 Toremove node e
— Must lock e
— Must lock e’s predecessor

* Therefore, if you lock a node
— |t can’t be removed
— And neither can its successor
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Adding Nodes

 To add node e
— Must lock predecessor
— Must lock successor

 Neither can be deleted
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Same Abstraction Map

* S(head) =
{ x | there exists a such that

* a reachable from head and
e a.item =x
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Rep Invariant

« Easy to check that
— tail always reachable from head
— Nodes sorted, no duplicates
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Drawbacks

» Better than coarse-grained lock
— Threads can traverse in parallel

o Still not ideal
— Long chain of acquire/release
— Inefficient
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SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.
Any of the above conditions can be waived if you get permission
from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral
rights.
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