
Coarse-grained and
fine-grained locking

Niklas Fors 2013-12-05

Art of Multiprocessor Programming 1

Slides borrowed from:
http://cs.brown.edu/courses/cs176course_information.shtml

Topics discussed

•  Coarse-grained locking
– One lock

•  Fine-grained locking
– More than one lock

Art of Multiprocessor Programming 2

Art of Multiprocessor Programming 3

Abstract Data Types

•  Concrete representation:

•  Abstract Type:
–  {a, b}

a b

Art of Multiprocessor Programming 4

Abstract Data Types

•  Meaning of rep given by abstraction
map

– S() = {a,b} a b

Art of Multiprocessor Programming 5

Coarse-Grained Locking

a b d

Art of Multiprocessor Programming 6

Coarse-Grained Locking

a b d

c

Art of Multiprocessor Programming 7

honk!

Coarse-Grained Locking

a b d

c

Simple but hotspot + bottleneck

honk!

Art of Multiprocessor Programming 8

Coarse-Grained Locking

•  Easy, same as synchronized methods
–  “One lock to rule them all …”

Art of Multiprocessor Programming 9

Coarse-Grained Locking

•  Easy, same as synchronized methods
–  “One lock to rule them all …”

•  Simple, clearly correct
– Deserves respect!

•  Works poorly with contention

Art of Multiprocessor Programming 10

Fine-grained Locking

•  Requires careful thought
•  Split object into pieces

– Each piece has own lock
– Methods that work on disjoint pieces need

not exclude each other

Art of Multiprocessor Programming 11

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 12

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 13

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 14

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 15

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 16

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 17

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 18

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 19

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 20

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 21

Removing a Node

a c d

remove(b)
Why lock victim node?

Art of Multiprocessor Programming 22

Concurrent Removes

a b c d

remove(c)
remove(b)

Art of Multiprocessor Programming 23

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 24

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 25

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 26

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 27

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 28

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 29

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 30

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 31

Uh, Oh

a c d

remove(b)
remove(c)

Art of Multiprocessor Programming 32

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)

Art of Multiprocessor Programming 33

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 34

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 35

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 36

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Art of Multiprocessor Programming 37

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Art of Multiprocessor Programming 38

Hand-Over-Hand Again

a c d

remove(b)

Art of Multiprocessor Programming 39

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 40

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 41

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 42

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 43

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 44

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 45

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 46

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 47

Removing a Node

a b c d

Must
acquire
Lock for

b

remove(c)

Art of Multiprocessor Programming 48

Removing a Node

a b c d

Waiting to
acquire

lock for b

remove(c)

Art of Multiprocessor Programming 49

Removing a Node

a b c d

Wait!
remove(c)

Art of Multiprocessor Programming 50

Removing a Node

a b d

Proceed
to

remove(b)

Art of Multiprocessor Programming 51

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming 52

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming 53

Removing a Node

a d

remove(b)

Art of Multiprocessor Programming 54

Removing a Node

a d

Art of Multiprocessor Programming 55

Remove method

public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Art of Multiprocessor Programming 56

Remove method

public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Key used to order node

Art of Multiprocessor Programming 57

Remove method

public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 currNode.unlock();
 predNode.unlock();
 }}

Predecessor and current nodes

Art of Multiprocessor Programming 58

Remove method

public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Make sure
locks released

Art of Multiprocessor Programming 59

Remove method

public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Everything else

Art of Multiprocessor Programming 60

Remove method

try {
 pred = head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Art of Multiprocessor Programming 61

Remove method

try {
 pred = head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

lock pred == head

try {
 pred = head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Art of Multiprocessor Programming 62

Remove method

Lock current

try {
 pred = head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Art of Multiprocessor Programming 63

Remove method

Traversing list

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 64

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 65

Remove: searching

Search key range

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

At start of each loop:
curr and pred locked

Art of Multiprocessor Programming 66

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 67

Remove: searching

If item found, remove node

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 68

Remove: searching
Unlock predecessor

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 69

Remove: searching

demote current

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = currNode;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 70

Remove: searching

Find and lock new current

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = currNode;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 71

Remove: searching

Lock invariant restored

Art of Multiprocessor Programming 72

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Otherwise, not present

Art of Multiprocessor Programming 73

Why does this work?

•  To remove node e
– Must lock e
– Must lock e’s predecessor

•  Therefore, if you lock a node
–  It can’t be removed
– And neither can its successor

Art of Multiprocessor Programming 74

Adding Nodes

•  To add node e
– Must lock predecessor
– Must lock successor

•  Neither can be deleted

Art of Multiprocessor Programming 75

Same Abstraction Map

•  S(head) =
{ x | there exists a such that

• a reachable from head and
• a.item = x

}

Art of Multiprocessor Programming 76

Rep Invariant

•  Easy to check that
–  tail always reachable from head
– Nodes sorted, no duplicates

Art of Multiprocessor Programming 77

Drawbacks

•  Better than coarse-grained lock
– Threads can traverse in parallel

•  Still not ideal
– Long chain of acquire/release
–  Inefficient

Art of Multiprocessor Programming 79

This work is licensed under a
Creative Commons Attribution-ShareAlike 2.5 License.

•  You are free:
–  to Share — to copy, distribute and transmit the work
–  to Remix — to adapt the work

•  Under the following conditions:
–  Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

–  Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

•  For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to
–  http://creativecommons.org/licenses/by-sa/3.0/.

•  Any of the above conditions can be waived if you get permission
from the copyright holder.

•  Nothing in this license impairs or restricts the author's moral
rights.

