Coarse-grained and

fine-grained locking
Niklas Fors 2013-12-05

STides borrowed from:
http://cs.brown.edu/courses/csl76course_information.shtml

Art of Multiprocessor Programming 1

Topics discussed

» Coarse-grained locking
— One lock

* Fine-grained locking
— More than one lock

Art of Multiprocessor Programming

Abstract Data Types

« Concrete representation:

L=l 5=kl 5—~(1]]

* Abstract Type:
_ {av b}

Art of Multiprocessor Programming

Abstract Data Types

* Meaning of rep given by abstraction
map

- S((I >l 3> bl (1)) = {a,b}

Art of Multiprocessor Programming

Coarse-Grained Locking

é6
([F—al3—>b[3—CI]

Art of Multiprocessor Programming

Coarse-Grained Locking

(T3] 3+

-

Art of Multiprocessor Programming

Coarse-Grained Locking

$

(T3] 3+ 1l

H ;l T - EDS

Simple but hotspot + bottleneck

Art of Multiprocessor Programming

Coarse-Grained Locking

* Easy, same as synchronized methods
— “One lock to rule them all ...”

Art of Multiprocessor Programming

Coarse-Grained Locking

* Easy, same as synchronized methods
— “One lock to rule them all ...”

* Simple, clearly correct
— Deserves respect!

* Works poorly with contention

Art of Multiprocessor Programming

Fine-grained Locking

* Requires careful thought
« Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other

Art of Multiprocessor Programming

10

Hand-over-Hand locking

([F—l3—blF—{]]

Art of Multiprocessor Programming

11

Hand-over-Hand locking

(5 l3—blF—{]]

Art of Multiprocessor Programming

12

Hand-over-Hand locking

Art of Multiprocessor Programming

13

Hand-over-Hand locking

6 o

Art of Multiprocessor Programming

14

Hand-over-Hand locking

Art of Multiprocessor Programming

15

Removing a Node

HE g CIE g (I g I g C1N

O,

ogramming 16

Removing a Node

Removing a Node

6 o

O,

Art of Multiprocessor Programming 18

bl [l

Removing a Node

Removing a Node

6 O
sexanil

O,

20

Removing a Node

6
L rlaly BEagtlB

O,

Art of Multiprocessor Programming 21

Why lock victim node?

Concurrent Removes

HE g CIE g (I g I g C1N

Art of Multiprocessor Programming 22

Concurrent Removes

[[F=>la[F~blF>[0]]

Art of Multiprocessor Programming 23

Concurrent Removes

BB CIE 5og CIE g I g C1N

Art of Multiprocessor Programming 24

Concurrent Removes

HE g CIE o {O1E ;o d I g C1N

Art of Multiprocessor Programming 25

Concurrent Removes

HE g CIE o q O 5 I g C1N

Art of Multiprocessor Programming 26

Concurrent Removes

HE g CIE o q O 5 I g C1N

Art of Multiprocessor Programming 27

Concurrent Removes

BE o (O 5O 5 O g C1N

Art of Multiprocessor Programming 28

Concurrent Removes

Art of Multiprocessor Programming 29

Concurrent Removes

B
R

Art of Multipro or Programming

Art of Multiprocessor Programming

31

Uh, Oh

Bad news, ¢ not removed

G}@@r@

Art of Multiprocessor Programming

Hand-Over-Hand Again

HE g CIE g (I g I g C1N

ramming 33

Hand-Over-Hand Again

Hand-Over-Hand Again

O

2l 3> (c[(]]
SSmN

35

Hand-Over-Hand Again

Art of Multiprocessor Programming 36

Hand-Over-Hand Again

6 o6

Art of Multiprocessor Programming 37

Hand-Over-Hand Again

SEagth e[F—>{a]]

ramming 38

Removing a Node

HE g CIE g (I g I g C1N

Art of Multiprocessor Programming 39

Removing a Node

BE O g CIE g OIE g C1N

Art of Multiprocessor Programming 40

Removing a Node

([Tl 5kl [0l

Art of Multiprocessor Programming 4

1

Removing a Node

BB CIE 5o CIE g I g C1N

Art of Multiprocessor Programming 42

Removing a Node

Removing a Node

([3+C3EI3~ (360

Art of Multiprocessor Programming 44

Removing a Node

Removing a Node

6 6
BB (A5 O g O g1l

remove(b)
O o . a §; :
Art of Multiprocessor Programming 46

Removing a Node

acquire
Lock for

Removing a Node

Waiting to
acquire

lock for b Q @

Art of Multipro or Programming

Removing a Node

6 6

o, *
R Art of Multiprocessor Programming 49

Removing a Node

Art of Multiprocessor Programming

Removing a Node

O,

Art of Multiprocessor Programming

51

Removing a Node

Art of Multiprocessor Programming

52

Removing a Node

[I-]—*[]ia an
Oy, .

Art of Multiprocessor Programming 53

Removing a Node
[[3—a] ‘3 o]]

Art of Multiprocessor Programming 54

Remove method

public boolean remove (T item) {
int key = item.hashCode() ;
Node pred, curr;

try {

} finally {
curr.unlock () ;
pred.unlock () ;

)

! 52 Art of Multiprocessor Programming

.i' ;I_ﬁ € E,‘q

95

Remove method

[int key = item.hashCode() ; l

Key used to order node

Art of Multiprocessor Programming

56

Remove method

[Node pred, curr;

Predecessor and current nodes

Art of Multiprocessor Programming

Y

Remove method

ltry {

Make sure

} finally {

locks released

curr.unlock () ;
kpred.unlock();

Art of Multiprocessor Programming

58

Remove method

—

Everything else

Art of Multiprocessor Programming

59

Remove method

try {
pred = head;

pred.lock() ;
curr = pred.next;
curr.lock () ;

}mfinally { ..}

Art of Multiprocessor Programming

!gg

60

Remove method
lock pred == head

[

pred = head;
pred.lock() ;

0>

=

Art of Multiprocessor Programming

61

Remove method

Lock current

[curr = pred.next;

curr.lock () ; %B

Art of Multiprocessor Programming

62

Remove method

Traversing list

e

L

iC 4

Art of Multiprocessor Programming

63

Remove: searching

while (curr.key <= key) {

i1f (item == curr.item) {
pred.next = curr.next;

return true;

}

}
pred.

pred
curr
curr.

unlock () ;

= curr;
= curr.next;
lock () ;

return false;

Art of Multiprocessor Programming

64

Remove: searching

[while (curr.key <= key) {

Search key range

%

s

Art of Multiprocessor Programming

65

Remove: searching

[while (curr.key <= key)

At start of each loop:
curr and pred locked

[CB%]}I

L

Art of Multiprocessor Programming

Remove: searching

(. . .)
if (item == curr.item) {

pred.next = curr.next;
return true;

If item found, remove node

Art of Multiprocessor Programming

Remove: searching

Unlock predecessor

[pred.unlock();

L

e

Art of Multiprocessor Programming

68

Remove: searching

demote current

l

[pred = currT]

==

L

Art of Multiprocessor Programming

69

Remove: searching

Find and lock new current

|

curr = curr.next;
curr.lock () ;

L

Art of Multiprocessor Programming

70

Remove: searching

Lock invariant restored

r = bm—mt—] : QS
curr.lock () ; @

Art of Multiprocessor Programming

71

Remove: searching

Otherwise, not present

[return false;

Art of Multiprocessor Programming

72

Why does this work?

 Toremove node e
— Must lock e
— Must lock e’s predecessor

* Therefore, if you lock a node
— |t can’t be removed
— And neither can its successor

Art of Multiprocessor Programming

73

Adding Nodes

 To add node e
— Must lock predecessor
— Must lock successor

 Neither can be deleted

Art of Multiprocessor Programming

74

Same Abstraction Map

* S(head) =
{ x | there exists a such that

* a reachable from head and
e a.item =x

Art of Multiprocessor Programming

75

Rep Invariant

« Easy to check that
— tail always reachable from head
— Nodes sorted, no duplicates

Art of Multiprocessor Programming

76

Drawbacks

» Better than coarse-grained lock
— Threads can traverse in parallel

o Still not ideal
— Long chain of acquire/release
— Inefficient

Art of Multiprocessor Programming

77

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.
Any of the above conditions can be waived if you get permission
from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral
rights.

Art of Multiprocessor Programming 79

