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Abstract

This paper presents a significant improvement of our previ-
ously proposed soft shadow volume algorithm for simulat-
ing soft shadows. By restructuring the algorithm, we can
considerably simplify the computations, introduce efficient
occlusion culling with speedups of 3-4 times, thus approach-
ing real-time performance, and also generalize the algorithm
to produce correct shadows even when the eye is inside a
shadowed region (using z-fail). We present and evaluate a
three pass implementation of the restructured algorithm for
near real-time rendering of soft shadows on a computer with
a commodity graphics accelerator. However, preferably the
rendering of the wedges should be implemented in hardware,
and for this we suggest and evaluate a single pass algorithm.
CR Categories: I.3.7 [Computer Graphics ]Three-Dimensional

Graphics and Realism.
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1 Introduction

Rendering realistic shadows in real time is highly desirable,
both for increasing the level of realism, and because shadows
give important spatial clues. For real-time purposes, it is
common to approximate all light sources as point lights,
i.e., with an infinitely small extension. This gives rise
to so-called hard shadows, where the transition from no
shadow to full shadow is instant. However, in reality,
all light sources have some extension (area or volume),
which gives a smooth transition, called the penumbra
region, from no shadow to full shadow, called the umbra
region. Several soft shadow algorithms exist, but most of
them suffer from either 1) not being suitable for real-time
rendering, or 2) only being able to handle planar shadow
receivers, or 3) suffer from sampling artifacts. Our recently
presented penumbra wedge algorithm [1] can handle all of
the following goals:

I. The softness of the penumbra should increase linearly
with distance from the occluder, starting at zero at the
occluder [12].

II. The umbra region should diminish in size with
increasing light source size.

III. Typical sampling artifacts should be avoided. Often
a number of super-positioned hard shadows can be dis-
cerned [13]. The result should be visually smooth [12].

IV. The algorithm should be amenable for hardware im-
plementation giving real-time performance (and interactive
rates for a software implementation).

V. It should be possible to cast soft shadows on arbitrary
surfaces, and work for dynamic scenes as well.

Our penumbra wedge algorithm is based on Crow’s
shadow volume (SV) algorithm [5], described in section 2.

We do not require that the soft shadows are totally physi-
cally correct, but rather they should be perceptually pleasing
without obvious artifacts. Although the algorithm is mainly
targeted for spherical or circular light sources, it can approx-
imate the soft shadow generated by any convex light source.

Figure 1: This image of Venus was rendered using the three
pass algorithm (see Section 6.1) in 1 fps using a P4 1700MHz
and a GeForce3 graphics accelerator. The Venus model casts
soft shadows onto itself, the sphere and the floor. The image
size is 640 × 427 pixels.

The algorithm still suffers from problems when automati-
cally generating wedges from silhouette edges that are nearly
parallel with the direction from the edge vertices to the light
position. Artifacts can also appear if wedges incorrectly are
generated for silhouette edges that are inside shadow. Fur-
thermore, artifacts may appear when the light source is so
large that there is no umbra region at all. Still, we strongly
believe that the penumbra wedge algorithm is an important
step in the right direction towards real-time soft shadows,
because it is likely that those problems can be solved with a
new light intensity interpolation method inside the wedges.

Therefore, we present some speedup techniques that gives
near real-time performance, and generalizations to our pre-
viously presented penumbra wedge algorithm. In particular,
we examine the algorithm from a hardware implementation
perspective.

The contributions of this paper are as follows; 1) We
present a restructured version of our original algorithm that
significantly reduces the number of calculations to raster-
ize a wedge. 2) A method for very efficient occlusion culling,
made possible by the restructuring, is presented, and it gives
general speedups of 3-4 times for our test scenes. 3) We show



how the restructuring also enables the use of the z-fail algo-
rithm [4] to correctly handle the case when the eye is inside
a shadow region. Neither occlusion culling nor the z-fail
algorithm can be incorporated in any obvious way in the
originally proposed algorithm without the restructuring. 4)
We suggest two different implementations of the restructured
algorithm; a single pass algorithm for a possible hardware
implementation of the wedge rasterization, and a three pass
algorithm when no special hardware support of rasterizing
the wedges is available. Furthermore, we evaluate software
implementations of the two algorithms and present figures
for the number of memory access used and frame rates.

The contributions of this paper are independent of the
type of wedge construction being used, and what kind of
light intensity interpolation that is done inside the penumbra
wedges. Therefore, we strongly believe that the results in
this paper applies for future improvements of the algorithm
that may overcome the remaining problems with artifacts.

The paper is organized as follows. In the next section, the
soft shadow volume algorithm is reviewed. In Section 3, we
describe how to restructure the algorithm to reduce the num-
ber of calculations needed to rasterize a wedge. Section 4
introduces efficient occlusion culling, and then in Section 5
follows a generalization that correctly handles the case when
the eye is inside shadow. In Section 6, two implementations
are presented that suits software rasterization and hardware
rasterization respectively, and that uses a different number
of rendering passes. Section 7 gives the experimental re-
sults for the two implementations, and the paper ends with
discussion, future work and a conclusion.

For related work, see our previously published paper [1].
More thorough presentations are presented by Woo et al [14]
or Haines and Möller [9].

2 Review of the Soft Shadow Volume Al-

gorithm

In 1977, Crow presented his shadow volume (SV) algorithm
for hard shadows [5]. Heidmann extended the algorithm, in
1991, with hardware acceleration using the stencil buffer [10].
For each shadow casting object, its shadow volume is cre-
ated. The shadow volume is created in the following man-
ner. Each silhouette edge, as seen from the light position,
and rays from the edge’s two vertices in the direction from
the light source forms a quadrilateral (quad). Together, all
quads represent the shadow volume (see Figure 2). First the
scene is rendered from the eye with only ambient light en-
abled. Secondly, all front facing quads, as seen from the eye,
of the shadow volumes are rendered to the stencil buffer, in-
crementing each rasterized pixel that passes the depth test.
Each pixel in the stencil buffer has now recorded the num-
ber of times a virtual ray from the eye through the pixel to
the point represented by its z-value, enters a shadow region.
Then, all the back facing quads are rendered, counting the
number of times the virtual rays exits the shadow regions.
Afterwards, if the stencil value for a pixel is larger than zero,
the point is in shadow. That is, the virtual ray from the eye
to the point enters shadow regions more times than it exits
shadow regions on its way from the eye to the point. This
algorithm has to be modified if the eye is inside a shadow
volume (see Section 5). Finally, the stencil buffer is used as
a mask when rendering the specular and diffuse contribu-
tion. For the stencil passes, the depth test is set to accept
objects closer than the stored value, as usual, but no new
depth values are written to the depth buffer and no color

values are written to the frame buffer.
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Figure 2: The standard shadow volume algorithm. The
shadow volume here consists of seven quads. Ray b is inside
shadow with a stencil value of 1. Ray a and c are outside
shadow with stencil values of 0.

Our soft shadow algorithm [1] is based on Crows’s SV
algorithm in the sense that it also uses shadow volumes and
a stencil buffer. However, instead of an instant transition
from no shadow to full shadow, given by the quads, those are
replaced by penumbra wedges, where the light intensity (LI)
varies linearly inside the wedge (see Figure 5 and Figure 3).
The wedge is rasterized into a 16-bit stencil buffer, which we
call the light intensity (LI) buffer.
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Figure 3: A penumbra wedge with its light intensity inter-
polation inside.

The light intensity buffer originally contains 255, and this
represents fully lit pixels. The front facing planes of the
wedges are rasterized, and as the scene content at the pixels,
read from the z-buffer, is found in penumbrae, the rendering
of the wedges dims down (subtracts) from this 255 level, and
full umbrae subtract the full 255, due to the surface location
being behind a wedge.

The penumbra wedges can be thought of as a new volu-
metric primitive, conceptually rasterized as outlined below:

1 : rasterizeWedge()
2 : foreach pixel(x, y) on front facing tris of wedge

3 : pf = computeEntryPointOnWedge(x, y);
4 : pb = computeExitPointOnWedge(x, y);
5 : p = point(x, y, z); − z is depth buffer value
6 : pi = choosePointClosestToEye(p,pb);
7 : sf = computeLightIntensity(pf );
8 : si = computeLightIntensity(pi);
9 : addToLIBuffer(round(255 ∗ (si − sf )));
10 : end;

pf is the point on the wedge where a ray from the eye
through the pixel (x, y) enters the wedge. This disregards
the case when the eye is inside the wedge, which we handle
in section 5. pi is the point stored at the pixel position in
the z-buffer, if that point is inside the wedge. Otherwise it
is the point where the ray exits the wedge (see Figure 4).
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Figure 4: Illustration of the pf , pb, and pi values for two
rays.

The light intensity is represented with a value from 0 to
255, which makes the precision demands higher on the stencil
buffer than for the SV algorithm in order to avoid overflow-
ing when a virtual ray passes several shadow regions. Given
a 16-bit signed stencil buffer, we can guarantee that at least
127 shadow volumes can have overlapping regions without
causing overflow in the LI buffer. This is the same type
of restriction as for the SV algorithm with an 8-bit stencil
buffer.

Figure 5: Example of a shadow volume for five silhouette
edges. Each wedge is outlined.

The soft shadow algorithm works as follows: First all the
geometry of the scene is rendered into the frame and depth
buffer. with only specular and diffuse lighting enabled. Sec-
ondly, the LI buffer is cleared to 255, implying that every-
thing in the scene is outside shadow. Then all shadow vol-
ume wedges are rasterized to the LI buffer with ordinary
depth testing enabled, but without writing new z-values. In
this way light intensity values will be written into the LI
buffer. After this, the LI buffer is used to modulate the
color intensity of each pixel in the frame buffer. Finally, the
ambient contribution is added in a separate rendering pass.
If the ambient contribution is rendered first into the frame
buffer, as for the SV algorithm, we would have to multiply
the diffuse and specular contribution in the following pass
with the content in the LI buffer at the corresponding pixels
before adding it to the frame buffer. In current hardware
it is easier to instead multiply the whole frame buffer with
the LI buffer between a first diffuse and specular rendering
pass and postpone the ambient pass. The SV algorithm uses
the stencil buffer as a binary mask, but the LI buffer holds
16-bit weights.

3 A Restructured Soft Shadow Algorithm

To compute pf and pb, our original algorithm calculates the
intersections between the four wedge planes (front, back,

left and right) and the ray through the pixel, and finds the
closest and furthest intersection points. This requires 4 di-
visions per pixel. There are ways to avoid at least two of
these divisions, since we basically only are interested in find-
ing the closest and the furthest point, but it is a bit messy
and requires testing the signs of the numerator and the de-
nominator with corresponding if-statements. If-statements
are often undesirable, since they may cause branch-predict
misses. However, in this section we will show how to avoid
computing pf and pb at all.

Previously, we observed that the contribution of the left
and right planes always cancels out with the neighboring
wedges [1]. Now, we will further reduce the computations
needed, and also restructure the algorithm to enable efficient
occlusion culling and correctly handle the case when the eye
is inside a shadow region (see Section 4 and 5).

In our implementation we have chosen 255 to represent full
light and 0 to represent full shadow. This means that the
back plane of the wedge will only contribute with entry or
exit intensity values of 0, and their rasterization can thus be
skipped. We could arbitrarily have chosen 0 to represent full
light and 255 as full shadow, so that the front planes could
be ignored instead. This could possibly have the advantage
that fewer pixels need to be rasterized, since normally in a
closed soft shadow volume, the total area of the back planes
is smaller that that of the front planes.

Using the fact that the rasterization of the back planes can
be skipped, the algorithm can be restructured as follows:

1 : rasterizeWedge()
2 : rasterizeUmbra(frontplane,−255);
3 : rasterizePenumbra(all front facing planes);
4 : end
5 :
6 : rasterizeUmbra(primitive, value)
7 : for each pixel(x, y) of primitive
8 : if primitive is front facing

9 : addToLIbuffer(value);
10 : else addToLIbuffer(−value);
11 : end
12 : rasterizePenumbra(primitive)
13 : for each pixel(x, y) of primitive
14 : p = point(x, y, z); − z is depth buffer value
15 : if p is inside the wedge

16 : sp = computeLightIntensity(p);
17 : addToLIBuffer(round(255 ∗ sp));
18 : end;

rasterizeUmbra() is very similar to the SV algorithm,
but is using the front planes of the wedges to define the
shadow volumes and adds or subtracts 255 instead of 1.
rasterizePenumbra() computes light intensities, sp, for all
pixels inside the wedges, and adds light contribution between
0 and 255 to the penumbra regions. This is done for all
wedges by rasterizing all front facing triangles of the wedge
and adding an interpolated intensity value for all pixels with
corresponding depth buffer points located inside the wedge.
The test if a point (x, y, z) is inside the wedge is done in
screen-space to avoid transforming the point to world space
with a full matrix multiplication, which would include a di-
vision of the w-component. The screen-space wedge-plane
equations are precomputed once each frame per wedge.

For rasterizeUmbra(), depth testing is enabled but
without writing new z-values. For rasterizePenumbra(),
no depth test is needed. Instead we can use the occlusion
culling described in Section 4.
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With this restructured algorithm, no intersection points
need to be computed at all, and all the corresponding divi-
sions are eliminated. There is still one division required in
the linear interpolation and one division required for trans-
forming p to world-space, when computing the light inten-
sity (line 16) [1]. However, these are done only for points
located inside the wedge, that is, where penumbra is present.

4 Occlusion Culling

The function rasterizePenumbra() affects only the pixels
with points located inside the wedge. With our restruc-
tured algorithm, very efficient occlusion culling can be im-
plemented.

Normally, hardware occlusion culling avoids rendering for
pixel tiles where the object to be rendered is behind every-
thing that is stored in the z-buffer positions for the tile. This
can be done in hardware by storing the maximum z-value,
zmax, for each tile [11]. A common tile size is 8 × 8 pixels.

In our method, we cull rendering of the penumbra for
pixel tiles that are totally behind or totally in front of the
wedge. For this, we need to store both the zmax and the
zmin for each tile, where zmin is the minimum z-value for
the tile. With this occlusion culling, only tiles that intersect
the wedge will be rasterized, resulting in significant speedup.

a

b
wedge

a=(x,y,zmin)

b=(x+tile size, y+tile size, zmax)

Figure 6: The screen space bounding box of a tile is tested
for intersection with the wedge. Only if they intersect is the
tile rasterized for the penumbra contribution. Here, the box
contains a piece of a fractal mountain (see Figure 12). Since
the box does not intersect the wedge, in this example, the
tile will be culled from penumbra rasterization.

Before rasterizing a wedge, its screen space plane equa-
tions are precomputed in a setup routine. Upon rasterizing
the wedge triangles, the screen space axis aligned bounding
box of a tile that is about to be rasterized is tested for inter-
section with the wedge (see Figure 6). If the bounding box
is outside the wedge, the whole tile is culled. The Separat-
ing Axis Theorem can be used to determine whether they
overlap [6]. The theorem states that for two convex, disjoint
polyhedra, A and B, there exists a separating axis where the
projections of the polyhedra also are disjoint. Furthermore,
it states that it is sufficient to test only the axes that are
orthogonal (i.e., the planes with its normal orthogonal) to
a face of A or B, or an edge from each polyhedron. If such
an axis cannot be found, we know the box and the wedge
are overlapping. Testing all the axes is often unnecessarily
time consuming. It is usually better to only do the tests
corresponding to the faces of A or B, and ignore the tests
corresponding to the edges of the polyhedra. This may some-
times give incorrect indication of overlap, but that will only
force the tile to be rasterized with occlusion tests for each
pixel, and causes no visual error. The advantage is that the
tile overlap test will be significantly faster.

The test is done by inserting the vertices of the bounding
box of the tile into the wedge plane equations in screen space.
If all vertices are outside any of the wedge planes, the box
is outside the wedge. If all vertices are inside all wedge
planes, the box is fully inside. Otherwise, we consider the
box as intersecting, although there are circumstances where
the box can be outside. To avoid some of these occasions,
testing of the wedge vertices against the box planes could
be added. Notice, that only the screen-space zmin and zmax

of the wedge need to be tested against the zmin and zmax

of the tile, since the wedge and box must intersect at the x-
and y-coordinates due to the rasterization. Since this latter
test is a so called quick rejection test and can cull the region
with just one simple test, it should be done first of all tests
if it is being used. The wedge’s zmin and zmax are computed
in a setup routine before rasterizing the wedge.

When testing the box vertices against a wedge plane, it
is sufficient to test only the closest and the furthest of the
vertices instead of all eight, which saves many computations
[7, 8]. The two vertices are easily recognized by the signs of
the x, y and z components of the normal of the wedge plane
(see Figure 7).

� � � � �

Figure 7: This figure illustrates the n and p vertices of two
boxes with respect to a plane.

In our software implementation, the occlusion culling test
only takes about 1.5% of the total execution time. We inves-
tigated different combinations of tests. The test of the box
vertices against the wedge planes seem to be the most impor-
tant. When the test of the wedge’s zmin and zmax against
the region zmin and zmax is included, there is hardly any
noticeable increase in performance. If only this latter test
is used, the performance drops significantly. For the scenes
that we have tested, the occlusion culling generally provides
a speedup of 3-4 times for the software penumbra rasteriza-
tion. This results in an up to three-fold overall performance
enhancement of the frame rate.

It should be noted that this occlusion culling for the
penumbra rendering does not require that the rendering is
done in any depth order to reach optimal results. This is
opposed to occlusion culling for ordinary object rendering
to the frame buffer, where the objects should be rendered
in front-to-back order for maximum efficiency. The reason
is that the penumbra rendering does not affect the depth
buffer. It only uses the content of the depth buffer from the
ordinary rendering of the scene, to apply soft shadows to the
image. Also, therefore zmin and zmax need not be written
to during wedge rasterization.

5 Eye Inside Shadow Regions

The original SV algorithm [5], does not properly handle the
case when the eye is inside a shadow volume, and the same
applies to our original algorithm. An elegant solution for
the SV algorithm was officially documented by Everitt and
Kilgard [4] in 2002, although the algorithm had been known
to the gaming industry a while through Bill Bilodeau and
Mike Songy (1999) and John Carmack (2000) [4]. Instead of
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determining if a point is in shadow by testing intersections
with the shadow volumes of a virtual ray from the eye to
the point, a virtual ray from the point to the infinity could
be tested. In this way, the testing will be independent of
the eye position. In practice, this is achieved by modify-
ing the stencil buffer passes. The first stencil buffer pass
becomes: render all back facing shadow volume polygons
and increment the stencil value when the polygon is equal
to or farther than the stored z-depth. In the second stencil
pass, all front facing shadow volume polygons are rendered,
decrementing the stencil value when the polygon is equal to
or farther than the stored z-depth. This algorithm is often
called the z-fail algorithm [4].

Since the depth test has been altered, it is now also nec-
essary to render the top of the shadow volume. The top
consists of all polygons of the shadow generator that are
front facing with respect to the light source center. If the
shadow volume is of finite length, the volume must be closed
at the bottom, by for instance adding a far capping polygon.
The top and the bottom polygons should be rendered in ex-
actly the same way as the shadow quads. Problems can still
occur if the polygons are clipped by the far plane of the view
frustum. This could, however, be solved by setting the far
plane to infinity or using extensions in the rasterizing hard-
ware. Such an extension is included in NVIDIA’s GeForce3
[4].

The solution for the SV algorithm described above can be
applied to our soft shadow algorithm as well, with just some
minor additions. If the wedge planes are of finite length,
a capping bottom plane of the wedge must be added too,
and rasterized by rasterizePenumbra() when it is back
facing. We use the front planes of the wedges as the shadow
volume for the umbra contribution so that should be capped
with top and bottom polygons. In rasterizeUmbra(), the
front planes of all wedges plus the top and bottom polygons
of the shadow volume are rasterized. The pseudo code for
rasterizing a soft shadow volume now becomes:

1 : renderShadowVolume()
2 : rasterizeUmbra(top + bottom polygons, 255);
3 : for all wedges

4 : rasterizeWedge()
5 : end
6 : rasterizeWedge()
7 : rasterizeUmbra(frontplane, 255);
8 : rasterizePenumbra(all back facing planes);
9 : end

The reason the back facing planes are chosen in raster-
izeUmbra() is that if the eye is inside a wedge, none of the
wedge’s planes are front facing with respect to the eye po-
sition. Notice that since we are using the z-fail algorithm,
rasterizeUmbra() is now called with a value of 255 instead
of -255 (compare the listing in Section 3, line 2).

6 Implementation

In this section, we present two different implementations of
the restructured algorithm. The first one, which we call
the three pass algorithm, is most suitable when wedge ren-
dering has to be done without special hardware support,
but when a commodity graphics accelerator is available. It
splits the wedge rendering into three passes, and uses com-
modity graphics hardware to render the umbra contribution
(two passes), and software to render the penumbra contribu-
tion (one pass). The second implementation, which we call

the single pass algorithm, is meant to be implemented as a
new mechanism in graphics cards. It tries to minimize the
number of memory accesses by rasterizing the umbra and
penumbra contribution simultaneously when possible.

6.1 Three Pass Algorithm

To rasterize the penumbra wedges efficiently, without full
hardware support, we suggest a three pass algorithm. First,
common hardware is used to render the front planes, and
then software is used to render the inside of the penumbra
wedges. With occlusion culling for the software rendering,
real-time performance can be achieved (see Section 7). The
occlusion culling is very effective, since the contents of the z-
buffer does not change when rendering the wedges, and only
pixels potentially inside the wedges need to be considered
(see Section 4).

Current graphics hardware normally do not have a 16-bit
stencil buffer, but an 8-bit stencil buffer usually suffices for
the rendering of the front planes. Initially, the 8-bit stencil
buffer is cleared with a value of 0. In the first pass all front
facing front planes of the wedges are rasterized, and for each
time a pixel passes the depth-test, the corresponding stencil
value is decremented by one. In the second pass all back
facing front faces are rasterized similarly, but incrementing
the stencil values by one instead. The buffer is then added
to the 16-bit software light intensity (LI) buffer, which has
been initialized with a value of 255, pre-multiplying each 8-
bit stencil value with 255, or -255 if the z-fail algorithm is
used. In the third pass, software rendering of the penumbra
regions is done as outlined in the pseudo code for raster-
izePenumbra() in section 3.

If the stencil buffer does not handle negative stencil values
and clamps them to zero, an offset of, for instance, 128 could
be used to circumvent the problem.

6.2 Single Pass Algorithm

If wedge rasterization is implemented in silicon in a new
graphics hardware, it can be advantageous to minimize the
number of memory accesses, since the memory bandwidth
and latency often are the bottlenecks. For each pass and
each pixel that is being rasterized, and is not culled by the
occlusion culling (see Section 4), the z-value needs to be
read from the z-buffer, and values are possibly written to
the stencil buffer.

In the single pass algorithm, we want to rasterize the um-
bra and penumbra in the same pass. This is not obvious
how to incorporate into our latest soft shadow volume algo-
rithm [2, 3], since that uses the quads of the shadow volume
for hard shadows to render the umbra. However, it is fairly
easy for the original penumbra wedge algorithm [1], since
this version rasterizes the umbra using the front planes of
the wedges. To evaluate whether a single pass version has
advantages over a three-pass version, we therefore use the
latter in this case study.

The penumbra is rasterized by all front facing planes of
the wedge, or all back facing planes of the wedge if the z-
fail algorithm is being used. Thus, for front facing front
planes, rasterization of the umbra and penumbra could be
done in the same pass. This saves one stencil buffer write
access and one z-value read access for each pixel of the front
plane that will receive a contribution from both umbra and
penumbra. The rasterization will be slightly more complex,
since we want to use occlusion culling with zmin and zmax

for the penumbra contribution, but only zmax for the umbra
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contribution. In the z-fail algorithm, the back facing front
planes should be rasterized in a single pass instead of the
front facing front planes, and zmin should then be used for
the occlusion culling for the umbra contribution.

The advantage is that the front plane of each wedge is
rasterized only once, thus saving z-value read accesses and
stencil value write accesses.

7 Simulation Results

In this section, experimental results for the three pass al-
gorithm and the single pass algorithm are presented. All
tests were done using software implementations., since the
occlusion culling requires hardware support that is not yet
present. The only hardware acceleration used was for ren-
dering of the front planes for the umbra contribution in ras-
terizeUmbra() in the three pass algorithm. For this, we
rendered quads into an 8-bit stencil buffer using a GeForce3
graphics accelerator.

We used the wedge rasterization method presented in sec-
tion 3, since it is yet unclear how to create a single pass
version for the rasterization method proposed in [2]. The
latter rasterization is more expensive, and thus it is rea-
sonable to conclude that occlusion culling can provide even
higher speedups for that case.

The test scenes used are shown in Figure 11, 12, and 13.
All the test scenes were rendered with an image size of 640×
427 pixels. The rasterization is highly fill-rate limited.

The restructured algorithm reduces the number of cal-
culations, compared to the original algorithm, and in itself
contributed with a general speedup of 30−40% (i.e., 1.3-1.4
times), without any occlusion culling. This was measured
with the three pass algorithm, without using hardware ac-
celeration for the umbra rasterization. If hardware acceler-
ation is added, the speedup is 60 − 80%. The single pass
algorithm is also 30−40% faster than the original algorithm
(see Figure 10a).

Next, the results using occlusion culling is presented. We
investigated the performance with different tile sizes for the
occlusion culling described in Section 4. Tiles of 2n

× 2n

pixels with n ∈ [1..8] where tested.
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Figure 8: This graph shows the total number of z-buffer
reads and stencil buffer writes for different tile sizes, when
rendering one frame of the column scene, fractal scene, and
2002-scene. The results from using the three pass algorithm
and the single pass algorithm are shown. The images can be
seen in Figure 11, 12, and 13.

Figure 8 shows the total number of stencil buffer writes
and z-buffer reads needed to render one frame of each test
scene. As can be seen, the optimal tile size for minimizing
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Figure 9: The graph shows the frame rates, using different
tile sizes for rendering the column scene, fractal scene, and
2002-scene. Result from the single pass algorithm and the
three pass algorithm are shown.
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Figure 10: a) General speedups without using occlusion
culling. b) Speedup using occlusion culling with the opti-
mal tile size and using the test scene shown in Figure 11.
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the number of memory accesses is from 8×8 to 32×32 pixels
for these scenes. This correlates very well with the graph for
the frame rates, in Figure 9. It means that the optimal tile
size for minimizing memory accesses matches the optimal tile
size for minimizing the rasterization work, which seems nat-
ural. As expected, the frame rates are higher for all scenes
using the three pass algorithm, than the single pass algo-
rithm, since we do not have any hardware implementation
of the latter.

With occlusion culling, the single pass algorithm was gen-
erally 20 − 60% faster than the three pass algorithm when
software rasterization of the umbra regions was used for the
latter (e.g. Figure 10b), i.e., when both algorithms were us-
ing only software rendering. This indicates that for a full
hardware implementation of wedge rasterization, the extra
complexity of a single pass algorithm could be worthwhile.
Additionally, a hardware implementation could benefit even
more from the savings in memory accesses, since these often
are the bottlenecks. In the range of tile sizes from 8 × 8 to
32×32 pixels, the single pass algorithm used about 5% fewer
stencil buffer write accesses and 30−60% fewer depth buffer
read accesses than the three pass algorithm. Together, this
saves 20−30% of the total number of memory accesses. The
significant savings in execution time for the software imple-
mentation comes from not needing to rasterize a front facing
front plane twice.

The occlusion culling described in section 4 generally gave
a speedup of 3-4 times for the penumbra rasterization and
using the optimal tile size, resulting in an up to three-fold
overall frame rate improvement compared to not using oc-
clusion culling. If only zmax is used, which is common in
current hardware, and not zmin, then practically no speedup
is obtained in any of the test scenes, since almost nothing
in the scenes occludes the shadows. This is a strong argu-
ment for accepting the extra complexity of storing zmin in
hardware as well. As an example of this, only using zmax

lowers the frame rate from 7.0 frames per second (fps), to
2.6 fps, and increases the number of depth buffer read ac-
cesses with 50% for the three pass algorithm with hardware
rendering of the umbra contribution, when rendering the col-
umn scene in Figure 11. The number of stencil buffer write
accesses is unaffected by occlusion culling, since the occlu-
sion culling only avoids unnecessary rasterization. If a tile
is rasterized although it correctly could be culled, the corre-
sponding points in the depth buffer are tested whether they
are inside the wedge. Since all points will be found outside,
no stencil buffer values will be written for this tile.

In total, the three pass algorithm with occlusion culling,
is up to almost six times faster for the column scene, in Fig-
ure 11, than the original algorithm. Our conclusion for the
single pass algorithm is that the added complexity of render-
ing the umbra and penumbra contributions in the same pass
definitely could pay off, for a hardware implementation. To
get efficient occlusion culling both zmin and zmax should be
used, and the optimal tile size is from 8×8 to 32×32 pixels.

All test results were done using a standard PC with an
Intel P4 1.7 GHz, and a GeForce3 graphics card. For the
Venus scene in Figure 1, we used a different interpolation
technique that we have developed recently [2]. This modi-
fication computes the light intensity more exactly than the
previously presented linear interpolation [1], and thus avoids
several of the artifacts with the old method.

8 Discussion and Future Work

The modifications to the original penumbra wedge algo-
rithm [1] introduced in this paper are independent of how
the shapes of the wedges are computed and what kind of
interpolation that is used inside the penumbra. Thus, we
strongly believe that the results presented in this paper will
apply even for future modifications of the algorithm that
may overcome the remaining artifacts. In fact, we have al-
ready presented several such modifications [2, 3].

If the eye-space distances are stored in the z-buffer, in-
stead of the eye-space distances divided by w, one division
can be eliminated for computing the light intensity of a point
inside the penumbra. Currently, the point is transformed
from screen-space to world-space, requiring one division with
the w-component. That could be avoided, leaving just one
division, and that is for the linear interpolation (see Sec-
tion 3).

In software it could possibly be preferable to only compute
and store zmin and zmax on demand, i.e., for the regions with
values that are accessed. However, we could not measure
any significant change in performance of our implementation
when trying this.

The need for a 16-bit stencil buffer to store the light inten-
sities could probably be circumvented by using HILO tex-
tures. HILO textures contains two 16-bit components for
each element, and is available in for instance GeForce3. One
of the 16-bit components could perhaps be used as the LI
buffer.

Possibly, zmin could be used for ordinary hardware trian-
gle rasterization as well, to save z-buffer reads when render-
ing visible geometry to the frame buffer.

9 Conclusion

We have presented a restructured version of our original soft
shadow volume algorithm, which significantly reduces the
number of calculations to rasterize a wedge. We have also
shown how to incorporate occlusion culling using both zmin

and zmax, to get a substantial speedup of the rasterization
and reach near real-time performance on a standard PC.
Empirical results show that the optimal tile size is between
8 × 8 and 32 × 32 pixels for our three test scenes. Further-
more, the restructured algorithm allows the use of the z-fail
algorithm to correctly handle the case when the eye is inside
a shadowed region. We want to emphasize that neither oc-
clusion culling nor the z-fail algorithm can be incorporated
in any natural way with the original penumbra wedge algo-
rithm, presented in [1]. Thus, the restructuring presented in
this paper significantly enhances the efficiency and usability
of penumbra wedges for simulating soft shadows.

Two different implementations are presented and evalu-
ated; a single pass algorithm for a possible hardware im-
plementation of the wedge rasterization, and a three pass
algorithm when only commodity graphics hardware is avail-
able. The single pass algorithm uses 20−30% fewer memory
accesses than the latter, to rasterize the wedges. This could
be important for a hardware implementation, since the mem-
ory bandwidth and latency often are the bottlenecks. With
the improvements presented in this paper, we believe that
we have taken an important step forward for rendering soft
shadows in real time.
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Figure 11: This image was rendered with the three pass algo-
rithm in 7 fps on a Pentium4 1700 MHz using software and a
GeForce3 graphics accelerator for the penumbra wedge ren-
dering. The image size is 640 × 427 pixels.

Figure 12: These images show a fractal landscape with 100k
triangles used as a complex shadow receiver. The scene was
rendered in 2.3 fps without soft shadows, and in 1.75 fps with
soft shadows using the three pass algorithm.

Figure 13: In this scene, the 2002 text casts its soft shadow
onto a number of teapots and a floor. The image was ren-
dered in 3.6 fps with the three pass algorithm.

Figure 14: This is an example of using multiple light sources.
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