
Some notes on

Graphics Hardware

Originally a draft for EDA075 Mobile Computer Graphics,
and later used for EDAN35 High-Performance Computer Graphics

Tomas Akenine-Möller
Lund University

Sweden
tam@cs.lth.se

c© Draft date November 27, 2012

Contents

Contents i

Preface v

1 Introduction 1

1.1 Notation and operations . 1

1.1.1 Homogeneous Coordinates and Projections 2

1.2 Pipeline Overview . 5

1.2.1 Geometry: Vertex Processing 5

1.2.2 Pixel Processing . 5

2 Edge Functions and Triangle Traversal 7

2.1 Edge Functions . 8

2.1.1 Fixed-Point Edge Functions 12

2.2 Triangle Traversal . 15

2.2.1 Bounding Box Traversal 15

2.2.2 Backtrack Traversal . 16

2.2.3 Zigzag Traversal . 17

2.2.4 Tiled Traversal . 17

3 Interpolation 21

3.1 Barycentric Coordinates . 21

3.2 Perspectively-Correct Interpolation 23

3.3 Interpolation using Edge Functions 26

3.3.1 Barycentric Coordinates 26

3.3.2 Perspective-Correct Interpolation Coordinates 27

3.4 Triangle Setup and Per-Pixel Computation 29

4 Pixel-Processing 31

4.1 The Pixel-Processing Pipeline . 31

4.2 The Pixel-Processing Equation 31

i

ii CONTENTS

5 Texturing 33
5.1 Texture Images . 34

5.1.1 Wrapping . 35
5.2 Texture Filtering . 37
5.3 Magnification . 38

5.3.1 Nearest Neighbor Sampling 38
5.3.2 Bilinear Filtering . 39

5.4 Minification . 41
5.4.1 Mipmapping . 42
5.4.2 Anisotropic Mipmapping 49

5.5 General Caching . 50
5.5.1 Cache Mapping, Localization, and Replacement 52
5.5.2 Replacement Strategy . 54
5.5.3 Cache Misses . 54

5.6 Texture Caching . 55
5.7 Texture Compression . 55

5.7.1 Background . 55
5.7.2 S3TC/DXTC . 55
5.7.3 PVR-TC . 55
5.7.4 ETC1/ETC2 . 55
5.7.5 ASTC . 55
5.7.6 Normal Map Compression 55

6 Culling Algorithms 57
6.1 Z-min and Z-max Culling . 57

6.1.1 Z-max Culling . 58
6.1.2 Z-min Culling . 61

6.2 Object Culling with Occlusion Queries 63
6.3 Delay Streams . 64

7 Buffer Compression 65
7.1 Compression System with Cache 66
7.2 Depth Buffer Compression . 68

7.2.1 Depth Offset Compression 69
7.2.2 Layered Plane Equation Compression 73
7.2.3 DPCM Compression . 74

7.3 Color Buffer Compression . 78

8 Screen-space Antialiasing 79
8.1 Theory . 79
8.2 Inexpensive Antialiasing Schemes 79
8.3 High-Quality Antialiasing . 79

9 Architectures for Mobile Devices 81
9.1 Tiling Architectures . 81
9.2 Bitboys?? Others? . 81

CONTENTS iii

A Fixed-point Mathematics 83
A.1 Notation . 83

A.1.1 Conversion . 84
A.2 Operations . 85

A.2.1 Addition/Subtraction . 85
A.2.2 Multiplication . 86
A.2.3 Reciprocal . 87
A.2.4 Division . 88
A.2.5 Inexpensive division: special cases 88
A.2.6 Expansion of integers and fixed-point numbers 89

Bibliography 91

iv CONTENTS

Preface

These notes were written for the course Mobile Computer Graphics given at
Lund University during 2005–2008, and after that it has been and is still used
in the High-Performance Computer Graphics course given by Michael Doggett.
The notes are mainly intended for those who take that class. Other persons are
welcome to use these notes for teaching as well, but please email the author first
at: tam@cs.lth.se. The reason for putting these notes together was simply
that I could not find this type of explanatory text somewhere. The first draft
was written in the summer of 2005, and it was updated during falls of 2006 and
2007, and bug fixing will continue.

Note that I would be glad to hear about corrections, updates, and suggestions
on how to make the text better.

Thanks to Michael Doggett, Fredrik Enhbom, Jon Hasselgren, John Owens,
and Jonas Åström for feedback, corrections, and bug fixes.

Tomas Akenine-Möller

Smaller bug fixes: 2012
Third draft: September 2007
Second draft: September 2006
First draft: September 2005
Lund, Sweden

v

Chapter 1

Introduction

Hardware for rendering has changed the way real-time graphics is done in a
major way. Graphics hardware makes the generation of images from three-
dimensional scenes orders of magnitudes faster than an ordinary CPU can pro-
duce the same images. The major reasons for this are that pipelining and
parallelism can be exploited to a much higher degree, and latency can be hid-
den in the architecture. This latency can be tolerated since rendering a frame
takes, say, 20 ms, and as long as images come through the system at that rate,
users tend to be happy. However, if it would take an instruction 20 ms to finish
in a CPU, performance would be terrible.

Graphics hardware, which also was rather capable, started to appear in mo-
bile devices, such as mobile phones and mobile gaming units (e.g., the SONY
PlayStation Portable) around 2004–2004. The application programming inter-
face (API) OpenGL ES 2.0 was released in the summer of 2005, and the major
target for this API is mobile devices. OpenGL ES 2.0 already has support for
programmable vertex and pixel shaders, and so this API has been catching up
extremely fast with OpenGL in general. Graphics hardware for mobile devices
has changed the way graphics is done forever. Originally, these notes were just
targeting mobile graphics, but in hindsight, the algorithms described here can
also work in high-end graphics architectures.

This chapter will mainly contain the notation that will be used throughout
this text, and as well as some prerequisites.

1.1 Notation and operations

We denote vectors as column vectors, that is, a three-dimensional vector, p, is:

p =

pxpy
pz

 . (1.1)

1

2 Chapter 1. Introduction

Usually we make no distinction between a vector and a point, unless mentioned
explicitly. Note also that when a vector is written on a row, it need to be
transposed: p = (px, py, pz)T . However, sometimes our text is a bit sloppy
with that notation. For example, the coordinates of a pixel are often written
as (x, y), even though the correct notation is (x, y)T . Matrices are denoted by
bold, upper-case letters, for example, M.

The dot product and the cross product are two operators that are commonly
used in graphics. The dot product between two vectors, a and b, is a scalar
and is denoted d = a ·b. Recall that d = ||a|| ||b|| cosα, where || · || denotes the
length of the vector, and α is the smallest angle between a and b. If a and b are
perpendicular, then a · b = 0. Note that the dot product can also be computed
as: d = a · b = axbx + ayby + azbz. The cross product between two vectors, a
and b, is denoted c = a×b. The resulting vector, c, is always perpendicular to
both a and b. However, when a is parallel to b, the result becomes (0, 0, 0)T .

Truncation of a number, n, is denoted bnc, and this function returns the
“closest” integer, i, so that i ≤ n. Put another way, truncation is done towards
−∞. Similarly, the ceiling of a number is denoted dne, and this functions returns
the closest integer, i, so that i ≥ n, that is, truncation is done upwards towards
∞.

Shift operators are often used when doing binary math, and in this text right
shift is denoted as a >> s exactly as in C and C++, that is, all bits of a are
shifted s steps to the right. In general, shifting one step to the right means a
division by two. Left shift is denoted a << s, and here all bits in a are shifted
s steps to the left. Shifting only one step to the left, means multiplying by two.

The fractional part of a number, n, is obtained by removing the integer part,
and the definition we will use is shown below:

f = n− bnc = frac(n), (1.2)

where f is the fractional part of n. Note that frac(1.2) = 0.2 and frac(−1.8) =
0.2.

Sets of numbers are used for convenience in the notation. If an integer i can
take on any of the numbers, 0, 1, or 2, then the shorthand notation for that is
i ∈ [0, 1, 2]. For a real (e.g. floating point) number, f , we can used the following
notation: f ∈ [0, 1], which means that f can take on any real number between
0 and 1, including both 0 and 1. If we write f ∈ [0, 1) then f cannot take on
exactly 1, but otherwise it is exactly the same as f ∈ [0, 1]. Similarly, f ∈ (0, 1]
includes all numbers between 0 and 1 except for 0. The final construction is
f ∈ (0, 1), which again includes all numbers between 0 and 1, except for 0 and 1.

The decimal number system is used for the most part. Binary numbers are
indicated by a subscript of b at the end of the number, for example, 01010010b.
Similarly, a subscript of x indicates a hexadecimal number, e.g., FFC1x.

1.1.1 Homogeneous Coordinates and Projections

To be able to use matrices for all common transforms, such as rotations, shears,
and scalings (and any combinations of those), plus translations and projections,

c© 2005–2012 Tomas Akenine-Möller

1.1. Notation and operations 3

we need to turn to homogeneous coordinates.
The problem with translations is illustrated in the equation below:? ? ?

? ? ?
? ? ?

v = Mv = v + t, (1.3)

that is, we want to express the translation of the point v using a matrix. This
is not possible using a 3 × 3 matrix. Instead, we turn to homogeneous coor-
dinates. For a three-dimensional point, we simply augment the point with a
fourth element, so that

v =

vx
vy
vz
1

 . (1.4)

The translation can then be expressed as the matrix, M, below.
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

v =

vx + tx
vy + ty
vz + tz

1

 = v + t (1.5)

The fourth element of a vector, v is in general called vw, and can also be either
zero or any number at all.

v =

vx
vy
vz
vw

 . (1.6)

If vw = 0 then we have a direction vector, and when vw = 1, we interpret that
as a point. The addition of a direction vector, d, to a point, p, automatically
becomes a point as expected. This can be seen by examining what happens to
the fourth element after the addition.

Homogeneous coordinates can also be used for projections. After we multiply
a perspective projection matrix to a point, e, the fourth component is in general
not equal to one (nor zero). To obtain a point again, we say that we homogenize
the result. This is done by dividing all elements in the vector by the fourth
element, as shown below, where M is a projection matrix.

Me = h =

hx
hy
hz
hw

 =⇒

hx/hw
hy/hw
hz/hw
hw/hw

 =

hx/hw
hy/hw
hz/hw

1

 = p (1.7)

The arrow, =⇒, is used to denote the homogenization process. As can be seen,
we obtain a point again, since the fourth component of p is equal to one. Also,
note that the homogenization involves a division, and that is usually not allowed.

c© 2005–2012 Tomas Akenine-Möller

4 Chapter 1. Introduction

However, with homogeneous coordinates it is, and this fact makes it possible to
project points as well using matrices.

When you have transformed a point into eye space, first using a model
transform (also called object transform), and then a view transform (also called
camera transform), a point e is obtained. The next step is to use a projec-
tion matrix, in order to handle perspective effects, for example. Assume the
projection matrix is called M, then the projection is done as shown below:

Me = h. (1.8)

As can be seen, the result is denoted h. When written out fully, i.e., without
the vector and matrix shorthand, the contents of the projection matrix, M, can
be seen, and Equation 1.8 then becomes:

Me =

2n

r − l
0

r + l

r − l
0

0
2n

t− b
t+ b

t− b
0

0 0 −f + n

f − n
− 2fn

f − n
0 0 −1 0

ex
ey
ez
1

 =

hx
hy
hz
hw

 (1.9)

The matrix M above is the perspective projection matrix according to OpenGL.
The parameters are n and f for the near and far plane, and it must hold that
0 < n < f . Note that in eye space, the viewer looks down the negative z-
axis, but after the projection matrix, M, has been applied, the view direction
is along the positive z-axis (M includes a negative scaling along z). The other
parameters specify the frustum size on the near plane by giving a bottom-left
corner and a top-right corner. The parameters are b & l and t & r. Note that
for a symmetric frustum, it holds that r = −l and t = −b, which gives the
simplified projection matrix below.

M =

2n

r − l
0 0 0

0
2n

t− b
0 0

0 0 −f + n

f − n
− 2fn

f − n
0 0 −1 0

 (1.10)

As can be seen in Equation 1.9 (or using the matrix from Equation 1.10), the
fourth component, hw, of the result is in general not equal to one. Therefore,
homogenization must be done in order to make the result into a valid point
again. This is shown below.

Me =

hx
hy
hz
hw

⇒

hx/hw
hy/hw
hz/hw
hw/hw

 =

hx/hw
hy/hw
hz/hw

1

 =

px
py
pz
1

 = p (1.11)

As can be seen above, the projected point is denoted p here.

c© 2005–2012 Tomas Akenine-Möller

1.2. Pipeline Overview 5

geometric
primitives,
e.g., triangles

triangle
setup

triangle
traversal

pixel
shader

framebuffer
operations

PIXEL PROCESSING

Figure 1.1: An overview of the pixel-processing stages.

1.2 Pipeline Overview

See first lecture: application + vertex processign + pixel processing.

1.2.1 Geometry: Vertex Processing

See first lecture.

1.2.2 Pixel Processing

A high-level overview of the pixel-processing stages is shown in Figure 1.1.

c© 2005–2012 Tomas Akenine-Möller

6 Chapter 1. Introduction

c© 2005–2012 Tomas Akenine-Möller

Chapter 2

Edge Functions and
Triangle Traversal

The triangle is the geometrical rendering atom of real-time graphics. There are
many reasons for this. As a counter example, consider a quadrilateral (polygon
with four vertices). First of all, the four points need not be in the same plane,
and this makes it very hard to render it in a simple way, especially since there
are many different ways to define which points are on the surface of that prim-
itive. Furthermore, if the quadrilateral is planar, then the vertices could form
a concave polygon, which also makes hardware more complex. For example,
a single scanline can intersect with more than two polygon edges. As another
example, consider what would happen if you wanted to render a self-intersecting
polygon (such as a star). Now suddenly, one need to be careful when defining
the “inside” of the polygon.

The easiest way to provide a clean definition of a rendering primitive is to
find the simplest geometrical entity that fulfils the requirements of representing
a piece of a two-dimensional surface. The simplest such primitive is the trian-
gle, since a triangle cannot loose another vertex and still be a two-dimensional
primitive. If one vertex is removed, only two vertices remain, and these can only
define a line, which is one-dimensional. Thus, it makes sense to build hardware
for rendering triangles, and engineers and researchers have spent lots of time
fine-tuning this process and optimizing the hardware.

A triangle is always convex and always reside in a single plane. Furthermore,
interpolation of parameters (Chapter 3) is easy to define for a triangle, and fast
to compute. In this chapter, we will study how a triangle can be rasterized,
i.e., how all the pixels that are inside the triangle are found. These procedures
are also called triangle traversal algorithms, since they describe how the pixels
are traversed (visited). In Figure 2.1, the screen space coordinate system for
rasterization is shown. Notice that the center of a pixel is given by (x+ 0.5, y+
0.5), where x ∈ [0, w− 1] and y ∈ [0, h− 1] are integers, and w× h is the screen
resolution, e.g., 1920× 1200 or 320× 240 pixels. For now, we only consider the

7

8 Chapter 2. Edge Functions and Triangle Traversal

(0,0)

(16,8)

(0.5,0.5)

(1,1)

p0

x

y

p1

p2

Figure 2.1: A triangle, ∆p0p1p2, in screen space.

center of the pixel when testing whether a pixel is considered to belong to a
triangle. In Chapter 8, supersampling algorithms will be studied that removes
this constraint, and that increases the image quality.

This chapter starts with presenting the edge function, which is an excellent
tool when one wants to rasterize triangles, and then discuss different triangle
traversal algorithms, i.e., how the pixels inside a triangle can be found.

2.1 Edge Functions

In this section, we will describe edge functions [48], which are fundamental to
rasterizing triangles in hardware.

Assume we have a two-dimensional triangle described by three points, p0,
p1, and p2, where pi = (pix, p

i
y) (see Figure 2.1). Notice, that a z-coordinate

could also be included in the points, pi, but those are not needed in this chapter,
and so omitted. An edge function is the implicit equation, ax + by + c = 0, of
the line through two of these points. For example, the edge function through
p0 and p1 can be described as:

e(x, y) = −(p1
y − p0

y)(x− p0
x) + (p1

x − p0
x)(y − p0

y) = ax+ by + c. (2.1)

Equation 2.1 can easily be rewritten as e(x, y) = ax + by + c = n · (x, y) + c.
In the last step, n = (a, b), and this can be interpreted as the normal of the
line, i.e., it is a vector that is perpendicular to the line itself. For all points,
(x, y), that are exactly on the line, it holds that e(x, y) = 0. Points that are
on the same side as the normal gives e(x, y) > 0, and for points on the other
side, e(x, y) < 0. It should be noted that the edge function could be defined
so that the opposite holds as well. An example of an edge function is shown in
Figure 2.2.

Next, we attempt to build some intuition on why the edge functions work like
this. Note that in Equation 2.1, the normal is n = (−(p1

y − p0
y), p1

x − p0
x), i.e., a

c© 2005–2012 Tomas Akenine-Möller

2.1. Edge Functions 9

p0

e(x,y)>0

e(x,y)<0

e(x,y)=0

n=(a,b)

p1

u=(ux,uy)

v=(vx,vy)

Figure 2.2: Illustration of an edge function, e(x, y), defined by two points, p0

and p1. Imagine that you are located at p0 and look towards p1, then the
positive halfspace of the edge is to the left, and the negative halfspace to the
right. The latter space is not part of the triangle. The “normal” direction,
n = (a, b), of the edge is also shown.

vector with the same length as p1−p0, but perpendicular to it. Mathematically
speaking, this means that n·(p1−p0) = 0. Consider again Figure 2.2. When the
point u is “plugged into” the edge function, we get e(u) = n ·u+c = n ·(u−p0),
that is, the dot product between the vector from p0 to u and n. This can be
interpreted as the projection of u − p0 onto the normal, and since u is on the
same side of the edge as the normal, the projection must be positive. Similarly,
the point v is also projected on n and e(v) is negative since v is on the side of
the edge where the normal is not located. For a point exactly on the edge, the
projection becomes zero, and so e(x, y) = 0.

For each triangle, three edge functions can be created:

e0(x, y) = −(p2
y − p1

y)(x− p1
x) + (p2

x − p1
x)(y − p1

y) = a0x+ b0y + c0

e1(x, y) = −(p0
y − p2

y)(x− p2
x) + (p0

x − p2
x)(y − p2

y) = a1x+ b1y + c1

e2(x, y) = −(p1
y − p0

y)(x− p0
x) + (p1

x − p0
x)(y − p0

y) = a2x+ b2y + c2 (2.2)

Note that we have defined an edge function, ei(x, y), by using the two vertices,
pj and pk such that i 6= j and i 6= k. Put another way, an edge function,
ei(x, y), is derived from the the vertices opposite of pi. As we will see, this is
convenient when using the edge functions to compute barycentric coordinates
(Section 3.3). In Figure 2.3, the three edge functions of a triangle are illustrated.

In general, we could say that a point, (x, y), is inside the triangle if ei(x, y) ≥
0, for all i ∈ [0, 1, 2]. However, this may not always work as desired. Consider
two triangles sharing an edge, and assume that we sample each pixel at the
center of the pixel. For sample points that lie exactly on the shared edge, the
pixel will belong to both triangles, and thus, those pixels will be visited twice.
This gives incorrect results for shadow volume rendering [15] and transparency,
for example, and it also makes for worse performance. Another approach would
be to, instead, perform the test like this: ei(x, y) > 0. However, a pixel lying
exactly on the shared edge, will not be considered to belong to either triangle.

c© 2005–2012 Tomas Akenine-Möller

10 Chapter 2. Edge Functions and Triangle Traversal

p0

e2

e0

e1

n2

n1

n0

- +

+ -

-
+

+++

p1 p2

Figure 2.3: A triangle ∆p0p1p2 with its three edge functions e0(x, y), e1(x, y),
and e2(x, y). For points inside the triangle, all edge functions are positive. The
edge functions normals are ni = (ai, bi), where (ai, bi) comes from the respective
edge function, ei(x, y) = aix + biy + ci. Note that the lengths of the normals
are arbitrary scale in order to make the illustration readable.

bool Inside(e, x, y)

1 if e(x, y) > 0 return true;
2 if e(x, y) < 0 return false;
3 if a > 0 return true;
4 if a < 0 return false;
5 if b > 0 return true;
6 return false;

Figure 2.4: McCool et al’s [38] tiebreaker rule for determining whether a point
(x, y) is “inside” an edge, e.

Thus, a so called pixel dropout is generated, which simply is an undesired crack
between connected triangles.

There is an easy work around [38] though, as shown in Figure 2.4. This is
often called a tiebreaker rule. The idea is to only include points, (x, y), that
are fully inside the triangle (e > 0), and exclude points that are fully outside
(e < 0). If neither of these conditions are fulfilled then e = 0, and we choose
to include points that are to the “left” of the triangle (a > 0), and we exclude
points that are to the “right” of the triangle (a < 0). The remaining cases occur
when a = 0, i.e., horizontal edges. There are two such cases; either a “top” edge
or a “bottom” edge of a triangle. As long as we choose to only include one of
these cases, either of them work. In Figure 2.4, the bottom horizontal edge is
included, and the top horizontal edge is excluded. Owens [46] presents another
way to think about this, as shown in Figure 2.5.

Since, a and b are constants for each edge, the code in Figure 2.4 can be

c© 2005–2012 Tomas Akenine-Möller

2.1. Edge Functions 11

light

Figure 2.5: Shadowing rule for including/excluding point on edges. A directional
light source emits light in the direction indicated by the arrows. If a point (x, y)
is exactly on the edge, i.e., e(x, y) = 0, then the point is only included if the
edge is not shadowed.

bool InsideOptimized(e, t, x, y)

1 if e(x, y) > 0 or (e(x, y) == 0 and t) return true;
2 return false;

Figure 2.6: Optimized tie-breaking inside test using an edge function and a
precomputed bit, t.

optimized by precomputing a boolean (i.e., a single bit), t for each edge as
follows:

t =

{
bool(a > 0), if a 6= 0
bool(b > 0), else.

(2.3)

where bool(expr) returns 1 if the expression is true, and otherwise it returns
0. Given this bit, t, per edge, the inside-test simplifies to the code shown in
Figure 2.6.

Assume for a while that we place a sample point at the center of each pixel. A
nice property of the edge function is that it is inexpensive to determine whether
a sample point is inside the triangle if you have just evaluated a neighboring
sample point. In fact, this is one of the reasons why edge functions most often
are used for traversing the pixels inside a triangle. Now, assume that we have
just visited a pixel at (x, y), and would like to traverse to a neighboring pixel at
(x+ 1, y). Let us see what happens to the edge function, e, from Equation 2.1:

e(x+ 1, y) = a(x+ 1) + by + c = e(x, y) + a. (2.4)

As can be seen, it is just a matter of adding one of the constants, a, to e(x, y) in
order to evaluate e at (x+ 1, y). To traverse in the negative x-direction, simply
subtract a. In the y-direction, the calculations are similar. The four possibilities

c© 2005–2012 Tomas Akenine-Möller

12 Chapter 2. Edge Functions and Triangle Traversal

are shown below.

e(x+ 1, y) = e(x, y) + a

e(x− 1, y) = e(x, y)− a
e(x, y + 1) = e(x, y) + b

e(x, y − 1) = e(x, y)− b (2.5)

Thus, once the edge functions have been created and evaluated for the sample
point in one pixel, any of the four neighboring pixels can be evaluated using only
three (one per edge function) additions. All pixels can be reached by repeating
this process, though care must be taken in order to remain sufficient accuracy
(using, for example, enough bits in a fixed-point implementation).

More generally speaking, one can rewrite Equation 2.4 as shown below:

e(s + t) = e(s) + n · t, (2.6)

where s = (sx, sy), t = (tx, ty), and n = (a, b).

2.1.1 Fixed-Point Edge Functions

Now, assume that all triangles have been clipped and transformed to screen-
space, and the projected two-dimensional vertices of the triangle are called p0,
p1, and p2. Furthermore, we assume that the maximum resolution of the screen
is w × h pixels, and for simplicity, we set w = h = 2b.

Two triangles sharing an edge must get exactly the same edge function for
the shared edge. Otherwise, inconsistent behavior, e.g., pixel dropouts, can be
expected. Therefore, an edge function derived from p0 and p1 must be identical
to an edge function derived from p1 and p0 (only order differs). Thus, it is very
important to maintain a sufficient number of bits for the constants, a, b, and c,
because otherwise, pixel dropouts can occur. In this section, we look into the
number of required bits for doing this correctly.

When the vertices have been transformed into screen-space, they are usually
represented using floating-point representations. However, it is very convenient
to use fixed-point mathematics (see Appendix A) to represent the numbers, a, b,
and c, in the edge functions. The reason for this is that the dynamic behavior of
floating point numbers is not needed for these computations due to the limited
range of the input numbers, and fixed-point mathematics is less expensive to
implement in hardware. Therefore, we must truncate or round off the floating-
point coordinates. Simply truncating these to the positions at the center of the
pixels will give a bad appearance. For example, a slowly translating triangle
will appear to abruptly “jump” from one pixel to the next instead of showing
a smooth movement. To get reasonable quality, it is preferable to use a grid of
sub-pixel coordinates inside each pixel [36]. Assume we choose to use a sub-pixel
resolution of 2g × 2g grid locations inside each pixel.

This is illustrated in Figure 2.7. In general, the floating-point coordinates
have simply been rounded off to g fractional bits (see Appendix A for round-
ing). In the figure, there are only two bits for the sub-pixel grid, i.e., g = 2.

c© 2005–2012 Tomas Akenine-Möller

2.1. Edge Functions 13

Figure 2.7: Left: a pixel with the sampling point at the center of the pixel.
Middle-left: a 4 × 4 sub-pixel grid per pixel (blue points are shared by neigh-
boring pixels). Middle-right: a triangle vertex with floating-point coordinates.
Right: the floating-point vertex has been rounded off to the nearest sub-pixel
coordinate (which happens to coincide with the center sampling point.

Figure 2.8: Four triangles are sharing a vertex, which coincides with the sam-
pling point (center) of a pixel. The pixel should only belong to one of the
triangles, and a robust triangle rasterizer handles this case correctly.

Unfortunately, as a floating-point vertex is transformed into a fixed-point vertex
location, it may be located at the center of the pixel, and thus it coincides with
the sampling point. Now, assume that the vertex is part of a mesh, and several
triangles share that vertex. Since, the truncated vertex is located in the center,
more than one triangle may visit this pixel during triangle traversal, and yet,
the pixel should only belong to one of the triangles. Hence, the same type of
problem arises here as when two triangles shared an edge. An example is shown
in Figure 2.8.

One solution is to choose an inclusion direction. In Figure 2.8, this direction
is a vector pointing to the right. It should be noted that any vector works, as
long as the same vector is used for every triangle being rendered. Now, the
trick is to let the pixel belong to the triangle which has the vector in its interior.
In Figure 2.8, the dark triangle to the right includes the inclusion vector, and
therefore, the pixel belongs to that triangle only. In practice, it is possible to
determine this by looking at the edge functions for the two edges sharing the
vertex. This is left as an exercise.

Another solution is to offset the sub-pixel grid by a half sub-pixel as shown in
Figure 2.9. That is, the sub-pixel grid is placed so that no sub-pixel coordinate
coincides at the sample point(s) of the pixel. The advantage of that is that the

c© 2005–2012 Tomas Akenine-Möller

14 Chapter 2. Edge Functions and Triangle Traversal

Figure 2.9: Left: a single pixel with the sample point in the center of the pixel.
Middle-left: the pixel has been divided into a 4 × 4 sub-pixel grid offset half a
sub-pixel. Middle-right: the same triangle vertex with floating-point coordinates
as in Figure 2.7. Right: the triangle vertex has been “snapped” to the closest of
the sub-pixel grid locations. This has two advantages: a pixel sample point will
never coincide with a vertex, and a limited number of positions inside a pixel
gives us the opportunity to use fixed-point mathematics for the edge functions.

edge function will not be evaluated at the vertices of the triangle, and thus,
we can avoid pixel dropouts or double (unnecessary) pixel writes there. This
means that after truncation to the sub-pixel grid, each two-dimensional vertex,
p = (px, py), must be represented using two fixed-point numbers with [b.g] bits
per x and y. As can be seen in Equation 2.2, the normal of an edge function is
typically computed as:

n = (a, b) = (piy − pjy, pjx − pix), (2.7)

which means that a and b will need [b+ 1.g] bits for exactly representing the
difference using fixed-point numbers. The c-parameter of an edge function is
computed as:

c = −ax− by, (2.8)

for some point, (x, y), that lies exactly on the line. Both a and b are represented
using [b+ 1.g] bits and both x and y are vertex coordinates, which have been
truncated to [b.g] bits. Due to Equation A.8, the terms ax and by will both need
[2b+ 1.2g] bits, and thus [2b+ 2.2g] bits are needed for exactly representing the
c-parameter. To evaluate an edge function, we get the following:

e(x, y) = ax︸︷︷︸
[b+1.g]×[b.g]︸ ︷︷ ︸

[2b+1.2g]

+ by︸︷︷︸
[b+1.g]×[b.g]︸ ︷︷ ︸

[2b+1.2g]︸ ︷︷ ︸
[2b+2.2g]

+ c︸︷︷︸
[2b+2.2g]

︸ ︷︷ ︸
[2b+3.2g]

(2.9)

However, if the sub-pixel grid is offset as shown in Figure 2.9, the sub-pixel
grid does not coincide with the sample point, and one more bit of precision is
needed to take that into account. A simple way to implement this to compute
the edge function with the rounding shown in Figure 2.7, and is then simply

c© 2005–2012 Tomas Akenine-Möller

2.2. Triangle Traversal 15

Figure 2.10: Left: two pixels with each a 4 × 4 sub-pixel grid, and a triangle
with one edge (marked in black) that we want to evaluate at the center of the
pixels. Right: one way of implementing that evaluation. Simply round off the
vertices using the standard grid (Figure 2.7), and then offset the sampling point
(big circle).

offset the sample point location half a sub-pixel. This is shown in Figure 2.10.
So instead of using the point (x + 0.5, y + 0.5), where x and y are integers, to
evaluate the edge function, we must use (x+ 0.5− 2−g−1, y + 0.5− 2−g−1). In
Equation 2.9, this means that instead of using [b.g] bits for the x and y, [b.g + 1]
should be used.

2.2 Triangle Traversal

“To traverse a triangle” is the procedure that finds the pixels that are inside the
triangle. This process is often also referred to as rasterization. The positions of
the pixels are sent down the pipeline for further processing, and eventually colors
and depth values may be written to the color and depth buffer, respectively. In
this section, we assume again that only a single sample is taken per pixel, and
the sample is located in the center of the pixel. Several different strategies will
be explored and explained here. All of them have one thing in common: they
only test one sample (pixel) at a time. There exist more efficient algorithms
(that visits fewer unnecessary pixels), but those execute the Inside(x, y) for
more than one pixel at a time and requires more storage.

2.2.1 Bounding Box Traversal

The simplest strategy is to compute a bounding box of the triangle with respect
to the grid of center sample points, and then execute the Inside(x, y) test for
each edge for each center point of the pixels inside the bounding box. This
determines which pixels are inside the triangle, and the procedure is illustrated
in Figure 2.11. Once the bounding box has been found, the pixels can be visited
in any order, e.g., left-to-right/bottom-to-top. Clearly, this is not a very efficient
strategy since many more pixels are visited than are actually inside the triangle.

c© 2005–2012 Tomas Akenine-Möller

16 Chapter 2. Edge Functions and Triangle Traversal

Figure 2.11: A triangle is traversed using the bounding box strategy. The pixels
are shown as squares and the circles show where the sample points are located.
The light gray pixels are included in the bounding box, but only the blue pixels
are actually inside the triangle.

2.2.2 Backtrack Traversal

Another very simple traversal strategy is called backtrack traversal, and the
basic idea is shown in Figure 2.12. This type of traversal has been used in
graphics hardware for PDAs and other mobile devices [58].

Traversal starts at the pixel center below the topmost vertex, then the strat-
egy is to process one scanline at a time, always from left to right. Therefore,
on each scanline, one must make sure that we have traversed so that we start
at a pixel that is to the “left” of the triangle. However, it should be noted that
traversal never need to go outside the bounding box (as in Section 2.2.1) of the
triangle. When a pixel that is outside to the left has been found, traversal can
continue to the right until a pixel that is outside to the right of the triangle is
found. At that point, traversal continues to the pixel below the current pixel.
Backtracking to the left follows until a pixel that is outside to the left of the
triangle is found, and so on.

In the text above, we have used a terminology of “outside to the left” and
“outside to the right.” Recall that the normal of a triangle points inwards the
inside of the triangle, and that the normal is n = (nx, ny) = (a, b). By “outside
to the left,” we mean a point (or pixel) such that the point is outside at least
one edge function with a > 0. Similarly, points “outside to the right” of the
triangle are points that are outside at least one edge function with a < 0. An
example of when this is clearly needed is shown to the right in Figure 2.12. On
the third scanline from the top, we need to traverse down to the pixel below.
As can be seen, that pixel is outside one edge function, and therefore the pixel
is outside the triangle. However, to find the first pixel that is outside to the left
of the triangle, this test is not sufficient. Instead, we need to traverse to the left
until we find a pixel that is outside to the left at least one edge function.

c© 2005–2012 Tomas Akenine-Möller

2.2. Triangle Traversal 17

Figure 2.12: Backtrack traversal. Left: pixels are always visited one scanline at
at time, and always from left to right. Therefore, when one scanline is finished,
the next scanline starts its processing by backtracking until the current pixel is
outside to the left of the triangle. Right: a thin triangle being traversed. Notice
that only one pixel is included.

2.2.3 Zigzag Traversal

The backtrack traversal strategy visits pixel during its backtracking stage, but
it is only doing this to find a pixel outside to the left. We do not compute depth,
color, or anything else. A more efficient algorithm is called zigzag traversal as
suggested by Pineda [48], and described in more detail by Akenine-Möller and
Ström [7]. An example of this is shown in Figure 2.13. As can be seen, one
scanline at a time is traversed, and the traversal order (left-to-right or right-to-
left) is altered every scanline.

In that figure, some cases are illustrated that are not so efficient, but in
general this algorithm visits fewer pixels than the backtracking traversal strat-
egy. It should be noted that pixels are visited in backward order on every other
scanline and this can make memory accesses less efficient.

Bounding box, backtrack and zigzag traversal can work by always traversing
to a pixel that is either to the left, to the right, above or below the current
pixel. Therefore, incremental updates of the edge functions (page 2.1) can be
done which makes for less expensive implementation. Next, we will discuss more
expensive and more efficient traversal strategies.

2.2.4 Tiled Traversal

In this section, tiled traversal strategies will be described. A tile is a rectangular
region consisting of w× h pixels.Common choices of tile sizes are 4× 4 or 8× 8
pixels. Tiled traversal algorithms visit all pixels1 inside a tile before proceeding
to the next tile. An example is shown in Figure 2.14.

1Several tiles can also be processed in parallel, but the same principle applies.

c© 2005–2012 Tomas Akenine-Möller

18 Chapter 2. Edge Functions and Triangle Traversal

Figure 2.13: Zigzag traversal. Traversal order is changed on every scanline.
Note that when we move down from the second to the third scanline, we need
to traverse to the right until we find a pixel that is outside to the right of
the triangle. Also, when moving down to the fifth scanline, two pixels that
are outside are traversed before finding a pixel that is inside. On the seventh
scanline, it is even worse; four pixels are visited that are outside.

There are several reasons why tiled traversal algorithms are to prefer over
the traversal strategies that were described previously. Tiled traversal makes for
better texture caching performance (Section 5.6) [24]. Furthermore, tiled traver-
sal makes is possible to implement algorithms that reduces bandwidth usage.
This includes, for example, depth- and color-buffer compression (Chapter 7),
zmin- and zmax-culling (Section 6.1).

Finding tiles that overlap a triangle is very similar to finding pixels that are
inside the triangle. However, an algorithm is needed for testing whether a tile
overlaps with the triangle (compared to just testing whether a sample point is
inside the triangle), and a traversal strategy for finding tiles that can potentially
contain pixels inside the triangle. We start by describing a simple algorithm [5]
for testing whether a tile overlaps a triangle, and then continue describing some
simple traversal strategies.

Tile/Triangle Overlap Test

As it turns out, finding out whether a tile overlaps a triangle can be determined
by using the edge functions again. A tile is excluded if either the tile is fully
outside the bounding box of the triangle, or if the entire tile is outside at least
one of the edge functions. The bounding box test is trivial, so we continue
describing the second part. Testing whether a tile is outside an edge function can
be implemented by evaluating the edge function for all four corners of the tile,
and if all four corners are outside, then the tile is outside that edge. However,
there is a smarter way [5] that will be described now.

Haines and Wallace [23] observed that when testing whether a three-dimensional
box intersects with a plane, it suffices to test the two box corners that form a

c© 2005–2012 Tomas Akenine-Möller

2.2. Triangle Traversal 19

5
1 2 3 4

6
Figure 2.14: A possible traversal order when using tiled traversal. In this exam-
ple, the tile size is 4×4 pixels, and the processing starts with the tile enumerated
with one. The four pixels inside the triangle inside that tile are first processed,
before moving on to tile two, and so on.

e(x,y)>0 n=(a,b)

e(x,y)<0

x

y

Figure 2.15: The corners of a 4 × 4 tile are projected onto the edge’s normal.
Only the corner with the black large circle needs to be tested against this edge,
since its projection onto n is greatest.

diagonal that most closely aligns with the plane’s normal. In addition, Hoff [32]
suggests that only one of those corners need to be tested to determine if the box
is in the negative halfspace (or in the positive halfspace). Since a plane is an
edge function and a three-dimensional box is a tile in two-dimensional space, a
similar test can be used here. Thus, we can reduce to testing a single corner of
the tile in order to test whether the tile is outside an edge function. The corner
that should be tested depends on the direction of the edge function.

Consider Figure 2.15 for a while. As can be seen, a tile’s four corners have
been projected onto the normal of an edge. The top left corner has the greatest
projection, and this means that we only need to test whether that corner is
outside the edge. If it is outside, the entire tile is guaranteed to be outside the
edge. Otherwise, the tile is partially overlapping the edge or fully inside.

In order for this to be efficient, we cannot actually perform the projection.
Instead, we use the normal, n = (nx, ny) = (a, b), of the edge to determine this.

c© 2005–2012 Tomas Akenine-Möller

20 Chapter 2. Edge Functions and Triangle Traversal

Looking again at Figure 2.15, we can conclude that one of the two topmost
corners of the tile must be the correct corner since ny > 0. Moreover, since
nx < 0, the correct corner must be the upper left corner of the tile.

Now, assume that the lower left corner of a tile is denoted s = (sx, sy), and
that the edge evaluation there is e(s). Any of the four corners can be evaluated
using the edge function by adding a constant t to s. The value of t = (tx, ty)
should be either (0, 0), (w, 0), (0, h), or (w, h), where w×h is the size of a tile [5]:

tx =

{
w, nx ≥ 0
0, nx < 0

, ty =

{
h, ny ≥ 0
0, ny < 0

. (2.10)

This type of setup is needed once per edge function and is therefore done in
the triangle setup, before traversal starts. The value of t from Equation 2.10
is plugged into Equation 2.6. The involved computations are inexpensive: two
comparisons (Equation 2.10), two shifts (when w and h are powers of two), two
additions, and also the evaluation of the edge function at the bottom left corner,
e(s).

Tiled Traversal Strategies

At this point, we know how to determine whether a tile overlaps (partially or
fully) a triangle. For such tiles, we need to traverse the pixels inside the tile,
and we also need to traverse the tiles themselves in some order.

Both the bounding box strategy (Section 2.2.1) and the zigzag traversal
technique (Section 2.2.3) are straightforward to adapt to traversing tiles instead
of traversing pixels. However, again zigzag traversal is expected to perform
much better.

Once a tile has been found that is partially or fully overlapping with a
triangle, any technique can be used to traverse the pixels. Bounding box, back
track traversal, or zigzag all work for this purpose.

A more sophisticated scheme is presented by McCormack and McNamara [40].

c© 2005–2012 Tomas Akenine-Möller

Chapter 3

Interpolation

The purpose of this chapter is to explain interpolation of scalar values over
a triangle, both in perspective and using a parallel (also called orthographic)
projection. This is something that is fundamental to computer graphics, and in
particular to rasterization algorithms.

3.1 Barycentric Coordinates

We start by studying how to interpolate over a two-dimensional triangle. As-
sume, we have a triangle, ∆p0p1p2, with scalar values, (s0, s1, s2), at the re-
spective vertices. Given an arbitrary point, p, inside a triangle, the goal of using
barycentric coordinates is to interpolate the scalar s-values over the triangle in
a continuous manner with respect to p’s position. This situation is illustrated
to the left in Figure 3.1.

p0,s0

p1,s1

p2,s2

A0
A1

A2

p

A2

u=0

u=1

u=0.34
A1

v=1

v=0

v=0.37

Figure 3.1: Left: a triangle with scalar values (s0, s1, s2) at the vertices. The
barycentric coordinates are proportional to the signed areas (A1, A2, A0). Mid-
dle: illustration of the barycentric coordinate, ū. Right: illustration of the
barycentric coordinate, v̄. Note that on the dashed lines, the respective barycen-
tric coordinate is constant.

21

22 Chapter 3. Interpolation

Here, the barycentric coordinates for a triangle are denoted: (ū, v̄, w̄),1 and
those are proportional to the signed areas (A1, A2, A0) of the sub-triangles
formed by a triangle edge and p. Note that we use the bar over these barycen-
tric coordinates. This is in contrast to perspectively-correct interpolation coor-
dinates, described in Section 3.2, which do not use the bars.

Computing the cross product of two edge vectors of a triangle gives the area
of the parallelogram, and by dividing by two, the area of the triangle is obtained.
For example, the signed area for A1 is computed as:

A1 =
1

2
((px − p0

x)(p2
y − p0

y)− (py − p0
y)(p2

x − p0
x)), (3.1)

and similarly for the other areas. For computer graphics applications, we almost
always use barycentric coordinates normalized with respect to the total triangle
area, A∆ = A0+A1+A2. In fact, this is a special case of barycentric coordinates
called areal coordinates [55]. When we refer to barycentric coordinates in this
text, however, we always mean these normalized barycentric coordinates. Hence,
the barycentric coordinates are computed as:

(ū, v̄, w̄) =
(A1, A2, A0)

A∆
. (3.2)

Note that this normalization process makes the terms sum to one: ū+ v̄+w̄ = 1.
Therefore, we often only compute (ū, v̄), and derive the third coordinate as
w̄ = 1− ū− v̄.

Given the barycentric coordinates of a point, p, we can compute an inter-
polated s-value at p as shown below:

s = w̄s0 + ūs1 + v̄s2 = (1− ū− v̄)s0 + ūs1 + v̄s2

= s0 + ū(s1 − s0) + v̄(s2 − s0). (3.3)

Now, return to the middle part of Figure 3.1. As can be seen there, the
ū-parameter, which is computed as A1/A∆, reaches 0 for all points on the line
through p0 and p2. This line has a direction, d = p2 − p0. For all points on
a line with origin p1 and direction d, we see that ū = 1. Why is it that ū is
constant for all points on a line with direction d? The answer is that the area,
A1, of all such triangles is constant, because they have the same base length
(the edge from p0 to p2), and the same height (perpendicular distance from
the edge to p). This also means that the ū-parameter varies linearly inside the
triangle from the edge p0p2 to p1, since the height (perpendicular to p0p2)
of the triangle ∆p1p0p2 grows linearly. The same case for the v̄-parameter is
illustrated to the right in Figure 3.1. These facts even hold for points outside
the triangle. However, for a point, p, inside the triangle, it must hold that

ū ≥ 0,

v̄ ≥ 0, and

w̄ ≥ 0⇔ ū+ v̄ ≤ 1. (3.4)

1 Note that the w̄ is not the w that we use for the homogenization process (Section 1.1.1).

c© 2005–2012 Tomas Akenine-Möller

3.2. Perspectively-Correct Interpolation 23

projection
plane

projection
plane

Figure 3.2: Left: per-object perspective foreshortening. The tree farther away
appears smaller since its projection is smaller. Right: inside an object (in this
case, a two-dimensional line), perspective foreshortening occurs as well and for
the same reasons as the case to the left. Interpolation of, for example, color on
the line must be done with perspective in mind.

Outside the triangle, the barycentric coordinates can be greater than one, and
even negative.

Note that from now on, we avoid using the w̄ and instead always use 1−ū− v̄
to avoid confusion with the fourth component in homogeneous coordinates.

3.2 Perspectively-Correct Interpolation

If you stand in a long corridor with doors on the walls, doors far away will appear
smaller than the the ones being close. This is a simple example of perspective
foreshortening, that is, objects’ perceived size varies with the distance to the
object. Another way of looking at this, is that objects far away project to a
smaller size on your eye lobe, and thus naturally appear smaller.

Perspective foreshortening is something that we must handle in computer
graphics as well. The reason for this is that some kind of perspective transform
is often used, and these transforms mimic this behavior. However, even if the
triangles appear with correct size, we often interpolate parameters inside the
triangles, and this must also be done with perspective foreshortening in mind.
See Figure 3.2 for two examples of these types of perspective effect. In Figure 3.3,
the difference between perspective interpolation inside a polygon and linear
interpolation is shown. Another example is shown in Figure 3.4, where another
texture is used.

Perspective correct interpolation is known for its per-pixel division opera-
tion, that is, in order to compute perspectively-correct interpolation, one need
to do one division per pixel. Here we will explain why, and how interpolation
is done. From a high level, we want perspective-correct interpolation by using
linear interpolation, which is inexpensive, as much as possible. Assume that
each vertex has a parameter, si, i ∈ [0, 1, 2], as shown in Figure 3.1. Blinn [11]
and Heckbert & Moreton [28] first described how to do perspective-correct in-
terpolation. Here, however, we will loosely follow the description by Olano and
Greer [45].

As can be seen by looking at the perspective transform matrix, M (Equa-
tion 1.9 and 1.10), the hx and hy are simply the eye-space coordinates (e) scaled

c© 2005–2012 Tomas Akenine-Möller

24 Chapter 3. Interpolation

Figure 3.3: A quadrilateral (composed of two triangles) with a texture map of
an 4× 4 checker board. Left: without perspective correction. Right: with per-
spective correction. To the left, it is obvious which diagonal of the quadrilateral
that is shared between the triangles.

by some factor, and possibly translated by some amount. Note also that hw is
simply the z-coordinate in eye space, which can be seen by looking at the same
matrices. Therefore, the coordinates, (hx, hy, hw), can be considered as e trans-
formed into some “scaled eye space.” Hence, we can write a formula for linearly
interpolating the parameter s over a triangle in “scaled eye space” as:

s(hx, hy, hw) = khx + lhy +mhw, (3.5)

where k, l,m are some parameters that can be determined from the three ver-
tices of the triangle. This is so, since si = khix + lhiy +mhiw for all three vertices,
i ∈ [0, 1, 2], and thus we have three unknowns and three equations, and therefore
the system is solvable for non-degenerate triangles. In Equation 3.5, the interpo-
lation is done in a “scaled eye space.” However, when we traverse the pixel inside
a triangle, we do that in screen space, and therefore, we rewrite Equation 3.5 so
that it contains the screen space coordinates, (px, py) = (hx/hw, hy/hw), instead
of (hx, hy, hw):

s(hx, hy, hw) = khx + lhy +mhw ⇔

k
hx
hw

+ l
hy
hw

+m
hw
hw

= kpx + lpy +m = ŝ(px, py) (3.6)

The surprising result is that we now can interpolate linearly in screen space,
since the resulting function only depends on px and py. However, the function,
denoted ŝ(px, py), that can be interpolated in this way is s divided by w (or more
correct, by hw). The desired result from the perspective correct interpolation is
not s/w but rather just s. To correct for that, the standard trick is to linearly
interpolate the function 1/w over the triangle in screen space. Let us call that
function ô(px, py) (o is for one). So, if we interpolate s/w in screen space as

c© 2005–2012 Tomas Akenine-Möller

3.2. Perspectively-Correct Interpolation 25

Figure 3.4: Left: a square texture. Middle: without perspective correction.
Right: with perspective correction. Notice that in the middle figure, the texture
is distorted, and it does not behave as expected.

well as 1/w, we can recover the correct parameter as:

s/w

1/w
=
sw

w
= s. (3.7)

This is where the per-pixel division comes from. More formally, Equation 3.7 is
expressed as:

s(px, py) =
ŝ(px, py)

ô(px, py)
(3.8)

Interpolation of ô can be done in the same way as in Equation 3.6, and we then
obtain:

ô(px, py) = k′px + l′py +m′. (3.9)

Thus, we have showed that we can use linear interpolation in screen space
of ŝ and ô, and by computing s = ŝ/ô, we obtain the perspectively correct
interpolation of s. This has been the goal of the entire chapter.

In theory, we can do perspectively correct interpolation by first computing
si/hiw and 1/hiw, i ∈ [0, 1, 2], that is, for each vertex. This is typically done
in the triangle setup. Then we compute the barycentric coordinates, (ū, v̄),
using Equation 3.2, for a particular pixel and use these to linearly interpolate
both s/hw and 1/hw. Finally, we correct for perspective by computing s =
s/hw
1/hw

. This generates a correct result, but usually this is not the best way to

do it, especially when we have many parameters to interpolate in perspective.
For example, we may have many texture coordinates per vertex, per-vertex
color, fog, etc., that should be interpolated. For such cases, a better method is
to compute perspectively correct interpolation coordinates once per pixel, and
then interpolate all parameters using those. Such a technique is presented in
Section 3.3.2.

c© 2005–2012 Tomas Akenine-Möller

26 Chapter 3. Interpolation

p0

p1

p2

A1

A2

A0

p

p0

p1

p2

p

n2

h

b e2(x,y)

Figure 3.5: Left: a triangle with vertices p0, p1, and p2. We are interested
in computing the barycentric coordinates, (ū, v̄) = (A1, A2)/(A0 + A1 + A2).
Right: for the v̄-parameter, we want to compute A2 = bh/2, which is the area
of the darkest gray triangle.

3.3 Interpolation using Edge Functions

In this section, we will show how the edge functions from Section 2.1 can be
used to compute barycentric coordinates, (ū, v̄), and also perspectively-correct
interpolation coordinates, (u, v).

3.3.1 Barycentric Coordinates

Again, assume we have a triangle ∆p0p1p2, as shown to the left in Figure 3.5.
Recall that the edge function, e2(x, y), for the triangle vertices p0 and p1 is
computed as (see Equation 2.2):

e2(x, y) = −(p1
y − p0

y)(x− p0
x) + (p1

x − p0
x)(y − p0

y) = a2x+ b2y + c2 (3.10)

The “normal” of the edge is n2 = (a2, b2). If we denote the point (x, y) by p
then Equation 3.10 can be rewritten as:

e2(x, y) = e2(p) = n2 · (p− p0) (3.11)

From the definition of the dot product, this can be rewritten as follows:

e2(p) = ||n2|| ||p− p0|| cosα, (3.12)

where α is the angle between n2 and p−p0. Note that b = ||n2|| must be equal
to the length of the edge p0p1. The geometric interpretation of the second
term ||p−p0|| cosα is that it represents the length of the vector obtained when
projecting p−p0 onto n2, and that length must be exactly the height, h, of the
sub-triangle ∆pp0p1. This is illustrated to the right in Figure 3.5.

This means that e2(x, y) = bh, that is, the edge function returns twice the
area, A2. Thus, if the edge functions from Equation 2.2 are used,2 then the

2Note that an edge function can be any implicit line equation through two vertices of a
polygon. In this case, we assume that the exact definition from Equation 2.2 is used.

c© 2005–2012 Tomas Akenine-Möller

3.3. Interpolation using Edge Functions 27

computation of barycentric coordinates is particularly simple, as can be seen
below:

ū =
e1(x, y)

2A∆

v̄ =
e2(x, y)

2A∆
(3.13)

where A∆ is the area of the triangle. It should be noted that ū and v̄ really are
functions of (x, y), but that has been omitted in the equation above for clarity.
The “third” barycentric coordinate is obtained as 1− ū− v̄ since all three should
sum to one, or alternatively as e0(x, y)/(2A∆). So, if edge functions are used
to find pixels inside a triangle, we already have the evaluations of e1(x, y) and
e2(x, y) for a particular pixel. The area is constant for the triangle, so 1/(2A∆)
can be computed as part of the triangle setup, and the division avoided.

These barycentric coordinates, (ū, v̄), can be used to interpolate depth. If
d0 = h0

z/h
0
w, d1 = h1

z/h
1
w, and d2 = h2

z/h
2
w are the known depths for the three

vertices, then (ū, v̄) can be used to compute an interpolated depth value for a
certain pixel. This is done as shown below:

d(x, y) = (1− ū− v̄)d0 + ūd1 + v̄d2 = d0 + ū(d1 − d0) + v̄(d2 − d0). (3.14)

3.3.2 Perspective-Correct Interpolation Coordinates

In this section, we show how to compute, what we call, perspectively-correct
interpolation coordinates. What we mean by this is a set of coordinates, (u, v)
(notice that the bars are missing now), that are similar to barycentric coordi-
nates, (ū, v̄), but (u, v) are computed with perspective in mind. Note, that these
coordinates are not proportional to the areas of the subtriangles as previously
described. Once, (u, v) have been computed, we can interpolate any parameters
across the triangle in perspective. Thus, if we have some scalar si, i ∈ [0, 1, 2] at
each vertex, then, for a particular pixel, (x, y), we compute a perspective-correct
s-value at (x, y) as:

s(x, y) = (1− u− v)s0 + us1 + vs2 = s0 + u(s1 − s0) + v(s2 − s0). (3.15)

A very nice property is that (u, v) can be used to interpolate any parameters
that should be interpolated across the triangle using Equation 3.15.

The following is a derivation of how to compute (u, v), and the result is
shown in Equation 3.23. In Figure 3.6, a triangle is shown (compare to the
middle illustration of Figure 3.1), where the parameters s0 = s2 = 0 and s1 = 1.
If the s-parameters are interpolated with perspective taken into account, we will
obtain the perspectively interpolated coordinate u. The reason for this is that
ū = 0 at p0 and p2, and ū = 1 at p1 (again, see middle illustration of Figure 3.1).

According to Equation 3.8, u can therefore be computed as:

u(x, y) =
ŝ(x, y)

ô(x, y)
. (3.16)

c© 2005–2012 Tomas Akenine-Möller

28 Chapter 3. Interpolation

p0,s0=0

p1,s1=1

p2,s2=0

Figure 3.6: The triangle configuration for computing the “perspectively-correct”
parameter, u. If the si-values, i ∈ [0, 1, 2] are interpolated with perspective in
mind, then we obtain u.

Both functions ŝ and ô are computed using linear interpolation, and so can be
computed using (ū, v̄):

ŝ(x, y) = (1− ū− v̄)
0

h0
w

+ ū
1

h1
w

+ v̄
0

h2
w

(3.17)

ô(x, y) = (1− ū− v̄)
1

h0
w

+ ū
1

h1
w

+ v̄
1

h2
w

(3.18)

The perspectively-correct u is then obtained as:

u(x, y) =

ū

h1
w

(1− ū− v̄)

h0
w

+
ū

h1
w

+
v̄

h2
w

. (3.19)

Using Equation 3.13, and some simplification, this reduces to:

u(x, y) =

e1

h1
w

e0

h0
w

+
e1

h1
w

+
e2

h2
w

, (3.20)

where ei, i ∈ [0, 1, 2] are edge functions. To simplify notation a bit, we introduce
the following functions:

f0 =
e0(x, y)

h0
w

, f1 =
e1(x, y)

h1
w

, f2 =
e2(x, y)

h2
w

. (3.21)

Using these, and doing a similar computation for the v-parameter, we obtain
perspectively-correct interpolation coordinates as:

u(x, y) =
f1(x, y)

f0(x, y) + f1(x, y) + f2(x, y)
(3.22)

v(x, y) =
f2(x, y)

f0(x, y) + f1(x, y) + f2(x, y)
(3.23)

c© 2005–2012 Tomas Akenine-Möller

3.4. Triangle Setup and Per-Pixel Computation 29

Notation Description

1 ai, bi, ci, i ∈ [0, 1, 2] Edge functions

2
1

2A∆
Half reciprocal of triangle area

3
1

hiw
Reciprocal of w-coordinates

Table 3.1: Triangle setup computations. These computation should include
everything that can be performed only once per triangle, and thus factored out
of the per-pixel computations.

These can be seen as rational basis functions [38]. Equations 3.22 and 3.23 are
fundamental to triangle rasterization and interpolation, and constitute the core
result of perspective-correct interpolation.

By using the least common divisor, Equation 3.20 can be rewritten as:

u(x, y) =
(h0

wh
2
w)e1

(h1
wh

2
w)e0 + (h0

wh
2
w)e1 + (h0

wh
1
w)e2

. (3.24)

The same rewrite can be done for v(x, y). This formulation may be bene-
ficial, but the reciprocals 1/hiw are needed in the triangle setup anyway, in
order to compute the depths hiz/h

i
w, and also the screen space coordinates,

(hix/h
i
w, h

i
y/h

i
w), of the triangle. With the formulation in Equation 3.24, we also

need to store three terms of the type: hiwh
j
w, or we can bake them into the edge

function parameters, a, b, and c.

3.4 Triangle Setup and Per-Pixel Computation

In this section, we summarize what computations are done in the triangle setup,
and what is done per pixel. It must be emphasized that there are endless
variations on how to do this, and this is just one way of doing it.

The triangle setup calculations are shown in Table 3.1. As can be seen, the
parameters for the edge functions, ei(x, y), i ∈ [0, 1, 2] must be computed so that
triangle traversal can be performed. Furthermore, half the reciprocal of triangle
area is needed, since Equation 3.14 is used to compute per-pixel depth, and

1

2A∆
is used to compute (ū, v̄) as shown in Equation 3.13. Line 3 in Table 3.1

shows that the triangle setup should compute the reciprocal of the hiw for each
vertex as well. These will be used when evaluating Equation 3.21.

In Table 3.2, the basic computations that need to be performed per pixel
are shown. As can be seen, the edge functions need to be evaluated per pixel,
so that we can find out whether the sample point, (x, y), is inside the triangle.
After that, the depth test is usually done, and for that barycentric coordinates
are computed (line 2), and then per-pixel depth is computed on line 3. If the
depth test fails, the rest of the computations can be avoided. Otherwise, we

c© 2005–2012 Tomas Akenine-Möller

30 Chapter 3. Interpolation

Notation Description

1 ei(x, y) Evaluate edge functions at (x, y)
2 (ū, v̄) Barycentric coordinates (Equation 3.13)
3 d(x, y) Per-pixel depth (Equation 3.14)
4 fi(x, y) Evaluation of per-pixel f -values (Equation 3.21)
5 (u, v) Perspectively-correct interpolation coordinates (Equation 3.23)
6 s(x, y) Interpolation of all desired parameters, si (Equation 3.15)

Table 3.2: Per-pixel computations for pixel (x, y). Only the very basic com-
putations are shown. In general, textures etc can be accessed and blended in
arbitrarily in a pixel shader.

need to prepare for computation of perspectively-correct interpolation of any
parameters. Therefore, f -values are computed (line 4), and this allows us to
compute the (u, v). When this is done, we can interpolate any scalar parameter,
s, with perspective in mind (line 6).

c© 2005–2012 Tomas Akenine-Möller

Chapter 4

Pixel-Processing

This chapter is still not finished.

4.1 The Pixel-Processing Pipeline

TODO: Explain the simplest. Explain depth fail/pass.

4.2 The Pixel-Processing Equation

Message to students: the following is just quick, non-finished notes. Refer to
the slides from the course for a more complete presentation.

Assuming the scene to be rendered has an average depth complexity of d, the
average overdraw, o(d), can be estimated as [14]:

o(d) = 1 +
1

2
+

1

3
+ · · ·+ 1

d
. (4.1)

FIX: explain the formula above. Interesting: the above formula shows the
fragments that pass the depth test. The fragments that fail is d-o, but we can
also present a formula for that, which could be interesting to look at (for better
understanding).

Stupid formula.
b = d× (Zr + Zw + Cw + Tr), (4.2)

Without using any algorithms or special techniques to reduce bandwidth,
the bandwidth required by a single pixel for a single view is [7]:

b = d× Zr + o× (Zw + Cw + Tr), (4.3)

where Zr and Zw are the cost for reading and writing a depth buffer value,
respectively. Furthermore, Cw is the cost for writing to the color buffer (this
assumes that no blending is done, since the term Cr is missing) and Tr is the

31

32 Chapter 4. Pixel-Processing

total cost for accessing textures for a fragment. Standard values for these are:
Zr = Zw = Cw = 4 bytes and a single texel is often stored in four bytes.
Trilinear mipmap filtering [56] is commonly used for reducing aliasing artifacts,
and this requires eight texel accesses, which makes Tr = 8× 4 = 32 bytes for a
filtered color from one texture.

In a sense, Equation 4.3 is proof for that the rendering pipeline can be a true
brute force (and hence kind of stupid) architecture. However, several chapters
that follow, will reduce this cost. Continue here...

If a texture cache [24] with miss rate, m, is used Equation 4.3 becomes:

b = d× Zr + o× (Zw + Cw +m× Tr)

= d× Zr + o× Zw︸ ︷︷ ︸
depth buffer, Bd

+ o× Cw︸ ︷︷ ︸
color buffer, Bc

+ o×m× Tr︸ ︷︷ ︸
texture read, Bt

= Bd +Bc +Bt (4.4)

The equation above is what we call the pixel-processing equation.

c© 2005–2012 Tomas Akenine-Möller

Chapter 5

Texturing

Texturing [9] is the process of applying some image, called a texture, to a prim-
itive being rendered in order to add detail to a rendered scene. The most
common example in real-time rendering is to “glue” a two-dimensional image
onto a triangle that is being rendered. However, texturing is also used for many
other things, and instead of storing image content in the texture, some other
parameter can be stored. For example, when using bump mapping [10], a ge-
ometrical displacement, such as a normal vector, can be stored in the image
instead. With programmable shaders, this trend has exploded, as the program-
mer has the possibility to use his/her imagination to come up with clever things
to store in a texture, and to use this information to achieve some desired effect.
This chapter will mainly deal with two-dimensional textures, but many of the
concepts easily generalize to higher dimensions. Two examples of texturing are
shown in Figure 5.1.

This chapter starts with a description of texture images, texture space, and

Figure 5.1: Left: a simple texture is “glued” onto a teapot. Right: a variety
of texturing techniques are used to create an ocean surface. Bump mapping,
reflection mapping and refraction mapping are used.

33

34 Chapter 5. Texturing

texture coordinates. Then follows a theoretical explanation of texture filtering
in Section 5.2. For example, bilinear filtering and trilinear mipmapping are
discussed, and these are techniques for obtaining better quality and reducing
the effect of aliasing. A description of how caches work in general in presented
in Section 5.5. When both caches and filtering are understood, texture caching
can be explained. Finally, texture compression is a mean for further reducing
bandwidth at some small loss of image quality, and several techniques for that
is described at the end of this chapter (but for now, we will only give pointers to
papers to be read—write about texture caching and texture compression later).

5.1 Texture Images

In this section, texture images, their corresponding texture space, and a trian-
gle’s texture coordinates will be discussed. In general, we refer to a texture as
an n-dimensional image consisting of w1 ×w2 × · · · ×wn image elements called
texels. To simplify texturing hardware, it is often assumed that the dimensions
of a texture are powers of two,1 that is, wi = 2ei , where ei is a positive inte-
ger. In the majority of cases, each texel can hold a color, for example stored as
RGB (24 bits) or RGBA (32 bits). However, the principles described here can
be applied to, e.g., textures containing only intensity content or floating point
values, or the texture image can even be stored in a compressed format.

To render a triangle with a texture on it, texture coordinates, ck, k ∈ 0, 1, 2,
need to be assigned to the triangle’s vertices. Each texture coordinate is simply
a set of two-dimensional coordinates (when two-dimensional textures are used),
e.g., c0 = (c0s, c

0
t). The texture space in OpenGL is denoted (s, t), and so that

is used here as well. Texture coordinates and a texture image are illustrated in
Figure 5.2. From the figure, it can be understood that it is the responsibility of
the user to assign the texture coordinates to the triangle’s vertices in order to
achieve the desired result.

From Section 3.3.2, it is known that perspective correct interpolation co-
ordinates, (u, v), can be computed for each fragment. These are then used
together with the triangle’s texture coordinates, ck, to compute the fragment’s
coordinate in texture space, (s, t), as shown below, which is simply the standard
formula for interpolation of parameters in a triangle:

(s, t) = (1− u− v)c0 + uc1 + vc2. (5.1)

The different coordinate systems, including (s, t), that are involved in texturing
are illustrated in Figure 5.3. The (s, t)-coordinates are floating point values,
and to simplify notation a bit, we use:

s̃(x, y) = w × s(x, y),

t̃(x, y) = h× t(x, y), (5.2)

1Though, arbitrary rectangles can be handled by most desktop graphics hardware.

c© 2005–2012 Tomas Akenine-Möller

5.1. Texture Images 35

c0

c2

c1
A B C

s

t

(1,1)

(0,0)

Figure 5.2: To the left, a simple two-dimensional texture is shown in its texture
space, (s, t). To the right, three triangles with different positions, scales, and
orientations have been rendered. However, note that they have the same texture
coordinates, ck, k ∈ [0, 1, 2,], and so the same part of the texture image is glued
onto the rendered triangles.

which are simply the s-coordinate multiplied with the texture’s width, w, and
the t-coordinate multiplied with the texture height, h. In the OpenGL speci-
fication, (s̃, t̃) are instead denoted (u, v), but the former notation is used here,
since (u, v) already have been used for the perspectively correct interpolation
coordinates (see Equation 3.23).

For now, we assume that texels are stored contiguously in memory, and these
can thus be enumerated based on memory location. Assume that first texel has
number 0, and the following texel, number 1, and so on. If a texel has number
n, then this can be converted to a set of two-dimensional integer coordinates,
(i, j), as shown below.

i = n mod w,

j =
⌊ n
w

⌋
mod h, (5.3)

where again w × h is the texture resolution.2 The (i, j) coordinate pair is also
illustrated in Figure 5.3. Given (i, j), the texel number can be computed as
n = i + wj, and from n the address of the desired texel can be computed. In
the following section, we will see how these texture spaces and coordinates are
used to access texels, and filter them in order to obtain better quality.

5.1.1 Wrapping

Interestingly, the texture coordinates, ck, at a triangle’s vertices need not be
in [0, 1] × [0, 1]. Instead, larger numbers than 1.0 and/or smaller than 0.0 can
be used. The most common usage for this is when one wants a texture to
repeat itself over a triangle. For example, say an application models a 100×100

2Texture borders have been omitted from this presentation. Consult the OpenGL specifi-
cation for more information [51].

c© 2005–2012 Tomas Akenine-Möller

36 Chapter 5. Texturing

j

4

3

2

1

0

-1

0 1 2 3 4 5 6 7 8 -1 i

t

s 0.0 1.0

0.0

1.0

s=sw -1.0 9.0

-1.0

 t=th

5.0

~

~

Figure 5.3: A texture image with resolution w × h = 8 × 4 texels. Notice
the different coordinate systems. In texture space, there are unit coordinates,
(s, t) ∈ [0, 1]×[0, 1], and when these are multiplied by the texture resolution, w×
h, we get (s̃, t̃) = (sw, th) ∈ [0, w]× [0, h]. There are also the enumeration, (i, j),
of the texels. Texel (0, 0) is located at the bottom left corner, and (w−1, h−1)
is located in the top right corner. (Illustration after Segal and Akeley [51])

m2 as a single quadrilateral, and that a 2 × 2 m2 texture image of grass is
available. Instead of stretching the small texture so that it fits over the entire
quadrilateral, one can instead repeat the small texture 50 × 50 times over the
quadrilateral. This can be done by setting texture coordinates to (0, 0) in the
lower left corner of the quadrilateral and (50, 50) in the upper right corner (and
appropriate values in the remaining two corners).

The most common wrapping modes are repeat, clamp, and mirrored repeat.
Clamping sees to it that s and t always are clamped to the range [0, 1]. This
means that if s is greater than 1.0, then set s = 1.0, and if it is smaller than 0.0
then set s = 0.0.

The repeat texture wrap mode (which would be used in the grass example
above), the integer part of s and t are ignored, and only the fractional part is
kept. The fractional part of s can be computed as:

s′ = s− bsc, (5.4)

where bc truncates towards −∞ to the closest integer. This means that s′ never
will reach 1.0, but rather s ∈ [0, 1). In Section 5.3, we will see why this is
convenient.

Mirrored repeat is just what it sounds like, the texture is repeated, but every
other occurrence of the texture is mirrored. In OpenGL [51], mirrored repeat

c© 2005–2012 Tomas Akenine-Möller

5.2. Texture Filtering 37

x

y

screen space texture space

s

t

Figure 5.4: In screen space, the borders of a single pixels (blue) are projected
back into texture space, (s, t), and there the borders become a convex quadrilat-
eral with straight edges. This quadrilateral is called the footprint of the pixel.
In texture filtering, one attempts to quickly estimate the colors of the texels
under the dark gray quadrilateral to the right.

of s is defined as:

s′ =

{
s− bsc bsc is even
1− (s− bsc) bsc is odd

(5.5)

5.2 Texture Filtering

In order to render textured scenes with good quality, some kind of texture filter-
ing is needed. This is to avoid aliasing that can occur under minification, and
avoid a blocky appearance under magnification. Recall from Chapter 3 that it
is possible to compute perspectively-correct interpolation parameters, (u, v), for
each pixel that is traversed. In this section, the (u, v)-parameters will be used
to look up texels from a texture image, and techniques will be presented that
take a set of these and filter them in order to produce a better result.

Here, the most common interpretation of how texture filtering should be
done will be explained. In Figure 5.4, the focus is on a single pixel in screen
space. When the borders of this pixel are transformed into texture space, the
footprint of the pixel in texture space is obtained. The footprint takes the
form of an arbitrary convex quadrilateral, and its shape depends on the texture
coordinates and the vertices’ positions and amount of perspective. It should be
pointed out that we usually only use a single sample per pixel or a few samples,
and thus using the pixel borders does not correspond to the sample(s) of the
pixel [19]. Still, this is the model being used.

In Figure 5.5, two cases are illustrated. When many texels reside under the

c© 2005–2012 Tomas Akenine-Möller

38 Chapter 5. Texturing

texture space

s

t

texture space

s

t

minification magnification

Figure 5.5: Left: when minification occurs the pixel footprint (blue quadrilat-
eral) in texture space covers many texels. Right: when magnification occurs,
few or only one (as in this case) texel is covered by the footprint.

area of the pixel footprint as shown to the left, minification occurs. Similarly,
when few or only one texels is under the area of the pixel, magnification takes
place. Intuitively, this latter case means that the texture is enlarged or magnified
when glued onto a triangle. In the former case, the texture content is instead
compressed, or minified onto the triangle.

In the following two sections, we describe magnification filtering and minifi-
cation filtering techniques.

5.3 Magnification

Texture magnification occurs, for example, when we render a square that covers
512×512 pixels using a texture that is only, say, 64×64. Most graphics hardware
only support two different filtering techniques:3

• Nearest neighbor sampling4

• Bilinear filtering

Examples of generated results using these two techniques are shown in Fig-
ure 5.6.

5.3.1 Nearest Neighbor Sampling

Nearest neighbor sampling is the simplest form of sampling that can be done
since it involves finding only the single closest texel, (i, j). The actual compu-

3However, cubic filtering can be done by the user in a pixel shader. REF GPU Gems II.
4This is sometimes also called point sampling. However, that term is quite misleading

as all filtering techniques use point sampling of the texture, and then possibly weigh several
samples to produce the filtered color.

c© 2005–2012 Tomas Akenine-Möller

5.3. Magnification 39

Figure 5.6: To the left, a 256× 256 texture is shown. This image has been put
on a quadrilateral, and zoomed in on in perspective. The middle image shows
part of that scene with nearest neighbor sampling, while the image to the right
shows bilinear magnification.

tation is done as shown below.

i =

{
bs̃c s < 1
w − 1 s = 1

j =

{
bt̃c t < 1
h− 1 t = 1

(5.6)

The w×h is the texture resolution as usual. The texel is accessed as t(i, j), where
t is used to denote a texture look-up, and the texel color at (i, j) is returned
from this function. Recall that neither s nor t ever reaches 1.0 when the wrap
mode is repeat. Here, the advantage of that can be seen because s̃ = sw will
never quite reach w, and hence addressing outside the texture will be avoided.

5.3.2 Bilinear Filtering

In the middle image in Figure 5.6, it can be seen that the appearance of using
nearest neighbor sampling is quite blocky. This could be the desired effect,
but often, it is quite disturbing and best avoided, and that can be done with
bilinear filtering. The general idea is to use the closest 2×2 texels to the texture
coordinates (s, t), and weight these texels according to the exact location of (s, t)
inside this 2×2 texel block. This way a smoother transition is created, as shown
to the right in Figure 5.6. To do this, two pairs of texels, (i0, j0) and (i1, j1)
must be identified, and the other two texels are simply (i0, j1) and (i1, j0), as
illustrated in Figure 5.7. The first texel is:

i0 =

{
bs̃− 1/2c mod w, if wrap mode for s is repeat,
bs̃− 1/2c, else.

j0 =

{
bt̃− 1/2c mod h, if wrap mode for t is repeat,
bt̃− 1/2c, else.

(5.7)

c© 2005–2012 Tomas Akenine-Möller

40 Chapter 5. Texturing

i0 i1

j0

j1

α
β

Figure 5.7: Illustration of bilinear filtering. The 2 × 2 gray texels are used by
bilinear filtering. The actual sample point in the texture is marked with a black
circle, and the fractional values (α, β) are used to weight the colors from these
four texels.

The second texel is:

i1 =

{
(i0 + 1) mod w, if wrap mode for s is repeat,
i0 + 1, else.

j1 =

{
(j0 + 1) mod h, if wrap mode for t is repeat,
j0 + 1, else.

(5.8)

In Figure 5.8, we compare nearest neighbor sampling and bilinear filtering again.
Focus on the lower left corners where one white and one red texel are located.
As can be seen in the bilinear filtered image, the white and red colors are only
exactly white and red at the center of the respective zoomed up texels to the
left. It is the factors −1/2 in Equation 5.7 that sees to that this happens. This
is clearly just a matter of definition, but this is the way OpenGL defines it.

To actually compute the blending of the four texels, the following fractional
values need to be computed:

α = frac(s̃− 1/2), β = frac(t̃− 1/2). (5.9)

To make the notation a bit shorter, we use t00 = t(i0, j0), i.e., t00 is the texel
color at texel position (i0, j0). The same goes for t01, t10, and t11. With bilinear
filtering, linear filtering is done in two passes. The first pass can go in either
direction, but we will use the i-direction (normally x) in Figure 5.7 This means
that the α value is used to compute two new colors, a and b by linearly blending
t00 & t10, and t01 & t11.

a = (1− α)t00 + αt10 = t00 + α(t10 − t00)

b = (1− α)t01 + αt11 = t01 + α(t11 − t01) (5.10)

When a and b have been computed, linear interpolation is done once again, but
this time in the other direction, and using β and the recently computed colors,
a and b.

f = (1− β)a + βb = a + β(b− a) (5.11)

c© 2005–2012 Tomas Akenine-Möller

5.4. Minification 41

Figure 5.8: Left: an 8 × 8 random texture rendered onto a quadrilateral with
nearest neighbor sampling. The results is that the texels are rendered as large
squares onto the quadrilateral. Right: the same texture is rendered using bilin-
ear filtering.

The formulae from Equations 5.10 and 5.11 can easily be merged into a single
equation:

f = (1− α)(1− β)t00 + α(1− β)t10 + (1− β)αt01 + αβt11. (5.12)

Assuming each texel has four components, RGBA, the use of Equations 5.10
and 5.11 imply that 3×4 = 12 multiplications and 6×4 = 24 adders need to be
implemented for bilinear filtering. Using Equation 5.12 means that 4+4×4 = 20
multipliers (note that the 4 × 4 of these need higher accuracy, since the scalar
α- and β-terms are multiplied first) are needed and 3× 4 = 12 adders.

5.4 Minification

When the texture is minified onto an object, the retrieved texel should be some
weighted combination of texels under the footprint of the screen space pixel
as previously discussed in this chapter. During minification, it is therefore not
sufficient to use nearest neighbor sampling since only a single texel is accessed.
This is shown to the left in Figure 5.9. Note that when, for example, the camera
animates slowly, the aliasing artifacts becomes even more annoying since this
results in serious flickering. Therefore, it is usually more acceptable to use a
filter with more overblurring, rather than undersampling (resulting in flickering).
Bilinear filtering can be used as a filter during minification, but that only helps
a little bit. As soon as more than about four texels are in the footprint, the
undersampling effects become very clear. In this section, better techniques are
presented.

c© 2005–2012 Tomas Akenine-Möller

42 Chapter 5. Texturing

Figure 5.9: A checkered teapot on a checker plane. Left: with nearest neigh-
bor sampling. Right: with trilinear mipmapping. When animated, the nearest
neighbor sampling results in severe flickering, while the mipmapped scene ani-
mates smoothly.

In theory, the retrieved color, f , can be expressed as shown in Equation 5.13 [50].

f(x, y) =

∫ ∫
h(x− α, y − β)t(α, β)dαdβ (5.13)

In the equation above, h is a filter kernel, the integration domain is the foot-
print, and t accesses the texels in the texture as usual. Equation 5.13 can be
approximated as:

f(x, y) ≈ 1

n

n∑
i=1

ti, (5.14)

but even then, the cost is way too high to be considered for graphics hardware.
One solution that achieves a better result is summed-area tables [16]. How-

ever, that technique requires more bits5 per color component than the original
image, and uses rather random accesses in the memory to produce a filtered color
(and hence texture caching would not work that well). Next, mipmapping [56]
will be presented, whose use is very widespread.

5.4.1 Mipmapping

Mip is an abbreviation for “multum in parvo,” which is latin for “much in a
small place.” The key to mipmapping [56] is to use a hierarchy of images, called
an image pyramid [18], or simply just a mipmap.6 The images of a mipmap
for a particular texture is shown in Figure 5.10. The corresponding mipmap

5For a 1024 × 1024 texture with 8 bits per color component, a summed-area table texture
would require 28 bits per component [50].

6The use of an image pyramid for texture filtering was apparently first suggested by Ed
Catmull in his PhD thesis (not easily available) as reported by Heckbert [27]. Dungan et al. [18]
presented an algorithm that uses an image pyramid for texture filtering, but only a single
mipmap level was used, and nearest neighbor sampling was used in that level. Williams [56]
improved on that scheme by suggesting trilinear mipmapping, which is explained in detail in
this chapter.

c© 2005–2012 Tomas Akenine-Möller

5.4. Minification 43

32× 32 16× 16 8× 8 4× 4 2× 2 1× 1

Figure 5.10: To the left, the original 32 × 32 texture is shown. The image is
then low-pass filtered, and downsampled to 16 × 16, 8 × 8, 4 × 4, 2 × 2, and
finally (to the right) to a singel texel. This hierarchy of images is used for a
minification technique called mipmapping.

s

t

d

level 0

level 1

level 2
level 3

Figure 5.11: A mipmap pyramid using the images from Figure 5.10, and the
pyramid’s coordinate system, (s, t, d), which is used when accessing the texels
during filtering.

pyramid is shown in Figure 5.11. Notice, that the original texture is called the
level 0 base texture. The next level in the pyramid is a lowpass filtered and then
downsampled version of the level 0 texture. The size is half the width and half
the height of the level 0 texture. The level 2 texture, is a lowpass filtered and
downsampled version of the level 1 texture, and so on. An advantageous feature
of the mipmap pyramid is that it does not occupy that much extra memory.
The amount of memory for the entire mipmap pyramid can be expressed as
follows:

m+
m

2 · 2
+

m

4 · 4
+

m

8 · 8
+ · · · = m

l∑
i=0

1

4i
≈ m 1

1− 1
4

=
4

3
m, (5.15)

where m is the number of bytes for the base texture, and l is the level of the tip
of the pyramid. Hence, it only occupies 33% more than the base texture, which
is quite affordable.

In mipmapping, the footprint of a screen space pixel in texture space is
used to estimate which level(s) should accessed and filtered to form the filtered

c© 2005–2012 Tomas Akenine-Möller

44 Chapter 5. Texturing

texture space

s

t

Figure 5.12: The blue footprint in texture space is shown. In mipmapping
filters, the area of the footprint is used to estimate the size of a square filter, as
outlined by the dashed square. The size of the square is used to determine the
this texture space parameter, d.

color, f . It should be noted that each texel in the mipmap pyramid is some
weighted average of the texels in a square under the texel. This means that
an isotropic square filter shape is used. The size of the filter can change, but
not the shape. In fact, as can be seen in Figure 5.4, the filter shape should
ideally be anisotropic. In Section 5.4.2, anisotropic minification algorithms will
be presented.

Level-of-Detail Computation

A key to mipmapping is to compute which level(s) in the pyramid that should
be accessed. As can be seen in Figure 5.11, another axis, d, has been added
to the texture space, (s, t), which has been used so far. In Figure 5.12, the
footprint in texture space is shown again.

The general idea is to compute the area, a, of the footprint, and since the
mipmap can only use square filters, this area is assumed to be square as well.
Hence, the side, b, of the square is computed as b =

√
a. The mipmap level to

access is determined by the side, b, such that the side has similar size as the side
of a texel. Since the most detailed level in the mipmap pyramid is enumerated
0, and the level above it, is level 1, and so on, the d-parameter is computed as:

d = log2 b = log2

√
a = log2(a0.5) = 0.5 log2 a (5.16)

Assume, we have a 256 × 256 texture, which means that we have nine levels
in the mipmap pyramid. The side of the square can be 256 at most, which
means d = log2 256 = 8, which is the topmost mipmap level (recall that the
bottommost mipmap level has number 0). Another example is when the side
of the square is 1, and then d = log2 1 = 0, and thus the bottommost level is
chosen. Intuitively, you need to locate the level in the mipmap pyramid where
the side of a texel has approximately the same side as the footprint of a pixel
in texture space.

c© 2005–2012 Tomas Akenine-Möller

5.4. Minification 45

It is interesting to consider what happens when d < 0. The side of the
footprint is then smaller than the side of a texel in the bottommost level. Thus,
texture magnification takes place. Hence, the hardware can compute d, and then
if d < 0 the texture magnification filter should be used, and otherwise the texture
minification filter should be used. This can also be seen in Figure 5.5. Clamping
on d should be done so that d never becomes larger that the topmost level in the
mipmap hierarchy. Up until now, the discussion about how to compute d has
been mostly theoretical. The text now continues with a presentation of different
techniques on how to compute d in practice.

Recall that perspectively-correct interpolation coordinates, (u, v), can be
computed as shown in Equation 3.23, and that the texture coordinates, (s, t),
are computed using Equation 5.1. Furthermore, we have defined s̃ = sw and
t̃ = th. Thus, s̃ and t̃ are functions of the pixel coordinates (x, y): s̃(x, y) and
t̃(x, y). The most common way to compute d is to use the partial derivatives,
∂s̃/∂x, ∂s̃/∂y, ∂t̃/∂x, and ∂t̃/∂y, and the presentation here will mostly concern
those ways. An alternative would be to compute the coordinates of the footprint
quadrilateral. It should also be noted that some implementations have computed
only a single d for the entire triangle, and others have computed a per-vertex
d-value, and then interpolated over the triangle with perspective taken into
account. Here, we will only discuss per-pixel computations though.

As suggested by Heckbert [REF], and also recommended by the OpenGL
specification [51], the level of detail, d, should be computed as:

d = log2

max

√(∂s̃
∂x

)2

+

(
∂t̃

∂x

)2

,

√(
∂s̃

∂y

)2

+

(
∂t̃

∂y

)2
 (5.17)

Equation 5.17 can be simplified [41] so that the two expressions under the square
roots are computed first. The equation then becomes:

d = log2 (max [
√
e1,
√
e1]) = log2 (max[e1, e1]) /2, (5.18)

where e1 = (∂s̃/∂x)2 + (∂t̃/∂x)2 and e2 = (∂s̃/∂y)2 + (∂t̃/∂y)2. As can be
seen, the square root has been lifted outside the log2 and there, it converts to a
division by two.

Sometimes the following, less expensive approximation7 is used to compute
d:

d = log2

(
max

[
abs

(
∂s̃

∂x

)
, abs

(
∂t̃

∂x

)
, abs

(
∂s̃

∂y

)
, abs

(
∂t̃

∂y

)])
. (5.19)

However, as shown by McCormack et al. [41] it is a too gross approximation.
Instead, they propose to use the following piecewise linear approximation of the
expression

√
x2 + y2, where x > y:√

x2 + y2 =

{
x+ y/8, if y < x/2
7x/8 + y/4, else

(5.20)

7This is also the lower bound on the computation of d according to the OpenGL specifica-
tion [51], i.e., the approximation may not be worse than this.

c© 2005–2012 Tomas Akenine-Möller

46 Chapter 5. Texturing

s

t

d

level 0

level 1

level 2
level 3

level 1 level 2

(s,t,d)

Figure 5.13: Trilinear mipmapping. A sample location is located at the black
circle in the mipmap pyramid to the left. The two closest levels are level 1 and
level 2. To the right, the four closest texel in each level are shown, and these are
used for bilinear filtering at each level. When the two bilinearly filtered colors
have been computed, linear blending is performed to compute the final color.
This is further illustrated in Figure 5.14.

This approximation is within a 3% error margin of the exact value of
√
a2 + b2.

The partial derivatives, ∂s̃/∂x etc., can be computed analytically by differ-
entiating Equation 3.23. Ewins et al. present many other methods for this,
including incremental techniques, and they also have a thorough survey of dif-
ferent ways to compute the level of detail [19].

At this point, we assume that (s, t, d) have been computed, and that a filtered
texture color, f , should be computed. Several filtering techniques are presented
in the following subsections.

Trilinear Mipmapping

The most common form of mipmapping is trilinear mipmapping, and as can be
understood from its name, linear filtering is performed three times. This is done
using bilinear filtering in the two mipmap levels closest to d. Thus, levels l0 and
l1 are computed as:

l0 = bdc, and l1 = l0 + 1. (5.21)

This situation is illustrated in Figure 5.13. Notice that care has to be taken so
that only levels that exist in the pyramid are accessed, which can be done by
simple clamping.

When those two levels have been identified, the (s, t) are scaled with the
respective width and height of the two levels, so that two coordinate pairs are
formed: (s̃0, t̃0) = (sw0, th0) and (s̃1, t̃1) = (sw1, th1), where w0 × h0 is the
resolution of level l0 and w1 × h1 = [w0/2] × [h0/2] is the resolution of level
l1. For level l0, the parameters (α0, β0) are computed using Equation 5.9, and
similarly for level l1: (α1, β1). These are then used to compute two bilinearly
filtered colors, f0 and f1, one for each level. All bilinear filtering is done using
Equations 5.7–5.12. See Figure 5.14.

c© 2005–2012 Tomas Akenine-Möller

5.4. Minification 47

level 2

level 1

(s,t,d)

γ

1−γ

(α0,β0)

(α1,β1)

Figure 5.14: Illustration of trilinear filtering. Bilinear filtering is done in both
the two mipmap levels. Using linear interpolation, those bilinearly filtered colors
are blended to form the final color, f , using γ.

The next step consists of linearly blending the colors f0 and f1, obtained from
bilinear filtering in levels l0 and l1. This is done using a parameter, γ ∈ [0, 1].
According to the OpenGL specification, γ should be computed as:

γ = frac(d). (5.22)

Note also that γ is illustrated in Figure 5.14. The final step is to compute the
trilinearly interpolated color, f :

f = (1− γ)f0 + γf1. (5.23)

To compute f0 and f1, four texel accesses per value were needed. Thus, f is
computed using 8 texel accesses, that is in constant cost (in terms of texel
accesses). Therefore, trilinear mipmapping is often referred to as a “constant
time” filtering technique.

Recall that regardless of which formula is used to compute d, it is always of
the form d = log2 a, where a is different for each technique. To compute the
lower level, l0 (see Equation 5.21), we need to evaluate:

l0 = bdc = blog2 ac. (5.24)

In a fixed-point representation of a, the level l0 can be found very efficiently. It
is simply a matter of locating the most significant bit that is set to one in a.

Example 5.4.1.1 Computation of l0
For example, assume a = 000101.011001b. As can be seen, the most significant
bit is located in the integer part of a, and it is bit number two that is set to one
(bit number 0 is immediately to the left of the decimal point). Therefore, l0 = 2
since bit number two was the MSB and set to one. Converting the value of a to
the decimal number system, we get a = 5.390625, and log2 5.390625 = 2.43 . . . ,
and thus l0 = 2, as expected. 2

c© 2005–2012 Tomas Akenine-Möller

48 Chapter 5. Texturing

An approximation to estimating γ, instead of using Equation 5.22, is shown
below [19]:

γ =
a− 2l0

2l0
. (5.25)

Thus, a very simple method to compute a fixed-point representation of γ is at
hand. The subtraction is implemented by zeroing out the most significant bit
that is set to one, and then a right shift implements the division. However, note
the γ here is not computed in the logarithmic domain as in Equation 5.22, and
so will not provide us with the same results, but γ in Equation 5.25 is in the
interval [0, 1], and it is a monotonic, increasing function, and so can work quite
well.

Trilinear mipmapping is done using bilinear interpolation in two levels, and
then linear interpolation between these. Most APIs also support three related
techniques that uses fewer texel accesses. These modes are obtained by simply
replacing bilinear interpolation with nearest neighbor sampling, and/or linear
interpolation among the two mipmap levels with nearest neighbor sampling as
well. The first one uses only one mipmap level (the closest one), and then
performs bilinear interpolation there. This means that only four texel accesses
are needed. The second filter uses the two mipmap levels with linear filtering in
between, but in each mipmap level, nearest neighbor sampling is used. Thus,
only two texel accesses are needed. The third filter uses only one mipmap level
and nearest neighbor sampling there. For all these three filters there will be
noticeable artifacts as can be seen in Figure 5.15, and it gets even worse when
animated. Hence, these are seldom used, unless quality can be sacrificed. In
general it holds (at least for these filters), that the more texel accesses that are
required, the better quality. Next, two techniques will be presented which saves
some texel accesses, but with better quality than the three modes discussed
here.

Brilinear mipmapping

NVIDIA’s scheme. Add this later on. Not part of the course this year.

Bilinear-Average mipmapping

For mobile devices, it is of uttermost importance to preserve the usage of mem-
ory accesses, and therefore, a less expensive technique has been suggested [7].
This technique, called bilinear-average mipmapping, performs much better than
that used in the top right corner of Figure 5.15, but not as well as trilinear
mipmapping. The advantage of bilinear average mipmapping is that it only
requires accesses to four texels.

Only the texels in level l0 of the mipmap are accessed, and bilinear interpo-
lation is performed there as usual. However, accesses to the level above (l1) are
avoided. Instead, it is noted that a texel in the level above usually is computed
using some weighted average of the 2 × 2 texels below the texel in level l1. In
fact, quite often a 2 × 2-box filter is used, i.e., the exact average of the four

c© 2005–2012 Tomas Akenine-Möller

5.4. Minification 49

Figure 5.15: Different mipmapping filters. Top left: trilinear mipmapping. Top
right: using a single mipmap level and bilinear filtering in that level. Bottom
left: using two mipmap levels, but only nearest neighbor sampling in each.
Bottom right: using one mipmap level, and nearest neighbor sampling there. In
the top right image, it is quite clear from looking at the ground plane when the
transitions from one mipmap level to another occurs.

texels is used, or a filter that gives a similar result. The idea of bilinear-average
mipmapping is to compute a texel in level l1 on-the-fly during filtering, from
the 2× 2 texels in level l0. More specifically, the texels t00, t01, t10, and t11 are
accessed in level l0 (see Section 5.3.2 for an exact definition of the tij). From
these, a bilinearly filtered value, f0, is computed, and in addition, the average
is computed as:

f1 =
1

4
(t00 + t01 + t10 + t11). (5.26)

Then interpolation is done with f0 and f1 using Equation 5.23 as in trilinear
mipmapping. The result is that bilinear interpolation is done the the lower level,
and a type of nearest neighbor sampling is done in the upper level. However, it
is a bit better than nearest neighbor sampling, as illustrated in Figure 5.16.

5.4.2 Anisotropic Mipmapping

Texram [50] was first! Add this later on. Not part of the course this year.

c© 2005–2012 Tomas Akenine-Möller

50 Chapter 5. Texturing

level l0

level l1

level l0

level l1

Figure 5.16: Left: two levels, l0 and l1, in a mipmap hierarchy. Only 4×4 texels
are shown for level l0. A texel in level l1 is often computed as the average of
the four texels in level l0, i.e., “under” the texel itself. Right: the 2 × 2 gray
texels are assumed to be accessed when bilinearly interpolating a color from
the bottom level. Bilinear-average mipmapping uses the average of these gray
texels as a texel from level l1. Note, however, in this case, the average of the
gray texel does not even exist in level l1, and therefore, the technique is a bit
better than using nearest neighbor sampling in level l1. In addition, it does not
access any texels in the upper level, and so is less expensive too.

5.5 General Caching

In computer system design, the memory system plays a very important role for
performance. A memory system is often a hierarchy of different memory units,
where the memory unit closest to the computational unit (e.g., GPU or CPU)
using the memory is smallest and fastest. The memory unit “farthest” from the
computational unit is largest and slowest. A cache is the first memory unit in
a memory hierarchy, and it has thus the fastest access time and the smallest
amount of memory. The underlying principle that makes caches work is locality.

The idea of locality can be understood by studying an efficient “over-the-
counter” liquor store. In such a store, the most commonly used bottles are
located immediately under the counter, closest to the sales person. The finest,
most expensive wines are probably not being sold that often, and so they are
located in the back of the store. Hence, in the majority of cases, the sales person
finds what the buyer wants quickly (since it is located closely), and in some rare
cases, the sales person need to go to the back of the store to get the fine wine.
The organization of this imaginary store is based on locality.

For computer systems, caches also work under the assumption of locality.
There are two major forms of locality in this context:

• Spatial locality : if a certain memory location is being accessed, it is likely
that memory locations nearby will be accessed soon as well.

• Temporal locality : if a certain memory location has been accessed, it is
also likely that the same location will be accessed again in the future.

Next, we will look into how a cache works and how these types of locality are
being exploited.

c© 2005–2012 Tomas Akenine-Möller

5.5. General Caching 51

As mentioned, a cache is a small and fast memory. Common sizes may be
512 bytes up to hundreds of kilobytes, and the memory technology is quite often
SRAM or simply a set of flipflops. When the CPU or GPU wants to access a
particular memory address, a request is sent to the cache. If the content of that
memory access is already in the cache, we have a cache hit, and the content can
be delivered immediately. However, if it is not in the cache, we have a cache
miss, and the cache must request the content from the slower main memory (or
the next, lower level in the memory hierarchy), and the CPU or GPU must be
delayed until the content is available in the cache.

To exploit spatial locality, a larger block of memory is fetched on a cache
miss. A cache is divided into a number of cache lines, and a cache line is simply
a number of words in the cache. For example, a 512 bytes cache can be divided
into eight 64 bytes blocks. On a cache miss, a block of 64 bytes is therefore
fetched from main memory. Due to spatial locality, memory locations nearby
are likely to be accessed, and since some of them have already been fetched
into the cache, the next access could perhaps be done directly from the cache.
Furthermore, unless the content of this cache line has been replaced, temporal
locality is being exploited the next time the same memory location is being
accessed, because, the desired content will then (again) be in the cache and
thus ready for immediate access.

A simple performance model for a cache is given below [29]:

tavg = thit + rmiss × tmiss, (5.27)

where tavg is the average number of clock cycles it takes to access memory,
rmiss is the miss rate, which is simply a measure for how often a cache miss is
obtained. tmiss is the time it takes to access main memory.

Example 5.5.0.1 Cache performance

A cache is often built so that a memory access in the cache can be done in a
single clock cycle, and thus thit = 1. When we get a cache miss, assume that
the cost of fetching a block (say 64 bytes) of memory into a cache line takes
tmiss = 40 clock cycles (using for example DRAM memory). With a good cache
and a well-behaved application, one might get a miss rate of rmiss = 2.5%. With
this data, the average time to access memory, becomes tavg = 1+0.025×40 = 2.0
clock cycles. 2

One goal of using caches is to make it appear as if all memory locations can
be accessed with the same speed as provided by the fast (and expensive) cache
memory, and the same time providing the user with lots of memory at a low
cost. In Example 5.5.0.1 we saw that the cache was able to reduce the average
access time to only two clock cycles, which is far better than the 40 clock cycles
to access main memory directly without the cache.

Next, we will describe the cache in more detail. However, it should be noted
that we do not cover anything about how memory writes are handled within a
system with a cache. The reason for this is that graphics hardware most often
only has read-only caches. For the interested reader, we refer to Hennessey and
Pattersson’s book [29].

c© 2005–2012 Tomas Akenine-Möller

52 Chapter 5. Texturing

So far we have not covered in any detail how a cache really works. For
example, where in the cache should a block of memory be placed? How can we
test if a block is in the cache? Which block should be thrown out from the cache
when a new block needs to come into the cache. Solutions will be presented in
the next subsection.

5.5.1 Cache Mapping, Localization, and Replacement

We first explain different strategies for where to put a memory block in the
cache. There are three different mappings that do this, and those are called
direct mapped, fully associative, and n-way set associative. For this discussion,
the address of a memory location is denoted A, and the number of cache lines
in the cache is denoted nL = 2bL . We also assume that the smallest accessible
unit in a cache is a 32-bit word. Furthermore, each cache line holds nW = 2bW

32-bit words. Thus, the size of the cache is s = nL × nw 32-bit words.

Direct Mapped

This is the simplest type of mapping, and here, a block of memory is mapped to
a unique position (cache line) in the cache. To oversimplify, the block is (often)
put into the cache line described by mod(A,nL), where mod is integer modulo. It
should be noted that the memory block of nW words “surrounding” the address
A is put into the cache, and not the block starting at address at A (unless they
coincide).

A cache does not simply need storage for the actual cache lines, but it also
needs to store a tag for each cache line. The purpose of the tag is to identify
from where in the main memory the memory location comes from. For a direct
mapped cache, an address, A, is divided into two parts as shown below:

A = [TAG | lineIndex | blockOffset], (5.28)

where TAG refers to the most significant bits of A, and blockOffset refers the
least significant bits of A, and lineIndex to the bits in between.

The idea of the tag is to provide an identifier for all words in the same
memory block. Thus given that nW = 2bW 32-bit words are stored in a cache
line, the bW least significant bits are only used to identify a particular 32-bit
word in a cache line. Furthermore, two address bits are used for indicating
which byte inside a 32-bit word is being referenced. The number of bits for
blockOffset is thus bW + 2. To check a particular cache line, bL bits are
needed for lineIndex since the number of cache lines is nL = 2bL . For a 32-bit
address, A, the number of bits for TAG it is bT = 32−bL−bW −2 = 30−bW −bL
bits.

In Figure 5.17, an illustration of a direct mapped cache can be seen.

Fully Associative

When a memory block can be placed anywhere in the cache it is called fully
associative. In a direct mapped cache, there was only a single location, but

c© 2005–2012 Tomas Akenine-Möller

5.5. General Caching 53

cache line 0
cache line 1
cache line 2

cache line 2bL-1

tag 0
tag 1
tag 2

tag 2bL-1

=hit?

lineIndex blockOffsetTAG =A

direct mapping

Figure 5.17: A direct mapped cache. The address A of a desired memory
location is used to check whether the cache already holds the content of A. First,
the bL bits are used to directly map the a cache line, which in this example is
cache line number 2. Cache line number 2’s tag is compared for equality against
the tag of A, and if those tags are equal we have a hit in the cache. Otherwise,
the memory block containing A need to be fetched from main memory.

===

cache line 0
cache line 1
cache line 2

cache line 2nL-1

tag 0
tag 1
tag 2

tag 2bL-1 blockOffsetTAG

=
hit?

=A

Figure 5.18: A fully associative cache. All tags in the cache are tested in parallel
for equality with the tag of the address A. The result shows whether we have a
cache hit, and in such a case, it also selects the corresponding cache line.

here, we have full degree of freedom to choose. However, that also means that
the address of a memory location is described differently as shown below:

A = [TAG | blockOffset]. (5.29)

As can be seen, the tag is now described with more bits than for a direct
mapped cache. This is a consequence of the fact that we can place a memory
block anywhere in the cache. In practice, all tags must be searched in order to
test if a memory block is in the cache, as can be seen in Figure 5.18. This is
done in parallel for efficiency reasons. However, that also means that this is an
expensive type of cache because there are as many comparitors as lines in the
cache, which can amount to a lot of physical hardware.

n-way Set Associative

This type of cache is somewhat in between direct mapped and a fully associative
cache in the sense that there is a degree of freedom to place the memory block
in a few places. Figure 5.19 shows an example with a set associative cache with
“m” sets and 2 ways. This is also called a 2-way set associative cache. First the
set that a memory block can go into is selected using lineIndex, the same as
a direct mapped cache. Then one of any number of ways can be selected, the

c© 2005–2012 Tomas Akenine-Möller

54 Chapter 5. Texturing

Way 1
cache line 0
cache line 1
cache line 2

cache line 2(bL-1)-1

tag 0
tag 1
tag 2

tag 2(bL-1)-1 lineIndex blockOffsetTAG

=

hit?

=A

cache line 0
cache line 1
cache line 2

cache line 2(bL-1)-1

tag 0
tag 1
tag 2

tag 2(bL-1)-1

Way 0

=

&

Sets

Figure 5.19: A 2-way set associative cache.

same as any location in a fully associative cache can be selected. The general
idea is that we split the cache into m sets, and then split each set into n ways.
The tags in these n cache lines are then searched in parallel to find whether we
have a hit. For a set associative cache, with n ways, n = 2s, the address A is
split into the following pieces:

A = [TAG | lineIndex | blockOffset]. (5.30)

blockOffset is exactly the same as for the other types of caches. However,
lineIndex does not need bL bits as in a direct mapped cache but rather only
bL−s bits since there are n = 2s different ways to be searched. The TAG occupies
the remaining bits of the address.

5.5.2 Replacement Strategy

For fully associative and set associative caches, there is a choice to be made
when we get a miss in the cache, and need to fetch data from main memory.
The choice is about which cache line to replace, and thus what data is to be
thrown out of the cache. For a direct mapped cache, there is no such choice
since an address always maps to exactly one cache line.

There are two major strategies for replacing (sometimes called “retiring”) a
cache line. These are random and Least-Recently Used (LRU). With a random
replacement strategy a cache line is chosen in a pseudo-random way. This is
the simplest of the two strategies. LRU on the other hand, attempts to make a
smart choice by retiring the cache line that was not used for the longest period
of time. If a block has not been used in a long time, it makes sense, due to
the locality assumption, to throw out such blocks. A counter for each block
is needed to implement LRU, which makes it more expensive. In addition, on
replacement, one needs to find the block that is least-recently used, and that
costs in hardware as well.

5.5.3 Cache Misses

To be able to analyze the performance and to discuss the characteristics of a
cache, it is common to categorize the misses into three different types, namely,

c© 2005–2012 Tomas Akenine-Möller

5.6. Texture Caching 55

compuslory, capacity, and conflict misses. A compulsory miss is one that must
always occur, and these happen when the data that is needed is not yet in the
cache. Thus, these are often also called cold start misses. A capacity miss occurs
because the size of the cache is too small. Finally, a conflict miss occurs because
two blocks compete for the same cache line in the cache, and since one of them
is thrown out from the cache, we get a conflict miss the next time the thrown
block is needed.

A fully associative cache is good at avoiding conflict misses. To reduce
capacity misses a larger cache is needed, and for cold start misses, one could use
larger cache lines. Note that changing one parameter in the cache may affect
more than one of these types of misses.

5.6 Texture Caching

See reading list on the course website.

5.7 Texture Compression

See reading list on website. Should be here eventually.

5.7.1 Background

5.7.2 S3TC/DXTC

5.7.3 PVR-TC

5.7.4 ETC1/ETC2

5.7.5 ASTC

5.7.6 Normal Map Compression

3Dc and our own algorithms.

c© 2005–2012 Tomas Akenine-Möller

56 Chapter 5. Texturing

c© 2005–2012 Tomas Akenine-Möller

Chapter 6

Culling Algorithms

In this chapter, we will describe some simple culling algorithms which are often
used in graphics hardware. To cull means to pick out, and in graphics, we
refer to algorithms that avoid unnecessary work when talking about culling
algorithms. Here, we are only concerned with algorithms that do not affect the
final rendered image, and therefore, “unnecessary work” is such that it does not
influence the resulting image.

First, two simple algorithms are described (Section 6.1), which can avoid
a large amount of depth buffer reads. Then, in Section 6.2, a technique is
presented that performs culling at a higher level, which in this case means that
an entire object can be culled even before sending it to the GPU. Finally, in
Section 6.3, a delay stream architecture is presented.

6.1 Z-min and Z-max Culling

From the rasterization equation (4.4), we know that the memory bandwidth
related to the depth buffer, Bd, is:

Bd = d× Zr︸ ︷︷ ︸
reads

+ o× Zw︸ ︷︷ ︸
writes

, (6.1)

where d is the depth complexity, o is the overdraw, and Zr & Zw are the cost
of depth buffer reads and writes, respectively. It is known that o ≤ d (see
Equation 4.1). For example, when d = 4, the overdraw is o ≈ 2. Furthermore,
since Zr and Zw are equally large, the term d×Zr is larger or equal to o×Zw.
The kind of algorithms described in this section, therefore aims at reducing the
cost of d× Zr.

A great advantage of these algorithms is that they work without any kind
of user intervention. The hardware takes care of it all. Furthermore, these
two algorithms are surprisingly simple. The idea of both Z-max and Z-min
culling is to perform some kind of culling on a per tile basis. Hence, tiled

57

58 Chapter 6. Culling Algorithms

traversal (Section 2.2.4) must be used.1 Assume that tiles of size w × h pixels
are used, and that the depth values of a particular tile are denoted d(i, j), with
i ∈ [0, w − 1] and j ∈ [0, h− 1]. Next, we describe Z-max and Z-min culling.

6.1.1 Z-max Culling

This type of algorithm stems back to the hierarchical Z-buffer by Greene et
al. [22], where a pyramid of depth values is maintained and culled against.
However, this algorithm has not found its way into graphics hardware, proba-
bly due to the complexity of updating the depth pyramid. Instead, a simpler
variant [42] has been developed, and will be described here. This algorithm is
referred to as HyperZ by ATI, and NVIDIA has its own variant of it.

Assume we are currently rendering a triangle. The basic idea here is to
avoid depth buffer reads in tiles covered by the triangle, where the triangle is
definitely behind the contents of the depth buffer in that tile. To that end, each
tile stores a value called, zmax, which is defined as:

zmax = max
ij

[d(i, j)], (6.2)

that is, zmax holds the maximum of all the depth values in a tile. Since depth
values, d(i, j), are at least 16 bits, and often 24 or 32 bits, the zmax could have
the same resolution. However, a conservative value can work almost as well,
albeit never fully as well. In this case, it must be guaranteed that the zmax-
value of a tile is larger than (or equal to) maxij [d(i, j)], which is the optimal
value. If that holds, then the zmax-values can be stored in, for example, only 8
bits per tile. However, note that there is a tradeoff in culling performance vs.
number of bits per zmax.

The actual culling works as follows. When the traversal algorithm arrives
at a tile that overlaps with the triangle being rendered, a value called ztri

min is
computed. The goal of this is to compute a conservative value of the minimum
of the depth values of the triangle in that tile. This can be done in a number
of ways that will be discussed momentarily. First, we describe the important
operation of Z-max culling. If the following expression is true:

ztri
min > zmax, (6.3)

then the triangle in that tile is guaranteed to be hidden by the contents of the
depth buffer, i.e., hidden by primitives (e.g., triangles) that have already been
rendered. When the triangle is hidden, we do not need to read the depth buffer,
and this is the gain that this algorithm provides. Note that this algorithm does
not have any advantage in terms of texture accesses,2 color buffer reads/writes,

1An exception is the scanline-based zigzag traversal described by Akenine-Möller and
Ström [7], where a Z-min culling algorithm is used, and adapted to scanline traversal. This is
done using a small tile row buffer.

2This may not be true for all architectures. Especially high-end graphics hardware executes
the pixel shader (and thus also texture accesses) before the per-pixel depth test. This means
that such an architecture would also reduce the number of texture accesses and pixel shader
executions with Z-max culling.

c© 2005–2012 Tomas Akenine-Möller

6.1. Z-min and Z-max Culling 59

z

{

x

pixel

{tile

tile A

tile B

tile C

tile D

culled

culled

not culled

not culled

triangles already rendered to depth buffer
triangle currently being rendered

zmax

zmin
tri

Figure 6.1: Z-max culling illustrated in two dimensions in post-perspective
space. In tiles where ztri

min > zmax depth buffer reads can be avoided since
it is guaranteed that the triangle being rendered is hidden with respect to the
contents of the depth buffer. In this example, tile B and tile C can be culled.
However, for tile A and D, the light gray triangle must be rendered as usual.

nor depth writes, because these operations would be avoided anyway due to
that the depth test would fail. Z-max culling is also illustrated in Figure 6.1.

There are several different ways to compute conservative estimates of ztri
min.

Recall that the depth values at the vertices are denoted dk, k ∈ [0, 1, 2] (not to
confuse with the pixels’ depths, called d(i, j)). A really simple way to compute
ztri

min is shown below:

ztri
min = min

k∈[0,1,2]
(dk). (6.4)

The advantage of this is that it is simple, and it can even be done in the triangle
setup, since the evaluation of Equation 6.4 is constant over the entire triangle.
However, this value can be overly conservative, and thus perform poorly. For
example, in Figure 6.1, all tiles would get the same ztri

min-value, which would be
equal to the value shown in tile A. Tile B would still be culled, but tile C would
not be culled any longer, since the ztri

min-value is less than the tile’s zmax-value.
A better way is to compute the depth values, called ci, i ∈ [0, 1, 2, 3], at the

corners of the tile, and then compute:

ztri
min = min

k∈[0,1,2,3]
(ci). (6.5)

If the entire tile is covered by the triangle, this gives the optimal value of ztri
min.

However, when a tile is only partly covered by a triangle, this may not longer
be the case. The reason is that the minimum must occur at one of the vertices
of the polygon that results when the triangle is clipped against the tile borders.
When the triangle overlaps the tile entirely, the resulting clipped polygon is a
rectangle of the same size as the tile itself, and therefore Equation 6.5 is optimal.
An extreme example of when this is not true is when all the triangle vertices
lies inside a tile. Assuming the triangle’s normal is not parallel to the viewing
direction, it is apparent that Equation 6.5 produces overly conservative values.

c© 2005–2012 Tomas Akenine-Möller

60 Chapter 6. Culling Algorithms

The optimal solution would be to clip the triangle against the polygon,
compute the depth at all the vertices of the resulting polygon, and choose the
minimum of these depths. Clipping is already considered an expensive operation
when the actual triangle is clipped against the screen borders and near & far
plane, so clipping the same triangle over and over again against all the tiles that
are being overlapped by the triangle would be extremely expensive.

A hybrid method is to compute the maximum of Equation 6.4 and Equa-
tion 6.5:

ztri
min = max

[
min

k∈[0,1,2]
(dk), min

k∈[0,1,2,3]
(ci)

]
. (6.6)

This technique will avoid the example above when the triangle’s vertices were
all inside a single tile.

Assuming the screen resolution is sw × sh and the tile size is w × h. There
are dsw/we×dsh/he = tw×th tiles for the entire screen. Each tile needs to store
its zmax-value. One solution is simply to store them in on-chip memory directly
in the GPU. Another is to access these values through a reasonably large cache.
The first solution always deliver the zmax at constant time, but for large screen
resolution it can be expensive. The second solution does not always get cache
hits, and therefore, this solution could incur extra delays. However, it scales
better with larger screen resolutions.

Now, consider a single tile and its zmax-value. Under normal circumstances3

the zmax-value is a decreasing monotonic function, which means that it will get
smaller and smaller the more triangles that are being rendered, or stay the same.
Recall also that it suffices to have a conservative estimate of the optimal zmax

(Equation 6.2). When fragments pass the depth test and are written to the
depth buffer, the optimal zmax-value may take on a new value. To update zmax

one could read all depth values of the tile, and simply evaluate Equation 6.2.
When depth buffer compression and depth caches are used (see Section 7.2),
this is what is usually done due to that all depth values of a tile are readily
available.

When this is not the case, reading all the depth values could defeat the
purpose of this algorithm. Since zmax can be conservative, one solution could
be to only update a tile’s zmax-value when, say, n different triangles have written
to that tile. This is not a strategy that has been documented in the literature,
so it is not guaranteed that it will work. However, a rather small value of n,
perhaps n = 4, could provide a good trade-off. Note that this surely is scene-
dependent though.

Normally, when a triangle is hidden, we avoid writing to the color and depth
buffers, and texture accesses are also avoided. However, as have been shown
in this section, with Z-max culling, the depth buffer reads can also be avoided
when the triangle is definitely hidden by the contents of the depth buffer. This
is the strength of this algorithm. However, it is interesting to investigate when
the algorithm starts to pay off, and this can be done by rewriting Equation 6.1

3That is, when using “less than” or “less or equal” as depth test function.

c© 2005–2012 Tomas Akenine-Möller

6.1. Z-min and Z-max Culling 61

as shown below.

Bd = d×Zr + o×Zw = (d− o)× Zr︸ ︷︷ ︸
fragments that only read

+ o× Zr + o× Zw︸ ︷︷ ︸
fragments that read and write

. (6.7)

The “fragments that only read” are the fragments that fails the depth test,
which means that they are occluded, i.e., hidden by the contents of the depth
buffer. These are the kind of fragments that Z-max culling reduces work for. As
can be seen in the Equation, there will be d−o such fragments, and o fragments
that both read and write. In terms of number of fragments, there will be more
fragments that fail than pass when the following is fulfilled:

d− o > o ⇔ d > 2o. (6.8)

According to Equation 4.1, o ≈ 2 when d = 4, so there is a break-even point
around d = 4, and for larger d there are more fragments that fail. What this
means, however, is that a reasonably high depth complexity is needed before
Z-max culling start to really work. Put another way, it takes a while to build
up some occlusion power of a tile that can actually cull something. This lead
researchers [7] to investigate whether a different algorithm could be use before
the occlusion power has been built up. This is the topic of the following section.

Morein [42] reported that about 20–50% of the pixels failed the depth test in
applications such as Quake, 3D Mark, and 3D Winbench. So, ideally all those
pixels could be culled by Z-max culling. However, due to that tiles must be
larger than pixels, and due to that the ztri

min-value is conservative, only about
45–90% of the 20–50% could be avoided. In practice, this meant that 10–32%
of the depth buffer reads were avoided.

6.1.2 Z-min Culling

The Z-min culling algorithm [7] is very similar to Z-max culling. An interesting
feature of this couple, is that the algorithms are not competing, but they are
rather complementary. Thus, if both are implemented, then performance will
be at least as good, and often much better, as if only one of the algorithms
exists in the hardware.

In Z-min culling, each tile stores a value called, zmin, which is defined as:

zmin = min
ij

[d(i, j)], (6.9)

that is, zmin holds the minimum of all the depth values in a tile. Similar to
Z-max culling, the zmin-value can be a conservative estimate of Equation 6.9.
The conservative estimate of zmin must be less than or equal to that in Equa-
tion 6.9. Again, there is a tradeoff between the number of bits per zmin-value
and performance.

The actual Z-min culling works as follows. When the traversal algorithm
arrives at a tile that overlaps with the triangle being rendered, a value called
ztri

max is calculated. The goal of this is to compute a conservative value of the

c© 2005–2012 Tomas Akenine-Möller

62 Chapter 6. Culling Algorithms

z

{

x

pixel

{tile

tile A

tile B

tile C

tile Dculled

culled

not culled

not culled

triangles already rendered to depth buffer
triangle currently being rendered

zmin

zmax
tri

Figure 6.2: Z-min culling illustrated in two dimensions. In tiles where ztri
max <

zmin, depth buffer reads can be avoided since it is guaranteed that the triangle
being rendered is definitely in front of primitives already rendered to the depth
buffer. In this example, tile A and tile D can be culled. However, for tile B and
C, the light gray triangle must be rendered as usual.

maximum of the depth values of the triangle in that tile. There are several ways
to do this. Either of Equations 6.4, 6.5, or 6.6 work when the min-operator is
replaced with max, and vice versa.

The major operation of Z-min culling takes place when the following expres-
sion is true:

ztri
max < zmin, (6.10)

because then the triangle in that tile is guaranteed to be completely in front
of the contents of the depth buffer, i.e., in front of primitives (e.g., triangles)
that have already been rendered. When this happens, it is certain that the
depth test passes, and the depth buffer reads can be avoided. This is where the
performance gain comes from in Z-min culling. In Figure 6.2, Z-min culling is
illustrated.

Exactly as in Z-max culling, the zmin-values of all the tiles on the screen need
to be stored somewhere. The solutions for zmax works as well here, so either
onchip memory is used for all tiles’ zmin-values, or they are accessed through a
cache.

A great advantage of Z-min culling is that it is extremely simple to maintain
an exact4 zmin-value for each tile. The reason for this is that when we know
that a depth value, d, has been written inside the tile and d < zmin, then the
minimum depth value must be equal to d, i.e., zmin = d. Such a simple update
is not possible in Z-max culling because there may be several pixels with the
depth being equal to zmax, and all of them must be overwritten in order to
change the value of zmax. Even if that did happen, we would not know what the
new zmax-value would be, since the maximum depth value of the tile may reside
in a pixel not overwritten just now. The conclusion is that Z-max culling must
read all depth values in the tile, and compute the maximum. Since updating

4With respect to the number of bits that zmin is stored in.

c© 2005–2012 Tomas Akenine-Möller

6.2. Object Culling with Occlusion Queries 63

zmin is so simple, it is perfectly suited for mobile GPUs.
In Equation 6.7, it can be seen that o fragments can potentially pass the

depth test, and for all of these, Z-min culling can provide a performance im-
provement by avoiding the depth buffer reads. Interestingly, Z-min culling starts
to pay off immediately, and then works worse and worse, and when d > 4, Z-
max culling starts to pay off more. Note though, that since zmin for a tile is
set to 1.0 (assuming this is the maximum depth value) when the depth buffer
is cleared, Z-min culling will improve performance from the first polygon that
is being rendered (if it does not have all depth values set to 1.0).

For scenes with low depth complexity (d=0.65, 1.5, 2.5), Z-min culling has
been found to reduce depth buffer reads with 84%, 49%, and 69% [7]. When
depth complexity grows it makes more sense to implement Z-max culling, and
for best performance both algorithms should be implemented.

6.2 Object Culling with Occlusion Queries

This is a also a very simple algorithm that needs extra support in the graphics
hardware, and in addition, the programmer needs to use this capability in a
clever way to actually gain performance. Unlike, Z-min and Z-max culling
(Section 6.1), object culling can actually cull away an entire object at a time.
Z-min and Z-max culling can only reduce the number of depth buffer reads.
Object culling can even reduce the amount of data sent to the GPU, the number
of vertices processed by the vertex shader unit, and of course also, fragment
processing.

The extra hardware that is needed is basically just a couple of counters and
some control logic. When a set of primitives (e.g., triangles) are rendered, one
can issue an occlusion query, which counts the number of fragments that passes
the depth test. If no fragments passes, then all primitives are occluded, i.e.,
hidden by objects already rendered into the depth buffer.

For occlusion culling of an entire object, say a character running around
in a game, the bounding box of the object is drawn using an occlusion query.
During this rendering, only depth testing is enabled—depth writes, color writes,
texturing, and pixels shaders are typically disabled. If the entire bounding box
is occluded, i.e., no fragments pass the depth test, then the entire object is
also occluded, and hence the object need no further processing. Note that it
is assumed that the object is much more complex than the bounding box of
the object, otherwise, there is little to gain from this. These types of occlusion
culling algorithms also usually benefit from drawing the objects in a (rough)
front to back order.

In practice, there must be a possibility to handle several occlusion queries
in the pipeline at the same time. This is due to the long turnaround time to
get the result of the query. NVIDIA and others have hardware for this. This
can also mean that a sophisticated algorithm is needed to run on the CPU in
order to be able to use occlusion queries on a hierarchical spatial data structure,
such as a bounding box hierarchy. See Wimmer and Bittner’s article on this

c© 2005–2012 Tomas Akenine-Möller

64 Chapter 6. Culling Algorithms

topic [57].
It should also be pointed out that occlusion queries are not only used for

culling algorithms, but can be used whenever fragment counting is needed. For
example, when implementing a ray tracer on a GPU [49], one needs to know
many pixels that still need to execute the grid traversal, or if all pixels have
found a grid cell with triangles in it.

6.3 Delay Streams

The student should read the paper by Aila et al. [2]. Another example that uses
delay streams is the hierarchical shadow volume algorithm [1].

c© 2005–2012 Tomas Akenine-Möller

Chapter 7

Buffer Compression

So far, we have seen that texture caching & texture compression (Chapter 5),
and different culling techniques (Chapter 6) can be used to reduce the memory
bandwidth usage in graphics hardware for a rasterizer. In this chapter, different
algorithms for compressing and decompressing parts of the frame buffer will be
explored. These techniques compress data and store it in a compressed form in
external memory. When it need to be accessed, the compressed information is
sent over the bus, and thus bandwidth is saved, and when it reaches the GPU, it
is decompressed and stored temporarily in a cache. When it need to be evicted
from the cache, it is compressed on-the-fly and sent back to external memory.
Note that a particular part of the buffer can be compressed and decompressed
several times when rendering a scene. First, a particular part of the buffer
can be accessed, compressed, and sent back to the external buffer. Then at a
later time, another triangle needs to access that part of the buffer again, and
so the information is again read, decompressed, and stored in the cache. At an
even later stage, the information can again be compressed and sent back to the
external memory, and so on.

This chapter starts with a description of a general system that can be used
with any type of lossless compression algorithm and with any part of the frame
buffer. Then follows, in Section 7.2, different techniques for compressing and
decompressing the depth buffer. Finally, in Section 7.3, some techniques for
color buffer compression/decompression will be presented.

It should be pointed out that the description of such techniques are, sur-
prisingly, non-existing in the academic literature. The only material found is by
Morein, who discuss depth buffer compression in only four slides [42]. Therefore,
the presentation here is based on several patents1 by ATI and NVIDIA.

1The patents are: I: “Method and Apparatus for Compressing Parameter Values for Pixels
in a Display Frame”, by DeRoo et al., US Patent 6,476,811, November 2002, II: “Method and
Apparatus for Compression and Decompression of Z Data” by van Hook, US Patent 6,630,933,
October 2003, III: “Method and Apparatus for Controlling Compressed Z Information in a
Video Graphics System” by Morein et al., US Patent 6,636,226, October 2003, IV: “System,
Method, and Apparatus for Compression of Video Data using Offset Values” by Morein et al.,

65

66 Chapter 7. Buffer Compression

7.1 Compression System with Cache

Both for depth compression and color compression, it is very important that
the compression is lossless, i.e., no information can be lost during compression.
This is in contrast to, for example, JPEG whose most common mode2 is “lossy,”
which means that information may be lost when an image is compressed. With
any lossy technique, the result will differ from using the original data (or a non-
lossy technique), and for the depth buffer and color buffer, the results would
not be acceptable.

For all algorithms described in this chapter, it is assumed that compression
and decompression is done on a per tile basis (see Section 6.1 for the definition
of a tile), and each tile is w × h pixels, and there are tw × th tiles on screen.

The idea of this type of compression system is that some part of the rasterizer
needs to access a buffer, and when possible, this information should be stored
in compressed form, and hence bandwidth will be saved both to and from the
external memory. Therefore, real-time compression and decompression units are
needed. The basic components of a compression system in general are shown in
Figure 7.1.

Two core components in this architecture is a cache (see Section 5.5) and a
control block. A cache is needed because a full tile of pixels is compressed and
decompressed at a time, and therefore, it is more efficient to store the tiles that
are accessed in a cache, since memory accesses to adjacent pixels sometimes
are immediately available. In fact, without the cache it is very likely that this
system would actually degrade performance. The control block receives read
and write requests from the rasterizer, determines whether the information is
in the cache, or sees to it that the information is loaded into the cache. When
read and writes to the buffer in external memory are issued, the decompression
unit unpacks the compressed information from a tile, and the compression unit
attempts to compress the data, and sends it back to the external buffer.

The tile table is also central to this buffer compression system, and for each
tile, it stores a number of bits of extra information. We call this information
tile info. The usage of these will be explained here, but also in the following
sections. When lossless compression is supported, there always needs to be a
fall back that performs no compression at all. Otherwise, lossless compression
cannot be guaranteed. These tile info bits can encode which type of compression
mode is used for each block. This simplest example is to use a single bit for this,
where 0 means uncompressed, and 1 means some compressed format. Another
example assumes that two bits are used. The code 00b could mean that the
block is not compressed, 01b could mean a mode with a 25% compression, 10b
could mean another mode with 50% compression, and finally, 11b could mean
that the block is cleared. This last mode is often used for fast buffer clears.
So, to clear the buffer, one simply sets all tile info values to 11b. When a read
request is obtained, the tile info is first checked, and if it is equal to 11b (i.e.,

US Patent 6,762,758, July 2004, and V: “System and Method for Real-Time Compression of
Pixel Colors” by Molnar et al., US Patent 6,825,847, 2004.

2There is a mode in JPEG that is lossless too.

c© 2005–2012 Tomas Akenine-Möller

7.1. Compression System with Cache 67

Tile table

Cache

cached
block 0

cached
block 1

cached
block 2

cached
block 3

cached
block 4

cached
block

n-1

Compression
unit

Decompression
unit

 Tile
data tw+1

 Tile
data 0

 Tile
data tw

 Tile
data 1

 Tile
data 2

 Tile
data tw-1

Buffer in external memory

Control block

Read and write requests from the pipeline

Compression System

Read
data

Write
data

Figure 7.1: Compression system with cache. The buffer itself is located at
the bottom, and it is divided into tiles, of say, 8 × 8 pixels. Read and write
requests are coming from the rasterizer, and the cache delivers the information
at the required locations, or updates the contents in the cache. When the
cache needs to read from external memory, the control block first checks the
tile table to see how much needs to be read from the memory, then reads, and
finally decompresses. When the cache need to evict data from the cache, the
compressor attempts to compress, and sends it back to the external memory in
that form.

cleared), one need not read the buffer at all. Instead, the cache can immediately
deliver a tile full of cleared values.

Now, assume that a tile stores four bytes per pixel, and that the tile is 8× 8
pixels. This means that 8×8×4 = 256 bytes are needed to store the information
of a tile in uncompressed form. If there are tw× th tiles, the external buffer still
needs to store 256× tw× th bytes of information. This compression system does
not make better use of external memory—it only saves bandwidth to and from

c© 2005–2012 Tomas Akenine-Möller

68 Chapter 7. Buffer Compression

the external memory.
With this information, imagine that a particular pixel in a particular tile

need to be accessed, and a read request is issued, and that issue arrives to the
control block. The control block determines whether that pixel’s tile is in the
cache, and if it is, then the information is immediately delivered to the issuing
party. If it is not, some block is evicted from the cache, and the contents need to
be sent back to the buffer in external memory. Therefore, an attempt is made at
compressing the contents of that tile. This takes place in the compression unit.
Say, the block could be compressed to 25%, i.e., 256 bytes is encoded using only
64 bytes. These 64 bytes are then sent to the external memory, which means
that the other 192 bytes of that tile is not used. Since the tile was written back
to external memory, the tile info is updated (in this case with 01).

Depending on the architecture, a new tile could be read in parallel or after
the evicted block has been written back to memory. When reading from the
external memory, the tile info in the tile table is first examined, to check to
which compression mode is associated with that tile. Assume the current tile is
compressed to 50%. This means that 128 bytes are read from external memory,
and these bytes are then decompressed and stored in the cache. It should also
be noted that the amount of memory for storing the tile table might be quite
large, and therefore, its information might have to be accessed through a cache
as well.

For efficiency reasons, it is also common to let each cache block store a
dirty bit. The dirty bit indicates whether new information has been written to
that tile. If not new info has been written to it, one need not write back that
information to external memory when the tile is evicted. So, as soon as a single
pixel has been updated in a tile, one need to set that tile’s dirty bit in the cache.

Examples of buffers that can be compressed are the depth buffer (Sec-
tion 7.2), the color buffer (Section 7.3), and even the stencil buffer.

7.2 Depth Buffer Compression

The depth buffer is probably the easiest buffer to compress, and it is also where
one can make the biggest savings. The reasons why compression is likely to
work well for the depth buffer are that depth over a triangle is interpolated
linearly (see Equation 3.14), and that triangles tend to cover several pixels, or
even entire tiles of pixels, or in case of really small (sub-pixel) triangles, the
triangles often have a limited depth range anyway.

Notice that a depth cache (see Figure 7.1) is imperative to Z-max culling
(Section 6.1.1), and since the system in Figure 7.1 also can provide compression,
it is common to provide both Z-max culling and depth compression at the same
time. Also, note that some depth compression schemes are likely to fail at
compressing a tile if the geometrical complexity is high. However, the depth
cache can still provide a significant gain since many triangles are written to
that tile. For tiles with low geometrical complexity, depth buffer compression
is likely to perform very well. Another advantage of depth compression with a

c© 2005–2012 Tomas Akenine-Möller

7.2. Depth Buffer Compression 69

cache is that semi-transparent geometry, such as particle systems etc, seldom
write their depths to the depth buffer—those algorithms only test against the
depth buffer. If the depths of those tiles are already in the depth cache, then
the cost will be equal to zero in terms of depth buffer accesses.

An observation that appears to be used when designing compression schemes
for the depth buffer is that when a triangle partially covers a tile, one can
consider the tile to consist of two depth layers. Assume, for example, that a
ground floor quadrilateral has been rendered, and that it covers a particular tile
fully. Then an object is rendered, which makes half of that tile be overwritten by
that object’s triangles. The pixels in that tile that belongs to the ground floor
all have similar depth values, and the other half also have similar depth values.
Hence, depth compression schemes often try to take this fact into account.

Recall that, as in Section 6.1, the depth values in a tile are denoted d(i, j),
where i ∈ [0, w − 1] and j ∈ [0, h − 1]. We also assume that the smallest
possible depth value is 00 . . . 00b (all bits are zero) and that the largest possible
depth value is 11 . . . 11b (all bits are one), where each of these numbers are,
for example, 24 bits. Hence, the depths can be treated as integers. It should
also be pointed out that the granularity of the memory accesses is not taken
into account in the examples. Instead, the focus is on providing figures for the
different algorithms that can be compared. If all memory accesses need to be,
say, 128 bits, then that fact need to be taken into account as well. Next, some
techniques for depth buffer compression are presented.

7.2.1 Depth Offset Compression

This compression scheme identifies a number of reference depth values, rk, for a
tile, and then iterates over all depth values in the tile. A test is made whether
a depth value, d(ij) is within a predetermined range, t, of rk, and if so, that
depth value can be coded as an offset to that reference value. Identifying more
than two good reference depth values, rk, appears quite difficult, at least if some
kind of optimality is desired. Instead a simpler approach is often taken.

The idea is to compute the minimum depth value, zmin, and the maximum
depth value, zmax, of a tile. This is done using Equations 6.2 and 6.9. Then it
is assumed that there are two layers, one that is close to zmax (and less than or
equal to zmax), and another that is close to zmin (and larger than or equal to
zmin). To reduce the hardware complexity, the predetermined range, t, is often
chosen as a power of two, i.e., t = 2p. If the following is fulfilled:

d(i, j)− zmin < t, (7.1)

then d(i, j) can be encoded as an offset relative to zmin, and if the next expression
is fulfilled:

zmax − d(i, j) < t, (7.2)

then d(i, j) can be encoded relatively to zmax. If at least one of Equation 7.1 or
Equation 7.2 is fulfilled for every pixel inside a tile, then that tile can be com-
pressed using this technique. Otherwise, it is stored in uncompressed form. In

c© 2005–2012 Tomas Akenine-Möller

70 Chapter 7. Buffer Compression

z=0 z=maxzmin zmax

}t }t

zmin+t-1 zmax-t+1

Figure 7.2: Offset depth buffer compression. When all depths, d(i, j), of a tile
are in either of the gray depth ranges, the tile can be compressed. Otherwise,
the depth values of that tile are stored in uncompressed form.

Figure 7.2, the cases that can be compressed with this algorithm are illustrated.

If the tile can be compressed with this technique, the following information
should be stored in order to be able to uncompress it without losses. The zmin-
and zmax-values, must be stored, since these are the reference values, which we
compress relatively to. Notice if Z-max and/or Z-min culling is combined with
this depth buffer compression scheme, then sharing of computations and storage
should be possible. Furthermore, each pixel needs to store one bit, which says
whether its depth value is encoded relative to zmin or zmax, and each pixel also
need to store its offset, o(i, j), which is simply:

o(i, j) =

{
d(i, j)− zmin, if d(i, j)− zmin < t,
zmax − d(i, j), if zmax − d(i, j) < t.

(7.3)

The following example shows what kind of compression ratio can be expected
from using depth offset compression.

Example 7.2.1.1 Depth Offset Compression

In this example, we assume that 8×8 tiles are used, and that each depth value is
stored in 24 bits. Therefore, zmin and zmax need 6 bytes to store, and each pixel
need one bit for indicating which reference value it is encoded to. Hence, another
8× 8 bits = 8 bytes are needed. Finally, we assume that t = 28, and therefore,
each offset value, o(i, j), is encoded using 8 bits. This costs 8 × 8 × ×8 = 512
bits = 64 bytes. In total, this costs 64 + 8 + 6 = 78 bytes. In uncompressed
form, a tile occupies 8× 8× 3 = 192 bytes. Thus, the compression reduces the
data to 100× 78/192 ≈ 41%, when the tile depths can be compressed. 2

For the algorithm described above, a subtraction need to be performed both
for comparing a depth value to zmin and to zmax. Next, a technique will be
described that can reduce the computational complexity of compression and
decompression. Instead of storing all bits of zmin and zmax, only the m most
significant bits (MSBs) are stored as reference values. Call these values umin

and umax. If zmin and zmax each is stored using k bits (e.g., 24 or 32 bits),
the offset values are simply the k−m least significant bits (LSBs) of the depth
values. This value also determines the range, t = 2p, i.e., p = k − m. The
following example attempts to clarify this.

Example 7.2.1.2 Inexpensive Offset Computation

For simplicity, assume that zmin = 010111001110b, and that the eight MSBs are

c© 2005–2012 Tomas Akenine-Möller

7.2. Depth Buffer Compression 71

z=0 z=maxzmin zmax

}t=2p

umin<<p

}t=2p

umax<<p
}t=2p }t=2p

Figure 7.3: A problem with the inexpensive variant of depth offset compression
is illustrated here. Since zmin is truncated to umin and zmax is truncated to
umax, the full range of t = 2p cannot be exploited for encoding offsets. In this
figure, only the dark gray regions can actually be used. With the more expensive
technique, all values in the light and dark gray regions could be encoded with
offsets.

z=0 z=max
zmin zmax

}t=2p

umin<<p

}t=2p

umax<<p

}t=2p }t=2p}t=2p }t=2p

(umin+1)<<p (umax-1)<<p

Figure 7.4: A solution to the inexpensive variant of depth offset compression.
At the cost of one extra bit per offset, the depth range is increased by another
range of t = 2p, and thus all values in the gray areas can be encoded using this
technique.

used as a reference value. Thus the reference value becomes umin = 01011100b,
and the offset for encoding zmin is thus 1110b, i.e., the remaining four bits. A
major disadvantage with this scheme can be seen in this example. Since we
use four bits for the offset, the offset should be able to encode offsets in [0, 15].
However, with this simplified scheme, the offset must be larger or equal to 1110b,
but at the same time it cannot be bigger than 1111b. Thus, the depth range
that can be used is very small, only two values. 2

This loss of compressibility, as exemplified above, is illustrated in Figure 7.3.
The problem arises since, the zmin and zmax are truncated, and hence, depending
on the least significant bits of these values, there will be a different amount of
possible values to encode relative zmin and zmax. In the worst case, only a single
value can be encoded relative to, say, zmin, and this value must be equal to zmin.

One solution is simply to increase the number of bits per offset. With just
one more bit per offset, the range increases by a factor t = 2p. This is illustrated
in Figure 7.4. An example that uses this technique follows.

Example 7.2.1.3 Depth Offset Compression: inexpensive variant

Again, assume that 8 × 8 tiles are used, and that each depth value is stored
in 24 bits. Furthermore, we assume that the offsets are encoded using 8 bits,
which means that the truncated versions of zmin and zmax only need 16 bits=2
bytes each, i.e., 4 bytes in total. Each pixel needs two bits for indicating which

c© 2005–2012 Tomas Akenine-Möller

72 Chapter 7. Buffer Compression

umin

umax

umin+1

umax-1

2-bit per pixel flag

uncompressed depth

per pixel offset

2

k-m=p bits

m bits

k bits

Figure 7.5: Decompression of a single depth value using the depth offset com-
pression technique. One of the values umin, umin + 1, umax − 1, and umax are
identified using the MUX and the 2-bit identifier that each pixel stores. When
that is done, the result is concatenated with the pixel’s offset value, which results
in the uncompressed depth.

reference value it is encoded relative to, sine we can use umin, umin + 1, umax−
1, and umax. This costs 8 × 8 × 2 bits=16 bytes. The offsets are of 8 bits,
which costs 64 bytes for the entire tile. In total, this costs 64 + 16 + 4 = 84
bytes. In uncompressed form, a tile occupies 8 × 8 × 3 = 192 bytes. Thus,
the compression reduces the data to 100× 84/192 ≈ 44%, when the tile depths
can be compressed. Compared to Example 7.2.1.1, 44% is still comparable to
41%, and since this technique is less expensive, it is worth that small amount
of reduction in compression. 2

In total, the amount of compression might actually become better with the
inexpensive variant even though the example above shows otherwise. The reason
for this is that the offset range that can be encoded is greater with this technique,
and therefore more tiles should be possible to compress this way, and that might
make up for its loss of compression efficiency. In the best case, the range is
doubled, and in the worst case the range is only increased by one. Hence, it can
be argued that, on average, the range is about 50% larger, and the extra cost
for this is one bit per pixel. However, 50% corresponds to about half a bit, and
so it cannot quite match up with the previous technique. It is still inexpensive
in hardware though.

As shown in Figure 7.4, one can interpret this technique as having four
different reference depth values, umin, umin + 1, umax − 1, and umax. Based
on this, an example of how decompression hardware for a single depth value is
done is illustrated in Figure 7.5.

It is possible that this the depth offset compression technique could be used
for compressing colors as well. Each color component (R, G, B, and A) could
be compressed separately. However, nothing has been documented about this.

c© 2005–2012 Tomas Akenine-Möller

7.2. Depth Buffer Compression 73

1
2

2 3 4 5 6 7 8
3 4 5 6 7 8 10

25 6 7 8 9 2 2
27 8 9 2 2 2 2
29 2 2 2 2 2 2
22 2 2 2 2 2 2
22 2 2 2 2 2 2
22 2 2 2 2 2 2

d(0,0)
d(7,1)

0
1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

10 0 0 0 0 1 1
10 0 0 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
11 1 1 1 1 1 1
11 1 1 1 1 1 1

x

y

Figure 7.6: In this example, there are only two layers in this 8×8 pixel tile, and
the two layers are identified using a single bit (0 or 1) as shown to the right.
The depth values of the tile are shown to the left. As can be seen in the lower
right area of the tile, a primitive with a constant depth of 2 has been rendered,
and in the upper left region, a primitive has been rendered with linearly varying
depth. The depth values in these two layers can be reconstructed from only
knowing a single depth value (d(0, 0) for layer 0, and d(7, 1) for layer 1), and
the differentials, (∂z0/∂x, ∂z0/∂y) for layer 0, and (∂z1/∂x, ∂z1/∂y) for layer 1.
As can be seen for the upper left primitive, ∂z0/∂x = 1 and ∂z0/∂y = 2, and
∂z1/∂x = 0 and ∂z1/∂y = 0

7.2.2 Layered Plane Equation Compression

This algorithm exploits the fact that depth is interpolated linearly over a trian-
gle, as in Equation 3.14. Thus, if only a single triangle is fully covering a tile,
the plane equation of the triangle could be stored instead. This is the basic idea,
and that idea is generalized to handling several plane equations (i.e., triangles)
covering a tile.

An explicit plane equation is given as a function of screen space coordinates,
(x, y):

d′(x, y) = d(x0, y0) +
∂z

∂x
(x− x0) +

∂z

∂y
(y − y0), (7.4)

where d(x0, y0) is the depth at a pixel (x0, y0), and the differential, ∂z/∂x could
be calculated as:

∂z

∂x
= d(x+ 1, y)− d(x− y), (7.5)

and similarly for ∂z/∂y. The idea is that all depth values of a layer, k, can be
reconstructed as long as one depth value, d(xk, yk), and the depth differentials,
(∂zk/∂x, ∂zk/∂y) are known. Reconstruction is then done using Equation 7.4.
It should be noted that the differentials must be constant for the entire tile, and
care has to be taken so that this requirement is fulfilled.

An example of a compressed tile is shown in Figure 7.6. To reduce storage
requirements, one can avoid storing the positions, (xk, yk), of the the depth
value, d(xk, yk). Instead this is assumed to be the first position when that layer
is active. In Figure 7.6, this is (0, 0) for layer 0, and (7, 1) for layer 1, if the
order is assumed to be left to right and top to bottom.

c© 2005–2012 Tomas Akenine-Möller

74 Chapter 7. Buffer Compression

Decompression is done by iterating over all the pixels, once per layer, k.
The pixel coordinates, (xk, yk), are found when the the first pixel belonging to
layer k is identified, and the depth value at that pixel is simply, d(xk, yk), which
is stored in the compressed representation. For each of the following pixels,
(xp, yp), belonging to layer k, the depth is reconstructed using Equation 7.4.

Example 7.2.2.1 Layered Plane Equation Compression

In this example, we assume that 8× 8 tiles are used, and that each depth value
is stored in 24 bits. If we assume that only two layers are supported by one
compression mode, each pixel need to store one bit as a layer identifier. This
costs 8 × 8 bits = 8 bytes. Furthermore, the depth and depth differentials are
stored using 3 bytes each, which means that each layer needs 3×3 = 9 bytes for
that information. In total, this sums up to 9+9+8 = 26 bytes. In uncompressed
form, a tile occupies 8 × 8 × 3 = 192 bytes. Thus, the compression reduces
the data to 100 × 26/192 ≈ 14%, when the tile depths can be compressed.
However, it should be noted that only tiles containing a single layer or two
layers can be compressed with this technique. With four layers, this figure
rises to 9 × 4 + 2 × 8 = 52 bytes, and thus the compression ratio becomes ≈
27%. With another four layers, i.e., a total of eight layers, this figure rises to
9× 8 + 4× 8 = 104 bytes, and thus the compression ratio becomes ≈ 54%. 2

The compression algorithm used for this technique is only described rather
briefly here. Basically, a layer identifier need to be maintained for each pixel, and
this could, for example, be a 4-bit register. This means that at most 15 different
layers can be used, because the highest number using four bits is reserved for
indicating that more layers than can be handled have been written to that tile.
When the depth buffer is cleared, the layer identifier is set to zero for each
pixel, and the depth values are set to the depth clear value. When a triangle
is rendered over a tile, a layer counter is incremented for the first written pixel,
and all other pixels in that triangle writes the value of the layer counter into the
respective pixels’ layer identifier. It must be possible to derive the differentials
from the depth values alone, and to reduce hardware complexity, one can require
that the first pixel, (xk, yk), belonging to a layer, k, must also have pixels at
(xk + 1, yk) and (xk, yk + 1) belonging to layer k as well. Then the differentials
are trivial to compute. However, this reduces the number of tiles that can be
compressed using this technique.

7.2.3 DPCM Compression

This algorithm is based on a technique known as differential pulse code modula-
tion, or DPCM, for short. The basic idea is to compute the second derivative of
the depth function. If we have a linear function, such as depth over a triangle,
the second derivative will be zero, and thus inexpensive to encode. However,
since we are dealing with a discretization of of the depth, we need to compute
the second derivative using differential techniques. The first two steps of this
procedure is illustrated in Figure 7.7.

c© 2005–2012 Tomas Akenine-Möller

7.2. Depth Buffer Compression 75

x

y

d d d d d d d d
d d d d d d d d
d d d d d d d d
d d d d d d d d
d d d d d d d d
d d d d d d d d
d d d d d d d d
d d d d d d d d

d d d d d d d d
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s

d d d d d d d d
s s s s s s s s

∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s

Figure 7.7: A tile with depths, d, is shown to the left. The first step of DPCM
depth buffer compression is to compute the slopes, s, for all pixels below the
first row. The second step is to compute the differential slopes, ∆s, for all but
the first two rows.

To explain this, let us focus for a moment on a single column of depth values.
For simplicity, denote these depths, di, i ∈ [0, 7], where d0 is at the top of the
column. The first step is to compute the slopes, si, i ∈ [1, 7], as:

si = di − di−1. (7.6)

The second step is to compute the differential slopes, ∆si, i ∈ [2, 7], as:

∆si = si − si−1. (7.7)

This can also be expressed as:

∆si = si − si−1 = (di − di−1)− (di−1 − di−2) = di − 2di−1 + di−2. (7.8)

Now, given only d0 and the slopes, si, it can be seen that all the depth values,
di, can be reconstructed. This is done in order of the subscript, i, that is, first d0

is computed (already known), then d1, and then d2, and so on. To reconstruct
the second depth, compute d1 = d0 + s1 = d0 + (d1 − d0). In general, it holds
that:

di = di−1 + si, i ≥ 1. (7.9)

Unfortunately, the slopes, si, are not that simple to compress, since they might
have large values (and for linear functions, they should be the same). Therefore,
the differential slopes, ∆si, are used.

Assume we know d0, s1, and the differential slopes, ∆si, i ∈ [2, 7]. The
second depth is reconstructed as before, d1 = d0 + s1. The third depth could
be evaluated as d2 = d1 + s2. However, at this point, s2 is not known, but it
can be reconstructed in the same way as the depths in Equation 7.9. Hence,
the slope s2 is computed as s2 = s1 + ∆s2 = s1 + (s2 − s1), and in general, a
slope can be calculated as:

si = si−1 + ∆si, i ≥ 2. (7.10)

c© 2005–2012 Tomas Akenine-Möller

76 Chapter 7. Buffer Compression

x

y

d d d d d d d d
s s s s s s s s

∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s

d
s

∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s

∆s ∆s ∆s ∆s ∆s ∆s ∆s
s s s s s s s d

s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s
∆s ∆s ∆s ∆s ∆s ∆s ∆s ∆s

∆s ∆s ∆s ∆s ∆s ∆s ∆s
s ∆s ∆s ∆s ∆s ∆s ∆s

Figure 7.8: This illustration is a continuation of Figure 7.7, and it shows how
the first two rows can be reduced to many differential slopes, ∆s, as well. As
can be seen, only one original depth value, d, is needed, and only two slopes, s.
The remaining 61 values are differential slopes.

This means that each column in a tile is reconstructed, from d0, s1, ∆si, i ∈
[2, 7], as follows:

d0, already known
d1 = d0 + s1, s1 already known
d2 = d1 + s2, where s2 = s1 + ∆s2

d3 = d2 + s3, where s3 = s2 + ∆s3

. . . and so on

(7.11)

Each column is compressed independently of the other columns, so parallel
processing can be exploited to implement fast hardware for this. As previously
touched upon briefly, it is most beneficial to reduce the depth values to as many
differentials slopes as possible, since these tend to be close to zero, and thus
easy to compress. Therefore, the first two rows, containing only d’s and s’s are
transformed in the same was as the columns. The second row already consists
of s’s and therefore, the differential slopes, ∆s, can be computed directly from
that row of s’s. For the first row, containing only d’s, seven slopes, s, are first
computed, and then six differential slopes, ∆s, are calculated. That is, the first
row is treated in exactly the same way as a column. This is all illustrated in
Figure 7.8.

Due to the high correlation between the depth values over a tile, especially,
when only one triangle has been rendered to the tile, it can be argued that
the differential slopes, ∆s, will be very small values. Typically, over a single
triangle, the ∆s are either −1, 0, or +1. In fact, if ∂z/∂x and ∂z/∂y from
pixel to pixel, as assumed in Section 7.2.2, then the differential slopes should be
0—however, that can be tricky to obtain in practice, especially if Equation 3.14
is used directly to compute the depth per pixel. However, if more than one
triangle is rendered to a tile, the differential slopes will have larger values, but
this can be assumed to happen only for a small amount of the pixels, for the
simple cases when only two triangles reside in a tile. Therefore, each pixel gets
to store two extra bits, where 00b means that the differential slope is ∆s = 0,
01b means that ∆s = +1, and 10b means that ∆s = −1. As can be seen, the
differential slopes are encoded using only two bits per value when this is fulfilled.

c© 2005–2012 Tomas Akenine-Möller

7.2. Depth Buffer Compression 77

This should be compared to 24 bits or even 32 bits that are often used for the
per-pixel depth.

The last number, 11b is used as an escape code. When an escape code is
encountered, this means that the the differential slope is outside the range,
[−1,+1], and thus this case must be handled differently. Note that a one-bit
value can be used instead of two bits. Then 0b would mean that ∆s = 0, and
1b would be the escape code. More than two bits can also be used, and the
advantage of that is that more differential slopes can be encoded without the
escape. However, each pixel need to store more bits, so this is a tradeoff.

For the remainder of this text, we assume that two bits are used for this
purpose. This means that 122 bits are needed for a tile’s two-bit values, as
there are 61 ∆s-values per tile. To be able to encode any differential slope, one
must investigate how many bits that are used during computing the ∆s. The
slopes, s, are computed as a difference of two depth values, and hence they need
to be stored using 25 bits (see Section A.2.1), assuming the depth is stored in
24 bits per pixel. The differential slope is computed by subtracting two slopes,
and therefore, a differential slope can be stored in 26 bits. This also means that
if an escape code is encountered, then 26 bits should be used to to encode the
differential slope, if it is required that every possible value of the differential
slope should be possible to encode. This is an extreme case, and often much
fewer bits suffice.

Example 7.2.3.1 DPCM Compression: Best case

When no escape codes at all are needed, the information that needs to be stored
are 24 + 2× 25 + 2× 8× 8 = 202 bits≈ 25 bytes. An uncompressed tile occupies
192 bytes, and so the compression rate is 100 × 25/192 ≈ 13%. This is a best
case scenario, however. 2

The following example illustrates what happens when two triangles are ren-
dered to a tile.

Example 7.2.3.2 DPCM Compression: Common case

Let us focus on only a single column at first. Assume the depths, di, are 1, 2,
3, 4, 8, 10, 12, and 14. Clearly, this indicates that two primitives have been
rendered into that column. The slopes would be 1, 1, 1, 4, 2, 2, and 2. Finally,
the differential slopes become 0, 0, 3, -2, 0, and 0. As can be seen, this sequence
of differential slopes would require two escape codes, one for 3 and one for -2. If
we assume that a triangle edges cuts right through an 8×8 tile, there would be a
need for two escape codes per column. This could be considered a common case,
so let us investigate how much data is needed to store such a compressed block.
As in Example 7.2.3.1, 202 bits are needed for everything but the differential
slopes that are encoded when an escape could is encountered. We assume that
2 × 8 = 16 escape codes are needed, two per column. Thus, another 16 × 26
bits=52 bytes is needed. In total, this sums to 52 + 25 = 77 bytes, which gives
a compression ratio of 100× 77/192 = 40%. 2

Since, the escape codes are quite expensive, as shown in the example above,
another method is presented as well. The idea is to perform the coding both

c© 2005–2012 Tomas Akenine-Möller

78 Chapter 7. Buffer Compression

from the top row and down as already shown throughout this section, and also
from the bottom row and up. When differential slopes are encountered that
cannot be coded with the range [−1,+1], we have detected the point where the
slope and/or depth offset change. Assume that this happens at the third pixel
from the top for one column. The encoding starting from the top row could
be used until the third pixel, and the encoding from the bottom row could be
used from the bottom pixel up to the fourth pixel. This technique would avoid
these expensive differential slopes for the common case. This comes at a cost of
three bits per column, since we need to know where the bottom row encoding
should be used instead of the top encoding, and also another depth value and
two slopes (for the bottom encoding).

24 + 2× 25 + 2× 8× 8 = 202 bits≈ 25

Example 7.2.3.3 DPCM Compression: Optimized common case

Using both a top encoding and a bottom encoding as explained above, the
compression ratio can be lowered. This scheme costs 2×(24+25×2)+2×8×8 =
276 bits= 34.5 bytes for the two depth values and the four slopes, and the two
bit codes per pixel. In addition, 3 bits are needed per column, which results
in 3 bytes for an 8 × 8 tile. In total this sums to 37.5 bytes, which gives
100× 37.5/192 = 20%, which is about half of that in Example 7.2.3.2. 2

Notice that neither of Examples 7.2.3.3 nor 7.2.3.1 actually use any of the
escape codes, so it might be beneficial to use a differential slope range of [−2,+1]
instead of [−1,+1].

To provide a compression mode where more complicated cases are handled,
one can combine the techniques in Example 7.2.3.2 and 7.2.3.3. This would still
provide a compression ratio of less than 50%.

Note also that it might be possible to encode the slopes using fewer bits,
as well as the differential slopes that needs to be encoded when an escape code
is encountered. This could provide even better compression ratios. Morein
reports that this technique reduced the depth bandwidth with about 50% [42],
but exactly what compression modes are used are not described.

7.3 Color Buffer Compression

Bengt-Olaf Schneider + someone else at NVIDIA. Look at non-lossy compres-
sion from JPEG as well: check copies from Petrik’s book.

How much can you gain? Can a PACKMAN-like algorithm be used for this?
Must be non-lossy, of course.

Depth offset compression can be used? Section 7.2.1.

c© 2005–2012 Tomas Akenine-Möller

Chapter 8

Screen-space Antialiasing

8.1 Theory

8.2 Inexpensive Antialiasing Schemes

FLIPTRI [4], FLIPQUAD [3, 7], Hasselgren et al. [25].

8.3 High-Quality Antialiasing

Interleaved sampling: Heidrich and Keller, and ... Molnar.

79

80 Chapter 8. Screen-space Antialiasing

c© 2005–2012 Tomas Akenine-Möller

Chapter 9

Architectures for Mobile
Devices

9.1 Tiling Architectures

ZR: A 3D API Transparent Technology for Chunk Rendering by Hsieh et al.
2001.

9.2 Bitboys?? Others?

81

82 Chapter 9. Architectures for Mobile Devices

c© 2005–2012 Tomas Akenine-Möller

Appendix A

Fixed-point Mathematics

In this appendix, we will introduce the notation and operations that we use
for fixed-point mathematics. For some platforms, e.g., low-cost mobile phones,
fixed-point mathematics is used on the CPU due to lack of accelerated floating
point instructions. It can be argued that floating point acceleration on the CPU
will be added in the future, and so fixed-point math is nothing that is relevant
to learn. However, in the hardware of a GPU, it often makes sense to use
fixed-point math. To reduce the cost of an implementation, it is very important
to reduce the needed accuracy (number of bits) in the computations without
sacrificing quality.

It should also be pointed out that fixed-point math can be more accurate
than floating point, especially if you know the maximum range of your numbers
before starting.

A.1 Notation

In contrast to floating point, a fixed-point number has a decimal point with fixed
position. Each number has a number of bits for the integer part, and another
number of bits for the fractional part. With i integer bits, and f fractional bits,
the notation for that representation is shown in Equation A.1.

[i.f] (A.1)

Note that the most commonly used technique is to use two-complement if neg-
ative numbers are to be represented as well. Thus, there is no explicit sign bit
as in floating point. The resolution of a fixed-point number is dictated by the
number of fractional bits, f , and the resolution is 2−f . This is the smallest unit
that can be handled using this representation.

For f bits for the fractional part, the resolution is shown in Table A.1.

83

84 Appendix A. Fixed-point Mathematics

f Resolution Resolution
1 1/2 0.5
2 1/4 0.25
3 1/8 0.125
4 1/16 0.0625
5 1/32 0.03125
6 1/64 0.015625
7 1/128 0.0078125
8 1/256 0.00390625
12 1/4,096 0.000244140625
16 1/65,536 0.0000152587890625
24 1/16,777,216 0.000000059604644775390625
32 1/4,294,967,296 0.00000000023283064365386962890625

Table A.1: Resolution of fixed-point numbers with f fractional bits. The reso-
lution is shown both as a rational number (1/2f), and a decimal number.

A.1.1 Conversion

Converting between fixed-point and floating-point numbers is simple as shown
in the examples below.

Example A.1.1.1 Conversion from floating-point to fixed-point

For example, assume you have a floating-point number, 2.345. Converting it to
the [5, 4]-format is done as follows: round(2.345× 24) = 38. 2

Example A.1.1.2 Conversion from fixed-point to floating-point

Now assume that we have a fixed-point representation in [5, 4]-format, and that
the integer value of that representation is 38 (see example above). Converting
it back to floating-point is done as follows: float(38 × 2−4) = 2.375. If trun-
cation (using for example int() in C/C++) was used instead of round() in
Example A.1.1.1, the fixed-point representation would become 37 instead, and
when converting back to float the result would be 2.3125, which is a slightly
worse approximation compared to 2.375. 2

As can be seen in the two examples above, 2.345 6= 2.375, and this is one
of the obstacles in using fixed-point representation: the accuracy can be quite
bad, and therefore, extreme care has to be taken in order to provide sufficient
accuracy. Usually, the indata and the needed accuracy in the result are analyzed,
and fixed-point format is chosen thereafter.

In general, converting a floating-point number, a, to fixed point format, [i.f],
is done as shown below:

round(a× 2f), (A.2)

where the result is an integer with i + f bits. The corresponding formula for
converting from fixed-point, b, to floating-point is:

float(b× 2−f) (A.3)

c© 2005–2012 Tomas Akenine-Möller

A.2. Operations 85

Note that conversion therefore often is implemented as shifting the numbers,
since this is less expensive than multiplication and division.

It should be noted that we are not restricted to using scaling factors of 2f

and 2−f . In general, any number can be used as scaling factor, but the powers
of two are convenient because they can be implemented as simple left and right
shifts. Furthermore, using scaling factors that are not powers of two makes for
a representation that is not on [i.f]-format.

Rounding of a floating-point number, a, can be implemented as follows:

round(a× 2f) = int(ba× 2f + 0.5c), (A.4)

where int() is a function that simply truncates the fractional parts, i.e., throws
them away. The floor function, bxc simply truncates towards −∞, e.g., b1.75c =
1 and b−1.75c = −2.

A.2 Operations

In the following, we show what happens to the resulting fixed-point representa-
tion that is need to exactly being able to represent the result from an operation,
e.g., multiplication. Such knowledge can help prevent overflow/underflow from
occurring.

A.2.1 Addition/Subtraction

Addition and subtraction are performed by treating the fixed-point numbers as
integers and adding them using standard addition/subtraction. In terms of the
bit count of the result, that can be expressed as shown below:

[i.f]± [i.f] = [i+ 1.f]. (A.5)

As can be seen, all that happens is that the number of integer bits are increased
by one. Intuitively, this makes sense, since adding the biggest number that
can be represented in [i.f] to itself, is the same as multiplying the number by
two, which in turn is the same as shifting the number one step to the left.
This always makes the number occupy one more bit, and correspondingly, the
number of integer bits has been increased by one (i+ 1).

Example A.2.1.1

Adding two numbers represented in [8.8]-format gives a sum that is represented
in [9.8], and hence, the result cannot be stored in 16 bits. 2

If the two operands in the addition/subtraction has different number of bits,
the bit count of the result is expressed as:

[i1.f1]± [i2.f2] = [max(i1, i2) + 1.max(f1, f2)], (A.6)

that is, the number of integer bits of the results is one plus the maximum of
the integer bits of the operands, and the fractional number of bits is equal to

c© 2005–2012 Tomas Akenine-Möller

86 Appendix A. Fixed-point Mathematics

the maximum number of bits of the operands’ fractional bits. However, in that
case care must be taken so that standard integer addition can be used. This is
done by aligning the number representations, as shown in the example below.

Example A.2.1.2

Assume we have two fixed-point numbers a = [8.8] and b = [4.4], and that
we want to compute c = a + b. Furthermore, we assume that a and b are
standard integers, and we want to add the numbers using standard addition.
To make that work, the numbers must be aligned, and that is done by making
sure they have the same number of fractional bits. Hence, we must see to it
that b also has 8 fractional bits. This is done by simply shifting b four steps to
the left. Therefore, the computation is done as c = a+ (b << 4), where c is on
[9.8]-format. 2

A.2.2 Multiplication

Multiplying two numbers is a bit more complicated. In terms of the number of
bits in the result, Equation A.7 shows what happens.

[i.f]× [i.f] = [2i.2f] (A.7)

Multiplication of two fixed points numbers are performed as standard integer
multiplication. However, as can be seen above, the number of fractional (and
integer) bits have doubled. Thus, the decimal point is no longer at the same
position.

The factor two comes from that multiplication can be thought of as a series of
additions. For simplicity, consider an integer with i bits. The biggest number,
h, is again when all bits are set to one. Multiplying this number by itself,
h× h, gives us the biggest possible product. This product can be expressed as:
h × h = h + 2h + 4h + · · · + 2i−1h. That is, first we have i bits in h, and we
add 2h, and that sum is represented using i+ 2 bits according to Equation A.6.
Then we add 4h, which is represented with i+ 2 bits as well. Thus, h+ 2h+ 4h
can be represented using i+ 3 bits, and so on. After all terms have been added,
this has grown to exactly i extra bits since i − 1 additions have to be done,
and because another one is added due to addition. Hence the factor two in
Equation A.7. Similar reasoning can be applied to the fractional bits as well.

In the general case, the resulting product is computed as shown below:

[i1.f1]× [i2.f2] = [i1 + i2.f1 + f2]. (A.8)

Again, one has to be careful when considering where the decimal point is located.

Example A.2.2.1 Multiplication of fixed-point numbers I

Assume that two fixed-point numbers [2.0] are to be multiplied. These numbers
do not have any fractional bits, and only two integer bits. The biggest numbers
that can be represented are 11b, and the biggest product that can be produced
is then 11b × 11b = 1001b. As can be seen, the result has four bits as predicted.
2

c© 2005–2012 Tomas Akenine-Möller

A.2. Operations 87

Example A.2.2.2 Multiplication of fixed-point numbers II

Assume we have two floating-point numbers r1 = 0.79 and r2 = 3.15 that
shall be multiplied using fixed-point representation [4.5]. Converting to fixed-
point gives: f1 = round(0.79 × 25) = 25 and f2 = round(3.15 × 25) = 101.
Multiplying gives: f3 = f1 × f2 = 25× 101 = 2525. Recall, that f3 must be on
[4 + 4.5 + 5] = [8.10]-format. Thus, when converting back to floating-point, we
get: r3 = float(2525× 2−10) = 2.465820 The real result should be 0.79×
3.15 = 2.4885. Note, that with more fractional bits in the initial conversion
from floating-point to fixed-point, the end result will be more accurate. 2

A.2.3 Reciprocal

Recall that the resolution of a fixed-point number using [i.f]-representation is
2−f , that is, the smallest number that we can represent is the same as the
resolution. When computing the reciprocal, 1/x, then the biggest result that
can be obtained must occur when the denominator, x, is smallest. Thus, the
biggest number obtained through computing a reciprocal of a fixed-point number
is 1/2−f = 2f , and clearly there need to be f integer bits to represent this
number. Hence, the result of computing 1/x, where x is on [i.f]-format, must
be on [f.z]-format. This means that in general, for reciprocal computation, it
holds that:

1

[i.f]
= [f.z]. (A.9)

As can be seen in the in the following example, z, can, unfortunately, be in-
finitely large.

Example A.2.3.1 Reciprocal of fixed-point numbers

The fixed-point representation of 0.75 using three fractional bits is round(0.75×
23) = 6. The reciprocal is then 1/6 = 0.16666666666667, but with infinitely
many decimals. Clearly, this is not feasible to represent exactly using fixed-
point. 2

A reasonable representation of the reciprocal can be obtained by consid-
ering which is the biggest number that can be represented using [i.f]-format.
Assuming we use signed fixed-point, the largest integer we can represent, using
the i integer bits, is 2i − 1, and the fractional bits must represent a number,
b, which is less than one, namely, b ≤ 1 − 2−f . Thus, the sum of these is
2i − 1 + b ≤ 2i − 1 + 1− 2−f < 2i. If we assume that the number is exactly 2i,
the reciprocal will be 2−i, that is, i fractional bits are needed. Hence, we have
the following approximation:

1

[i.f]
≈ [f.i]. (A.10)

A more pragmatic way of thinking about this, is to decide which accuracy
you need in the resulting number. The accuracy of the reciprocal is then:

round(1× 2f1)

[i2.f2]
= [f2.f1 − f2], (A.11)

c© 2005–2012 Tomas Akenine-Möller

88 Appendix A. Fixed-point Mathematics

where the nominator is a fixed-point representation of 1 with f1 fractional bits,
and f1 ≥ f2.

Example A.2.3.2

Assume that you want to compute the reciprocal of x and that you want the
resulting number to have f = 11 fractional bits, because that is needed for sub-
sequent computations. Now, if x has f2 = 5 fractional bits, then the nominator
in Equation A.11 must have f1 = 11 + 5 bits, since that gives a result with
f1 − f2 = 16− 5 = 11 bits.

A.2.4 Division

TODO: This part of these notes is not finished, so the students can avoid this
subsection. It is not needed in the course anyway, right now. 2

Division:
[i1.f1]

[i2.f2]
≈ [i1 + f2.f1 − f2], (A.12)

where again f1 ≥ f2.

A.2.5 Inexpensive division: special cases

For certain cases, computing the division by computing the reciprocal first, and
then multiplying by that may be simpler. The special case of dividing by 2n−1
is described by Blinn [12]. Looking at the fixed-point representation of such
numbers, we find the following:

1/3 = 0.010101010101010 . . .

1/7 = 0.001001001001001 . . .

1/15 = 0.000100010001000 . . .

1/31 = 0.000010000100001 . . .

As can be seen, the number of zeroes between the ones are becoming more
and more, the higher the denominator. An approximation to a/3 can thus be
implemented as (a× 5555x) >> 16. For 1/255, there are seven zeroes followed
by a one, followed by seven zeroes and a one, and so on. Using 16 fractional
bits, we can have the following approximation:

1

255
≈ 1 << 8 + 1, (A.13)

where the righthand side is on [0.16]-format. Thus, approximative division by
255 can be done by a shift and an add (and possibly some further shifting to
get the result in the desired format). This is very inexpensive, compared to an
integer division.

The original motivation [12] for such a division, was to compute the product
of two eight-bit numbers, where 0 represented 0.0 and 255 represented 1.0.
Assume we want to compute c = a×b, where the result, c, is in the same format

c© 2005–2012 Tomas Akenine-Möller

A.2. Operations 89

as the terms, a and b, in the product. This is done by computing a × b/255.
Assuming d = a × b (where d uses 16 bits), the trick above can be used to
compute c as:

c = ((d << 8) + d) >> 16. (A.14)

Now, since we wanted the result, c, to be stored in eight bits, there is yet another
optimization to be done. Note that since d uses 16 bits, d << 8 must use 24
bits. Performing addition with more bits costs more if you are to build hardware
for it, and therefore, it would be nice to reduce the size of the computations as
much as possible.

Now, assume that d = HHLLx, that is a 16-bit word (as above), with a higher-
order byte, HHx, and a lower-order byte, LLx. Equation A.14 can be illustrated
as follows:

HHLL00 (d << 8)
+ HHLL d

ssssLL

If we only need the eight significant bits of this sum, then the least significant
bits can be safely ignored, since they cannot carry any information over to the
rest of the sum (due to that the first operand as 00x as the least significant
bits). Equation A.14 can therefore be rewritten as:

c = (d+ (d >> 8)) >> 8 (A.15)

The nice property about this, is that the hardware for Equation A.15 is simpler
than that for Equation A.14 since 24 bits plus 16 bits has been replaced by 16
bits plus 8 bits.

If you want include correct rounding as well, then Blinn [12] argues that it
should be done like this:

c = (d+ (d >> 8) + 1) >> 8. (A.16)

A.2.6 Expansion of integers and fixed-point numbers

We start this section by a simple example that serves as motivation for how the
expansion is done in general later on.

Example A.2.6.1 Integer expansion: from four to eight bits

Assume we have a four-bit integer, c4, that we want to expand to eight bits
in order to obtain c8. The biggest number we can represent in four bits is
24− 1 = 15, and in eights bits, it is 28− 1 = 255. Thus, c4 should be multiplied
by 255/15 = 17 in order to expand c4 into c8. This can be done like this:
c8 = 17× c4 = 16× c4 + c4 = (c4 << 4) or c4, and this result is bit exact. 2

In general, we do not get an integer when we compute 2i1/2i2 , i1 > i2, as we
did in the example shown above, and therefore, we cannot get an exact expansion

c© 2005–2012 Tomas Akenine-Möller

90 Appendix A. Fixed-point Mathematics

in the majority of cases. However, we can get a very good approximation using
a trick that resembles what we did in Example A.2.6.1. Assume we have an
integer, c, using i2 bits that should be expanded into d using i1 bits. This can
be done as shown in Equation A.17.

d = c << (i1 − i2) + c >> (i2 − (i1 − i2)) =

= c << (i1 − i2) or c >> (2i2 − i1) (A.17)

Put another way, the original number is first shifted to the left so it occupies all
the i1 bits, and then we need to fill out the least significant bits of the number,
and those are filled out using the most significant bits from c.

Example A.2.6.2 Integer expansion

Assume we have an integer in binary format, 10110b, using five bits. To
expand this to eight bits, we compute (10110b << 3) + (10110b >> 2) =
10110000b or 101b = 10110101b. Thus, to expand 10110b = 22 into eight bits,
we get 10110101b = 181. The biggest number we can represent with five bits
is 25 − 1 = 31. To convert to eight bits, we would ideally like to multiply by
255/31 = 8.2258... Our expansion did a good job though, since the expansion
is equivalent to a multiplication by 181/22 = 8.2272..., which is far better than
multiplying by eight. 2

a

c© 2005–2012 Tomas Akenine-Möller

Bibliography

[1] Timo Aila and Tomas Akenine-Möller. A Hierarchical Shadow Volume
Algorithm. In Graphics Hardware, pages 15–23, 2004. On page(s) 64

[2] Timo Aila, Ville Miettinen, and Petri Nordlund. Delay Streams for Graph-
ics Hardware. ACM Transactions on Graphics,, 22(3):792–800, 2003. On
page(s) 64

[3] Tomas Akenine-Möller. FLIPQUAD: Low-Cost Multisampling Rasteriza-
tion. Technical Report 02-04, Chalmers University of Technology, April
2002. On page(s) 79

[4] Tomas Akenine-Möller. An Extremely Inexpensive Multisampling Scheme.
Technical report, Chalmers University of Technology/Ericsson Mobile Plat-
froms AB, August 2003. On page(s) 79

[5] Tomas Akenine-Möller and Timo Aila. Conservative and Tiled Rasteriza-
tion Using a Modified Triangle Setup. Journal of Graphics Tools, 10(3):1–8,
2005. On page(s) 18, 20

[6] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering. AK Peters
Ltd., 2002. On page(s)

[7] Tomas Akenine-Möller and Jacob Ström. Graphics for the Masses: A Hard-
ware Rasterization Architecture for Mobile Phones. ACM Transactions on
Graphics,, 22(3):801–808, 2003. On page(s) 17, 31, 48, 58, 61, 63, 79

[8] A.C. Beers, M. Agrawala, and Navin Chadda. Rendering from Compressed
Textures. In Proceedings of SIGGRAPH, pages 373–378, 1996. On page(s)

[9] Jim Blinn. Texture and Reflection in Computer Generated Images. Com-
munications of the ACM, 19(10):542–547, October 1976. On page(s) 33

[10] Jim Blinn. Simulation of Wrinkled Surfaces. In Proceedings of SIGGRAPH,
pages 286–292, 1978. On page(s) 33

[11] Jim Blinn. Hyperbolic Interpolation. IEEE Computer Graphics and Ap-
plications, 12(4):89–94, July 1992. On page(s) 23

91

92 Bibliography

[12] Jim Blinn. Three Wrongs Make a Right. IEEE Computer Graphics and
Applications, 15(6):90–93, November 1995. On page(s) 88, 89

[13] G. Campbell, T. A. DeFanti, J. Frederiksen, S. A. Joyce, L. A. Leske,
J. A. Lindberg, and D. J. Sandin. Two Bit/Pixel Full Color Encoding. In
Proceedings of SIGGRAPH, volume 22, pages 215–223, 1986. On page(s)

[14] Michael Cox and Pat Hanrahan. Pixel Merging for Object-Parallel Ren-
dering: a Distributed Snooping Algorithm. In Symposium on Parallel Ren-
dering, pages 49–56. ACM SIGGRAPH, November 1993. On page(s) 31

[15] Frank Crow. Shadow Algorithms for Computer Graphics. In Computer
Graphics (Proceedings of ACM SIGGRAPH 77), pages 242–248. ACM, July
1977. On page(s) 9

[16] Frank Crow. Summed-Area Tables for Texture Mapping. In Computer
Graphics (Proceedings of ACM SIGGRAPH 84), pages 207–212. ACM, July
1984. On page(s) 42

[17] E. Delp and O. Mitchell. Image Compression using Block Truncation Cod-
ing. IEEE Transactions on Communications, 2(9):1335–1342, 1979. On
page(s)

[18] William Dungan, Anthony Stenger, and George Sutty. Texture Tile Consid-
erations for Raster Graphics. In Proceedings of SIGGRAPH, pages 130–134,
1978. On page(s) 42

[19] Jon P. Ewins, Marcus D. Waller, Martin White, and Paul F. Lister. MIP-
Map Level Selection for Texture Mpping. IEEE Transactions on Visual-
ization and Computer Graphics, 4(4):317–329, 1998. On page(s) 37, 46,
48

[20] Simon Fenney. Texture Compression using Low-Frequency Signal Modula-
tion. In Graphics Hardware, pages 84–91. ACM Press, 2003. On page(s)

[21] Richard Fromm, Styliannos Perissakis, Neal Cardwell, Christofors
Kozyrakis, Bruce McCaughy, David Patterson, Tom Anderson, and Kather-
ine Yelick. The Energy Efficiency of IRAM Architectures. In 24th An-
nual International Symposium on Computer Arhchitecture, pages 327–337.
ACM/IEEE, June 1997. On page(s)

[22] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical Z-Buffer Vis-
ibility. In Proceedings of ACM SIGGRAPH 93, pages 231–238. ACM
Press/ACM SIGGRAPH, New York, J. Kajiya, Ed., Computer Graphics
Proceedings, Annual Conference Series, ACM, August 1993. On page(s) 58

[23] Eric Haines and John Wallace. Shaft Culling for Efficient Ray-Traced Ra-
diosity. In Photorealistic Rendering in Computer Graphics (Proceedings of
the Second Eurographics Workshop on Rendering), pages 122–138. Euro-
graphics, 1994. On page(s) 18

c© 2005–2012 Tomas Akenine-Möller

Bibliography 93

[24] Ziyad S. Hakura and Anoop Gupta. The Design and Analysis of a Cache
Architecture for Texture Mapping. In 24th International Symposium of
Computer Architecture, pages 108–120. ACM/IEEE, June 1997. On page(s)
18, 32

[25] Jon Hasselgren, Tomas Akenine-Möller, and Samuli Laine. A Family of
Inexpensive Sampling Schemes. to appear in Computer Graphics Forum,
2005. On page(s) 79

[26] Jon Hasselgren, Tomas Akenine-Möller, and Jacob Ström. Monosampling.
to be submitted, 2005. On page(s)

[27] Paul Heckbert. Survey of Texture Mapping. IEEE Computer Graphics and
Applications, 6(1):56–67, November 1986. On page(s) 42

[28] Paul S. Heckbert and Henry P. Moreton. Interpolation for Polygon Tex-
ture Mapping and Shading. In State of the Art in Computer Graphics:
Visualization and Modeling, 1991. On page(s) 23

[29] John L. Hennessey and David A. Pattersson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., 1990. On
page(s) 51

[30] Homan Igehy, Matthew Eldridge, and Pat Hanrahan. Parallel Texture
Caching. In Graphics Hardware, pages 95–106. ACM Press, 1999. On
page(s)

[31] Homan Igehy, Matthew Eldridge, and Kekoa Proudfoot. Prefetching in a
Texture Cache Architecture. In Workshop on Graphics Hardware. ACM
SIGGRAPH/Eurographics, August 1998. On page(s)

[32] Kenneth E. Hoff III. A faster overlap test for a plane and a
bounding box. Technical report, Available from World Wide Web
(http://www.cs.unc.edu/ hoff/research/vfculler/boxplane.html, 1996. On
page(s) 19

[33] Konstantine Iourcha, Krishna Nayak, and Zhou Hong. System and Method
for Fixed-Rate Block-based Image Compression with Inferred Pixels Values.
In US Patent 5,956,431, 1999. On page(s)

[34] Brian Kelleher. PixelVision Architecture. Technical report, Digital Systems
Research Center, no. 1998-013, October 1998. On page(s)

[35] G. Knittel, A. Schilling, A. Kugler, and W. Strasser. Hardware for Superior
Texture Performance. Computers & Graphics, 20(4):475–481, July 1996.
On page(s)

[36] Olin Lathrop, David Kirk, and Doug Voorhies. Accurate Rendering by Sub-
pixel Addressing. IEEE Computer Graphics and Applications, 10(5):45–53,
September 1990. On page(s) 12

c© 2005–2012 Tomas Akenine-Möller

94 Bibliography

[37] Dan McCabe and John Brothers. DirectX 6 Texture Map Compression.
Game Developer Magazine, 5(8):42–46, August 1998. On page(s)

[38] Michael D. McCool, Chris Wales, and Kecin Moule. Incremental and Hier-
archical Hilbert Order Edge Equation Polygon Rasterization. In Graphics
Hardware 2001, pages 65–72, 2001. On page(s) 10, 29

[39] Joel McCormack, Bob McNamara, Christopher Gianos, Larry Seiler, Nor-
man P. Jouppi, Ken Corell, Todd Dutton, and John Zurawski. Imple-
menting Neon: A 256-Bit Graphics Accelerator. IEEE Micro, 19(2):58–69,
March/April 1999. On page(s)

[40] Joel McCormack and Robert McNamara. Tiled Polygon Traversal Using
Half-Plane Edge Functions. In Workshop on Graphics Hardware. ACM
SIGGRAPH/Eurographics, August 2000. On page(s) 20

[41] Joel McCormack, Robert McNamara, Christopher Gianos, Larry Seiler,
Norman P. Jouppi, and Ken Corell. Neon: A Single-Chip 3D Workstation
Graphics Accelerator. In Workshop on Graphics Hardware. ACM SIG-
GRAPH/Eurographics, 1998. On page(s) 45

[42] Steve Morein. ATI Radeon HyperZ Technology. In Workshop on Graphics
Hardware, Hot3D Proceedings. ACM SIGGRAPH/Eurographics, August
2000. On page(s) 58, 61, 65, 78

[43] Avi C. Naiman. Jagged Edges: when is Filtering Needed? ACM Transac-
tions on Graphics, 17(4):238–258, 1998. On page(s)

[44] NVIDIA. HRAA: High-Resolution Antialiasing Through Multisampling.
Technical report, 2001. On page(s)

[45] Marc Olano and Trey Greer. Triangle Scan Conversion using 2D Homo-
geneous Coordinates. In Workshop on Graphics Hardware. ACM SIG-
GRAPH/Eurographics, 1997. On page(s) 23

[46] John Owens. EEC 277: Graphics Architecture. Technical report, 2005. On
page(s) 10

[47] Anton Pereberin. Hierarchical Approach for Texture Compression. In Pro-
ceedings of GraphiCon ’99, pages 195–199, 1999. On page(s)

[48] Juan Pineda. A Parallel Algorithm for Polygon Rasterization. In Computer
Graphics (Proceedings of ACM SIGGRAPH 88), pages 17–20, August 1988.
On page(s) 8, 17

[49] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray
Tracing on Programmable Graphics Hardware. ACM Transactions on
Graphics,, 21(3):703–712, 2002. On page(s) 64

c© 2005–2012 Tomas Akenine-Möller

Bibliography 95

[50] A. Schilling, G. Knittel, and W. Strasser. Texram: A Smart Memory for
Texturing. IEEE Computer Graphics and Applications, pages 32–41, May
1996. On page(s) 42, 49

[51] Mark Segal and Kurt Akeley. The OpenGL 1.5 Specification. Technical
report, 200. On page(s) 35, 36, 45

[52] Peter Shirley. Physically Based Lighting Calculations for Computer Graph-
ics. PhD thesis, University of Illinois at Urbana Champaign, December
1990. On page(s)

[53] Jacob Ström and Tomas Akenine-Möller. PACKMAN: Texture Compres-
sion for Mobile Phones. In Sketches program at SIGGRAPH, 2004. On
page(s)

[54] Jacob Ström and Tomas Akenine-Möller. iPACKMAN: High-Quality, Low-
Complexity Texture Compression for Mobile Phones. In submitted, 2005.
On page(s)

[55] Eric W. Weisstein. Areal Coordinates. From MathWorld–A Wolfram Web
Resource, http://mathworld.wolfram.com/ArealCoordinates.html,
2005. On page(s) 22

[56] Lance Williams. Pyramidal Parametrics. In Computer Graphics (Proceed-
ings of ACM SIGGRAPH 83), pages 1–11. ACM, July 1983. On page(s)
32, 42

[57] Michael Wimmer and Jiri Bittner. Hardware Occlusion Queries Made Use-
ful. GPU Gems II,, pages 91–108, 2005. On page(s) 64

[58] R. Woo, S. Choi, J. Sohn, S. Song, Y. Bae, and H. Yoo. A Low-Power
3-D Rendering Engine with Two Texture Units and 29-Mb Embedded
DRAM for 3G Multimedia Terminals. IEEE Journal of Solid-State Cir-
cuits, 39(7):1101–1109, July 2004. On page(s) 16

[59] R. Woo, C. Yoon, J. Kook, S. Lee, and H. Yoo. A 120-mW 3-D Ren-
dering Engine With a 6-Mb Embedded DRAM and 3.2 GB/s Runtime
Reconfigurable Bus for PDA Chip. IEEE Journal of Solid-State Circuits,
37(19):1352–1355, October 2002. On page(s)

c© 2005–2012 Tomas Akenine-Möller

	Contents
	Preface
	Introduction
	Notation and operations
	Homogeneous Coordinates and Projections

	Pipeline Overview
	Geometry: Vertex Processing
	Pixel Processing

	Edge Functions and Triangle Traversal
	Edge Functions
	Fixed-Point Edge Functions

	Triangle Traversal
	Bounding Box Traversal
	Backtrack Traversal
	Zigzag Traversal
	Tiled Traversal

	Interpolation
	Barycentric Coordinates
	Perspectively-Correct Interpolation
	Interpolation using Edge Functions
	Barycentric Coordinates
	Perspective-Correct Interpolation Coordinates

	Triangle Setup and Per-Pixel Computation

	Pixel-Processing
	The Pixel-Processing Pipeline
	The Pixel-Processing Equation

	Texturing
	Texture Images
	Wrapping

	Texture Filtering
	Magnification
	Nearest Neighbor Sampling
	Bilinear Filtering

	Minification
	Mipmapping
	Anisotropic Mipmapping

	General Caching
	Cache Mapping, Localization, and Replacement
	Replacement Strategy
	Cache Misses

	Texture Caching
	Texture Compression
	Background
	S3TC/DXTC
	PVR-TC
	ETC1/ETC2
	ASTC
	Normal Map Compression

	Culling Algorithms
	Z-min and Z-max Culling
	Z-max Culling
	Z-min Culling

	Object Culling with Occlusion Queries
	Delay Streams

	Buffer Compression
	Compression System with Cache
	Depth Buffer Compression
	Depth Offset Compression
	Layered Plane Equation Compression
	DPCM Compression

	Color Buffer Compression

	Screen-space Antialiasing
	Theory
	Inexpensive Antialiasing Schemes
	High-Quality Antialiasing

	Architectures for Mobile Devices
	Tiling Architectures
	Bitboys?? Others?

	Fixed-point Mathematics
	Notation
	Conversion

	Operations
	Addition/Subtraction
	Multiplication
	Reciprocal
	Division
	Inexpensive division: special cases
	Expansion of integers and fixed-point numbers

	Bibliography

