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Abstract

A fast routine for testing whether a triangle and a box are overlapping
in three dimensions is presented. The test is derived using the separating
axis theorem, whereafter the test is simplified and the code is optimized
for speed. We show that this approach is 2.3 vs. 3.8 (PC vs. Sun) times
faster than previous routines for this. It can be used for faster collision
detection and faster voxelization in interactive ray tracers. The code is
available online.

1 Introduction

Testing whether a triangle overlaps a box is an important routine to have in a
graphics programmer’s toolbox. For example, the test can be used to voxelize
triangle meshes in ray tracers, and it can be used in collision detection algorithms
that are based on boxes [3]. Gottschalk et al’s collision detection framework only
used OBB/OBB tests and triangle-triangle tests. However, it has been noted
that both memory and speed can be gained [7] by not having an OBB around
each triangle, and instead test a triangle against an OBB.

Previously, Voorhies has presented code for testing a triangle against a unit
cube centered at the origin [8]. His test tries to eliminate work by doing some
simple acceptance/rejection tests early on, and then testing each triangle edge
for intersection with the cube faces. Finally, he checks whether the interior of
the triangle is penetrated by the cube. Green and Hatch [4] improve on the
efficiency of Voorhies’ work and generalize it to handle arbitrary polygons as
well. They also use fast acceptance/rejectance tests, but recast the testing of
an edge against the cube into testing a point against a skewed rhombic dodec-
ahedron, which is more robust. Finally, they test whether one diagonal of the
cube intersect the polygon, which further improves the efficiency.

∗Previously known as Tomas Möller.
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2 Derivation and Optimization

Our test is derived from the separating axis theorem (SAT) [1, 3, 6]. The theorem
states that two convex polyhedra, A and B, are disjoint if they can be separated
along either an axis parallel to a normal of a face of either A or B, or along an
axis formed from the cross product of an edge from A with and edge from B.

We focus on testing an axis-aligned bounding box (AABB), defined by a
center c, and a vector of half lengths, h, against a triangle ∆u0u1u2. To
simplify the tests, we first move the triangle so that the box is centered around
the origin, i.e., vi = ui − c, i ∈ {0, 1, 2}. To test against an oriented box, we
would first rotate the triangle vertices by the inverse box transform, then use
the presented test. Based on SAT, we test the following 13 axes:
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Figure 1: Notation used for the triangle-box overlap test. To the left the inital
position of the box and the triangle is shown, while at the right, the box and
the triangle has been translated so that the box center coincides with the origin.

1. [3 tests] e0 = (1, 0, 0), e1 = (0, 1, 0), e2 = (0, 0, 1) (the normals of the
AABB). Test the AABB against the minimal AABB around the triangle.

2. [1 test] n, the normal of ∆. We use a fast plane/AABB overlap test [5, 6],
which only tests the two diagonal vertices, whose direction is most closely
aligned to the normal of the triangle.

3. [9 tests] aij = ei × fj , i, j ∈ {0, 1, 2}, where f0 = v1 − v0, f1 = v2 − v1,
and f2 = v0 − v2. These tests are very similar and we will only show the
derivation of the case where i = 0 and j = 0 (see below).

If all tests pass, i.e., there is no separating axis, then the triangle overlaps the
box. Also, as soon as a separating axis is found the the algorithm terminates
and returns “no overlap”.

Next, we derive one of the nine tests, where i = 0 and j = 0, in bullet 3
above. This means that a00 = e0 × f0 = (0,−f0z, f0y). So, now we need to
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project the triangle vertices onto a00 (hereafter called a):

p0 = a · v0 = (0,−f0z, f0y) · v0 = v0zv1y − v0yv1z

p1 = a · v1 = (0,−f0z, f0y) · v1 = v0zv1y − v0yv1z = p0

p2 = a · v2 = (0,−f0z, f0y) · v2 = (v1y − v0y)v2z − (v1z − v0z)v2y

(1)

Normally, we would have had to find min(p0, p1, p2) and max(p0, p1, p2), but
fortunately p0 = p1, which simplify the computations a lot. Now we only
need to find min(p0, p2) and max(p0, p2), which is significantly faster because
conditional statements are expensive on modern CPUs.

After the projection of the triangle onto a, we need to project the box onto
a as well. We compute a “radius”, called r, of the box projected on a as

r = hx|ax| + hy|ay| + hz|az| = hy|ay| + hz|az| (2)

where the last step comes from that ax = 0 for this particular axis. Then this
axis test becomes:

if(min(p0, p2) > r or max(p0, p2) < −r) return false; (3)
Now, if all these 13 tests pass, then the triangle overlaps the box.

3 Performance Evaluation

To evaluate performance, we used the same test as Voorhies [8], i.e., we randomly
select the triangle vertices inside a 4 × 4 × 4 cube centered around the origin
and the AABB is the unit cube: from (−0.5,−0.5,−0.5) to (0.5, 0.5, 0.5). To
get accurate timings we randomly selected 100, 000 triangles and tested these
in a sequence 100 times. We verified that our code generated the same result as
Green and Hatch [4], and compared runtimes (we did not test against Voorhies
code since that was found to be incorrect [2]).

On a Sun Sparc Ultra 10 at 333 MHz, the presented code was 3.8 times
faster on average in this test1. On a Linux PC with a 1333 MHz AMD Athlon,
the speed up was found to be 2.32. Also, the best order to perform the tests on
the Sun was found to be: 3, 1, and finally 2 (the most expensive). On the PC,
the order did not matter significantly.

Note that Green and Hatch’s code handles the more general case of testing
a general polygon against a cube, while we only test a triangle against a cube,
and hence we can expect some degradation in performance due to this.

The only place, where there is a robustness issue, is when the normal of the
triangle is computed; n = f0 × f1. If the triangle has an area close to zero, then
the normal calculation is not robust, and our code does not solve that problem.
However, in most applications thin long triangles are best avoided.

We have used the code for fast voxelization in a ray tracer, and it has been
used in a 3D engine [7].

1Our code was compiled using gcc, and Green and Hatch’s code was compiled using Sun’s
cc, because the runtimes were best for the different routines like that.

2Compiled with gcc -O9 -fomit-frame-pointer -funroll-loops -march=athlon.
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