
FINDING A PATH OF SUPERLOGARITHMIC LENGTH∗

ANDREAS BJÖRKLUND† AND THORE HUSFELDT†

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 6, pp. 1395–1402

Abstract. We consider the problem of finding a long, simple path in an undirected graph.
We present a polynomial-time algorithm that finds a path of length Ω

(
(logL/ log logL)2

)
, where L

denotes the length of the longest simple path in the graph. This establishes the performance ratio
O

(
n(log logn/ logn)2

)
for the longest path problem, where n denotes the number of vertices in the

graph.

Key words. approximation algorithms, graph algorithms, longest path

AMS subject classifications. 68R10, 68W25

DOI. 10.1137/S0097539702416761

1. Introduction. Given an unweighted, undirected graph G = (V,E) with n =
|V |, the longest path problem is to find the longest sequence of distinct vertices v1 · · · vk
such that vivi+1 ∈ E.

This is a classical optimization problem; the Hamiltonian path problem is a special
case of it and appears in Karp’s original list of NP-complete problems [8]. While today
the approximability of most of these problems is well understood, the longest path
problem has remained elusive, and notoriously so [5]: In spite of a considerable body
of research the gap between upper and lower bounds is very wide.

Previous work. The first approximation algorithms for longest path are due to
Monien [9] and Bodlaender [3], both finding a path of length Ω(logL/ log logL) in a
graph with longest path length L.

A natural and harder variant of the problem is to find a path of length logn if
it exists. Papadimitriou and Yannakakis [10] conjectured that this could be done in
polynomial time, which was confirmed by Alon, Yuster, and Zwick [1], introducing
the important method of color-coding. If the longest path has length O(log n), then
their algorithm finds it (or, rather, it finds a longest path); else it finds a path of
length Ω(logn). Especially, the algorithm finds an Ω(logL)-path and thus has the
performance ratio O

(
n/ log n

)
, which is the best ratio for the longest path problem

known prior to the present paper.
Motivated by the weakness of these bounds for general graphs the problem has

received additional study for restricted classes of graphs. In Hamiltonian graphs the
algorithm of Vishwanathan [11] finds a path of length O

(
(log n/ log log n)2

)
. In sparse

Hamiltonian graphs, Feder, Motwani, and Subi [5] find even longer paths. Moreover,
they prove the following remarkable result: If a graph with vertices of degree at most
3 has a cycle of length r, then one can find in polynomial time a cycle of length at
least rc, where c = 1

2 log3 2.
The hardness results for this problem are mainly due to Karger, Motwani, and

Ramkumar [7]: The longest path problem does not belong to APX unless P = NP,

and it cannot be approximated within 2log
1−ε n unless NP ⊆ DTIME(2O(log1/ε n)

)
for

∗Received by the editors October 29, 2002; accepted for publication (in revised form) June 20,
2003; published electronically September 9, 2003. A preliminary version of this work was announced
at the 29th International Colloquium on Automata, Languages, and Programming (ICALP) 2002.

http://www.siam.org/journals/sicomp/32-6/41676.html
†Department of Computer Science, Lund University, P.O. Box 118, SE–221 00 Lund, Sweden

(thore@cs.lu.se).

1395

1396 ANDREAS BJÖRKLUND AND THORE HUSFELDT

any ε > 0. More recently, it was shown that for directed graphs, the problem admits
stronger lower bounds [2].

This paper. We present a polynomial-time algorithm that finds a path of length
Ω
(
(logL/ log logL)2

)
in a graph with longest path length L. Since L < n = |V |, this

corresponds to a performance ratio of order

O

(
n(log log n)2

log2 n

)
.(1.1)

The main idea of our algorithm is a new graph decomposition which forms the basis of
a recursive procedure. We find a cycle C of length logn/ log log n, using the algorithm
from [3], remove C, and continue recursively in the resulting connected components.
This decomposes the graph into a number of disjoint cycles of sufficient length which
can be assembled into a long path.

The performance ratio (1.1) was obtained earlier by Vishwanathan [11] but only
for Hamiltonian graphs.

For bounded degree graphs, we can improve the ratio to O
(
n log log n/ log2 n

)
.

For 3-connected graphs, we establish the performance ratio (1.1) for the longest cycle
problem, a variant of the problem that also requires v1vk ∈ E.

2. Paths and cycles. In what follows, we consider a connected graph G =
(V,E) with n = |V | vertices and e = |E| edges. We write G[W] for the graph induced
by the vertex set W .

The length of a path and a cycle is its number of edges. The length of a cycle C is
denoted l(C). A k-cycle is a cycle of length k, and a k+-cycle is a cycle of length k or
larger. A k-path and k+-path are defined similarly. For vertices x and y, an xy-path
is a (simple) path from x to y. If P is a path containing u and v, we write P [u, v] for
the subpath from u to v. We let LG(v) denote the length of the longest path from a
vertex v in the graph G. The path length of G is maxv∈V LG(v).

We need the following result: Theorem 5.3(i) of [3].
Theorem 1 (Bodlaender). Given a graph, two of its vertices s, t, and an integer

k, one can find a k+-path from s to t (if it exists) in time O
(
(2k)!22kn+ e

)
.

Corollary 1. Given a graph, one of its vertices s, and an integer k, one can
find a k+-cycle through s (if it exists) in time O

(
((2k)!22kn+ e)n

)
.

Proof. For all neighbors t of s, apply the theorem on the graph with the edge st
removed.

We also need the following easy lemma.
Lemma 1. If a connected graph contains a path of length r, then every vertex is

an endpoint of a path of length at least 1
2r.

Proof. Given vertices u, v ∈ V , let d(u, v) denote the length of the shortest path
between u and v.

Let P = p0 · · · pr be a path, and let v be a vertex. Find i minimizing d(pi, v).
By minimality there is a path Q from v to pi that contains no other vertices from P .
Now either QP [pi, pr] or QP [pi, p0] has length at least

1
2r.

2.1. Decomposition into cycles. The next lemma is central to our construc-
tion and describes the graph decomposition that underlies our recursive algorithm. It
formalizes the following observation: Assume that a vertex v originates a long path
P and v lies on a cycle C. Then the removal of C decomposes G into connected
components, one of which must contain a large part of P .

FINDING A PATH OF SUPERLOGARITHMIC LENGTH 1397

•v •
• ••

•
• ��

�� ������

• u

•
pi

•p1

•pr

��
�� ��

��

Q

P

W

Fig. 1. Statement 1 of Lemma 2. The path P = vp1 · · · pr continues in the component W . We
assume that v does not lie on a large cycle. This means that an arbitrary path Q from v’s neighbor
u must intersect P “early”; i.e., QP [pi, pr] is long.

Pretending for a moment that our algorithm knew which component this is, we
could continue the decomposition in it, recursively removing cycles until P is ex-
hausted. In the end, we would have produced a long string of connected cycles.
Especially, this string contains a path (using at least half the vertices of each cycle)
that will be longer than the length of each individual cycle. The gist of this is that if
we can find long cycles in graphs (like with Bodlaender’s algorithm), then with our
decomposition we can find even longer paths.

The lemma needs to distinguish between two cases, depending on whether or not
v lies on a large cycle.

Lemma 2. Assume that a connected graph G contains a simple path P of length
LG(v) > 1 originating in vertex v. Then there exists a connected component G[W] of
G[V − v] such that the following holds:

1. If G[W + v] contains no k+-cycle through v, then every neighbor u ∈W of v
is the endpoint of a path of length

LG[W](u) ≥ LG(v)− k.

2. If C is a cycle in G[W +v] through v of length l(C) < LG[W+v](v), then there
exists a connected component H of G[W − C] that contains a neighbor u of
C−v in G[W +v]. Moreover, every such neighbor u is the endpoint of a path
in H of length

LH(u) ≥ LG(v)

2l(C)
− 1.

Proof. Let r = LG(v) and P = p0 · · · pr, where p0 = v. Note that P [p1, pr] lies
entirely in one of the components G[W] of G[V − v].

First consider statement 1; see Figure 1. Let u ∈ W be a neighbor of v. Since
G[W] is connected, there exists a path Q from u to some vertex of P . Consider such a
path. The first vertex pi of P encountered on Q must have i < k, since otherwise the
three paths vu, Q[u, pi], and P [p0, pi] form a k

+-cycle. Thus the path Q[u, pi]P [pi, pr]
has length at least r − k + 1 > r − k.

We proceed to statement 2; see Figure 2. Consider any cycle C in G[W + v]
through v. We will show that depending on how often P intersects C, there exists a
long subpath in one of the components of G[W − C]. The length of this subpath is
inversely proportional to the number of intersections, which could be no more than
the length of C.

Case 1. First assume that P ∩ C = v so that one component H of G[W − C]
contains all of P except v. Let N be the set of neighbors of C − v in H. First note

1398 ANDREAS BJÖRKLUND AND THORE HUSFELDT

•v

• •
������ •p1

•pr

����������

P

•
•u
•
N

H

W

C

•v

• •
������� •p1

•pr

��
��

•pij •u
•

•pij+1 • P
N

H

W

C

Fig. 2. Statement 2 of Lemma 2. Here we assume that v does lie on a large cycle C. In Case 1
(left) the path P = vp1 · · · pr does not intersect C after it leaves v. Thus P [p1, pr] lies entirely in a
component H of W − C. Any neighbor u ∈ N of C in this component must be the head of a long
path using at least half of P [p1, pr]. In Case 2 (right) the path P intersects C in several places.
Consider the largest section of P that lies entirely in a component H of W − C, here shown as a
“loop” starting after pij and ending before pij+1 . Any neighbor u ∈ N of C in this component must
be the head of a long path using at least half of the “loop.”

that N is nonempty, since G[W] is connected. Furthermore, the path length of H is
at least r − 1, so Lemma 1 gives LH(u) ≥ (r − 1)/2 for every u ∈ N .

Case 2. Assume instead that |P ∩ C| = s > 1. Enumerate the vertices on P
from 0 to r and let i1, . . . , is denote the indices of vertices in P ∩ C, in particular
i1 = 0. Let is+1 = r. An averaging argument shows that there exists j such that
ij+1 − ij ≥ r/s. Consequently, there exists a connected component H of G[W − C]
containing a simple path of length r/s− 2. At least one of the ijth or ij+1th vertices
of P must belong to C−v, so the set of neighbors N of C−v in H must be nonempty.
As before, Lemma 1 ensures LH(u) ≥ r/2s− 1 for every u ∈ N , which establishes the
bound after noting that s ≤ l(C).

3. Result and algorithm. The construction in this section and its analysis
establishes the following theorem, accounting for the worst-case performance ratio
of (1.1) as claimed in the introduction.

Theorem 2. If a graph contains a simple path of length L, then we can find a
simple path of length

Ω

((logL

log logL

)2
)

in polynomial time.
We first give a brief overview of the algorithm; the next two sections will provide

the details.
Assume for simplicity that the input graph is connected; if not, then we can

iterate the algorithm over each connected component of the input graph and return
the longest path found.

Pick any vertex v. Lemma 1 ensures that v is the head of a path of length at
least r > L/2. In the next sections we will pretend that we know the value

k =

⌈
2 log r

log log r

⌉
;

but this is not a restriction since we can (in polynomial time) run the algorithm for
every value of k = 6, . . . ,
2 log n/ log log n� and return the longest path found.

FINDING A PATH OF SUPERLOGARITHMIC LENGTH 1399

Given v and k we will construct a tree Tk(G, v) as detailed in section 3.1; this tree
will describe a recursive decomposition of the input graph G into paths and cycles.
Finally, we find a long (weighted) path in Tk(G, v). This path will describe a path in
G which will have the desired length as shown in section 3.2.

In summary, assuming a connected input graph, the algorithm proceeds as follows:
1. Pick any vertex v ∈ G.
2. For every k = 6, . . . ,
2 log n/ log log n� perform the following two steps and
return the longest path found:

3. Construct the tree Tk(G, v) as detailed in section 3.1.
4. Find a longest weighted path in Tk(G, v) and return the path in G described
by it, as detailed in section 3.2.

Steps 3 and 4 take polynomial time (see below), so the entire algorithm takes
polynomial time.

3.1. Construction of the cycle decomposition tree. Given a vertex v in G,
our algorithm constructs a node-weighted tree Tk = Tk(G, v), rooted at v, called the
cycle decomposition tree. Every node of Tk is either a singleton or a cycle node: A
singleton node corresponds to a single vertex u ∈ G and is denoted 〈u〉, while a cycle
node corresponds to a cycle C with a specified vertex u ∈ C and is denoted 〈C, u〉.
Every singleton node has unit weight, and every cycle node 〈C, u〉 has weight 1

2 l(C).
The tree Tk(G, v) is constructed as follows. Initially, Tk contains a singleton node

〈v〉, and a call is made to the following procedure with arguments G and v:
1. [Iterate over components:] For every maximal connected component G[W] of
G[V − v], execute step 2.

2. [Find cycle:] Search for a k+-cycle through v in G[W + v] using Theorem 1.
If such a cycle C is found, then execute step 3; otherwise, execute step 5.

3. [Insert cycle node:] Insert the cycle node 〈C, v〉 and the tree edge 〈v〉〈C, v〉.
For every connected component H of G[W − C] execute step 4.

4. [Recurse:] Choose an arbitrary neighbor u ∈ H of C − v, and insert the
singleton node 〈u〉 and the tree edge 〈u〉〈C, v〉. Then, recursively execute
step 1 to compute Tk(H,u).

5. [Insert singleton node and recurse:] Pick an arbitrary neighbor u ∈ G[W + v]
of v, insert the node 〈u〉 and the tree edge 〈v〉〈u〉, and recursively execute
step 1 to compute Tk

(
G[W], u

)
.

Note that each recursive step constructs a tree that is connected to other trees by
a single edge, so Tk is indeed a tree. Also note that the ancestor of every cycle node
must be a singleton node. The root of Tk is 〈v〉.

To see that the running time of this procedure is polynomial, first note that step 2
is polynomial because of the corollary to Theorem 1. The number of recursive steps
is linear, since every step inserts a node into Tk, which is clearly of linear size after
the procedure.

3.2. Paths in the cycle decomposition tree. Our algorithm proceeds by
finding a path of greatest weight in Tk. This can be done in linear time by depth first
search. The path found in Tk represents a path inG if we interpret paths through cycle
nodes as follows. Consider a path in Tk through a cycle node 〈C, u〉. Both neighbors
are singleton nodes, so we consider the subpath 〈u〉〈C, u〉〈v〉. By construction, v is
connected to some vertex w ∈ C with w �= u. One of the two paths from u to w in C
must have length at least half the length of C; call it P . We will interpret the path
〈u〉〈C, u〉〈v〉 in Tk as a path uPv in G. If a path ends in a cycle node 〈C, u〉, we may
associate it with a path of length l(C)−1 by moving along C from u in any of its two

1400 ANDREAS BJÖRKLUND AND THORE HUSFELDT

directions. Thus a path of weight m in Tk from the root to a leaf identifies a path of
length at least m in G.

We need to show that Tk for some small k has a path of sufficient length.
1

Lemma 3. If G contains a path of length r ≥ 28 starting in v, then Tk = Tk(G, v)
for

k =

⌈
2 log r

log log r

⌉

contains a weighted path of length at least 1
8k

2 − 1
4k − 1.

Proof. We follow the construction of Tk in section 3.1.
We need some additional notation. For a node x = 〈w〉 or x = 〈C,w〉 in Tk

we let L(x) denote the length of the longest path from w in the component G[X]
corresponding to the subtree rooted at x. More precisely, for every successor y of x
(including y = x), the set X contains the corresponding vertices w′ (if y = 〈w′〉 is a
singleton node) or C ′ (if y = 〈w′, C ′〉 is a cycle node).

Furthermore, let S(n) denote the singleton node children of a node n, and let
C(n) denote its cycle node children. Consider any singleton node 〈v〉.

Lemma 2 asserts that

L(v) ≤ max
{
max

w∈S〈v〉
L(w) + k, max

〈C,v〉∈C〈v〉
w∈S〈C,v〉

(
2L(w) + 2

)
l(C)

}
.(3.1)

Define n(v) = w if 〈w〉 maximizes the right-hand side of the inequality (3.1), and
consider a path Q = 〈x0〉 · · · 〈xt〉 from 〈v〉 = 〈x0〉 described by these heavy nodes.
To be precise, we have either n(xi) = xi+1 or n(xi) = xi+2; in the latter case, the
predecessor of 〈xi+2〉 is a cycle node.

We will argue that the gaps in the sequence

L(x0) ≥ L(x1) ≥ · · · ≥ L(xt)

cannot be too large due to the inequality above. This, combined with the fact that
L(xt) must be small (otherwise, we are done), implies that Q contains a lot of cycle
nodes or even more singleton nodes.

Let s denote the number of cycle nodes on Q. Since every cycle node has weight
at least 1

2k the total weight of Q is at least
1
2sk + (t− s) = s(12k − 1) + t.

Consider a singleton node that is followed by a cycle node. There are s such
nodes; we will call them cycle parents. Assume 〈xj〉 is the first cycle parent node.
Thus, according to the first part of Lemma 2, its predecessors 〈x0〉, . . . , 〈xj〉 satisfy
the relation L(xi+1) ≥ L(xi)− k, so

L(xj) ≥ r − jk ≥ r − 1
8k

3 ≥ 7
8r,

since j ≤ t ≤ 1
8k

2 (otherwise, we are finished) and r ≥ k3.
From the second part of Lemma 2 we have

L(xj+2) ≥ 7r

16l(C)
− 1 ≥ r

k2
,

1All logarithms are to the base 2, and the constants involved have been chosen aiming for sim-
plicity of the proof rather than optimality.

FINDING A PATH OF SUPERLOGARITHMIC LENGTH 1401

where we have used l(C) ≤ 1
4k

2 (otherwise, we are finished) and r ≥ 4
3k

2.
This analysis may be repeated for the subsequent cycle parents as long as their

remaining length after each cycle node passage is at least k3. Note that Q must pass
through as many as s′ ≥
 1

4k − 1� cycle nodes before
r

k2s′ < k
3,

at which point the remaining path may be shorter than k3. Thus we either have
visited s ≥ s′ cycle nodes, amounting to a weighted path Q of length at least

s(12k + 1) ≥ 1
8k

2 − 1
4k − 1

(remembering that any two consecutive cycle nodes must have a singleton node in
between), or there are at most s < s′ cycle nodes on Q. In that case there is a tail
of singleton nodes starting with some L(x) ≥ k3. Since L(xj) ≤ L(xj+1) + k for the
nodes on the tail, the length of the tail (and thus the weight of Q) is at least k2.

It remains to check that the path found by our algorithm satisfies the stated
approximation bound: For the right k, the preceding lemma guarantees a weighted
path in Tk(G, v), and hence a path in G, of length

k2

8
− k
4
− 1 = Ω

((log r

log log r

)2
)
= Ω

((logL

log logL

)2
)

because r ≥ 1
2L by Lemma 1. This finishes the proof of Theorem 2.

4. Extensions.

4.1. Bounded degree graphs. As in [11], the class of graphs with their maxi-
mum degree bounded by a constant admits a relative log logn-improvement over the
performance ratio shown in this paper. All paths of length logn can be enumerated
in polynomial time for these graphs. Consequently, we can replace the algorithm from
Theorem 1 by an algorithm that efficiently finds cycles of logarithmic length or larger
through any given vertex if they exist.

Proposition 1. If a constant degree graph contains a simple path of length L,
then we can find a simple path of length

Ω

(
log2 L

log logL

)

in polynomial time.
This gives the performance ratio O

(
n log log n/ log2 n

)
for the longest path prob-

lem in constant degree graphs.

4.2. 3-connected graphs. Bondy and Locke [4] have shown that every 3-
connected graph with path length L must contain a cycle of length at least 2L/5.
Moreover, their construction is easily seen to be algorithmic and efficient. This im-
plies the following result on the longest cycle problem.

Proposition 2. If a 3-connected graph contains a simple cycle of length L, then
we can find a simple cycle of length

Ω

((logL

log logL

)2
)

1402 ANDREAS BJÖRKLUND AND THORE HUSFELDT

in polynomial time.
This gives the performance ratio O

(
n(log log n/ log n)2

)
for the longest cycle prob-

lem in 3-connected graphs. Note that for 3-connected cubic graphs, [5] shows a con-
siderably better bound.

Acknowledgments. We thank Andrzej Lingas for bringing [11] to our attention
and Gerth Stølting Brodal for commenting on a previous version of this paper.

Note added in proof. Recently, Gabow and Nie [6] have improved the bound
in Corollary 1 to O(e) + 2O(k)n log n. As a consequence, the bounds in Theorem 2
and Proposition 2 are improved to Ω(log2 L/ log logL), and the performance ratio for
longest path becomes O

(|V | log log |V |/ log2 |V |).
REFERENCES

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.
[2] A. Björklund, T. Husfeldt, and S. Khanna, Approximating Longest Directed Path, Techni-

cal report TR03-032, Electronic Colloquium on Computational Complexity, Vol. 10, 2003.
[3] H. L. Bodlaender, On linear time minor tests with depth-first search, J. Algorithms, 14

(1993), pp. 1–23.
[4] J. A. Bondy and S. C. Locke, Relative length of paths and cycles in 3-connected graphs,

Discrete Math., 33 (1981), pp. 111–122.
[5] T. Feder, R. Motwani, and C. Subi, Approximating the longest cycle problem in sparse

graphs, SIAM J. Comput., 31 (2002), pp. 1596–1607.
[6] H. N. Gabow and S. Nie, Finding a Long Directed Cycle, CU Technical report CU-CS-961-03,

University of Colorado, Boulder, CO, 2003.
[7] D. Karger, R. Motwani, and G. D. S. Ramkumar, On approximating the longest path in a

graph, Algorithmica, 18 (1997), pp. 82–98.
[8] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-

tations, Plenum Press, New York, 1972, pp. 85–103.
[9] B. Monien, How to find long paths efficiently, Ann. Discrete Math., 25 (1985), pp. 239–254.

[10] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity of
the V–C dimension, J. Comput. System Sci., 53 (1996), pp. 161–170.

[11] S. Vishwanathan, An approximation algorithm for finding a long path in Hamiltonian graphs,
in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, CA, 2000, pp. 680–685.

