EXERCISES FOR DAT131 COMPLEXITY OF DATA STRUCTURES

You need to solve at least 4 of the 7 exercises below to pass the course.

Assignment 1. Consider the following data structure (which we call *initialised* memory). It maintains an array $A[1], \ldots, A[m]$ of numbers (let's say the numbers are between 1 and m, but that doesn't really matter for this exercise) and supports the following operations.

init: set A[i] = 0 for all $1 \le i \le n$. write(i, x): set A[i] = xread(i): return A[i].

It is easy to implement this data structure so that read and write take constant time, and init takes O(n).

Question Show how to implement all three operations in constant time, or prove that that is impossible. *Hint*: This is not a bit-fiddling exercise.

Assignment 2. Exercise 4 on Husfeldt's lecture notes

Assignment 3. Exercise 5 on Husfeldt's lecture notes

Assignment 4. Exercise 6 on Husfeldt's lecture notes

Assignment 5. Exercise 9b and 9c on Husfeldt's lecture notes

Assignment 6. Consider section 4.3 of Fich's notes for CSC2429 (Toronto), where the pseudocode for **insert** and **pred** for a van Emde Boas Tree is given. Write $\mathbf{delete}(x, S)$.

Assignment 7. A pseudo-implicit dictionary (cf. section 1 of Husfeldt's notes for notation) stores only members of S and a single other symbol, i.e., for all $1 \le i \le$ size,

$$M(i) \in S \cup \{\bot\}.$$

Describe a pseudo-implicit static dictionary with one probe and one-sided error ϵ , i.e.,

- 1. if $x \in S$ then the structure returns 'yes' after one probe,
- 2. if $x \notin S$ then the structure returns 'yes' with probability at most ϵ after one probe.

You may use space size $= O(n \log m)$.

Alternatively, show that such a structure cannot exist.