
On Real-Time Performance of Ahead-of-Time Compiled Java

Anders Nilsson and Sven Gestegård Robertz
Department of Computer Science

Lund University
Box SE-221 00 Lund Sweden

{andersn|sven}@cs.lth.se

Abstract

One of the main challenges in getting acceptance for
safe object-oriented languages in hard real-time systems
is to combine automatic memory management with hard
real-time constraints, while providing adequate general
execution performance.

An approach to real-time Java based on ahead-of-time
compilation is presented, and real-time properties and
problems are examined. In particular, achieving both low
latency and high throughput in an environment where nei-
ther the back-end compiler nor the scheduler is aware of au-
tomatic memory management is considered. Optimizations
in both the compiler and run-time system, aimed at reducing
the execution time overhead while still allowing very short
latency times, is presented and experimentally verified.

1. Introduction

Java, as a programming language and execution environ-
ment, has gained a lot of interest from the real-time devel-
oper community during the last decade. As the complexity
of real-time software increase, the inherent limitations of
the programming languages used today (typically C, C++,
or assembly languages) become more and more apparent.
Programming errors like memory leaks and dangling point-
ers are caused by programming language limitations and
would not occur if asafe programming languagewith auto-
matic memory managementwas used.

A safe language is characterized by the fact thatall pos-
sible results of the execution are expressed by the source
code of the program. Of course, there can still be program-
ming errors, but they lead to an error message (reported ex-
ception), or to bad output as expressed in the program. In
particular, an error does not lead to uncontrollable execu-
tion such as a “blue screen”. If, despite a safe language,
uncontrolled execution would occur , that implies an error
in the platform; not in the application program. Clearly,

a safe programming language is highly desirable for em-
bedded systems. As of today, Java is the only safe, fully
portable object-oriented programming language available
that has reached widespread industrial acceptance (although
not yet for hard real-time systems), due to these previously
mentioned qualities, and its platform independence1.

The benefits of safety are often referred to as the ”sand-
box model”, which is a core part of both the Java language
and the run-time system in terms of the JVM. Safety is guar-
anteed by the rule that objects cannot refer to data outside its
scope of dynamic data, so activities in one sand-box cannot
harm others that play elsewhere. This is particularly impor-
tant in flexible automation systems where configuration at
the user’s site is likely to exhibit new (and thereby untested)
combinations of objects for system functions, which then
may not deteriorate other (unrelated) parts of the system.
Hence, raw memory access and the like should not be per-
mitted within the application code, and the enhancements
for real-time programming should be Java compatible and
without violating the safety of the language.

2. Using Java for real-time systems

Given a program, written in Java, there are basically two
different alternatives for how to execute that program on
the target platform. The first alternative is to compile the
Java source code to byte code, and then have a—possibly
very specialized—Java Virtual Machine (JVM) to execute
the byte code representation. This is the interpreted solution
(as required to be Java certified from Sun) used today for
Internet programming, where the target computer type is not
known at compile time. The second alternative is to compile
the Java source code, or byte code, to native machine code
for the intended target platform.

A survey of available JVMs, more or less aimed at the
embedded and real-time market, reveals two major prob-

1Or rather, its good platform portability, since it takes a platform de-
pendent Java Runtime Environment (JRE), and JREs are not quite fully
equivalent on all supported platforms.



lems with the interpreted solution. Since Just-In-Time (JIT)
compilation is very hard to combine with real-time de-
mands, an interpreter will typically suffer a performance
penalty of being up to 10 times slower than natively com-
piled code. To improve performance, some JVMs (e.g.
mackinac [8]) use the JIT compiler to compile the appli-
cation at initialization time. This, however, comes at the
cost of a significantly larger memory footprint.

The set of target systems considered in our work include
small (350 MHz PPC G3 with 32 MB ram) and very small
(AVR µcontroller at 8MHz/32 kB RAM) embedded com-
puters. Therefore, we prefer ahead-of-time compilation to
using a JVM. One thing in common for almost all CPUs,
is that there exists a C compiler with an appropriate back-
end. In the interest of maintaining good portability while
compiling Java to native code, we use C as the intermediate
language; The Java front-end generates C code which, in
turn, is compiled by a standard C compiler.

2.1. Java in an uncooperative environment

Due to external requirements, we need our system to
operate in an uncooperative environment; we want to be
able to use an off-the-shelf C compiler and RTOS as well
as external, legacy or automatically generated, C code.
That means that we cannot rely on detailed assumptions
on the behavior of the back-end C compiler or the thread
scheduler, which makes implementation of a real-time
garbage collector (GC) more challenging. For instance, it
means that any synchronization required between collector
and application, ormutator2, needs to be done explicitly.
It also means that the generated C code must be written
so that it ensures, in a portable way, that no back-end
optimization causes interference with the GC.

In particular, the combination of uncooperative compiler,
uncooperative scheduler, and tight real-time requirements
(low latency) makes a demanding challenge. Without con-
trol over the scheduling, some compiler optimizations can-
not be allowed, as threads may be preempted at any time.
For instance, if we are using a copying or compacting GC
algorithm, pointers must always be read from memory, and
not kept in registers, as the collector may move objects at
(from the mutator’s point of view) any time.

The details of accurate concurrent GC in an uncoopera-
tive environment are outside the scope of this paper, but is
investigated in more depth in [14].

3. The Lund Java system

Research on real-time memory management and com-
piler technology at our department has evolved into a

2From the GC’s point of view, the application is a process thatchanges,
or mutates, the object-reference graph, causing objects tobecome garbage.

Figure 1. The Java2C compiler translates a
Java application to C, which is then com-
piled and linked with memory management-,
and run-time system modules to form an ex-
ecutable.

prototype compiler and run-time environment for hard
real-time Java compatible applications [10, 9]. By Java
compatibility we mean that a hard real-time application
written in Java, and using a well defined subset of the
standard Java2 Standard Edition (J2SE) class libraries,
should run concurrently correct on any J2SE platform.
The actual real-time performance of course depends on
the underlying run-time system. The main design goal of
our work is to keep the simple memory model of standard
Java so that it should be easy to develop and debug an
application on a desktop JVM, and then recompile for
the real-time target and hopefully only have to sort out
remaining timing-related issues on the target.

The Lund Java system consists of three modules: a Java-
to-C translator, a subset of the J2SE standard class library
slightly refurbished for use in hard real-time systems, and
the automatic memory management module with a generic
Garbage Collector Interface (GCI). The relationship be-
tween these modules is shown in Figure 1.

The execution platform—scheduler, GC, class library,
etc.—is very important for the behavior of a Real-Time
(RT) Java system. Compiled Java code relies on the task
scheduler on the underlying operating system. It will also
need to cooperate closely with the RT memory manager in
such a way that timing predictability is accomplished, while
memory consistency is maintained at all times.

One important design criterion in the Lund Java system
is that we want to retain the platform independence of stan-
dard Java. It should be possible, with a very reasonable
amount of work, to port our run-time system to a new plat-
form equipped with a task scheduler.



3.1. Java2C

The Java2C compiler [11] is a research prototype com-
piler, developed for the purpose of testing our ideas on how
hard real-time Java could be implemented. The compilation
process, see also figure 1, is sketched as follows:

• Given the main class of the Java application, the
compiler front-end performs name-, and type analy-
sis, looking up and parsing depending classes when
needed. All dependant classes are inserted in one large
Abstract Syntax Tree (AST).

• The AST is transformed from representing the parsed
source-code to a, semantically equivalent, representa-
tion suitable for code generation and the Garbage Col-
lector Interface (GCI).

• The compiler back-end produces C code where all
heap references are done using the GCI.

3.2. Real-time garbage collection

In order to be feasible for use in real-time systems, the
memory manager, including the GC, must be non-intrusive.
I.e., the GC should disturb the mutator threads as little as
possible. This means that using an incremental collector is
necessary, but not enough; care must also be taken in how
the increments are scheduled. The GC must also be accu-
rate, as a conservative GC cannot guarantee that all garbage
is reclaimed.

The basic idea behind the GC implementations in our
work is using a fine-grained incremental collector to allow
very low latency, and running it concurrently, coupled with
a suitable scheduling strategy, to ensure non-intrusiveness.

In 1998, Henriksson presented thesemi-concurrentGC
scheduling model [4], and showed that by analyzing the
application, it is possible to schedule GC in such a way
that the execution of high priority threads is not disturbed.
This is accomplished by freeing high priority threads from
doing any GC work during object allocation; that work is
performed by a medium priority GC thread. Low priority
threads perform a suitable amount of GC work at each
allocation, using traditional incremental GC. Hence the
term semi-concurrent, as the GC is concurrent to high
priority threads but inlined in low priority ones. The
analysis needed for tuning the GC scheduling parameters,
to guarantee that the application will never run out of
memory when a high priority thread tries to allocate an
object, is based on calculating worst case response times,
for the high priority threads and the GC, using generalized
rate monotonic analysis [16].

In 2003, Robertz and Henriksson presented the notion
of time-triggered GC scheduling[13], an approach aimed

at making it possible to schedule a concurrent GC as any
other thread, and thus transferring the responsibility for
making the low-level scheduling decisions from the GC to
the thread scheduler. By treating GC scheduling on the GC
cycle level instead of on the increment level, this strategy
also fits well into an adaptive, feedback scheduling sys-
tem, which makes the approach suitable for flexible real-
time systems. Taking that work into account, it appears rea-
sonable to accomplish real-time Java without extending the
memory allocation model, in contrast with what is done in
for example the two real-time Java specifications [1, 2].

3.3. Garbage collector interface

Different GC algorithms require different interaction
with the application. For instance, a compacting or copy-
ing collector requires a read-barrier3, as objects may move,
where a non-moving mark-sweep collector only requires
a write barrier4. These differences makes it error-prone
and troublesome to write code generators supporting more
than just one type of GC algorithm, and it gets even worse
considering hand-written code, which would need a major
rewrite for each supported GC type.

In order to separate and hide the GC implementation
from the application, we have specified an interface that
provides heap access primitives to the application [6]. The
GCI makes it possible to change the underlying GC algo-
rithm without requiring any changes to the application code.
This includes providing the necessary synchronization for
reference and heap operations.

The GCI is used both in the Infinitesimal Virtual Ma-
chine (IVM) [5] and in our Java2C compiler, and with both
non-moving, compacting and copying collectors. The vary-
ing requirements, both on the set of memory access prim-
itives and run-time aspects causes the interface to contain
quite many operations, which makes it less than ideal for
manually written code, but as the intended use for GCI is
generated code (especially from our Java to C translator)
or low-level routines in a virtual machine, this is no major
concern. As always, there is a trade-off between keeping
the interface small and limiting the power of expression as
little as possible. Manually writing code that accesses the
heap through the GCI is, however, also quite doable.

The interface is implemented as a set of C preprocessor
macros, and consists of primitives for initialization, object
layout declaration, reference variable declaration, object al-
location, reference access, field access, and function decla-
ration and call, which adds up to 50 primitives.

3In GC terminology, a read barrier is the operation transforming a refer-
ence to an object into a pointer to the memory location the object. The term
barrier stems from that it prevents accesses to obsolete copies of objects.

4A write barrier is used to inform an incremental GC about reference
assignments, to ensure that no live object is missed due to changes to the
reference graph being made while it is being traversed by theGC.



4. Performance issues

The key requirements on a run-time system for real-time
applications are predictability and low latency, and the real-
time properties of our approach have been previously ver-
ified [4, 9, 10, 12]. However, for a system to be practi-
cally feasible, the inlined overhead must not be unaccept-
ably large. This section discusses how to achieve good gen-
eral execution performance while maintaining the hard real-
time properties.

As our Java system needs to operate in an uncoopera-
tive environment, it must ensure that correct behavior and
real-time performance is not jeopardized by compiler opti-
mizations, concurrency issues or interference from external
code. In isolation, each of these aspects do not pose a prob-
lem; the difficulty comes from the combination, which gives
conflicting requirements. In our experience, the main bot-
tleneck is the synchronization between mutator and collec-
tor. Under an uncooperative scheduler, preemption can oc-
cur at any instant. Therefore, all reference operations must
be protected to ensure mutual exclusion between collector
and mutator and, if we want low latency, the critical sections
must be small. However, this means a lot of synchroniza-
tion, which may add up to a significant execution time over-
head. It should be noted that this problem is due to the unco-
operative scheduler, and not the ahead-of-time compilation;
a JVM using native threads would face the same problems
if a non-intrusive concurrent GC was desired.

The execution time overhead can be reduced in two ba-
sic ways: reducing the number of operations that require
synchronization or using cheap synchronization primitives.

4.1. Reducing the need for synchronization

The level of required synchronization is affected both by
the choice of GC algorithm (e.g., if a read barrier is re-
quired or not) and by different implementation decisions in
the compiler and run-time system. This section gives exam-
ples of how those issues can be addressed in the compiler
and in the run-time system, respectively.

Root alias analysis A GC root is a reference from out-
side the garbage collected heap to an object on the heap,
typically a global variable or a local variable on a stack.
The root references are used as starting points when the GC
traverses the reference graph to identify live objects, anda
GC cycle in a tracing collector typically starts with a stack
scanning phase, where the root references are identified [7].

As our implementation is constrained by an uncoopera-
tive environment, we cannot scan the C stacks directly, as
they contain no type information which means that we can-
not discriminate between pointers and data. Therefore, we

GC_REF(Type1, tmp1); // Type1 tmp1;
GC_REF(Type2, tmp2); // Type2 tmp2;
GC_PUSH_ROOT(tmp1);
GC_PUSH_ROOT(tmp2);
GC_GET_REF(tmp1, a, b); // tmp1 = a.b;
GC_GET_REF(tmp2, tmp1, c); // tmp2 = tmp1.c;
GC_GET_REF(foo, tmp2, d); // foo = tmp2.d;
GC_POP_ROOT(tmp1);
GC_POP_ROOT(tmp2);

Figure 2. Example of how GCI requires tem-
porary reference variables

use an auxiliaryroot stackfor each thread to keep track of
the set of live local reference variables [4, 14].

In a typical object oriented program, a large part of local
variables will be of reference types, and thus there will be
many root references. The use of GCI also makes it neces-
sary to introduce many temporary variables as complex con-
structs, such asfoo = a.b.c.d, has to be split up into
simple attribute accesses as shown in Figure 2. This means
that a lot of roots has to be pushed on and popped from the
root stack, causing a significant execution time overhead,
primarily from the required synchronization.

It can, however, be observed that in order to ensure cor-
rect GC behavior, it is enough that each live object is reach-
able from one root5. This means that the amount of neces-
sary root operations, and thereby the overhead, can be re-
duced; if it can be statically determined that a variable will
only reference objects that are also referenced by another
variable with longer lifetime, the “inner” variable does not
have to be registered as a root. We call thisroot aliasanaly-
sis, and the compile-time analysis is trivial, as we do whole-
program compilation. With this optimization, the push and
pop operations in Figure 2 would be removed, which means
that there will be no additional overhead of having the tem-
porary variables explicitly in the code. In a typical Java
program, the amount of “root duplication” is, in our experi-
ence, very high, as the associativity between objects tend to
be high — between50% and70 % of roots (including tem-
poraries) were redundant in our experiments. A large por-
tion of the required roots are temporary references required
to keep a newly allocated object live before its constructor
has completed. This is needed to keep latency low; as the
constructor can be of arbitrary length it cannot be treated as
atomic.

As an example of how the root alias analysis works, we
take the code fragment in Figure 3. There,f andb will
(or may) reference objects that are allocated in the context
of main, so these variables must be registered as roots, as
they are the only references to the new objects. On the other

5This does not hold for copying collectors that use forwarding pointers
in the objects, as the roots are used for updating pointers aswell as for
finding live objects; for this optimization to work, the readbarrier must be
implemented using an indirect table outside the object.



void main() {
Foo f; Bar b;
...
f = new Foo();
b = new Bar();
...
proc(f,b);

}
void proc(Foo foo, Bar bar) {

Test t1, t2; Bar b1;
...
t1 = foo.test1;
t2 = foo.test2;
b1 = bar.x();
...

}
class Foo {

Test test1, test2;
...

}
class Bar {

Bar b;
...
public Bar x() { return b; }

}

Figure 3. Root alias example

hand, inproc, we know that the parameters have been reg-
istered as roots in the calling scope. Local analysis inproc,
can statically determine thatt1 andt2 only reference ob-
jects that are reachable from (the attributes of) the parame-
ters, and therefore it is not necessary to register these vari-
ables as roots. In contrast, we cannot tell ifb1 is an alias
for something already rooted, or not. However, by analyz-
ing the methodBar.x() it is seen thatx only returns an
object reachable from an attribute. Therefore,b1 does not
need to be registered as a root.

If we are doing whole-program compilation, all calls to
functions returning references can be analyzed and will fi-
nally boil down to either an attribute access (which doesn’t
require rooting) or an allocation (which does). In a separate
compilation context, it is not generally possible to perform
the whole-program root alias analysis, but the local analysis
may still be used to get rid of unnecessary roots caused by
temporary variables.

The implementation of the root alias analysis is quite
simple, and the majority of the code is shown in figure 4.
In the case of class overloading, the analysis of whether a
method call may return a new root must analyze all over-
loaded implementations of the method which may be exe-
cuted, which may yield a conservative result. For the sake
of readability, that code has been left out from the figure.

Function calls For function calls, the level of locking re-
quired depends on how reference arguments are passed —
as references or as actual pointers (i.e., if the read barrier
is executed in the caller or in the callee). In our imple-
mentation, reference structures are stack allocated and thus
will not be moved by the GC. Therefore, if references are
called by reference (i.e., a pointer to the reference structure
is passed) no new roots are pushed in the callee and no heap
locking is required. As the caller will always out-live the
callee, if parameters to functions are known to be rooted

boolean VariableDeclaration.isNewRoot() {
boolean result = false; Stmt stmt = null;
ASTNode scope = getSurroundingScope();
foreach stmt in scope {
result |= stmt.isNewRoot(this); }

return result;
}
boolean ExprStmt.isNewRoot(VariableDeclaration varDecl) {

if (getExpr() instanceof AssignSimpleExpr) {
AssignSimpleExpr expr = (AssignSimpleExpr) getExpr();
return expr.getDest().isUse(varDecl) &&

expr.getSource().isNewRoot(); }
return false;

}
boolean MethodAccess.isNewRoot(){return decl().isNewRoot();}
boolean VarAccess.isNewRoot(){return decl().isNewRoot();}
boolean MethodDecl.isNewRoot(){ return returnsNewRoot();}
boolean InstanceExpr.isNewRoot(){return true; }

boolean Block.returnsNewRoot() {
boolean result = false;
for (int i=0; i<getNumStmt(); i++) {
result |= getStmt(i).returnsNewRoot(); }

return result;
}
boolean ReturnStmt.returnsNewRoot() {

boolean result = false;
if (hasResult()) { result = getResult().isNewRoot(); }
return result;

}
boolean MethodDecl.returnsNewRoot() {

// Native methods do not have bodies, so let’s be conservative
boolean result = true;
if (hasBlock()) { result = getBlock().returnsNewRoot(); }
return result;

}

Figure 4. Root alias analysis in the front-end

in the calling context they don’t have to be rooted again in
the called context. Similarly, we know that the return value
of a function will be used in the calling function (or not
at all). Therefore, the variable that will receive the return
value must already be rooted so if we pass a reference to
this variable to the called function, it can be assigned be-
fore the return which removes the need to protect the return
value. If function arguments and return values are handled
in this way, no locking is required for function calls.

Root stacks in multi-threaded programs Another ex-
ample of overhead caused by an uncooperative environment
is the root stacks. In multi-threaded programs, each thread
has its own root stack, and therefore, all root operations (i.e.
push and pop) requires a pointer to the root stack of the cur-
rent thread. In a system where the thread scheduler is Java-
aware, the root stack pointer is part of the execution context
of each thread and is saved and restored automatically.

In systems which cannot rely on scheduler cooperation,
this has to be handled in the application code. As the root
operations are part of the application code, and the current
thread is not known at compile time, this must be looked up
at run time. However, looking up the root stack at each root
operation is quite inefficient so this should be done once for
each function call and cached. Similarly, if no root opera-
tions are done in a function (like in e.g. a typical math func-
tion of the standard library), such lookup is unnecessary.
Therefore, lookup of the thread root stack is done lazily at
the first root operation of each function and the result is
cached. This can be implemented quite efficiently.



4.2. Reducing the cost of synchronization

With fine-grained memory operations and heap-intensive
applications, such as Java programs, the heap is almost al-
ways locked, so whenever preemption occurs, the probabil-
ity that the heap is locked is high. Assume that a thread (T1)
is executing and is in the middle of a memory operation.
Then, a context switch occurs; the thread that is scheduled
to run (T2) will probably try to lock the heap very soon af-
ter the context switch and be blocked. ThenT1, which is
holding the heap lock, is scheduled to run again until it re-
leases the heap lock, allowingT2 to continue its execution.
This means that there will be three context switches instead
of one, increasing the execution time overhead due to such
context switch chatter.

Low latency due to locking is a requirement, so just in-
creasing the size of the critical sections is not a viable so-
lution. Therefore, we need a solution that allows very fine-
grained preemption without the overhead of frequent un-
locking and re-locking. We also need to make sure that
context switches are not performed when the heap is locked.

This section will sketch three possible solutions based
on turning off interrupts, preemption points, and a proposed
technique, lazy locking, respectively.

Turning off interrupts The straight forward solution is to
simply implementgc_lock() by turning off (clock) in-
terrupts andgc_unlock() by turning them on again. On
most architectures, interrupt requests that arrive when inter-
rupts are masked are latched, so that when the interrupts are
turned back on, any missed interrupt will be generated and
the corresponding interrupt routine is executed. On such
an architecture, this will give the desired semantics that if a
time-slice ends, and preemption should take place, when the
heap is locked, the context switch is delayed until the heap
lock is released. Turning off interrupts may, however, not be
allowed by the OS, or have negative effects on other parts of
the system, e.g., interrupt-based drivers for peripherals, etc.

Preemption points By using a scheduler which only al-
low preemption at certain, pre-determined points, we can
avoid frequent locking/unlocking. In fact, if the memory
accesses are taken into account when placing preemption
points so that preemption is only allowed when the heap is
in a consistent state, no additional housekeeping or synchro-
nization is needed in order to ensure correct GC operation.

However, preemption points are problematic for two rea-
sons. The first is that most standard real-time operating sys-
tems don’t support them. The second one is that calling
external native code (that doesn’t have preemption points)
may cause priority inversion. An illustrating example is a
background thread calling an external routine with a long
execution time. As external code doesn’t have preemption

gc_lock();
...

--> gc_unlock();
--> gc_lock();
--> ...
--> gc_unlock();
--> gc_lock();

...
gc_unlock();

Figure 5. Locking example: Small atomic op-
erations cause frequent locking.

points, high priority threads may be delayed indefinitely.
One solution is switching to “native” preemption when call-
ing external code and then switching back to preemption-
points when executing known code. However, calling ex-
ternal code would then have a performance penalty due to
the additional housekeeping required and scheduler imple-
mentation would be more complex.

Lazy locking If turning off interrupts or using preemption
points is not possible or desirable, an alternative strategy for
reducing the locking overhead is based on the observation
that, while the frequent locking and unlocking is required in
order to achieve low latency, in the common case, the heap
is unlocked, and then shortly re-locked by the same thread.
Thus, most of the locking operations are really unnecessary
and could be removed without changing the behavior of the
program (other than reduced overhead). The problem is just
determining which lock and unlock operations that need to
be performed. This could be done statically, but the analysis
would be difficult and highly dependent on the low-level
scheduling, control flow based on input data, etc. Therefore,
a dynamic, on-line approach is preferable.

For example, take a code sequence like in Figure 5. If we
are executing in the marked region, and no clock interrupt
has arrived (i.e., the thread will not yet be preempted), it
is unnecessary to perform the unlocking and re-locking op-
erations. Thus, if we could dynamically decide whether to
perform the unlock/lock operations (in a way that is much
cheaper than actually performing the locking), the overhead
could be reduced. Then, when a clock interrupt occurs, the
heap should really be unlocked at the next unlock instruc-
tion and the context switch performed.

One way of implementing this is by having two versions
of the operations: the actual lock/unlock operations (which
are executed when the locking is required) and “NOP” ver-
sions that are used when unlocking and re-locking isn’t nec-
essary. Then, the run-time system ensures that the correct
version is run at each time to both guarantee the correct se-
mantics and achieve the best performance. In principle, an
implementation of this scheme looks like in Figure 6. This
method gives similar behavior as preemption points with
regard to heap accesses, but without requiring additional



void (*gc_lock)(void);
void (*gc_unlock)(void);

void gc_lock_real(void)
{ lock(heap_mutex);

gc_lock = f_nop;
gc_unlock = f_nop;

}
void gc_unlock_real(void)
{ unlock(heap_mutex);

yield();
}
void f_nop(void) { return; }
void reschedule(void)
{ if(is_locked(heap_mutex)) {

gc_lock = gc_lock_real;
gc_unlock = gc_unlock_real;

} else {
/* perform actual context switch */

}
}

Figure 6. Lazy locking implementation sketch

housekeeping in order to allow external native code to be
run with real-time guarantees.

If modifying the scheduler is not possible, or practically
feasible, much of the benefit of lazy locking can still be
obtained if the OS has a call-back hook for a method to be
called at context switches. In fact, this is the method used in
our Linux/RTAI prototype, and it gives the same reduction
of the number of locking operations, but does not address
context switch chatter. That may, however, be a reasonable
trade-off for not having to modify the scheduler.

There are, of course, many other small details that must
be taken care of when implementing such a scheme; e.g.,
the system must ensure that the heap is always unlocked
before a blocking call is made or before a thread dies; oth-
erwise there is a risk of deadlock.

4.3. Compiler optimization effects

Another problem with locking is that the lock/unlock op-
erations are function calls or inline assembler, and that tend
to break basic blocks and interfere with compiler optimiza-
tions. This is, partly, intentional, as many optimizationsare
not safe in the general case. E.g., we must make sure that
pointers (gotten through the read barrier) to objects are al-
ways read from memory as objects may have moved since
the last access, etc., when we enter the next critical section,
and such race conditions will lead to memory corruption.

However, this is really only needed when a context
switch actually has taken place; as long as the same thread is
executing, any optimization is legal, as long as the heap and
all references in memory are consistent at the next context
switch. Thus, performance could be improved significantly
if it was possible to implement lazy locking in a way that
the fast case did not break basic blocks. We believe that this
could be done with self-modifying code, injecting the lock-
/unlock operations into the code where they are needed and
modifying the lock/unlock instructions so that they ensure

heap consistency. This, of course, requires detailed infor-
mation about the inner workings of the optimizing back-
end and target architecture and cannot be done in a simple
or portable way.

5. Experimental results

We have performed a number of experiments in order to
verify the applicability of our proposed real-time Java sys-
tem. We will first present measurements on latencies for
a hard real-time Java application using automatic memory
management. Then we will show a comparison of general
execution performance between our Java system and some
other Java compilers and run-time systems, including a na-
tive C solution as a reference. Finally, we will study how the
presented techniques and optimizations affect performance.

The experiment setup used in Section 5.1 was a synthetic
benchmark resembling a typical real-time application; pe-
riodic threads allocating a number of different objects each
sample, corresponding to a set of threads controlling a phys-
ical process. It was executed on a 333 MHz Pentium II run-
ning Linux and RTAI. The experiment setup used in Sec-
tions 5.3 and 5.4 was a low level servo controller for an
ABB IRB-2000 industrial robot. Given a desired motor an-
gle for each of the six joints, suitable torque values and the
corresponding AC motor currents are calculated. Both ser-
vos executed on a 350 MHz PowerPC G3 with 32 MB RAM
running Linux/RTAI. The execution performance compar-
ison in Section 5.2 consists of two benchmarks from the
emb_benchsuite [15] and was executed on a P4 2,8 GHz
workstation with 1 GB RAM running Debian GNU/Linux.

5.1. Latency

This experiment examines if the use of GC in a real-time
Java system causes any jitter in the highest priority thread.
The heap is sufficiently small so as to guarantee that at least
one full GC cycle will be run during the experiment.

Figure 7 shows measured latency and response times for
the highest priority thread in a heavily loaded system (CPU
utilization >90%) using mark-compact and mark-sweep GC
algorithms. Latency is in the interval3−12µs for the mark-
compact GC and2 − 14 µs for the mark-sweep GC while
response times are measured to be in the intervals32−43 µs

and27 − 41µs for the respective GC. The execution time
of a sample was about30µs. The experiment shows that
the main source of response time jitter is the release latency
and when a task has been started it is not disturbed further.

5.2. Performance

For the performance comparison with some non real-
time Java runtime environments, two applications from



0 0.005 0.01 0.015 0.02 0.025 0.03
0

10

20

30

40

50

Execution Time (s)

La
te

nc
y/

R
es

po
ns

e 
T

im
e 

(u
s)

Mark−Sweep.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

10

20

30

40

50
Mark−Compact.

Execution Time (s)

La
te

nc
y/

R
es

po
ns

e 
T

im
e 

(u
s)

Figure 7. Release latency (bottom) and re-
sponse time (top) jitter for the highest priority
thread at 10 kHz, for two different GCs.

Martin Schoeberls [15] embedded benchmarks suite were
used;sievedoes little more than access elements in arrays,
while kfl is a real control application for a small embedded
system here run in a simulated environment. The Java2C
tests were compiled and run using mutex synchronization
and with root alias analysis.

As shown in figure 8, performance suffers heavily from
using a mark-compact GC due to the read barrier; as reads
are typically more common than writes, the expensive syn-
chronization mechanism has a bigger impact on overall per-
formance. The mark-sweep GC performs much better, es-
pecially in the more realistickfl benchmark program. Note
that the differences between using a batch GC and the two
real-time GC algorithms is the cost for synchronizing with
an incremental algorithm. For a fair comparison, only the
batch-copy example should be compared to the other three
Java execution environments in terms of throughput perfor-
mance as they do not have real-time GC. It does, however,
illustrate that the cost of synchronization may be devas-
tating to performance if care is not taken. The configura-
tion used here corresponds to number 2 in Figure 10, so
with more efficient synchronization, the penalty of mark-
compact would be significantly less.

Incrementality always comes at the cost of increased run-
time overhead, and for batch applications it yields no bene-
fit; as the application never sleeps, any GC work will delay
the application. A typical real-time control system, on the
other hand, consists of a set of periodic tasks. Thus, an in-
cremental GC can be scheduled so that it will not disturb the
application, reducing the impact of the GC overhead signif-
icantly. In addition, the long GC pauses make a batch GC
unsuitable for real-time applications.

Figure 8. Performance comparison chart with
two real-time GCs, one non real-time GC, and
four other non RT execution examples. Per-
formance measured as number of iterations
performed in one second.

5.3. Lazy locking

This experiment investigates the impact of lazy lock-
ing on the number of lock operations that are actually per-
formed. Figure 9 shows the frequencies of locks in the
vanilla version and real and lazy locks in the lazy version.
This shows that only a small fraction of the locks actu-
ally need to be performed and thus that the locking over-
head can be significantly reduced. For instance, in the re-
ceiver thread, which performs most of the computations,
only 0.03% of the lock instructions in the code actually
cause a mutex operation.

5.4. GC algorithm, synchronization mechanism and
root alias optimization

Figure 10 shows how the choice of locking primitive and
the root alias optimization affects total throughput, i.e.the
maximum possible sample rate. The big difference between
the mark-sweep and the mark-compact collector is caused
by the extra synchronization required for the read barrier in
the mark-compact case. With synchronization turned off6,
there is no big difference between a moving and a non-
moving collector. In this example, the overhead of the read
barrier is compensated by the cheaper allocation7.

In this experiment, lazy locking was implemented with
the call-back method, instead of modifying the scheduler,

6Of course, running without synchronization is not safe and may cause
race conditions and memory corruption, so this is done for reference only
and is not a practically usable configuration.

7In the mark-compact collector, allocation is done by simplyincre-
menting a pointer, whereas in the mark-sweep case, free-list search and
block splitting is done.



Figure 9. Comparing the vanilla version (left) to the one wit h lazy locks (right), showing the fre-
quencies of real and lazy locks for each of the application th reads. Please note that the scale is
logarithmic. In this experiment, the mark-compact collect or was used. The application was run for a
fixed amount of time, so the numbers should not add up.

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

configuration

sa
m

pl
e 

ra
te

 / 
H

z

mark−compact
mark−sweep

Figure 10. The effect on throughput of differ-
ent locking primitives and root optimization.
The configurations are 1) Mutex locking, 2)
Mutex locking with root alias optimization,
3) Lazy mutex locking, 4) Lazy mutex lock-
ing with root alias optimization, 5) Interrupt
masking (cli/sti), 6) Interrupt masking with
root alias optimization, 7) No locking and 8)
No locking with root alias optimization

so it only shows the savings from doing fewer locks. It re-
mains to be investigated how large the effects of context
switch chatter are. The call-back method also adds to the
overhead of each context switch, so an implementation in-
side the scheduler would yield a much bigger improvement.

6. Related work

The concept of natively compile Java code and/or mak-
ing Java viable for use in systems with hard timing con-
straints is not new and there is plenty of both academic and
industrial work published. However, in the range of small
sized embedded systems we are targeting there are not very
many projects trying to implement Java for hard real-time
systemswith automatic memory management.

The Real-Time Specification for Java (RTSJ) [1, 20] is
generally acknowledged as the specification to follow when
implementing real-time Java. Implementations include:

Mackinac: Based on Sun’s HotSpot technology, but com-
piling Java classes at initialization time instead of dur-
ing runtime, applications executing on the mackinac is
predicted to achieve similar performance as equivalent
C++ applications. Just like HotSpot, it will take quite
some CPU power and memory to run mackinac.

JamaicaVM: Aicas GmBH and IPD Universität Karl-
sruhe have implemented a combined JVM and Java
bytecode-to-native compiler called Jamaica [18, 17,
19]. The Jamaica VM is always responsible for
garbage collection and the task scheduling, while some
classes may be natively compiled and call the VM for
services such as memory allocation. The GC prin-
ciple used is a non-moving type with fixed memory
block size for eliminating external fragmentation. The
amount of GC work to do at each object allocation
is scheduled dynamically with respect to the current
amount of free memory, and task latency (also for high
priority tasks) will vary accordingly.

The varying task latency and the fact that the fixed size
memory block scheme makes linking with non-GC-
aware code modules complicated, make the Jamaica
system inappropriate for small embedded systems and
for flexible hard real-time systems.

JRate: JRate [3] is implemented as an extension of GCJ
to support the RTSJ. Since it is an ahead-of-time com-
piled solution, performance should be acceptable also
on modest platforms.

However capable of achieving good real-time perfor-
mance, all implementations of the RTSJ do have one large
drawback in common. Instead of focusing on how to solve
the real-time garbage collection problem, they resort to in-
troducing additional memory types which can be used by
high priority threads. This will, in effect, return memory
management to the error-prone programmer, who will have
to figure out which objects may reference which other ob-
jects without violating the various memory access rules.



7. Conclusions

In order to make Java a viable programming language for
embedded real-time systems development, performance is
the crucial factor in both senses of the term. Short and con-
stant latencies must be guaranteed, while execution perfor-
mance must not degrade too much compared to implemen-
tations in other programming languages. Another important
factor is to preserve the flexibility of Java allowing real-time
Java applications to execute on many different platforms
with different operating systems, including non real-time
operating systems for development and debugging.

However, flexibility in natively compiled Java also
means that we must consider an uncooperative environ-
ment. Neither the task scheduler, nor the back-end C com-
piler can be assumed aware of incremental GC. Hence, there
is a tradeoff to be made between flexibility, latency, and
throughput. This paper has identified some potential bot-
tlenecks caused by the uncooperative environment, and pre-
sented techniques, both in our Java compiler and in the run-
time system, for reducing the execution time overhead and
enhance throughput while maintaining low task latency.

Experimental evidence show that we can achieve very
low latency and jitter as well as reasonable throughput.
Given our contributions and results, we do see compiled
real-time Java, or a similar language such as C#, as indus-
trially viable in a near future.

Acknowledgements

The work presented in this paper has been carried out
within theFLEXCONandNetwork Programmingprojects,
at the LUCAS8 applied software research center with fi-
nancing from the Swedish Agency for Innovation Systems
(Vinnova) and the Swedish Foundation for Strategic Re-
search (SSF). We would like to thank Anders Blomdell at
the Department of Automatic Control, for sharing his deep
knowledge in compilers and real-time kernels, and many of
our colleagues at the Department of Computer Science.

References

[1] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specification
for Java. Addison-Wesley, June 2000.

[2] J. Consortium. Real-Time Core Extensions. P.O. Box 1565,
Cupertino, CA 95015-1565, September 2 2000.

[3] A. Corsaro and D. C. Schmidt. he design and performace of
the jrate real-time java implementation. InProceedings of
the 4thInternational Symposium on Distributed Objects and
Applications, DOA 2002, October 2002.

8http://www.lucas.lth.se

[4] R. Henriksson.Scheduling Garbage Collection in Embed-
ded Systems. PhD thesis, Department of Computer Science,
Lund Institute of Technology, July 1998.

[5] A. Ive. Towards an embedded real-time java virtual ma-
chine. Licentiate thesis, Department of Computer Science,
Lund Institute of Technology, 2003.

[6] A. Ive, A. Blomdell, T. Ekman, R. Henriksson, A. Nilsson,
K. Nilsson, and S. Gestegård-Robertz. Garbage collector
interface. InProceedings of NWPER 2002, August 2002.

[7] R. Jones and R. Lins.Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, 1996.

[8] The Real-Time Java Platform, a technical white paper.
http://research.sun.com/projects/mackinac/
mackinac_whitepaper.pdf, June 2004.

[9] A. Nilsson. Compiling Java for Real-Time Systems. Licen-
tiate thesis, Department of Computer Science, Lund Institute
of Technology, May 2004.

[10] A. Nilsson, T. Ekman, and K. Nilsson. Real java for real
time – gain and pain. InProceedings of CASES-2002, pages
304–311. ACM, ACM Press, October 2002.

[11] A. Nilsson, A. Ive, T. Ekman, and G. Hedin. Implementing
java compilers using rerags.Nordic Journal of Computing,
11(3):213–234, 2004.

[12] S. G. Robertz.Flexible automatic memory management for
real-time and embedded systems. Licenciate thesis, Lund
Institute of Technology, Lund University, April 2003.

[13] S. G. Robertz and R. Henriksson. Time-triggered garbage
collection — robust and adaptive real-time GC scheduling
for embedded systems. InProceedings of the ACM SIG-
PLAN Languages, Compilers, and Tools for Embedded Sys-
tems - 2003 (LCTES’03), pages 93–102. ACM SIGPLAN,
ACM Press, June 2003.

[14] S. G. Robertz and R. Henriksson. Accurate concurrent GC
in an uncooperative environment — performance vs pre-
dictability? In preparation, 2005.

[15] M. Schoeberl. JOP - Java Optimized Processor. World Wide
Web, 2004.http://www.jopdesign.com.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky. Generalized rate-
monotonic scheduling theory.Proceedings of the IEEE,
82(1), 1994.

[17] F. Siebert. Hard real-time garbage collection in the ja-
maica virtual machine. InThe 6th International Conference
on Real-Time Computing Systems and Applications (RTCSA
’99), Hong Kong, December 1999. IEEE.

[18] F. Siebert. Eliminating external fragmentation in a non-
moving garbage collector for java. InCompilers, Architec-
tures and Synthesis for Embedded Systems (CASES 2000),
San José, November 2000.

[19] F. Siebert and A. Walter. Deterministic execution of java’s
primitive bytecode operations. InJava Virtual Machine Re-
search & Technology Symposium ’01, Monterey, CA, April
2001. Usenix.

[20] A. Wellings. Concurrent and Real-Time Programming in
Java. Wiley, September 2004. ISBN 0-470-84437-X.


