CONSTRUCTING LARGE
PROPOSITION DATABASES

Peter Exner

June 10, 2011

Abstract

Using semantic parsing or related techniques, it is possible to extract knowledge
from text in the form of predicate—argument structures. Such structures are often
called propositions. With the advent of massive corpora such as Wikipedia, it has be-
come possible to apply a systematic analysis of a wide range of documents covering
a significant part of human knowledge and build large proposition databases from
them.

While most approaches focus on shallow syntactic analysis and do not capture
the full meaning of a sentence, semantic parsing goes deeper and discovers more
information from text with a higher accuracy. This deeper analysis can be applied
to discover temporal and location-based propositions from documents. Medical re-
searchers could, for instance, discover articles regarding the interaction of bacteria in
a specific body part.

Christensen et al. (2010) showed that using a semantic parser in information ex-
traction can yield extractions with higher precision and recall in areas where shallow
syntactic approaches have failed. This accuracy comes at a cost of parsing time.
However, in the recent years, statistical parsing and especially semantic parsing have
become increasingly accurate and efficient in analyzing text.

This Master’s thesis describes the creation of multilingual proposition databases
using generic semantic dependency parsing. Using a broad domain corpus, Wikipedia,
we extracted, processed, clustered, and evaluated a large number of propositions. We
built an architecture to provide a complete pipeline dealing with the input of text,
extraction of knowledge, storage, and presentation of the resulting propositions. Fur-
thermore, our system is able to handle large-scale extractions, wide domains, and
multiple input languages. Wherever possible, the handling of information is auto-
mated such that manual labor is kept to a minimum.

Proposition databases like the one we constructed, combined with other lexical
databases, are expected to be key components in semantic search technology, ma-
chine translation, and question and answer (Q&A) systems.

Sammanfattning

Genom anvédndning av semantisk parsning eller relaterade tekniker, dr det mojligt att
utvinna kunskap fran text i form av predikat — argument strukturer. Dessa strukturer
kallas ofta for pastdenden. Med intaget av massiva korpus som Wikipedia, har det
blivit mojligt att tillimpa en systematisk analys av ett brett spektrum av dokumenter,
som omfattar en stor del av den ménskliga kunskapen, och fran dem bygga stora
databaser innehallande pastaenden.

Medan de flesta strategier fokuserar pa ytlig syntaktisk analys och inte fangar
den fulla inneborden av en mening, gar semantisk tolkning djupare och uppticker
mer information fran text och med en hogre noggrannhet. Denna djupare analys kan
tillimpas for att uppticka tidsméssiga och platsbaserade pastaenden fran dokument.
Medicinska forskare kan till exempel uppticka artiklar som rér samverkan mellan
bakterier i en viss kroppsdel.

Christensen et al. (2010) visade att en semantisk parser kan ge extraktioner med
hogre precision och tickning i omraden dér ytliga syntaktiska metoder misslyckats.
Denna noggrannhet kommer till ett pris av ldngre parsningstid. Under de senaste
aren, har ddremot statistisk och sérskilt semantisk parsing blivit allt mer noggrann
och effektiv i att analysera text.

Detta examensarbete beskriver hur flersprakliga pastaende databaser kan skapas
genom anvinding av generell semantiska parsning. Genom applicering pa ett korpus
av bred domén, Wikipedia, har vi utvunnit, bearbetat, klustrat, och utvérderat ett stort
antal pastaenden. Vi byggde en arkitektur for att tillhandahalla en komplett pipeline
som hanterar inmatning av text, utvinning av kunskap, lagring och presentation av de
resulterande pastaendena. Dessutom kan vart system hantera storskaliga extraktioner
av breda doméner, och flera inmatningssprak. Nir det sa varit mojligt, har hanterin-
gen av information automatiserats pa ett sadant sitt att manuellt arbete hallts till ett
minimum.

Databaser innehallande pastaenden, som de vi skapat, kan tillsammans med andra
lexikala databaser forvintas bli nyckelkomponenter i semantisk sokteknik, maskin-
oversittning och Q&A-system.

Acknowledgements

My utmost gratitude goes to my supervisor, Associate Professor Pierre Nugues, for
his outstanding support, inspiration and guidance. The discussions I had with him
were insightful and encouraging.

I specially thank Anders Bjorkelund for sharing his insights on parsing and program-
ming.

I would like to say thanks to Associate Professor Anders Ardo for sharing his knowl-
edge on Lucene.

My gratitude also goes to Joachim Hein and Jonas Lindemann at Lunarc for provid-
ing me with the supercomputing power and expertise needed to carry out this project.

My loving thanks to my family for their love and support throughout my life.

Above all, I thank my wife, Jie, for her unconditional support, encouragement and
love.

Contents

Contents
1 Introduction 1
1.1 Background 1
1.2 AimoftheThesis 2
2 Semantic Parsing 3
2.1 Filtering 3
2.2 Sentence Detection 4
2.3 Tokenization. v i 5
2.4 Lemmatization 5
2.5 Part-of-Speech Tagging 5
2.6 Syntactic Dependency Parsing 6
2.7 Semantic Role Labeling 6
3 Previous Work 9
3.1 TextRunner 9
32 SRL-IE e 11
33 DiSCUSSION e e e e e e 12
4 Applications 13
4.1 Information Extraction 13
42 IBM-—Watson i it e e e e e 13
5 Experimental Setup 17
5.1 SemanticParser e 17
52 DataSource e 17
5.3 Cooperation with Lunarc 18
54 Approach 19
6 System 21
6.1 Parsing Framework 21
6.2 Proposition Database 25
6.3 StatisticsModule 25

6.4 Frontend
6.5 Ranking Algorithm

7 Scaling-up
7.1 Broad Domain Knowledge
7.2 DesignChallenges
8 Discussion
9 Conclusion

10 Future Work

Bibliography

37
37
38

41

43

45

47

Chapter 1

Introduction

1.1 Background

Natural language processing (NLP) is a significant scientific challenge with the vision
of having computers understanding and interacting in natural language. As people
daily use language to exchange information, be it in a written or spoken form, it is
only natural to expect that one day computers will be able to fully interact with human
beings using natural language (Nugues, 2006). The uses of NLP are ever expanding
and as it matures, it is incorporated in applications that help further science and
business. Interactive online assistants, speech recognition, spell checking, search
technology both for broad domains such as the web and narrow domains such as
medical science are all areas, where NLP plays a key role.

Rather than storing knowledge as plain text, some NLP applications rely on hav-
ing a large database of propositions stored in the shape of structured information. The
proposition databases, combined with other lexical databases form the basis upon
which systems for semantic search technology, machine translation, Q&A systems
can be built (Ferrucci et al., 2010; Etzioni et al., 2004).

Such proposition databases are created through the process of parsing massive
corpora such as Wikipedia. Some of these databases are obtained using only shal-
low syntactic analysis. However, this does not capture the full meaning of a text.
Semantic parsing enables us to go deeper in analysis and discover more information
with higher accuracy. This deeper analysis could be applied to discover temporal
and location- based propositions from articles. As an example, a medical researcher
could discover medical articles regarding the interaction of bacteria in a specific body
part.

Christensen et al. (2010) showed that using a semantic parser in information ex-
traction can yield extractions with higher precision and recall in areas where shallow
syntactic approaches had failed. This accuracy comes at a cost of longer parsing time.
However, in the recent years, statistical parsing and especially semantic parsing have
become increasingly accurate and efficient in analyzing text.

This Master’s thesis proposes to create multilingual proposition databases using

2 CHAPTER 1. INTRODUCTION

generic semantic dependency parsing (Surdeanu et al., 2008). We will apply it on a
broad domain corpus, Wikipedia, extract and evaluate a large number of propositions.

1.2 Aim of the Thesis

The creation of a proposition bank can be achieved manually by hand-annotating a
corpus (Palmer et al., 2005) and also automatically by applying a parser (Banko et al.,
2007). In this paper, we focus on creating a proposition database by using generic
semantic dependency parsing. The system will provide a complete pipeline from the
input of text, the extraction of knowledge, to storage and presentation of the extracted
propositions. Furthermore, the system will be able to handle large-scale extractions,
wide domains, and multiple input languages. Wherever possible, the handling of
information will be automated such that manual labor will be kept to a minimum.

Wikipedia is a popular source for data mining featuring a broad set of domains
and articles written in multiple languages, our goal is to parse it.

To achieve the goal of attaining a proposition bank with high-quality proposi-
tions, we will create a ranking algorithm that assigns a higher probability based on
the redundancy of the propositions.

Our goals are thus to:

e Explore how semantic parsing can be scaled to process large heterogeneous
corpora (i.e. corpora ranging from 100,000 to a few million articles).

e Construct a framework capable of large scale semantic parsing.

e Parse a substantial part of Wikipedia and create large, semantically annotated,
and multilingual proposition databases.

e Create a ranking algorithm that extracts high-quality propositions.

e Construct an interface to query the proposition database.

Chapter 2

Semantic Parsing

Through years of training, we develop our skill of reading text, which allows us to
distinguish characters, words, sentences, and to ultimately understand their meaning.
In computer science, the analysis and subsequent extraction of structured information
from text is called parsing. It is a computationally intensive procedure that at first
glance might seem trivial, but requires careful and extensive analysis.

This chapter gives an overview of the steps involved in complete semantic parsing
as performed on English and Chinese text. The steps are composed of filters and
parsers that increasingly refine, add layers of information, and extract structure from
text. Figure 2.1 shows an overview of the complete parsing pipeline for English
MediaWiki text.

Wi Mara Fier
Detector

Dependency
Parser

POS Tagger

Semantic Role
Labeler

Figure 2.1: The complete parsing pipeline for English MediaWiki text

Lemmatizer

2.1 Filtering

Prior to any analysis, the text must be filtered. This is an essential step that seeks
to remove annotations and markups without affecting the running text. Without this
step, subsequent modules may fail in their analysis leading to erroneous extractions.

4 CHAPTER 2. SEMANTIC PARSING

MediaWiki' text, as used in Wikipedia, is composed of text written in natural
language annotated with a special markup called wikitext or wiki markup. It is a
simple markup language that allows among other things the annotation of categories,
templates, and hyperlinking to other MediaWiki pages. MediaWiki also allows the
use of common HTML tags.

By filtering MediaWiki text, we aim at removing all annotations, sections that
contain only links and references, and keeping only the running text. This process is
difficult since the HTML syntax in many cases is invalid, most commonly, tags are
left unclosed or are incorrectly nested. Filtering is further complicated by the fact
that unwanted sections, such as ‘See Also’, go under many different names making
them hard to locate and filter out. The decision falls between removing too little and
accepting a certain amount of ‘noise’, or removing too much including all annotations
and possibly even valuable text written in natural language.

To properly remove invalid HTML and wiki markup would require a project simi-
lar to building a full-fledged HTML parser as in a browser. Given the time constraints
of this project, we instead chose a simpler approach and decided to use regular ex-
pressions for filtering. By using regular expressions, we limit the parsing scope to a
certain subset of nested structures and therefore accept that a certain amount of noise
will propagate through the parsing pipeline.

2.2 Sentence Detection

Sentence detection is the task of locating the beginnings and endings of sentences
for the purpose of extraction. It is a nontrivial task, made difficult by the fact that
boundary markers such as the period often have more than one purpose. For instance,
the period is used to mark abbreviations, initials, and numbers. These situations are
illustrated in the following examples

Today, www.EquityMarketsInc.com announced its research report high-
lighting Barnes & Noble, Inc. (NYSE: BKS) and Books-A-Million, Inc.
(NASDAQ: BAMM,).

and

The Nasdaq composite rose 13.94 points, or 0.5 percent, to 2,796.86.

We use the sentence detector from OpenNLP Tools? to divide text into sentences.

Uhttp://www.mediawiki.org/
Zhttp://incubator.apache.org/opennlp/

2.3. TOKENIZATION 5

2.3 Tokenization

Following sentence detection, the sentences are divided into text elements called
tokens through a process called tokenization. Tokens may represent words, num-
bers, abbreviations, punctuation, and also any other strings that mix characters and
symbols (Nugues, 2006). A naive approach to tokenizing a sentence by consider-
ing tokens as being delimited by white spaces would fail. For instance, consider the
sentence

The phone number to the post office is: (0046) 46 12 34 56.

If the tokens are delimited by white spaces, the phone number would be incorrectly
broken into five tokens instead of only one.

In this project, we use the tokenizer from OpenNLP Tools to perform tokeniza-
tion on English text. For tokenization of Chinese text, we use the Stanford Chinese
Word Segmenter3, version 2008-05-21.

2.4 Lemmatization

Lemmatization is the process of transforming a word from an inflected or derived
form into its lexical or base form. For the purpose of parsing, the goal of lemmatiza-
tion is to simplify the work for subsequent parsers by reducing the number of words
that need to be analyzed. For instance, the words running, runs, and ran are all trans-
formed into run. The lemmatizer used in this project comes from the mate-tools*
framework.

2.5 Part-of-Speech Tagging

A part-of-speech tagger categorizes words into grammatical classes, such as nouns,
verbs, pronouns, determiners etc. The words in a sentence are tagged, i.e. an extra
layer of information is added. This layer is then used as input by subsequent parsers
to carry out their analysis. As an example, the words in the sentence

Heprp wonygp thepy Nobelyyp Prizenyyp ingy Literaturenyp inpy 1954¢p.

have been tagged with their part-of-speech. We use the part-of-speech tagger from
the mate-tools framework.

3http://nlp.stanford.edu/software/segmenter.shtml
“http://code.google.com/p/mate-tools/

6 CHAPTER 2. SEMANTIC PARSING

2.6 Syntactic Dependency Parsing

During syntactic dependency parsing, the structure of a sentence is described by find-
ing the syntactic links between the words. The links describe the syntactic relation
between a head word and a dependent word. Syntactic dependency parsers build
upon the information gathered from previous modules, such as lemmatizers and part
of speech taggers to build the syntactic tree of a sentence. Figure 2.2 shows an ex-
ample of a syntactic tree.

In this project, we use a dependency parser that features high accuracy and short
parsing times (Bohnet, 2010) from the mate-tools framework.

T™MP

Loc

ROOT

oBJ

NMOD

‘ NAME ’ PMOD PMOD
V v \

He win the Nobel Prize in Literature in 1954 .
PRP VBD DT NNP NNP. IN NNP IN CD

SBJ
V

Figure 2.2: The syntactic relation between words in a sentence.

2.7 Semantic Role Labeling

Semantic role labeling (SRL) assumes that the meaning of a sentence is represented
by predicates together with their arguments. During SRL, predicate-argument struc-
tures are extracted from sentences. SRL goes beyond extracting the subject and ob-
ject for a predicate by identifying all the roles that arguments play in a sentence.
Arguments may also include modifiers, such as temporal, locational, and manner ad-
juncts. Four steps are involved in the process: Predicate identification, predicate dis-
ambiguation, argument identification, and argument classification (Bjorkelund et al.,
2010).

During predicate identification, a classifier determines if a noun or a verb is a
predicate and identifies their possible sense. Predicate disambiguation is performed
on all predicates that have multiple senses. Argument identification and classifica-
tion, identify the corresponding arguments to a predicate and label them with their
roles. Each predicate together with its arguments form a proposition. Figure 2.3
shows an example of semantic role labeling.

Predicates may have different senses together with a different set of arguments. In
the example in Figure 2.3, the predicate is identified as win.01. This sense describes

2.7. SEMANTIC ROLE LABELING 7

He won the Nobel Prize in Literature
A0 l A1 AM-LOC AM-TMP

Predicate: win.01
Roles:
Arg0: winner
Arg1: thing won (contest or prize)
Arg2: beneficiary
Arg3: loser, giver of prize
Arg4: in-exchange-for

Figure 2.3: An example of semantic role labeling, the yields of arguments are marked
with different colours.

winning a prize. This differs from the predicate sense, win.02, which means “causing
a change of opinion”.

Arguments have a label and one word denoted as the head of the argument that
projects a yield. For instance, in the example in Figure 2.3, the second argument has
label A describing the thing won and the head word Prize projecting the yield the
Nobel Prize.

For the purpose of performing SRL, we use a multilingual semantic role labeler
that obtained top scores in the CONLL-2009 shared task (Bjorkelund et al., 2009).

Chapter 3

Previous Work

Banko et al. (2007) recently introduced an information extraction paradigm, open
information extraction (Open-1E), where new relations are automatically discovered
independently of the domain and without the need of manual labor. Breaking with
traditional information extraction (IE) methods that use domain-specific patterns and
hand-annotated training data, Open-IE scales to large heterogeneous corpora such as
the web.

This chapter examines two information extraction systems: TextRunner and SRL-
IE, which employ Open-IE and traditional IE, respectively.

3.1 TextRunner

TextRunner is an Open-IE system that extracts relations from plain text (Banko et al.,
2007). The output from the system are tuples of the form

t:(ehrijaej)a l<]

where e; and e; are arguments to the relation r;;. For instance, given the sentence,
The Egyptians built pyramids, TextRunner extracts the tuple (Egyptians, built, pyra-
mids). TextRunner performs the extractions without having the patterns explicitly
predefined for all relations. In this sense, it is domain independent and does not re-
quire any manual labor when shifting from one domain to another. TextRunner uses
three key components: a self-supervised learner, a single-pass extractor, and a
redundancy-based assessor.

The self-supervised learner (SSL) is used before running a full-scale relation
extraction. It uses a dependency parser to build a naive Bayes classifier, which is
then used during the extraction phase. The parser creates dependency graphs from a
corpora of several thousand sentences. By traversing these graphs and locating base
noun phrases, the arguments, e; and ¢, and subsequently the relation r;; between
them are identified. Given certain constraints that seek to filter out any errors made
by the parser, the tuples are labeled either as a positive or a negative example. The
labeled sets of tuples are mapped to a feature vector, which is then used in the training

9

10 CHAPTER 3. PREVIOUS WORK

of the classifier. The features are selected in a way that keeps the classifier domain-
independent. However, it is important to note that the classifier and subsequently the
whole system is language-dependent.

During extraction, the single-pass extractor makes a single pass over the text and
uses a noun-phrase chunker to extract noun phrases. The noun phrases together with
the text are used to form candidate tuples, using heuristics, they are then filtered and
presented to the classifier. If the classifier labels the candidate tuple as trustworthy, it
is then stored in the system.

Following the extraction phase, the redundancy-based assessor uses a redundancy-
based probabilistic model to assign probabilities to the extracted tuples. Tuples that
occur multiple times in text are thus given a higher probability and regarded as cor-
rect extractions.

Banko et al. (2007) applied TextRunner to a corpus of 9 million web pages. Ex-
traction was performed within 68 CPU hours, with each sentence taking on average
0.036 CPU seconds to process.

TextRunner creates a relation-centric inverted index using Lucene', allowing
TextRunner to query the stored tuples. A web interface presents a way to create
queries by specifing either of two arguments and the relation between them. Figure
3.1 shows how searching is performed in TextRunner. The user enters two arguments
and the relation between. In this case searching for who built the pyramids was done
by entering “built” as the predicate and “pyramids” as the second argument. Figure
3.2 shows the result of searching for the question.

UMNIVERSITY OF

Turing Center KnowltAll Project M WASHINGTON

2 ReVerb Search (Experimental)

NOTE: You may have trouble running ReVerb Search if you are behind a firewall, because it utilizes port 7125. If not seeing the results,
try accessing Occam from a machine outside your firewall.
Example Queries:
“Who built the Pyramids?" “What did Thomas Fdison inveni?"
"What kills bacteria?" "What contains antioxidants?"

~ Frechase Fitered Example Queries:
“What countries are locaied in Africa?” What foods are grown in what countries?”

"What sports originated in China?” "What chemicals has the FDA approved?”

“What cilies are located in India?"

Search individual fields:
Argument 1

Predicate built
Argument 2 pyramids

Search

Figure 3.1: Searching in TextRunner.

Thttp://lucene.apache.org/

3.2. SRL-IE

Retrieved 45 results for Predicate containing "built” and Argument 2 containing "pyramids”

Grouping results by predicate. Group by: argument 2 | argument 1

built - 32 results

Egyptians (18), slaves (2), men (3), 21 more... built the pyramids

Search again:

Argument 1
Imhotep (2), Egyptians (2) built step pyramids
Sneferu (4), Snefru (2) built three pyramids Predicate
Max G. Taubert of Casselton (2) built a 50 foot high pyramid of empty oil cans built
Maya (2) built great cities , temples and pyramids Argument 2
Egyptians (2) built royal pyramid tombs pyramids
Mayans (2) built magnificent temples and pyramids Search Again
did not build - € results Jump te:
Slaves (7), ancient Egyptians (2), Egyptians (4), 3 more... did not build the pyramids built (32}

did not build (6)
was building - 2 results was building (2)

Egyptians (2), Another group (2) was building pyramids

is built on - 1 results

complex (2) is built on the base of a large Mayan Pyramid

is built on (1)
are not the only people to build

I
was used to build (1}
helped build (1)
built more than (1)

11

Figure 3.2: TextRunner search results for who built pyramids.

3.2 SRL-IE

With the creation of resources such as the Penn Treebank (Marcus et al., 1993) and
more recently Propbank (Palmer et al., 2005), the area of statistical parsing has sig-
nificantly advanced leading to semantic parsing capable of producing usable extrac-
tions.

The semantic role labeling information extraction (SRL-IE) system investigates
the benefits of using traditional deep semantic analysis in large scale information
extraction (Christensen et al., 2010). SRL-IE utilizes University of Illinois at Urbana-
Champaign’s semantic role labeler (Punyakanok et al., 2008) to extract predicate-
argument relations from sentences. By mapping semantically labeled arguments to
arguments in Open IE extractions, the relations are converted to relational tuples, a
format comparable with TextRunner.

In a quantitative evaluation of SRL-IE and TextRunner, extractions for five target
relations were compared in a dataset with redundant information consisting of 29,842
sentences. Extractions from both systems were tagged as either correct or error with
a definition that favored neither of the systems. Christensen et al. (2010) showed that
overall SRL-IE outperformed TextRunner in terms of higher precision and recall, the
results are shown in Table 3.1. However, in terms of extraction, SRL-IE had over
2.5 orders of magnitude longer extraction time.

It is important to note that while SRL-IE uses a semantic parser to extract rela-
tions, semantic information such as argument roles is discarded in the conversion to
relational tuples. It is thereby unclear if SRL-IE can harness the benefits of queries
based on modifying arguments such as temporal or locational arguments.

12

CHAPTER 3. PREVIOUS WORK

TextRunner SRL-IE
Precision Recall F1 | Precision Recall F1
Binary 51.9 272 357 64.4 859 737
N-ary 39.3 282 329 54.4 62.7 583
All 47.9 275 349 62.1 79.9 69.9
Time 6.3 minutes 52.1 hours

Table 3.1: Comparison between TextRunner and SRL-IE.

3.3 Discussion

SRL-IE clearly shows that applying semantic parsing to information extraction yields
high-quality extractions and is therefore a viable option. Compared to TextRunner,
SRL-IE has a longer extraction time and might not be suitable to apply on web scale.
However, in the two last years more high performing and efficient parsers have be-
come available making it feasible to apply semantic parsing on large corpora in the
range of 100,000 to a few million articles.

Although, TextRunner and SRL-IE both perform n-ary extractions, neither al-
lows searching of more than two arguments at the same time. The search of adjuncts
such as locative, temporal, manner, cause, etc. is not possible either. This limits
the usefulness of the systems, especially in areas where temporal or location- based
search is of interest, such as in history or medicine. Additionally, TextRunner’s ex-
traction method relies on heuristics and a classifier that is language-specific, which
makes multilingual information extraction more challenging.

We believe that by parallelizing a high-performance multilingual semantic parser
(Bjorkelund et al., 2010), large multilingual proposition databases can be created.
These would allow for deeper knowledge acquisition and analysis within the area of
NLP.

Chapter 4

Applications

4.1 Information Extraction

Information extraction (IE) systems analyze text to identify entities and specific
events. By filling in pre-defined templates with the extracted information, texts are
transformed into tabulated data. The purpose of an IE system is to find specific and
relevant information from a large body of text.

Previous IE systems, such as FASTUS (Appelt et al., 1993), have instead of per-
forming a complete analysis on the entire text, relied on shallow methods using spe-
cific phrases and patterns to extract information. This approach has resulted in high
performance systems with short processing time, with the drawback of being lan-
guage and domain specific. With the advent of more accurate and efficient semantic
parsers, traditional semantic analysis is becoming a viable approach for the task of
IE.

IE within the biomedical field aims at extracting relations, such as interactions
between proteins. Finding phrases that describe the location, manner, and time is of
great importance in this field. For instance, the sentence

The interaction between the protein and the regulatory gene in the cell
may influence the expression level.

describes the location of the interaction — the cell. Tsai et al. (2007) investigate how
a SRL system can be used to perform IE in the biomedical field. They constructed a
biomedical SRL system, called BIOSMILE, and trained it on an annotated biomedi-
cal proposition bank. Going beyond simple entity-verb relation extraction, by using
a SRL, they successfully extracted relations including argument modifiers with high
precision and recall.

4.2 IBM - Watson

On February 16 2011, Watson, a question answering (QA) system developed by IBM
won Jeopardy by defeating two former champions, Ken Jennings and Brad Rutter. To

13

14 CHAPTER 4. APPLICATIONS

win Jeopardy, Watson had to answer questions that covered a broad domain in natural
language.

Behind Watson is a research team of specialists in the area of natural language
processing (NLP), question analysis, information management, speech recognition,
linguistics, and many more. The utilization of NLP takes a prominent place in the
architecture that powers Watson. NLP is used to analyze questions and extract rela-
tions and entities. Furthermore, NLP plays a large role in collecting and extracting
propositions from a large amount and variety of texts, including encyclopedias, dic-
tionaries, and news articles (Ferrucci et al., 2010). Figure 4.1 shows how Watson
reads and extracts propositions from texts.

Sentence Generalization &
Parsing Statistical Aggregation
Volumes of Text Syntactic Frames Semantic Frames

» Students attend schools (.7)

Subject Verb Object Towns have population (.8
4

Genes encode proteins (.

)

. X Symptomsinclude fever (.5)
Subject Verb Object 3)
(.

Teams win tournaments (

» Evidence supports theory

9)

Subject Verb Object Cities become capitals (.7)

Figure 4.1: Watson, automatic learning from reading.

The resulting proposition bank is used by Watson’s many algorithms to discover
and evaluate relations between questions and propositions. By using temporal and
spatial inference, Watson can explore propositions and ultimately link them to a ques-
tion. These operations are supported by a semantically annotated proposition bank.
Figure 4.2 illustrates how Watson links questions to propositions.

4.2. IBM - WATSON

Apollo 11's pilot in 1969, he
was the second human being
to set foot on the Sea of

Buzz Aldrin was the Lunar
Module pilot on Apollo 11 in
1969, the first manned lunar

Tranquility.
landing in history

Temporal Reasoning

Apollo 11 Buzz Aldrin

Statistical
Paraphrasing

landing manned

Sea of

Tranquility Geospatial Reasoning

Figure 4.2: Watson, the linking of questions to propositions.

Chapter 5

Experimental Setup

5.1 Semantic Parser

Every year, the Conference on Computational Natural Language Learning (CoNLL)
proposes a shared task with the aim of promoting NLP applications and evaluating
them in a standardized environment. CoNLL provides the participants with corpora
used for training, developing, and evaluating the applications.

For this project, we have chosen a high-performance multilingual semantic parser
(Bjorkelund et al., 2010). Our choice is based on the fact that the parser reached high
scores in the CoNLL 2009 (Hajic et al., 2009) shared task, has fast processing time,
and the code is open source and freely available. The English data models used in
our parser have been created from the corpus provided in the CoNLL 2008 (Surdeanu
et al., 2008) shared task. The CoNLL 2008 corpus used for training is based on an
annotated version of the Wall Street Journal, it is thus limited to a narrow domain.
The Chinese data models have been created from a semantically annotated Chinese
Treebank (Palmer and Xue, 2009).

5.2 Data Source

Wikipedia' is a popular source for data mining and is used by many NLP applications
(Auer et al., 2007; Hoffart et al., 2010). Our choice of data source is motivated by
the fact that Wikipedia is multilingual, has an appropriate size for this project, has
articles with a diverse range of domains, and is available for free.

There are currently 279 editions of Wikipedia in different languages: at the time
of writing, the English edition has 3,629,542 articles and is the largest edition, the
Chinese edition has 354,166 articles. We believe that this is an appropriate size for
this project and depending on available resources, we hope to parse a substantial part
of Wikipedia.

As seen in Figure 5.1, articles in Wikipedia cover a wide range of subjects.
This wide coverage will provide a challenge for our parser that has been trained on

Thttp://www.wikipedia.org/

17

18 CHAPTER 5. EXPERIMENTAL SETUP

Mathematics and

logic 1% Thought and

Philosophy; 1%

Culture and Arts;

30%
Health; 2%

Religions and
belief systems;
2% Biographies and

Technology and persons; 15%

Applied Science;
4%

Natural and
Physical
Sciences; 9%

Geography and
places; 14%

Society and social
History and sciences; 12%
events; 11%

Figure 5.1: The various subjects in Wikipedia.

a single domain. The accuracy of the extractions will be evaluated based on the
correctness of the extracted propositions. Since articles are selectable by subjects, it
may be possible to determine both the in-domain and the out-domain accuracy of the
extractions.

Many of the articles in Wikipedia are available in different language editions and
connected to each other through links. This multilingual property provides easy ac-
cess to data sources that can be used to build our multilingual proposition databases.
We also believe that this multilingual property of Wikipedia articles can be used to
explore syntactic and semantic links, which may advance the development of seman-
tic parsers for new languages.

The Wikimedia Foundation? offers free copies of all the content in Wikipedia.
The Wikipedia databases used in this project have been downloaded from http:
//en.wikipedia.org/wiki/Wikipedia:Database_download.

5.3 Cooperation with Lunarc

Parsing a large corpus requires appropriate resources in terms of computing power
and infrastructure. Knowing that the parser has a processing time of 10 to 1000
milliseconds per sentence (Bjorkelund et al., 2010), we realized at the beginning of
the project that parallelization of the parser was necessary.

Lunarc?, a center for scientific and technical computing for research at Lund Uni-

versity, provides computational resources for academical use. The systems at Lunarc

Zhttp://wikimediafoundation.org/
3http://www.lunarc.lu.se/

5.4. APPROACH 19

have a multiple node and multicore architecture with a high-throughput intercon-
nection suitable for parallel processing. Lunarc generously provided the resources
needed by this project.

5.4 Approach

Creating a complete IE system, capable of parsing at large scale, was at the begin-
ning of the project a completely new area for us. Rather than investing time into
designing for future unknown challenges, we decided to create fast prototypes that
would handle the challenges as they were presented. Each prototype provided us with
results and experience, which we used in the subsequent phase. Furthermore, with
each prototype, we created new infrastructure to overcome obstacles, and increased
the capacity of the system to parse and handle the data.

Central to this approach, was the use of continuous testing, which when applied
on the same range of data, assured us that new infrastructure produced the same
parsed data, and thus did not introduce any new errors.

Chapter 6

System

The complete system consists of several components that each fills a specific task
in reading, extracting, transforming, and analyzing knowledge from a Wikipedia
database.

The parsing framework reads articles from a Wikipedia database, filters, parses,
and then stores the data in a semantically annotated structure. The task of parsing
the entire database is parallelized by the use of scripts, which subdivide a range of
articles and launch parsing jobs that work on smaller and more manageable ranges.

The proposition database is created by gathering the many small databases cre-
ated during parsing and assembling them into one large database. With the use of a
statistics module, the proposition database can be queried to provide statistics such
as the number of and redundancy of propositions.

The ranking algorithm makes use of the statistics from the proposition database
and assigns a higher ranking to propositions that are considered to have a higher
probability of being correct extractions.

Finally, the frontend uses the index builder to collect the parsed data and create
a flat document structure that is indexable using Lucene. The Lucene index is then
queried through a web interface.

6.1 Parsing Framework

6.1.1 Parser

The parser can be viewed as a framework of components that together deliver a pars-
ing system for a variety of data sources. It is responsible for doing all the processor
intensive work by using a complete semantic parsing pipeline, as shown in Figure 2.1.
Given a trained data model, the pipeline can be extended to parse a number of differ-
ent languages including English and Chinese. Figure 6.1 shows an overview of the
essential parts of the parsing framework.

The parsing pipeline is supplied with content from a content provider, which can
easily be extended to various corpora. The Wikipedia content provider reads articles
from a Wikipedia database and then uses a language specific filter to remove markups

21

22 CHAPTER 6. SYSTEM

S N
<<type>> <<type>> <<type>>
Content Content Storage
Provider Processor Provider
i , :

SR ARRREEb boo-o-s .

Wikipedia ! ! SQLite
Content Storage
Provider English Chinese Provider

Complete Complete N/

SRL SRL

Wikipedia
Database

Parsed
Data

Figure 6.1: An overview of the parser

and other items that would otherwise impede the process of parsing. Wikipedia is
available in the form of XML dump files' provided by the Wikimedia Foundation.
Although XML is a suitable format for sharing data, it is less suitable for searching a
certain element within the file. For this purpose, we developed a converter that takes
a Wikimedia XML file and converts it to a SQLite?> database. When converted to a
SQLite database, it provides fast random access to any article, something that would
otherwise not be possible using only the XML dump file. The database also allows
for the storage and individual updating of the articles.

The parsed output from the pipeline is stored by a storage provider. This frame-
work uses a SQLite database as end storage of the semantically parsed text. Exten-
sions to other databases is possible by extending the storage provider interface.

6.1.2 HPC script

The high-performance computing (HPC) system at Lunarc? features a multinode and
multiprocessor resource available through a time-sharing system. Using a submit
script, it is possible to reserve a number of nodes for a limited time and to launch
jobs on the given nodes. The systems allow jobs on different nodes to communicate
through the use of the message passing interface (MPI) API. Figure 6.2 shows an
overview of the HPC architecture.

To parallelize the work of parsing through Wikipedia, we developed a script for
use on a HPC platform. A master job accepts a desired range of Wikipedia article
identifiers. These are then subdivided by the master job into suitable subranges and
distributed among the slave jobs that run the parsers on different nodes. Each node

Uhttp://en.wikipedia.org/wiki/Wikipedia: Database_download
Zhttp://www.sqlite.org/
3http://www.lunarc.lu.se/

6.1. PARSING FRAMEWORK 23

can run up to three slave jobs. After completion, a new master job is launched by
the previous master job using a new submit script and article range. This is repeated
until all the desired documents have been parsed.

Master Job | Newprocess [Masterdob | N
1-300 301-600

MPI Communication

Slave Job Slave Job Slave Job
1-100 101-200 201-300

a

Figure 6.2: An overview of the HPC architecture

6.1.3 Results
Milestone 1

At the end of the first week, we had created a proof of concept system, with which
we managed to parse over 1,000 articles from the English Wikipedia. It ran on a
single computer using MySQL?* for storing propositions and provided a simple web
interface written in PHP>. The system allowed us to benchmark the parser and thus
calculate preliminary resource requirements.

Milestone 2

By the end of week 6, still using only a single computer, we had parsed more than
10,000 English articles. We extended the system to support both English and Chinese
parsing, and parsed a small amount of Chinese articles. By this time, searching
through thousands of propositions had become too slow and response times could
be measured in seconds. This prompted the replacement of MySQL and PHP in the
frontend to a new architecture using Lucene and Apache Tomcat.

Milestone 3

We parallelized and adopted parsing for the HPC platform at Lunarc. Running on
multiple nodes, we had parsed 100,000 English articles by the end of week 12. Pars-
ing was now running in full production mode with a complete pipeline from the

“http://www.mysql.com/
Shttp://www.php.net/

24 CHAPTER 6. SYSTEM

Wikipedia articles to the parsed and indexed propositions. The daily parsing capac-
ity was between 10,000 and 50,000 articles, depending on the available resources at
Lunarc.

Milestone 4

By the end of week 13, we had parsed 378,453 English articles, 10% of the English
edition of Wikipedia.

Open source framework

The parsing framework will be released as open source, allowing researchers to create
large-scale multilingual proposition databases.

6.2. PROPOSITION DATABASE 25

6.2 Proposition Database

The proposition database provides a unified schema for storing and retrieving propo-
sitions. It is used for storing parsed data by the parsing jobs, retrieving statistics, and
building Lucene indexes. The schema is designed to handle semantically annotated
sentences as defined by CoNLL 2009 (Hajic et al., 2009). It is in this sense a generic
structure capable of handling parsed data from more than one parsing configuration.
Figure 6.3 shows the data model.

Data Model
Content Argument Yield
id id id
*
identifi 1 word_id 1 1. argument_id
enter predicate_id label
is:;:gn label startindex
1 yield endindex
O“*
0.* 1
1
Sentence Word
id id Predicate
content_id 1 L7 lindex 1 11iq
index form word_id
text lemma sense

Figure 6.3: An overview of the data model

The proposition database also features a simple API, which allows the creation of
databases, and storing and retrieving propositions. It uses SQLite, an ACID (Haerder
and Reuter, 1983) compliant database engine, as the database backend for storing.
The API makes good use of transactions, ensuring data integrity by making sure that
parsed content is stored in its entirety. The database is thus protected against software
crashes and power failures.

The database aggregator assembles the many smaller databases created by the
HPC parsing jobs into one large database. The smaller databases are read one by one
from a folder and added to the final database. This large database is more suitable
for data processing tasks such as retrieving statistics and building the Lucene index.

6.3 Statistics Module

The statistics module uses the schema provided by the proposition bank to calculate
statistics. The statistics are not only interesting as a measurement of progress, but are
also essential in the process of designing the ranking algorithm.

26 CHAPTER 6. SYSTEM

English Wikipedia
Articles 378,453
Sentences 13,428,114
Propositions 53,694,899

Table 6.1: An overview of parsing statistics at week 13.

In order to improve the speed of the calculations, the module makes a transforma-
tion of the structure of the proposition database. The hierarchical data model shown
in Figure 6.3 is suitable for efficiently storing parsed data and also for providing sim-
ple statistics, such as the number of propositions in the database. However, if one
wishes to look at propositions based on the properties of its arguments, the queries
will quickly become complicated and inefficient. The problem stems from the fact
that propositions have a variable number of arguments. To overcome this problem,
the data model needs to be flattened, as shown in Figure 6.4. This flattened data
model allows the efficient querying based on the number of and type of argument
roles, and thereby also the grouping and counting of propositions.

Flat Data Model

A t
reamen Argument
Predicate predicate_id »
id 1 1 argument_;__j 1 0.5 word_id
word id argument_ *‘_ predicate_id
- argument_3_id
sense . label
argument_4 id yield
argument_5_id

Figure 6.4: An overview of the flat data model, created by transforming part of the
hierarchical data model in 6.3.

6.3.1 Results

At the time of writing, we have parsed more than 10% of the English Wikipedia. A
few hundred articles from the Chinese edition of Wikipedia have also been parsed.
The statistics generated from this data is vital in determining the focus for our efforts
and also the approach for creating the ranking algorithm. An overview of the number
parsed articles, sentences, and propositions is shown in Table 6.1.

6.4. FRONTEND 27

6.4 Frontend

The hierarchically structured databases created during parsing are well suited for
tasks that do not require low response time such as delivering statistics. To support
end user search through millions of propositions, the database must be transformed
into a format that allows rapid search and filtering. This task is handled by the In-
dex Builder, which creates an inverted index using Lucene. This index can then be
queried based on all the predicate-semantic roles that are discovered during pars-
ing. Through a Java Servlet, a web interface is provided where it is possible to enter
simple queries and view results. Figure 6.5 shows an overview of the frontend archi-
tecture, and Figure 6.6 shows the search page.

T T
Parsed Parsed Parsed
Data Data Data

Index
Builder

Java Servlet

Figure 6.5: An overview of the frontend architecture

6.4.1 Index Builder

Storing the parsed data in a hierarchical database model is an efficient way of man-
aging slow running tasks such as delivering statistics on word usage. However, a
hierarchical model is less suitable for delivering results for complex queries that al-
low for a variable number of fields. Consider the data model shown in Figure 6.7.
As previously discussed in Chapter 2, a proposition has a variable number of argu-
ments with different roles depending on the predicate and its sense. For instance, the
sentence

The orchestra played music.

has two arguments, labeled AO and A1: {The orchestra a,} played {musica, } .
Using a naive approach to search for the sentence, a SQL query could require

the *Argument’ field ’label’ to be A0’ and *A1’ at the same time. This approach

would of course return zero results. A more sophisticated approach could build tables

28 CHAPTER 6. SYSTEM

Wiki-SRL

Search individual fields:

AQ:

Predicate: build

Al pyramids

AM-LOC:

ANM-TMP:

English Statistics: Chinese Statistics:
Articles: 378453 Arficles: 1781
Sentences: 13428 114 Sentences: 91 099
Propositions: 53 694 899 Propositions: 341 695

Figure 6.6: Searching the proposition database.

containing values from the "predicate_id’ field in the *Argument’, and join them to
the "Predicate’ table. However, the complexity of that approach would grow with the
complexity of the queries, resulting in slow and unresponsive search when applied
on a database containing millions of propositions.

Data Model Lucene Document
A t
- rgumen Document
Predicate id
id ! 0. redicate_id sense [1]
P - label [0..%]
sense label ield [0..%]
yield 14 =~

Figure 6.7: Flattening a hierarchical structure to a Lucene document

To make this query possible and more importantly to return results from a large
set of propositions within a reasonable time, we used an inverted index. For this task
we chose Lucene, a powerful search engine featuring high-performance indexing.
Lucene enables a developer to perform powerful query searching including ranked
and fielded searching, and sorting. It also has support for multiple languages.

6.4. FRONTEND 29

We developed the index builder to bridge the gap between the hierarchical struc-
ture attained from parsing and the flat- and field-varying structure featured in Lucene.
It collects the parsed data created during the parsing, creates a flat document struc-
ture as shown in Figure 6.7, and adds them to a Lucene index. The statistics module
is used to calculate the ranking for each proposition added to the index.

6.4.2 Web Interface

We developed a web interface to query the millions of extracted propositions. Fig-
ure 6.6 shows an example of a search. It is possible to search for propositions from
the English and Chinese Wikipedia. Searches are made by entering the predicate and
arguments in lexical form. For instance, to search for who built the pyramids, one
enters the lexical form of ’built’, *build’, into the predicate field. Figure 6.8 shows
the results of the query, the arguments in the sentences are coloured differently de-
pending on their semantic roles.

A preliminary version of the web page is available from a server located at http:
//exjobb22.1ludat.lth.se. Please note that this web page is only accessible from
within the LTH network.

30 CHAPTER 6. SYSTEM

6.5 Ranking Algorithm

The first purpose of a ranking algorithm is to rank propositions that are more likely
to be correct extractions. We implemented a ranking algorithm in the web inter-
face when searching for propositions. All other parameters being equal, the highest
ranking proposition is shown first.

A second and equally important use is to extract high-quality propositions. These
will then be used to create a high-quality multilingual database of generic knowledge.
The uses of such a database include being a source of knowledge for Q&A systems
like the one demonstrated by IBM’s Watson (Ferrucci et al., 2010), and also to in-
crease the number of propositions in existing semantic knowledge databases such as
YAGO?2 (Hoffart et al., 2010).

6.5.1 Development

Creating a ranking algorithm for millions of propositions is nontrivial. The database
and the queries used for generating the underlying statistics must be carefully de-
signed to deliver results with accuracy and within reasonable time (i.e. hours, to fit
within the scope of this thesis). There are many possible designs to consider for this
task. Focusing on a certain group of propositions is one such approach.

As described in Section 6.3, by working with propositions that have only a fixed
number of arguments, it is possible to create a flat table structure that has a fixed
number of fields on which queries can be executed efficiently. The statistics in this
section have all been calculated by using the statistics module.

In order to find the largest group of propositions, we first counted the number
of propositions per number of arguments. We found that 71(!) was the maximum
number of arguments. These propositions were however considered to be erroneous
extractions. Table 6.2 shows the ten largest groups of propositions ranked by their
number of arguments. Motivated by these numbers, as a first step, we focused on cre-
ating a ranking algorithm that works on propositions having only two arguments. Our
aim was to extract meaningful generic knowledge in the form of predicate-argument
tuples, such as (universities, offer, degrees) where universities and degrees are heads
of the arguments, and offer is a predicate. These propositions would then be assigned
a higher score reflecting that they have higher confidence value.

We believe that propositions that are repeated many times in a text have a higher
probability of being correctly extracted. This is supported by findings in prior work
(Downey et al., 2005). To determine if redundancy in propositions is a feasible ap-
proach, we first calculated the number of times a proposition had been found in a
sentence. We then calculated the percentage of redundant propositions for a given
predicate and sense. The redundancy percentage is calculated as the number of re-
dundant propositions divided by the total number of propositions found. As an ex-
ample, consider the data shown in Table 6.3. We have two tuples with redundancy,
together they have (5+2) = 7 propositions. In all, there are (542+1) = 8 propositions
for the predicate, describe. This gives a redundancy percentage of 7/ 8 = 87.5%.

6.5. RANKING ALGORITHM 31

Arguments || Propositions
0 1,489,769
1 17,115,058
2 19,187,436
3 10,646,902
4 4,009,519
5 1,016,695
6 189,464
7 29,466
8 5,030
9 1,526

Table 6.2: The number of propositions grouped by the number of arguments.

Argument 1 Predicate = Argument2 Count

equations describe.01 laws 5
methods describe.01 approach 2
papers describe.01 algorithm 1

Table 6.3: The number of propositions grouped by the predicate and its arguments.

We proceeded by creating a histogram showing the redundancy for all proposi-
tions. It is shown in Figure 6.9. As can be seen in the histogram, approximately
20,000 of the predicates® have no redundancy at all. However, a large mass of predi-
cates show redundant propositions with a slight shift towards low redundancy as seen
in the slope of the histogram body.

Looking at the propositions, we saw a significant amount of tuples with noun
predicates, (their, disclosure, of), and tuples with pronoun arguments, (he, likes, it).
Although the pronouns could be resolved with a coreference solver (Nugues, 2006),
it would fall out of the scope for this project, and we therefore deemed both types
of tuples as having low information content and discarded them. We focused on re-
dundant propositions with noun arguments and verb predicates. This left us 599,447
redundant propositions representing 146,784 unique propositions which we believe
are of high quality. A summary of the types and number of propositions can be seen
in Table 6.4;

Our ranking algorithm assigns a confidence number to all propositions with noun
arguments and verb predicates based on their redundancy. The confidence value is
queried from the statistics module by other modules for the purpose of extraction or
ranking, such as done by the Index Builder in Section 6.4.1.

%Here we make a difference between a predicate and an instance of a predicate. Predicate means a
unique predicate.

32 CHAPTER 6. SYSTEM

Type Count
All propositions with two argument 19,187,436
Propositions with redundancy 10,212,311
All (Noun, Verb, Noun) Propositions 2,712,134
(Noun, Verb, Noun) Propositions without redundancy 2,112,687
(Noun, Verb, Noun) Propositions with redundancy 599,447
(Noun, Verb, Noun) Unique propositions with redundancy 146,784

Table 6.4: The number of propositions grouped by proposition type.

6.5.2 Evaluation

Instead of evaluating all of the 2,712,134 (Noun, Verb, Noun) propositions, which
when done manually would have taken years, we selected and analyzed a sample
from both redundant and non-redundant propositions.

The non-redundant propositions were selected by randomly extracting 1,000 propo-
sitions from the set of 2,112,687 propositions without redundancy. We selected the
redundant propositions by first taking the 500 most redundant propositions out of
the 146,784 unique propositions, and then randomly choosing two propositions from
each unique proposition. This was done in order to lower the risk that a single outly-
ing proposition would incorrectly signal correctness and/or meaningfulness.

To evaluate the ranking algorithm, we assessed the correctness and meaningful-
ness of each proposition. By correctness, we mean if the proposition was correctly
extracted from a sentence. This determination is objective and based on our linguistic
knowledge. For instance, the sentence

The school has around 400 students.

is correctly extracted with the tuple: (schoolys,, has, students,,) , while the sentence
They are also good mountaineers and trekking guides.

is incorrectly extracted with the tuple: (mountaineersy,, trekk, guides,,). When we
encountered an extraction error, we also marked the cause of error being either due
to erroneous parsing or inadequate filtering.

By marking a proposition as meaningful, we mean that it is meaningful from a
broad and general perspective. We do not require a proposition to be useful, which
is something that would require a deeper analysis. The determination of meaningful-
ness is subjective; we do however use the same convention on all propositions. For
instance, even though the sentence

Males constitute 51% of the population and females 49%.

6.5. RANKING ALGORITHM

Type Correct Meaningful Parsing error Filtering error
Redundant 88% 79.6% 5% 6.4%
Non-Redundant 70.8% 62.1% 25.4% 3.4%

Table 6.5: The number of propositions grouped by proposition type.

Redundant

Non-Redundant

Party won elections

Island has population

City became capital
School provides education
Students attend schools

Beaton replaced Hammond
Boardwalk has attractions
Halifax became settlement
Faculty trains specialists
Students follow regulations

33

Table 6.6: Examples of redundant and non-redundant propositions.

is correctly extracted with the tuple: (Malesy,, constitute, %,4,) . It is marked as
not meaningful and it would require further analysis to discover that % refers to
population. However, the sentence

Males had a median income of $29,830 versus $22,553 for females.

correctly extracted with the tuple: (Malesy,, have, income,,), is marked as mean-
ingful, even though further analysis is required to extract the amount of income and
the context. The results of the analysis are presented in Table 6.5;

6.5.3 Discussion

The results clearly show that our ranking algorithm selects propositions that are more
correctly extracted and are more meaningful than non-redundant propositions. Al-
though the occurrence of filtering error slightly increased, we found that parsing
errors dramatically decreased. In our opinion, this proves that propositions that are
repeated many times in a text are more likely to be parsed correctly. This is also sup-
ported by the fact that the non-redundant propositions are extracted from sentences
that use unusual and complicated expressions.

When comparing the redundant and non-redundant propositions, we found great
differences in their character. Redundant propositions represent more generic facts
such as: “Couples have children” and “Teams win games”, while non-redundant
propositions are more specific: “Jamadagni has children” and “Tigers won final”.
Table 6.6 shows examples of both redundant and non-redundant propositions that we
extracted.

CHAPTER 6. SYSTEM

34

"Vsprexid ppmq *sqoeseqd wopSuny APPRY L1
(1) sprusid pymng sqoereyd
Yspmesid pme *Ysoawno 24T 91
(1) sprur1id ppng sa3uQ

provesid ssapsn o) ppng U g1
(1) w sproeaid pme ¥

sprueidd png “Fsuewmng janoue

(1) sprueid pjing stretomy

erbbeg 18wy 5oy proresdd dags v © sproesdd o yo Misag o ppng ®Yol €T

(1) prng g

([21dsu=xsey] 10 USWssIIAqIET SE UA0UY) s5UOS [PUOIPER SUTs pUR 20UEp 4213 YoM PUNoe sdime] pUE SIWLIUE] (it PAIEIOISP © saUoUeIq jo |, WYspruerdd susquie |, ppng Yusipm) 71
(1) spresid pping u21pim;)

UOHEZIIAIT) JO UOTSIaA mﬁﬁ—mh..wmﬁmw [IoWw e 29 01 u@ﬁumwmm—u _p ..Cn— PEpU=nm :..mﬂ TUILSON] STeTA] mﬁﬁﬁm‘ﬁﬂm =13 ping cﬁﬂmu\ﬁm.u J2pUO A\ JOpUR ORH MOIPIOY T

(1) st pimq spred

¥sprme1id veumy ppng saapsmap “Ysieqone 2 g1

(1) sprumid pping syeqorne

sauo 5pjo 20T dor Ysprueidd sjdma) mau pime g

(1) doze sprue1id ppng

ymq Vsprueiid eais 5 1d45T g

mq spreid e A f

sadw=) pue vaﬂu.m.ra =50y yng ‘9

(g) spruexid ymy

epmmerid Suippmg g

samyongs gons pue * summgod * WVspruerid Smppng

spmes(q 27 Burppmg ¢

(g) sprumiiq Smppmq

Vsprresid pmq 7

Vsprumeaid 2 ppng '

() sprue1id ppng

u=miopdm= [y 25emoous pue * puewsp 3e52135e 251 AWou0d3 I SMUms 0] JpI0 u.é‘zﬁ.u, g

Figure 6.8: Results from searching the proposition database.

6.5. RANKING ALGORITHM 35

Redundancy for all proposition tuples having two arguments

10 T T T T T T T T T

Mumber of proposition tuples

0 10 20 30 40 a0 B0 70 g0 a0
Propasition redundancy (%)

Figure 6.9: Redundancy for all predicates. The left part of the histogram corresponds
to predicates that have unique propositions only. The right part corresponds to pred-
icates that have redundant propositions only. Describe.0l in our invented example
would be on x=87.5%

100

Chapter 7
Scaling-up

Scaling up is much like exploring new land — you do not know what lies beyond the
horizon. Will the memory and storage be enough or will some exceptional data cause
an error, bringing the parsing to a halt? A lot of fine tuning of all the components
is needed to get the best performance when taking on this big challenge. It becomes
much of a game of being able to handle unforeseen errors and system requirements;
a challenge that requires experience when designing the architecture and also the
creation of supporting software.

7.1 Broad Domain Knowledge

To create a parsing framework capable of handling large amount of data, a broad
knowledge is required in a diverse range of domains.

Databases are used for storing the articles and the extracted propositions. When
parsing is done at a large scale, faults in the form of software errors and system halts
can and will occur. It is therefore important that the databases used are capable of
handling these faults in such a way that parsed data is left uncorrupted and in a con-
sistent shape, such that parsing may be resumed. By choosing an ACID (Haerder and
Reuter, 1983) compliant database and taking advantage of the transactional models
that it provides, we are assured that parsed data is saved in its entirety or not at all,
thus leaving the database in a consistent state.

The parsing jobs on the HPC communicate and coordinate their work by utiliz-
ing the message passing interface (MPI) APL. A master job receives requests from
parsing jobs and sends out parsing instructions. As in all concurrent programming,
one must take careful steps in order to avoid undesirable situations where single jobs
are left locked up indefinitely. For instance, should the master job for some rea-
son fail to send parsing instructions to an awaiting parsing job, the parsing job will
wait indefinitely. Since HPC resources are allocated for a certain time period and
not released until all running jobs are finished, the resources will be wasted until the
locked parsing job is terminated by force. Given the large scale of our undertaking,
an accumulated amount of wasted resources may prove to be very costly.

37

38 CHAPTER 7. SCALING-UP

As described in Chapter 2, Wikipedia articles include markup annotation. These
must be filtered to obtain clean text that is easily parsed. This can be done by using
regular expressions and other filtering techniques provided by the Java programming
language.

To query propositions, we built a web interface which allows multilingual search-
ing, grouping, and presenting of search results. The platform must be carefully cho-
sen in order to accommodate the techniques and software libraries involved during
querying. We based our first prototype on PHP, which does not provide an updated
way of searching a Lucene index. We therefore created our final web interface using
Java Servlets hosted on a Apache Tomcat server.

7.2 Design Challenges

During the development of the parsing framework, we were presented with a number
of challenges that to a large degree stemmed from the large scale of the project. Some
of these challenges were foreseen at the start of the project. Others showed up as the
parsing grew in scale. The challenges are summed up in the following list:

e Growing resource needs,
e Handling errors,

e Deciding how much information to store, the type of information, and in which
structure.

The growing amount of data naturally increases the requirements put on storage
and processing. These can to a certain extent be handled by allocating more hardware
resources. In other cases, a redesign of the algorithms and methods is required.
What is perhaps unexpected is the growing amount of administrative work. This
involves starting and monitoring parsing jobs, moving database files, and running all
the modules required by the framework for generating statistics and search indexes.
The manual labor can of course be automated by developing a supporting framework.
However, one must not forget that new software introduces new error sources, which
of course increase in amount along with the parsed data.

Sources for errors are numerous and increase with the scale of parsing. Sources
include parsing errors, inadequate filtering, and memory leaks. Running hundreds of
thousands of articles through a complete parsing pipeline, tests each part extensively
and exotic and rare errors are bound to appear. While an inadequate filtering increases
the parsing errors, strict filtering may filter out real data. Parsing and index building
also requires heavy memory usage. It is therefore important to monitor this usage
and ensure that unused blocks of memory are deallocated. In all cases, it is important
that errors are handled and the time and place of the occurrence is recorded, such that
parsing can be resumed.

During the design of databases and indexes, it is important to consider three
aspects: the redundancy, the type, and the structure of the data.

7.2. DESIGN CHALLENGES 39

Redundancy, in this case, deals with the question of how many times the same
data is stored in different formats. This has negative consequences for storage usage
and transmission times. However, it can greatly reduce the data processing time of
modules and algorithms that make use of the data. As a simple example, consider
the sentence

Snow leopards have eyes that are pale green or grey in colour.

Assuming projectivity, the yields for predicate have.03 are: (Snow leopards,,, eyesy,
that are pale green or grey in colour) . To reduce the storage requirements one may
choose to store only the indexes pointing to the beginning and ending word of a
yield, in this case indexes 4 and 12 for the second yield. This approach can have
great effects when yields are large and the number of stored propositions is counted
in millions. However, since the yield now must be rebuilt from the sentence using
the indexes, this approach will also increase the processing time of any module that
makes heavy use of the yield.

When building the search index, one must decide the type of data to include in
the index. If a certain type of data, such as the complete article text, is not required
during searching one may add only a reference to the data and perform a database
lookup as required. Adding more data fields to an index creates longer searching
time. However, performing a database lookup may also require extensive time. The
challenge lies in balancing the amount of data to include in the index and looking
up additional information in a database post-search. Trying different solutions is
complicated by the fact that index building time may take up to one day when dealing
with millions of propositions. Small scale testing may be misleading due to system
factors, such as caching, when scaled up.

Finally, the structure of the data determines the ease and in some cases the fea-
sibility of how modules may access and process data. In our case, the hierarchically
structured data that follows a linguistic model, proved useful for general usage and
for determining basic statistics. However, for other uses, such as determining the re-
dundancy of propositions, the data structure required a reshaping in order for efficient
calculation of the statistics.

Chapter 8

Discussion

The nature of this project made it many times overwhelming. Not only has it covered
a wide range of disciplines, but it has also challenged us by its large scale. Although
we feel that all of our goals have been reached, we also feel that some parts of the
project might have deserved some more depth.

The choice of creating rapid prototypes versus doing a proper design for the
parsing framework, was made to meet the fast approaching deadline set to give us
time to parse a substantial part of Wikipedia. This approach also allowed us to handle
the challenges that came with scaling up the parsing process, as they appeared. By
not designing for future possible challenges and features, we saved the time needed
for the actual parsing. This may have resulted in less elegant and less modular code,
which is something we hope to improve in the future.

Our decision to use regular expressions to filter text resulted in a text that still
has some HTML tags and wiki markup present. This affected the correctness of
the extracted propositions, and to our surprise, it also showed an increase of parsing
errors in the redundant propositions. Ideally, these annotations would all be removed
and we would very much have liked to put more effort in doing so.

At the start of the project, we also hoped to parse the entire English Wikipedia.
Besides bragging rights, this would have provided us with more data to evaluate our
ranking algorithm. For similar reasons, we would have hoped to parse more than two
languages. Provided with the proper resources, we hope to continue in our effort to
completely parse Wikipedia.

Our ranking algorithm proved to increase the correctness of the obtained proposi-
tions. However, it also resulted in substantially fewer propositions. We had hoped to
use a coreference solver and other lexical databases to cluster even more propositions.
Unfortunately this did not fit within the time limits of this project. It would have also
been interesting to explore how the ranking algorithm would have performed on a
larger set of propositions.

The web interface, although fully functional, feels a bit Spartan and user-unfriendly.
In addition, the results page might confuse users since the most redundant proposi-
tions from the search result are not always presented on the top of the page. This

41

42 CHAPTER 8. DISCUSSION

occurs when an argument keyword matches another part of the argument yield than
the head. In those cases, the most redundant proposition overall is shown at the top.
We hope to clarify this situation and also hope to develop the web interface further
by allowing the entering of questions in natural language.

In the end, we hope our project will provide valuable material for further re-
search.

Chapter 9

Conclusion

Prior work (Banko et al., 2007) on the extraction of propositions has focused on
shallow syntactic processing that cannot consider the full meaning of sentences. Al-
though there have been small-scale experiments done using a SRL (Christensen et al.,
2010), it was unclear how they would perform on large-scale parsing. Furthermore,
the full benefits of using a SRL system have not been explored. Additionally pre-
vious large scale IE systems have focused on extraction for only one language, and
have not demonstrated how multilingual extraction would be performed.

We have created a framework for multilingual information extraction capable of
large-scale multilingual parsing, including both English and Chinese corpora. By
using trained language models, our framework demonstrates how semantic parsing
can be adapted to new languages without the need of reworking extraction algorithms
or patterns. Furthermore, we have shown how to add large-scale parsing capability
to parsing by adapting a semantic parsing to a HPC platform.

The occurrence of erroneous extractions is a problem found in all extraction sys-
tems. In order to filter out less likely propositions, we have developed a ranking
algorithm based on the redundant occurrences of propositions in text. This algorithm
can be used for ranking semantic searches and also to create new corpora containing
higher quality propositions. Although our algorithm retains only a small subset of
propositions, we believe a higher yield can be achieved through the use of a corefer-
ence solver (Nugues, 2006) and other lexical databases.

To show the benefits of doing full semantic extraction, we developed a web in-
terface capable of querying large multilingual proposition databases. The web in-
terface allows the use of temporal and location based searches. This makes use of
the semantic properties of the proposition database and creates new possibilities in
semantic search.

43

Chapter 10

Future Work

Our framework demonstrates how multilingual parsing can be performed using a
trained semantic parser. However, being a relatively new field, for many languages,
including Swedish, there are no trained semantic parsing models. In the future, we
hope to create Swedish semantic parsing capabilities by taking advantage of the mul-
tilingual property of Wikipedia by using an English and a Swedish edition of the same
article. Since a semantic level builds upon feature sets from a syntactic level, we hy-
pothesize that the semantic features for a Swedish semantic model can be gleaned
from comparing the English-Swedish syntactic features and somehow translating the
semantic properties. Figure 10.1 shows an overview of the idea.

We also hope to improve our ranking algorithm by using a coreference solver and
possibly other lexical databases. This could resolve the pronouns found in a large
number of propositions, link synonymous predicates, and yield even higher quality
propositions. We also hope to export our proposition databases to other formats, such
as RDF !, and thereby contribute to existing semantic knowledge databases.

Uhttp://www.w3.0rg/RDF/

45

46

A book,, contains words,,

Feature sets

f

English
Swedish
Lexicon

Semantic
Properties

Syntactic
Properties

T

English
Wikipedia
Article

Semantic

Properties :

Syntactic
Properties

T

Swedish
Wikipedia
Article

Figure 10.1: Developing semantic models for Swedish.

CHAPTER 10. FUTURE WORK

Enbok, innehaller ord,

5195 ainjea4

Bibliography

Appelt, D. E., Hobbs, J. R., Bear, J., Israel, D. J., and Tyson, M. (1993). FASTUS:
A finite-state processor for information extraction from real-world text. In IJCAI,
pages 1172-1178.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2007).
DBpedia: A nucleus for a web of open data. In Aberer, K., Choi, K.-S., Noy,
N. F,, Allemang, D., Lee, K.-1., Nixon, L. J. B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., and Cudré-Mauroux, P., editors, 6th Interna-
tional Semantic Web Conference (ISWC 2007), volume 4825 of Lecture Notes in
Computer Science, pages 722—735, Busan, Korea.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007).
Open information extraction from the web. In Veloso, M. M., editor, IJCAI, pages
2670-2676.

Bjorkelund, A., Bohnet, B., Hafdell, L., and Nugues, P. (2010). A high-performance
syntactic and semantic dependency parser. In COLING (Demos), pages 33-36.
Demonstrations Volume.

Bjorkelund, A., Hafdell, L., and Nugues, P. (2009). Multilingual semantic role la-
beling. In Proceedings of the Thirteenth Conference on Computational Natural
Language Learning: Shared Task, CoNLL ’09, pages 43-48, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Bohnet, B. (2010). Top accuracy and fast dependency parsing is not a contradic-
tion. In Huang, C.-R. and Jurafsky, D., editors, COLING, pages 89-97. Tsinghua
University Press.

Christensen, J., Mausam, Soderland, S., and Etzioni, O. (2010). Semantic role la-
beling for open information extraction. In Proceedings of the NAACL HLT 2010
First International Workshop on Formalisms and Methodology for Learning by
Reading, FAM-LbR 10, pages 52-60, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Downey, D., Etzioni, O., and Soderland, S. (2005). A probabilistic model of re-
dundancy in information extraction. In Kaelbling, L. P. and Saffiotti, A., editors,
1JCAI, pages 1034—1041. Professional Book Center.

47

48 BIBLIOGRAPHY

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Weld,
S. S.D. S., and Yates, A. (2004). Web-scale information extraction in knowitall.
In Proceedings of WWW-2004.

Ferrucci, D. A., Brown, E. W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur,
A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J. M., Schlaefer, N., and Welty,
C. A. (2010). Building watson: An overview of the deepQA project. Al Magazine,
31(3):59-79.

Haerder, T. and Reuter, A. (1983). Principles of transaction-oriented database recov-
ery. ACM Computing Surveys, 15(4):287-317.

Haji¢, J., Ciaramita, M., Johansson, R., Kawahara, D., Marti, M. A., Marquez, L.,
Meyers, A., Nivre, J., Padd, S., gtépének, J., Stranak, P., Surdeanu, M., Xue,
N., and Zhang, Y. (2009). The conll-2009 shared task: syntactic and semantic
dependencies in multiple languages. In Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared Task, CoNLL 09, pages
1-18, Stroudsburg, PA, USA. Association for Computational Linguistics.

Hoffart, J., Suchanek, F. M., Berberich, K., and Weikum, G. (2010). YAGO2: a
spatially and temporally enhanced knowledge base from Wikipedia. Research Re-
port MPI-1-2010-5-007, Max-Planck-Institut fiir Informatik, Stuhlsatzenhausweg
85, 66123 Saarbriicken, Germany.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of English: The Penn Treebank. Computational Linguistics,
19(2):313-330.

Nugues, P. (2006). An Introduction to Language Processing with Perl and Prolog: An
Outline of Theories, Implementation, and Application with Special Consideration
of English, French, and German. Cognitive Technologies. Springer.

Palmer, M., Kingsbury, P., and Gildea, D. (2005). The proposition bank: An anno-
tated corpus of semantic roles. Computational Linguistics, 31(1):71-106.

Palmer, M. and Xue, N. (2009). Adding semantic roles to the Chinese Treebank.
Natural Language Engineering, 15(1):143-172.

Punyakanok, V., Roth, D., and tau Yih, W. (2008). The importance of syntactic pars-
ing and inference in semantic role labeling. Computational Linguistics, 34(2):257—
287.

Surdeanu, M., Johansson, R., Meyers, A., Marquez, L., and Nivre, J. (2008). The
conll-2008 shared task on joint parsing of syntactic and semantic dependencies.
In Proceedings of the Twelfth Conference on Computational Natural Language
Learning, CoNLL 08, pages 159-177, Stroudsburg, PA, USA. Association for
Computational Linguistics.

BIBLIOGRAPHY 49

Tsai, R., Chou, W.-C., Su, Y.-S., Lin, Y.-C., Sung, C.-L., Dai, H.-J., Yeh, 1., Ku,
W., Sung, T.-Y., and Hsu, W.-L. (2007). BIOSMILE: A semantic role labeling
system for biomedical verbs using a maximum-entropy model with automatically
generated template features.

