
Nedforia:
A Tool for Automatic Named Entity
Disambiguation

Marcus Klang

MASTER’S THESIS | LUND UNIVERSITY 2013

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2013-40

Nedforia

A Tool for automatic Named Entity Disambiguation

Marcus Klang
gda07mkl@student.lu.se

November 11, 2013

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Peter Exner, peter.exner@cs.lth.se

Examiner Pierre Nugues, pierre.nugues@cs.lth.se

mailto:gda07mkl@student.lu.se
mailto:peter.exner@cs.lth.se
mailto:pierre.nugues@cs.lth.se

Abstract

In 2011, IBM showed for the ërst time that a computer could surpass human
question answering capabilities. is feat was accomplished by designing a system
that could play the American game show Jeopardy! against human contestants.
In this huge undertaking, one of the problems IBM had to solve was named entity
disambiguation. Named entity disambiguation is about the automatic identiëca-
tion of a real-world reference to a given string. IBM’s work was limited to English
and very little research is dedicated to named entity disambiguation for Swedish.

In this thesis, I report the design and implementation of Nedforia, a named
entity disambiguation tool for Swedish. Nedforia provides a full pipeline begin-
ning with a dump of Wikipedia and ending with a disambiguator. Nedforia’s
core contribution consists of modules to parse wiki markup reliably, extract rele-
vant pieces of information from Wikipedia, and manage large amounts of infor-
mation. To evaluate the ënal disambiguation tool, I collected a test set created
from 10 news articles where I hand-annotated and disambiguated the named en-
tities. On this set, Nedforia could reach an F1-score of 66.49% using a Swedish
Wikipedia dump from 2013-02-25. In addition to Swedish, Neforia could easily
be extended to support and manage multiple languages.

Keywords: Named Entity, Disambiguation, Wikipedia, Nedforia, Swedish

2

Acknowledgements

I would like to thank Peter Exner and Pierre Nugues for their excellent guidance and their
ability to introduce clarity to a complex subject. ey provided invaluable feedback and
remarks.

Finally, I would also like to thank my parents Carina Klang and Tommy Klang. eir
unwavering support made this thesis become a reality.

3

4

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Problem . 9

1.2.1 Input and output . 10
1.2.2 Formulation . 10

1.3 Scope . 10
1.4 Contributions . 11
1.5 Outline . 11

2 Background 13
2.1 NLP Concepts . 13

2.1.1 Language . 13
2.1.2 Entities . 14
2.1.3 Semantics . 15
2.1.4 Cosine similarity . 15

2.2 Wikipedia . 16
2.2.1 MediaWiki . 16
2.2.2 Content . 17

2.3 Entity catalog . 18
2.3.1 Resource Description Framework (RDF) 18
2.3.2 DBpedia . 18
2.3.3 YAGO . 18

2.4 Precision and Recall . 19
2.4.1 e F-measure . 20
2.4.2 Usage . 20

2.5 Previous work . 20
2.5.1 Context . 21
2.5.2 Categories and Tags . 23
2.5.3 Relevance . 23
2.5.4 Concepts . 24

5

CONTENTS

2.5.5 Mention-Entity Graph . 26
2.5.6 Connections . 27

3 Implementation 29
3.1 Framework . 29

3.1.1 Extensibility . 29
3.1.1.1 Creational patterns . 30

3.1.2 Multilingual . 32
3.1.3 Scalability . 33
3.1.4 Rich querying . 33

3.2 Entity detection . 34
3.3 Disambiguation . 35

3.3.1 Method A: Title edit distance . 35
3.3.2 Method B: Popularity . 35

4 Architecture 37
4.1 Overview . 37

4.1.1 Document model . 38
4.2 Import . 39

4.2.1 Wiki markup parser and AST tree generation 40
4.3 Indexing and storage . 42

4.3.1 Requirements . 42
4.3.2 Indexing . 43
4.3.3 Storage . 43

4.4 Resources . 43
4.5 Annotation . 44
4.6 Front end . 44

4.6.1 Command line . 44
4.6.2 Web interface . 45

5 Evaluation 47
5.1 Gold standard . 47
5.2 Implementation . 48

6 Results 49
6.1 Statistics . 49
6.2 Detection . 50
6.3 Disambiguation . 51

7 Discussion 53
7.1 Evaluation . 53
7.2 Wikipedia . 54
7.3 Data mining . 54

7.3.1 Page classiëcation . 54
7.3.2 Parser . 55

7.4 Resources for the Swedish language . 55
7.5 Detection . 56

6

CONTENTS

7.6 Disambiguation . 56

8 Conclusions 59
8.1 Future work . 59
8.2 Summary . 59

Terminology 61

Bibliography 63

7

CONTENTS

8

Chapter 1

Introduction

1.1 Motivation
In 2011, IBM showed for the ërst time that a computer could surpass human question an-
swering capabilities. ey reached this milestone when IBM’s system Watson won over all its
human contestants in the Jeopardy! quiz show [1]. In this huge undertaking, one of the prob-
lems IBM had to solve was to disambiguate named entities. Given a string in a text, named
entity disambiguation is the automatic identiëcation of the real-world reference to this string:
person, organization, or country. However, their work was limited to English. is thesis is
about named entity disambiguation in Swedish.

1.2 Problem
e problem of named entity disambiguation is best deëned through an example like the
string “Göran Persson.” which is ambiguous.

Limiting us to well-known people, the Swedish version of Wikipedia contains four articles
with a title including Göran Persson. ese articles correspond to four different persons where
two of them are politicians: One has been a prime minister and one is a local politician in
Simrishamn, Skåne. And the name Göran Persson in these two excerpts:

Göran Persson, en lokal politiker i Simrishamn gjorde ett uttalande
“Göran Persson, a local politician in Simrishamn made a statement”

and

Statsministern Göran Persson var ordförande för Socialdemokraterna
“Prime Minister Göran Persson was chairman for the Social Democrats”

refers to two different entities. e second “Göran Persson” is the prime minister, while the
ërst one is the local politician in Simrishamn.

9

1. Introduction

1.2.1 Input and output
Concretely, this all means that given a text as input results in an output of a list with named
entities found and their targets.

Detection
It starts with detection which is about ënding named entities (result shown in bold):

Göran Persson, en lokal politiker i Simrishamn gjorde ett uttalande
“Göran Persson, a local politician in Simrishamn made a statement”

Disambiguation
e next step is to ënd candidates and disambiguate them. is produces a list of each found
named entity connected with a single target:

Named Entity Properties Wiki page
Göran Persson e party leader Göran Persson
Göran Persson e politician in Simrishamn Göran Persson (född 1960)
Göran Persson e musician Göran Persson (musiker)
Göran Persson Swedish officer in the 1500s Jöran Persson
Simrishamn A location in Skåne Simrishamn

Table 1.1: Disambiguation candidates

Named Entity Properties Wiki page
Göran Persson e politician in Simrishamn Göran Persson (född 1960)
Simrishamn A location in Skåne Simrishamn

Table 1.2: Disambiguation result

1.2.2 Formulation
e purpose of this thesis is to answer the following questions:

• How to disambiguate named entities for Swedish based on the Swedish version of
Wikipedia as the knowledge base?

• How do different methods compare to gather entity candidates?

• What are the particular issues when dealing with Wikipedia as a knowledge source.

1.3 Scope
Wikipedia is a large knowledge source and it does require some effort in order to make it
searchable. e limits for this thesis is to incrementally test simple disambiguation methods
and increase complexity and iteratively improve the solution until it can be used in applica-
tions.

10

1.4 Contributions

1.4 Contributions
e contributions of this thesis is a new named entity disambiguation tool, Nedforia, that
uses Swedish sources. As knowledge sources, I used Wikipedia, although Nedforia could
accept other kind of texts as input.

Nedforia was designed for the purpose of named entity disambiguation but it consists
of modules that can easily be adapted to serve other purposes, such as Wikipedia document
modeling, Wiki markup parsing, prototyping environment for Natural Language Processing
(NLP), and more.

Nedforia provides a full pipeline to parse Wikipedia and creates the necessary data struc-
tures needed to do disambiguation.

Another contribution is how well simple methods fare when doing disambiguation and
initial results for named entity disambiguation in Swedish based on Wikipedia.

1.5 Outline
e thesis begins with Chapter 2 that introduces the reader to the topic of this thesis. It
also provides a description of previous work. e following chapter 3 outlines the concepts
and algorithms I implemented. Chapter 4 describes the actual implementation with more
detail. Chapter 5 describes the evaluation methodology I used and Chapter 6 provides the
results I obtained. e thesis ends with a discussion of the trade-offs I had to make, future
improvements, and some issues to ënally arrive at the conclusion of the thesis in Chapter 8.

11

1. Introduction

12

Chapter 2

Background

is chapter describes of the concepts that is used in named entity disambiguation and some of
the existing methods that are or have been used to do automatic named entity disambiguation.

2.1 NLP Concepts
NLP is a part of computer science that deals with how natural language as spoken by human
beings can be processed by a program in order to e.g. extract knowledge, information, or
other data for scientiëc purposes.

2.1.1 Language
e raw material consists of documents or texts, which at ërst appears as just a collection of
letters, spaces, and symbols of varying shapes and sizes. One level down, texts are divided into
paragraphs which are separated by spaces in the layout. e paragraphs are then separated into
sequences of letters grouped together. e start and ending of these sequences is marked by
punctuation e.g. periods, exclamation and question marks. Moving one level further down,
these groups form the meaningful structure that we convert to sound when read aloud. e
purpose is to allow communication between people.

is is a ëgurative description that applies to a language such as Swedish and English but
not all forms of written language. I will now be more speciëc and extend the description to a
usable presentation for language processing.

Strings are sequences of characters, this is the basic construct to handle the symbols in a text.

Tokens are the constituents of a sentence, a token could be a word, or punctuation. It is the
smallest meaningful part of a written language.

13

2. Background

Sentences is a set of tokens in a speciëc order that is dependent on the language. ere is
always some form of structure to the sequence of tokens which forms the meaning that
is understandable by humans.

Part of Speech (POS) is a grammatical concept, where you attach words to lexical categories
e.g. nouns or verbs.

Segmentation is the process of dividing text into the fundamental lexical constructs such as
sentences and words. Segmentation in NLP looks primarily at punctuation marks and
spaces but false positives that abbreviations can generate must be handled with care to
get good results.

Morphology is about identifying and handling how words varies in form. is could happen
when a word is in e.g singular or plural form. Some examples: car, cars, run, running,
drive, driving, index, indices, apple, apples, worked, working.

Lemma form is the form of a word that is not affected by morphology, which is the base
form, the neutral form. In Swedish e.g “är” is the surface form and “vara” is the lemma
form.

Surface form is the form of a word found in a text and is related to morphology. In this
thesis surface forms are normalized when used in a dictionary by using the lemma form
of them.

Corpus is a collection of texts written by humans. Wikipedia in the context of this thesis is
the corpus used.

Document is synonymous to a speciëc text in this thesis but it can be uniquely identiëed by
some string and has properties such as a title.

Gold standard is something that provides the correct answers. An example of a gold standard
is a manually annotated corpus with part of speech tags. Without a gold standard it is
not possible to know if a particular result is correct or incorrect which makes evaluation
difficult.

Stop words is words that occur frequently and they are often removed prior to conducting a
search. is is done to avoid ënding a large amount of unrelated matches. Any word
could in theory be selected as a stop word but the actual choice is arguably best chosen
based on real statistics such as word frequency. Stop words could be e.g and, or, I, you,
he, she, and many more.

2.1.2 Entities
An entity is a thing in this thesis. It could be a person, organization, car, table, concept, and
much more. It is often ambiguous as when writing just cat, dog or table. ere are entities
that have the requirement of being uniquely identiëable and they are called named entities, and
some examples are Schrödinger’s cat, Pierre Nugues, Peter Exner, Marcus Klang and Lunds
Tekniska Högskola. Consequently, a proper noun or proper name is a named entity. ey
could be ambiguous in an input text just as a normal entity. However, with the signiëcant
difference that a named entity must be resolvable to a set of candidates that are unique.

14

2.1 NLP Concepts

In addition, a word that references or implies a speciëc entity is not a named entity. An
example of this would be: given a text, a dog is named “Gus” and as the text progresses an
instance of “the dog” is found. is instance would be resolved, by using context, to “Gus”
which is unique but it is not uniquely identiëable by itself which is why it is not a named
entity.

Named entities could also have an attached type such as person, organization and country,
but this is not a requirement. Finally, all named entities are entities, but entities are not named
entities.

2.1.3 Semantics
Semantics is about what something means. A computer program only sees strings of characters
arranged in speciëc ways. By applying a function that does segmentation we get sentences
and words but they are still only strings to a computer program. e problem of modeling
dependency grammar attempts to solve a part of this problem. It is solved by using a so called
dependency parser that forms connections between semantically connected words, usually
modeled after noun and verb phrases. Given two examples:

“Göran Persson is a politician in Stockholm”

and

“Göran Persson saw a man running to a meeting”

the ërst one contains three noun phrases: “Göran Persson”, “a politician” and “Stockholm”
and the last one contains a verb phrase “saw a man running to a meeting”. Other ways of
emulating a sense of understanding is by creating a predicate-argument structure that can
be used for search. A predicate-argument structure in a entity catalog1 such as YAGO2 and
DBpedia consists of triplets: subject, predicate, argument. Given an example, “Albert Einstein
was born on 14 march 1878”, the subject would be “Albert Einstein”, the predicate “born”,
argument “14 march 1878”. is structure is well suited to create efficient queries that could
be used to ënd relevant knowledge.

2.1.4 Cosine similarity
To compute similarity between two texts there is a concept based on the idea of that related
texts “point” in the same direction. is idea is converted into the concept of cosine similar-
ity. In order to compute cosine similarity you need to convert the information into a vector
space. To give an analogy to a geometric system cosine similarity is about computing the angle
between two vectors, this can be achieved by using the dot product:

cosα =
a · b

∥a∥ · ∥b∥
=

a1 · b1 + a2 · b2 + . . .+ an · bn√
n∑

i=1

a2i ·
√

n∑
i=1

b2i

(2.1)

is gives cosα between vector a and b. cosα has the range [−1, 1]. In the context of
NLP, -1 means completely opposite, 0 means not related and 1 means related. e content

1Described in depth in section 2.3 on page 18

15

2. Background

of a vector are weights which deëne how common a certain term is. e index must match
between the two vectors so if the term does not exist in text A but in text B a corresponding
0 weight must be placed in A and B. at is the vector of A and B equals:

v = {w(x)|x ∈ A ∪B} (2.2)

w(x) =

{
f(x) if the input text has term x
0 otherwise

(2.3)

where f(x) is a function that provides a weight given a token. An example is provided
below of the two texts A and B, containing 2 terms each in order to keep the example small.

A = {Karlstad, Sverige}
B = {USA,Karlstad}

A ∪B = {USA,Karlstad,Sverige}
a = {w(USA), w(Karlstad), w(Sverige)} = {0.3, 0.04, 0}
b = {w(USA), w(Karlstad), w(Sverige)} = {0.0, 0.04, 0.4}

∥a∥ · ∥b∥ =
√
0.32 + 0.042 + 02 ·

√
02 + 0.042 + 0.42 ≈ 0.12167

a · b = 0.3 · 0 + 0.04 · 0.04 + 0 · 0.4 = 0.0016

cosα =
a · b

∥a∥ · ∥b∥
≈ 0.0016

0.12167
≈ 0.0132

As can be seen above I gave the term Sverige and USA a rather high weight of 0.4 and 0.3
which contributed to a very low similarity between text A and B. ese weights were arbitrary
but you could use a probabilistic approach that models how common a term is. An example
could be counting how common a term is in the corpus (term-frequency) and counting how
many documents that contains the term (document-frequency).

2.2 Wikipedia
Wikipedia is an online encyclopedia that is managed and written by users from all around
the world. It exists in many languages, where Swedish is one of them. Today Wikipedia is
very diverse in topics and the Swedish edition is growing fast when reading [2]. e ëgures
presented in [2] were the only ones I could ënd and because they were compiled by Wikipedia
editors it should be noted that the ëgures might not be trustworthy.

2.2.1 MediaWiki
Wikipedia uses MediaWiki to drive its web based front end. MediaWiki [3] is an application
written in the server side programming language PHP [4] that is suited for use in web devel-
opment. MediaWiki is not only used for Wikipedia but many other wiki-like sites as well.
Anyone can download MediaWiki and set up their own Wikipedia like page. MediaWiki
provides the data model to store wiki pages and is an active project where the latest release
was at the time of writing version 1.21.2, released 2013-09-03.

16

2.2 Wikipedia

MediaWiki and in turn Wikipedia deals with pages; these pages or wiki pages are written
in a special markup language called wiki markup2. Wiki markup is central to extracting
information from Wikipedia. Wiki markup is a text based markup language that is more text-
like than a markup language such as HTML. e language has constructs such as headers,
links, tables, bullet lists, indentations, templates and much more.

2.2.2 Content
Like any larger library of information, structure is needed when data grows. is is handled
through speciëc types of pages that exists within Wikipedia. I will now present the basic
Wikipedia page types and some other important details:

Pages is the fundamental construct. A page has a title and it has some wiki markup, every-
thing that will be described below is a specialization of a page and inherits its properties.

Articles are normal full length texts about a subject or concept e.g. Göran Persson, global
warming or natural language processing.

Stubs are articles but are deemed to not be mature enough to be called an article. ey are
usually short and has not yet reached a satisfactory level of quality and scope determined
by other Wikipedia editors.

Disambiguation pages are pages that tries to disambiguate ambiguous topics by describing
the key differences between them. ey also provide hints that could guide a reader
to the correct page. ese pages are of great interest to named entity disambiguation
because they provides gold candidates for disambiguation and highlights ambiguous
topics.

Templates are MediaWiki constructs that are used to reduce duplication of wiki markup
code. One of the most commonly used template is arguably the infoboxes that pro-
vides property information e.g. birth dates, spouses, children, who is CEO for an or-
ganizations, and more. ere are many different templates and they can include other
templates in its deënition.

Redirects are pages which redirect to other wiki pages. Because their title is different than
the target they are good for extracting different surface forms for what is meant by an
article or stub. Commonly acronyms are redirects and common misspellings are also
redirects.

Categories are basic pages but when viewed in Wikipedia they have auto-generated content
which shows all the articles that belongs to the selected category. Categories are allowed
to be part of another category which creates a semantic hierarchy of related subjects.

e term entity in the context of Wikipedia is concretely an article or a stub.

2Read [5] for some examples of the language

17

2. Background

2.3 Entity catalog
An entity catalog is a database of things automatically extracted from a knowledge source. I
will describe two entity catalogs: YAGO and DBpedia. ese two catalogs were automatically
created from Wikipedia [6], and in the case of YAGO [7] also WordNet . ey contain for
instance facts extracted from infoboxes in Wikipedia. ey deëne an ontology which deals
with not just entities but also how they relate to each other e.g. a scientist is a person.

2.3.1 Resource Description Framework (RDF)
RDF is a W3C standard. It is deëned by W3C as “RDF is a standard model for data in-
terchange on the Web” [8]. It is in the context of this thesis used to store relations between
different entities, and it deënes a triplet structure. is triplet enables the attachment of
metadata to a Uniform Resource Identiëer (URI) (the subject) where the type is deëned by a
predicate and its value by an object. It is very generic and can be used to connect many dif-
ferent forms of data. e predicate-argument structure in section 2.1.3 can be stored using a
RDF format. One RDF format uses a XML standard deëned by W3C. However, this format
is not used in practice when surveying what available formats exists for YAGO and DBpedia.
is is most likely due to performance and size considerations.

2.3.2 DBpedia
e goal of the DBpedia project is to provide structured information extracted from Wikipedia
and make it available on the Web. DBpedia uses infoboxes, page links, page text, page cate-
gories and more when extracting information.

DBpedia also interlinks to existing datasets such as YAGO and many others which results
in a greatly expanded web of knowledge[6]. Some relevant datasets to this thesis are per-
sons and the links between languages which includes Swedish. e latest version of DBpedia
(which at the end of the thesis was version 3.9) classiëed 3.22 million things into what the
authors claim to be a consistent ontology which includes 832 000 persons [9]. DBpedia’s
datasets are also freely available for download on their website in a multiple RDF formats
[10]. One issue with DBpedia is that it does not yet have hand generated mappings for the
Swedish version of Wikipedia [11]. is means that primarily language independent con-
structs are extracted and linked e.g titles, raw infobox information, links between pages, and
links between different Wikipedia language editions. is means that Swedish is not of the
same level of quality as English, German or any other languages that have manual bindings.

2.3.3 YAGO
YAGO stands for “Yet Another Great Ontology” [7]. YAGO was created from primarily
WordNet and Wikipedia by utilizing heuristic algorithms, i.e. approximated algorithms that
was optimized for the target domain where a universal solution is too hard or complex to
create. YAGO contains facts such as the date of birth of a person, who that person married to
and much more. YAGO has well deëned structures and has been manually evaluated partially
to verify that it is of high quality. e authors found it to have an accuracy of 95% [7]. is
ëgure was derived from manual evaluation of randomly selected facts. However, the evalua-

18

2.4 Precision and Recall

tion does not verify that the fact is actually correct but rather that it matches the fact presented
in Wikipedia. i.e. the evaluation does not deal with the problem of false information. YAGO
was later extended in a second version “YAGO2” which extends YAGO with temporal and
spatial information [12]. YAGO2 have dedicated resources to enable linking of Wikipedia
article titles to YAGO entities in multiple languages[13] which makes it useful for this thesis.

2.4 Precision and Recall
In order to measure how good a speciëc information retrieval solution is the concepts of
precision and recall is often used. Recall answers how much of the result which is relevant
that has been found by the system. Precision answers how much of what is retrieved actually
is correct or relevant.

..

B

.

A

.

C

.

Ω

.

Relevant documents

.

Retrieved documents

.

A: Relevant documents not retrived

.

B: Relevant documents retrived

.

C: Irrelevant documents retrived

. B.A .

Ω

.

Recall

. B.

Ω

.

Precision

. C

Figure 2.1: Precision and recall

Figure 2.1 gives a picture of how to interpret the two measures. Ω is all documents in the
system. From this presentation they are concretely computed the following way:

recall =
|B|

|A|+ |B|
=

|{relevant documents} ∩ {retrieved documents}|
|{relevant documents}|

(2.4)

precision =
|B|

|B|+ |C|
=

|{relevant documents} ∩ {retrieved documents}|
|{retrieved documents}|

(2.5)

ese two metrics measures two different parts of an information retrieval system and to get
a single overall score they are combined into the so called F-measure.

19

2. Background

2.4.1 The F-measure
e F-measure has the generic deënition of :

Fβ =
(
β2 + 1

)
· precision · recall
β2 · precision + recall

(2.6)

[14]. e most commonly used variant in practice of the F-measure is when β = 1, because
this turns the F-measure into a harmonic mean between recall and precision which has the
form:

F1 = 2 · precision · recall
precision + recall

(2.7)

e choice of a harmonic mean is arguably due to fact that when precision and recall are
unbalanced the lower value tends to have a higher weight, resulting in a lower score. Take this
example:

precision = 0.9

recall = 0.1

harmonic mean = F1 = 0.18

arithmetic mean =
precision+recall

2
= 0.5

here it is clear that the harmonic mean better represents the true score.

2.4.2 Usage
In ëgure 2.2 on the facing page an example consisting of three scenarios are presented. e
goal is to catch all dead ësh and the circle symbolizes what has been caught. In Scenario A,
the typical case is presented where a mix of alive and dead ësh has been caught. Scenario B is
an edge case where precision is perfect but recall is poor and as can be seen by the F1 score, a
poor balance results in the lower value taking precedence. It is often easy to get perfect recall
or precision but hard to get good performance of both.

2.5 Previous work
In this section, I will try to capture the ideas and techniques used to carry out Named Entity
Disambiguation by others. e articles referenced in section uses primarily Wikipedia as
its knowledge source. Every section that follows matches one article and provided is my
interpretation. e sections and articles are:

Context is based on the article “Using Encyclopedic Knowledge for Named Entity Disam-
biguation” written by Bunescu and Paşca [15]

Categories and Tags is based on the article “Large-Scale Named Entity Disambiguation Based
on Wikipedia Data” written by Cucerzan and Silviu [16]

20

2.5 Previous work

..

Alive

.

Dead

.

R = Recall

.

P = Precision

.

Scenario A

.

PA = 3
4
, RA = 3

5
, F1,A = 2 ·

3
4
· 3
5

3
4
+ 3

5

.

PA = 0.75, RA = 0.6, F1,A = 0.67

.

Scenario B

.

PB = 1
1
, RB = 1

5
, F1,B = 2 ·

1
1
· 1
5

1
1
+ 1

5

.

PB = 1.0, RB = 0.2, F1,B = 0.33

.

Scenario C

.

PC = 5
7
, RC = 5

5
, F1,C = 2 ·

5
7
· 5
5

5
7
+ 5

5

.

PC = 0, 71, RC = 1.0, F1,C = 0, 83

Figure 2.2: Precision and Recall example

Relevance is based on the article “Learning to link with wikipedia” written by Milne and
Witten [17]

Concepts is based on the article “Named entity disambiguation by leveraging wikipedia se-
mantic knowledge” written by Han and Zhao [18]

Mention-Entity Graph is based on the article “Robust disambiguation of named entities in
text” written by Hoffart et. al [19]

2.5.1 Context
e earliest work of Named Entity Disambiguation (NED) conducted on Wikipedia that I
could ënd was Bunescu and Paşca [15]. ey extracted named entities from Wikipedia using
a heuristic method that was based on the page titles. In order for a wiki page to be selected as
a named entity any of the following three conditions had to be satisëed:

1. If the title of an wiki page contains multiple tokens, and every token are words that
do not belong to any of the following types: determiners, conjunctions, prepositions,
relative pronouns, or negations. Example: “House of Sweden”.

21

2. Background

2. If the title of an entity is a single token, and the two ërst characters are uppercase letters.
Example: “USA”

3. If all occurrences of the title in the main text fulëlls the same restrictions as in condition
1 in at least 75% of the cases. e title occurrences must be in locations other than the
start of sentences. Example: “Maryland”

From the conditions above a dictionary of named entities was created. e actual entries in
the dictionary included all variants of what an article could be called which included titles
of redirects, anchor texts and more. is dictionary was then used to get a list of candidates
which was the input to the disambiguation method.

e ërst disambiguation solution used a scoring function based solely on cosine similarity
to compute the rank of a potential candidate. e input to this scoring function was a window
of 55 tokens from the input text centered around a candidate and compared against the full
text of its potential entity target. e token weights used for cosine similarity was:

dw = f(w) ln
N

df(w)
(2.8)

In this equation, w is a word in the document d, f(w) is word frequency i.e. the number
of times the word has been used, df(w) is the word document frequency i.e. the number
of documents that contain the word, N is the number of total number of documents i.e.
Wikipedia articles. When computing e.g term frequencies stop-words, common words that
are too frequent, or too rare were excluded. e authors made an evaluation of this method
and they found that it failed to rank the proper candidate even when all the necessary context
words were there.

To improve upon this solution the authors leveraged machine learning by using an tech-
nique called Support Vector Machine (SVM). e goal of the SVM was to ënd a vector of
weights. is weight vector was used in the ranking which concretely meant computing a dot
product between the weights and a candidate feature vector, expressed mathematically as:

ê = arg max
ek

wΦ(q, ek) (2.9)

Here ê is the selected candidate, w is the weight vector and Φ(q, ek) is the feature vector
of a query q which in this context meant a token window3 around a link in an article and
the potential entity candidate ek. e features were cosine similarity and a binary vector of
features that was derived from categories and the vocabulary of Wikipedia. My interpretation
is that they wanted features that could potentially rank a candidate higher when there was a
strong correlation to the content of categories. e training data was derived from the articles
themselves where the links that were unambiguous were used as a gold standard.

e size of input data and limited computational power made it hard for the authors
to fully evaluate their method so they had to settle for a partial evaluation where they used
110, 540 and 2847 categories and reported accuracies between 55.4% (cosine similarity) and
84.8% (machine learning method) depending on the development/test data employed. I
could not ënd the exact method used to compute the accuracy ëgure which means I do not
know if the F-measure was used. [15]

3a number of tokens around a link, e.g “In Skåne [Göran Persson] is a politician” a token window of 4 around
the link “Göran Persson” could mean the tokens: {Skåne,Göran, Persson, is}.

22

2.5 Previous work

2.5.2 Categories and Tags
e work of Cucerzan and Silviu [16] is similar to Bunescu and Paşca [15]. Both articles
deëne an extraction method to get named entities from Wikipedia as well as a disambiguation
method that used redirects, article titles and disambiguation pages to get different surface
forms and candidates for an entity. Cucerzan and Silviu also included real statistics from
queries performed on a web search engine something Bunescu and Paşca did not do.

e disambiguation method used primarily three parts of information: entity surface
forms, category tags and contexts.

Entity surface forms are all the different variations of what an entity could be called in
Wikipedia (extracted from redirects, links, disambiguation pages).

Category tags was derived from list pages (list of ... or table of ... pages) and category labels.
ese provided a way of relating entities semantically.

Context was based on the page content of an entity and the page content of its in-links,
i.e. those entities referring to the entity at hand. ey initially considered to use all
information of every entity but they limited themselves to only the ones mentioned in
the ërst paragraph of the entity page due to data size considerations. is resulted in
38 million entity, context pairs for the English edition of Wikipedia.

e disambiguation method consists of two parts: the ërst one is to compute similarity be-
tween the input text and candidate contexts, the second is to compute category similarity
between all candidates. By combining these two a rank is produced. e similarity is con-
cretely computed with dot product of vectors where each element is a word or token however
the elements are not normalized.

is system scored an accuracy of 91.4% when measured against top two stories in ten
different news sites of varying type. e test set contained 756 surface forms of which 127
was not possible to recall. [16]

2.5.3 Relevance
Milne and Witten [17] differs from earlier work in that they added statistics of what surface
forms could refer to (deëned as commonness by the authors) and used a measure of relatedness
between two entities. e equation that deënes the relatedness measure is deëned below:

relatedness(a, b) =
log(max(|A| , |B|))− log(|A ∩B|)

log(|W |)− log(min(|A|,|B|))
, (2.10)

where A and B are in-links to the entity a resp. b, andW is set of all links. is relatedness
function measures essentially how compatible two articles are by comparing the articles that
link to them. is means that if the same articles link to them then they are very related.

For the disambiguation component Milne and Witten used machine learning to train a
classiëer that can choose when to use relatedness and when to use commonness instead. e
classiëer was trained on three features: relatedness, commonness and a context quality which
is a sum of weights derived from the context so that there is a measure of how good the context
is. is disambiguator got an F1-score of 96.9% (using Bagged C4.5 algorithm as described
by the author) when performed on 11 000 links in 100 randomly selected articles. Milne and

23

2. Background

Witten also described a link detector trained on Wikipedia. I determined this link detector to
not to be of relevance for this thesis with the argument that it is not a named entity detector
which would be of interest. [17]

2.5.4 Concepts
e previous works are all heavily based on the Bag of Words (BOW) model which means that
they only used a bag of words instead of building a semantically related network of entities, i.e.
how entities relate to each other and make use of that to disambiguate named entities. Han
and Zhao [18] extracts surface forms, builds a dictionary from the text, just as earlier work and
also adds commonness in the same way as Milne and Witten [17] described in the previous
section. is creates a surface form dictionary that links a surface form to an candidate article.
Important to note is that Han and Zhao excludes the Wikipedia articles that matches any of
the following conditions:

• e article belongs to categories related to chronology, i.e. “Years”, “Decades” and
“Centuries”.

• e ërst letter of the article title is not a capital one.

• e article title is a single stop word.

Han and Zhao has has a special meaning for the term concept. According to my interpreta-
tion a Wikipedia article becomes a concept when some page has linked to it and fulëlls the
conditions above, which would imply that a concept could be used interchangeably with an
article when this requirement is fulëlled.

ere are two parts of Han and Zhao’s work, the ërst part deënes how to ënd concepts
from Wikipedia and an input text. e second part compares concepts found in the input
text against concepts derived from the real Wikipedia articles. [18]

Part 1: The concept vectors is part begins with the goal of mapping surface
forms to a selection of concepts which is then used in the disambiguation step to compare
input text context against an candidate and rank accordingly. e entries of the surface form
dictionary contains one or more possible concept candidates. Han and Zhao maps the surface
form to a particular concept by selecting the candidate that has the highest value provided by
this scoring function:

Score(s, c) =

∑
t∈T

sr(t, c)

|T |
· Commonesss,c (2.11)

where s is the surface form in the dictionary, c is the concept, sr is the same as equa-
tion 2.10 on the previous page where the input data matches the original deënition, and T
is the context concepts. e context concepts are the targets of unambiguous links found in
all concept candidates. Commonnesss,c was computed by normalizing the commonness of
a surface form, i.e. the probability a particular surface form refers to a special concept, which
concretely means a count divided by the sum of all counts. e ënal product is a dictionary
where each entry is a surface form linked to a concept. In the end a named entity candidate
from a text is represented as a vector of concepts and a weight:

24

2.5 Previous work

o = {(c1, w(c1, o)) , (c2, w(c2, o)) , . . . , (cm, w(cm, o))} (2.12)

where ci represents a concept and the weight function w is equal to:

w(c, o) = |o|−1

(∑
ci∈o,ci ̸=c

sr(c, ci)

)
(2.13)

is weight function returns a scalar value on how relevant a particular concept is com-
pared to the rest. To reduce noise and improve performance, concepts with low weights were
removed. It should also be noted that Han and Zhao did not use all surface forms. Han and
Zhao computed a probability that a surface form could be a concept and removed those with
low probabilities.[18]

Part 2: Disambiguation Han and Zhao introduces a new method to compute
similarity between input and disambiguation candidates. e method has three steps and the
ërst step is about computing alignment, I interpret it as a way to compare a concept to its
most likely counterpart in another concept vector. Alignment is computed by the equation:

Align(c, ok) = argmax
ci∈ok

sr(c, ci) (2.14)

where ok is an named entity observation. e align method maps a concept to its most
likely counterpart in another concept vector. is alignment function is used when com-
puting how semantically related two concept vectors are. e function to compute semantic
relatedness is deëned as:

SR(ok → ol) =

∑
c∈ok

w(c, ok)× w(Align(c, ol), ol)× sr(c, Align(c, ol))∑
c∈ok

w(c, ok)× w(Align(c, ol), ol)
(2.15)

where ol is another concept vector derived from a named entity candidate text. is
equation describes a weighted average of semantic relatedness between all aligned concepts in
ol compared against concepts in ok. e value is bounded within [0, 1].e ënal step is the
similarity function that makes use of everything before:

SIM(ok, ol) =
1

2
× (SR(ok → ol) + SR(ol → ok)) (2.16)

which is basically a mean of semantic relatedness when going in both directions: ok → ol
and ol → ok.

All this goes into the ënal step that is the actual disambiguation that uses input from
everything prior to this point. Han and Zhao used a method called Hierarchical Agglomera-
tive Clustering (HAC) to group named entities together with their most likely entities based
on the similarity in equation 2.16. ey tested the solution on a standardized dataset called
WePS1 where they got their best F1 score of 88%. [18]

25

2. Background

2.5.5 Mention-Entity Graph
Hoffart et. al [19] was the ërst in this thesis to use a linear combination of different measures,
the previous did not combine measures when computing the ënal result. is article uses the
term mention to denote a named entity candidate found in a text. e measures selected were:

Popularity prior corresponds to the number of in-links to an Wikipedia entity.

Context similarity is about comparing the context of the input by computing a similarity
between all tokens in the input against a key phrase deëned for entities that were ex-
tracted from YAGO. A key phrase is a phrase that is derived from link texts, category
names, citation titles and other references. e idea is that a key phrase shall contain
keywords that is characteristic for an entity. When comparing contexts they used a
concept called phrase cover when computing a similarity score. A phrase cover is the
shortest window of words that contains a maximal number of words found in another
phrase, which in this case was a key phrase. ey also used a method to compute a syn-
tax based similarity based on what happens when a subject in a text is switched out in
a sentence for another. An example provided by the authors was “Page played unusual
chords” and by switching “Page” into “Guitarist” it would yield a high score because it
is referring to Jimmy Page, the musician. But when switching “Page” in the same ex-
ample into “Entrepreneur” as in Larry Page (the Google founder), the similarity yields
a lower score. e context similarity is computed between a mention in an input text
and key phrases.

Coherence provides a way of comparing different entity candidates in a text in order to mea-
sure how compatible they are. e method used is the same as Milne and Witten [17],
equation 2.16 on the preceding page.

ese methods were combined into a so called “Overall Objective Function”. is function
is a linear combination of the measures output and a weight. ese weights must sum up to
1.

e authors created a so called mention - entity graph where the outer nodes are mentions
found in a text and then mapped to one or more candidate entities. e entities were also
connected to other entities if they had relevance, e.g. when linking to each other. All edges in
this graph were weighted using primarily the previous three measures. en end goal was to
simplify the graph so that there is only one link from an mention to an entity. is is where
the innovation comes in, they used an algorithm that does this approximately because doing
it exact was NP-hard4 and not feasible for larger inputs. ey also used something they called
a robustness check, this check tries to mitigate the weak spots such as when the input text is
short. e check veriëes that popularity does not dominate the outcome in the popularity
case and in the coherence case whether it makes sense which might not be the case when the
text is heterogeneous.

When evaluating they used a method called MAP (mean average precision) to do its evalu-
ation which is related but not the same as the F-measure. e best result for their solution was
89.05% which was reached when using popularity with robustness check, context similarity
using key phrases and coherence without robustness check. [19]

4Problems for which efficient algorithms has not been found. Efficient algorithms typically have polynomial
or better complexity.

26

2.5 Previous work

2.5.6 Connections
I used the previous works to derive ideas. Basically adapting earlier work to work for Swedish
was not the goal but instead getting a sense of what ideas exists and use some of them. In
this thesis I used the idea of extracting anchor texts, redirection titles to ënd candidates. is
idea was present in one form or another in all works but I ërst found it in Bunescu and Paşca
[15]. Popularity was an idea that I adopted from the work of Cucerzan and Silviu [16]. e
rest of the previous works provided insight into more complex methods that could be used to
compute similarities of different types.

27

2. Background

28

Chapter 3

Implementation

is chapter provides the high level goals of the tool Nedforia, the ideas that it is based on
and the considerations that went into the design of Nedforia.

3.1 Framework
ese were the goals I had when designing Nedforia:

• Extensible, easy to extend with new code and integrate with other components.

• Multilingual at the core, meaning that anything language dependent should be sep-
arated and managed. e goal is that new languages could easily be added by just
implementing the language speciëc parts.

• Scalability on a single machine, be able to mange large amounts of data as fast and
smooth as possible without over complicating the solution.

• Rich querying, be able to easily extend query operations on the data and see the results.
is could be e.g. run computations on data directly without any preprocessing, query
and ënd relevant data.

To accomplish these goals I iterated the development and improved the solution at each it-
eration as needed. In total three distinct version of Nedforia was made. e ërst one was
completely scrapped due to being overly concrete and lacking scalability. e second version
was good enough for some tasks but extension was hard. e second version was therefore
heavily refactored into the third and ënal version.

3.1.1 Extensibility
e most time consuming part to get right was extensibility. ere was a problem of balanc-
ing abstraction and concreteness, and be mindful about not over complicating things. Code

29

3. Implementation

reuse was essential, not only because it makes the code unmaintainable otherwise but because
differences in the implementation could make evaluation inconsistent. Working at the con-
ceptual level helped to deëne abstractions. I also needed to move fast forward and be able to
switch out parts quickly without breaking old code. To be able to switch out parts easily also
meant that extensions could make use of the abstractions that had to be created and thereby
reuse existing code.

3.1.1.1 Creational patterns
A standing problem with abstractions is that eventually you have to get an concrete instance
from somewhere. is could be solved by using the factory pattern which is exempliëed using
UML in ëgure 3.1. In this ëgure the SwedishLanguage class depends on an abstraction
Language and the concrete instance is provided by LanguageFactory given a string of
the language name. is instance is then used by another implementation Disambigua-
tor which makes use of the language abstraction to do its work.

......................

«interface»
Language..

+ annotate(text : String) : Document

.

SwedishLanguage

..

+ annotate(text : String) : Document

...

LanguageFactory

..

+ create(lang : String) : Language

.
Disambiguator

.........

creates

.

uses

.uses

Figure 3.1: A sample of the factory pattern

e issue with this pattern is that the factory itself also has to be managed and created
somewhere, which requires passing arguments to a constructor which could be e.g. a conëg-
uration class. is makes code that uses factories cluttered. is could have been solved by
using a singleton but still the code rigidly depends on that particular factory and the singleton
has to be initiated somehow before. e code that LanguageFactory has also directly
depends on that concrete class and switching its implementation would be hard. ere is
however one very desirable property of the factory pattern and that is the simplicity of the
code produced because it is very concrete and generally easy to follow.

Dependency injection
Considering the advantages and disadvantages of the factory pattern I ended up switch-

ing a part of simplicity with ìexibility. e solution is still easy to use. Nevertheless, it is
much harder to follow what happens in the code which could be attributed to the thing that
magically provides instances, the actual injector implementation.

Dependency Injection is the generic name for this pattern. It solves the problem of hard
coded dependencies such as factory classes in the code by making the code only depend on a
dependency injector.

30

3.1 Framework

e dependency injector is constructed once and reused multiple times. e injector could
be conëgured to provide different concrete implementations which allows a high level way of
switching the implementation of an abstraction. e role of the injector is to provide instances
of requested abstractions as well as concrete classes. e injector also injects the dependencies
needed to construct these instances. ere exists production ready libraries such as Guice [20]
that implements dependency injection but I built my own solution because I needed thread
safe construction of a concept I call data resources which are things such as indices and storage
implementation. ese resources did not quite ët into how Guice implemented this pattern.

e easiest way to describe how it all comes together is to present sample code:

Dependency injector configuration
1 public abstract class DependencyInjector {
2 /**
3 * Bind a type so that it can be resolved
4 * @param from a abstract type like interface or abstract class
5 * @param to a concrete type like a class
6 */
7 protected final void bind(Class<T> from, Class<T> to);
8

9 /**
10 * Inject an instance of type T
11 * @param type the type to inject
12 * @return an instance of the type T
13 */
14 public final T inject(Class<T> type);
15

16 /**
17 * Inject an instance of type T for language lang
18 * @param type the type to inject
19 * @param lang the language to use
20 * @return an instance of the type T
21 */
22 public final T inject(String lang, Class<T> type);
23

24 /**
25 * Configure the injector so that types can be resolved
26 */
27 protected abstract void configure();
28 }

31

3. Implementation

Injector example
1 /**
2 * An sample injector
3 */
4 public final class NedforiaInjector extends DependencyInjector
5 {
6 private boolean useBerkleyDb;
7

8 public NedforiaInjector(boolean useBerkleyDb) {
9 this.useBerkleyDb = useBerkleyDb;

10 configure();
11 }
12

13 protected void configure() {
14 if(useBerkleyDb)
15 bind(WikiStorage.class, BdbWikiStorage.class);
16 else
17 bind(WikiStorage.class, StdWikiStorage.class);
18 }
19 }

Sample code for usage
1 //Example code using the injector
2 NedforiaInjector nedforia = new NedforiaInjector(false);
3 WikiPageStorage storage = nedforia.inject("sv", WikiPageStorage.class);

“Dependency injector conëguration” listing deënes the base class for an injector. In the
“Injection example” listing an an injector extends the dependency injector base class and con-
ëgures it. Finally, “Sample code for usage” displays how it all is used in practice.

In the Dependency Injector: bind is the method used in the configure method to
map one type to another. All this conëguration is typically done only once at the start of
the application. e major difference in my implementation compared to how e.g. Guice
implemented this pattern is that there are two variants of the inject method, one that
is language independent and one that is dependent on the actual language to use. I used
the language dependent version in the usage code because I wanted to access the Swedish
Wikipedia data storage. e major drawback of my implementation is that an exception
could be thrown at runtime if the conëguration becomes inconsistent with the data stored in
the workspace.

3.1.2 Multilingual
It was clear from the start that one thing that many existing solution lacked was to have
multilingual support at the core. It seems like most existing work originated from English and
then either tried to apply it to other languages or are currently in the process of converting
their solutions to ët other languages as well. e solution was simple enough: instead of

32

3.1 Framework

hard-coding language dependence I separated everything language dependent into separate
packages and made a top level contract that operates on a standardized data model.

e standardized model in question was based on the model [21] deëned by ConLL (the
Conference on Natural Language Learning) and was built by Peter Exner which I extended
with some helper methods.

3.1.3 Scalability
Swedish Wikipedia is not as big as the English edition of Wikipedia but the dump I selected
(2013-02-25) [22] still contains 1.6 million pages and uncompressed it consumes 13.02 GiB
of storage space in its raw XML form.

e longer term goal, beyond this thesis, was to support English Wikipedia as well. Even
the size of Swedish Wikipedia made scalability a concern for the implementation. To solve
this I found that resorting to simple data structures was the best way. It was the solid and
intuitive ideas that was the fastest and easiest ones to use. I used solutions based on primarily
hash-tables which in average has a complexity of O(1) if implemented correctly and tree
based data-structures which could have O(logn) complexity for lookups. e tree based
data-structure was particularly useful because it scales well and provides a sorted list of keys
with connected data.

3.1.4 Rich querying
I found that dealing with a large dataset required a good front-end that allows quick navigation
and provide the information I need during testing and evaluation of a solution. To set up an
environment manually could be time consuming and this is something a proper front-end
helps with. Using just the debugger is not desirable when there is much data because it does
not allow you to easily jump around in the data and inspect how the code worked in different
situations. When determining how the front-end should be built I quickly abandoned the
idea of building a Java user-interface because it would be too time consuming and would not
easily provide the ìexibility and power I needed. e criteria I sat up for a graphical front-end
solution was:

• It should be able to handle a reasonably large amount of data (5 - 10 MiB raw data
output)

• Allows quick and easy construction of rich user interfaces

• Have good documentation in that the APIs or libraries I would use should be well
documented or have a strong community that has solutions to common problems.

e best solution for this job was in my mind a modern web browser which meant the use
of web technology. ere has gone a large amount of effort into building a web browser and
web technology is today so capable that building desktop grade applications using only a web
browser is a reality.

e ability to access the application from virtually anywhere in the world by just using a
modern web browser was also very appealing and I had prior experience of web development
which meant that this was the best choice for me.

33

3. Implementation

e use of web technology also meant that the server side had to support multiple requests
at the same time which was solved by following a convention that all retrieval methods used
must be thread safe. From earlier experience I know that if web development is done incor-
rectly it can be a slow and painful process. To solve this it meant balancing the amount of
server side code and client code. I made the choice to run as much code as possible in the
browser and let the server act as data service providing processed data. is meant ënding
good software for the server side was essential which is described further in section 4.6.2 on
page 45.

3.2 Entity detection
Detection is about ënding possible named entities in a text. All the following methods splits
up the text into tokens and tries to match a sequence of tokens to candidates by using a
dictionary created by using one of the methods below. e ërst method was simple to imple-
ment and based on the assumption that all Wikipedia articles are named entities, the second
method is an extension of the ërst with a larger dictionary size and a small difference in how
the named entities are matched. e last one uses the Named Entity Recognizer (NER) found
in the library Stagger [23] created by Robert Östling [24].

Method 1: Noun clustering matched a sequence of words, an N-gram (which I limited to
10 tokens in sequence), to a list of entity candidates using a dictionary of normalized
page titles. For Swedish this meant using the longest sequence of nouns found in the
dictionary. e algorithm began with ënding all sequences of nouns, all combinations
and then methodically trying them all out.

Method 2: Surface form matching matched a sequence of tokens to known anchor texts,
page titles and redirect page titles. is method only uses sequences of tokens where
the ërst token is a noun (in case of Swedish). e matching is done against a dictionary
of anchor texts mapped to a list of candidate entities. It is the longest exact match that
is chosen as a source of candidates. It is similar to noun clustering but not equal because
it looks at more data and can select words that are not nouns.

Method 3: Stagger NER uses the library Stagger’s built in NER to ënd entities in a text and
uses only the tokens it says to denote a named entity.

In table 3.1 there is an example of the surface form dictionary used in method 2 and 3.

Normalized surface form Entity
berga Helsingborg
helsingborg Helsingborg
helsingborgs stadsförsamling Helsingborg

Table 3.1: Samples in the dictionary of surface forms

34

3.3 Disambiguation

Entity Popularity
Helsingborg 1 842
Lunds Kommun 220
Skåne 3 748
Sverige 42 216

Table 3.2: Some samples for a popularity dictionary

3.3 Disambiguation
All methods here use the candidate list provided by some detection method deëned in the
previous section.

3.3.1 Method A: Title edit distance
I needed a method that did not require any special indices to be created which is why I came
up with this method. is method only uses a normalized title of an entity page. Basically
you use a dictionary of normalized titles which was created at import and a mapping to the
corresponding entity.

e method computes the edit distance, the minimum number of changes needed to make
it equal to its counterpart which is b in this case. e method used is deëned as:

sima,b(i, j) =


max(i, j) if min(i, j) = 0

min


sima,b(i− 1, j) + 1

sima,b(i, j − 1) + 1

sima,b(i− 1, j − 1) + matches(i, j)
otherwise

(3.1)

where a and b are strings and i = |a| , j = |b| and matches(i, j) = 1 when the characters
ai, bj do not match, in all other cases matches(i, j) = 0.

The disambiguation algorithm
1. Compute the similarity between a candidate entity title and a normalized form of the

input tokens.

2. Select the candidate that has the lowest edit distance, if more than one has an edit
distance of 0 which is the lowest possible value, then select the ërst random hit.

3.3.2 Method B: Popularity
is method needs a dictionary of popularity. is dictionary returns given a candidate a
popularity value. is value is equal to the number of unique in-links to a Wikipedia article
or stub. I selected this method because it has provided a reasonable result for other languages
before when reading Hoffart et. al [19] under results and competitors summary. An example
of the popularity dictionary is shown in table 3.2.

35

3. Implementation

The disambiguation algorithm
1. Take the candidates from the entity detection and retrieve its popularity

2. Select the candidate whose popularity is highest

36

Chapter 4

Architecture

In this chapter I will provide a description of how the ënalized system was actually imple-
mented.

4.1 Overview

Frontend (CLI) Frontend (HTTP)

Wikipedia Corpus

Storage Parser

Index

Extraction code

Language

Disambiguator

NER

Annotater (POS, Lemma)

Search words

Popularity Title similarity Detectors

Core

Dependency Injection Workspace management Utilities

Document model Text model (ConLL) Language abstraction

Jetty Web server Dev Terminal UI Evaluation Resource creator

Title Fulltext Surface form Popularity

Figure 4.1: Architectural overview

37

4. Architecture

Figure 4.1 shows an architectural overview of Nedforia. Every large block represents a
module in Nedforia, there are essentially 5 parts:

Frontend is the interface to the application and it provides two entry points: one via a Com-
mand Line Interface (CLI) and one web interface over the HTTP protocol. e CLI
provides access to offline methods such as index construction and initial import, these
are tasks that could be time consuming and needs to be executed offline. e web inter-
face provides search, a development terminal that allows users to query content within
the system and the actual interface to the disambiguator.

Disambiguator is the part which actually implements disambiguation, it is a small part be-
cause it relies on code mostly in Wikipedia corpus and language.

Wikipedia Corpus is the largest part and it contains all parser code, storage implementation
and index implementations for the Wikipedia import.

Language contains the language speciëc bits such as a NER provided by the Stagger compo-
nent (Robert Östling [24]).

Core provides everything else, and it covers the document model that will be described later
as well as a modiëed ConLL model from Peter Exner. e language abstraction basi-
cally provides the interfaces that needs to be implemented and they are all implemented
in the language.It also implements the dependency injector solution, however the con-
ëguration is implemented in the frontends and wikipedia corpus.

4.1.1 Document model
In order to store a Wikipedia page I needed to deëne a structure of how it should be stored. e
basic requirements was that it should support multiple languages, be able to assign properties,
attaching data of types that can be extended as development progressed.

e ërst document model contained an id, title, language, text, annotated text, page
type and wiki markup. is model was very hardwired to the Wikipedia model which made
it difficult to generalize when Wikipedia is not a requirement. is lead to revisions that
added support for multiple ëltered texts and annotated documents. I used the library Protocol
Buffers (protobuf) created by Google[25] to serialize1 and deserialize all data. e choice of
protobuf was rigidity, performance, and that messages can be extended with more ëelds in the
future. I could have used Java serialization but the fact that protobuf messages are shorter and
has better interoperability with other programming languages made protobuf a better choice.

The parts of the final document model
Id is a unique identiëer of a document, a 64 bit integer value.

Title of the document.

Uri is an unique identiëer, which was compatible with Wikipedia URLs.

Language is a ISO-631 identiëer for the language, 2 letters (“sv” for Swedish, “en” for En-
glish) or 2 letter language, and 2 letter region (“en-US” for American English).

1encode data structures into a storage format

38

4.2 Import

Properties is a dictionary of keys and values. Here, wiki page type was stored and its original
id as a string.

Entries could be described as a miniature ële-system where each entry is a ële that can be
serialized or deserialized by some handler. Every entry consists of three parts: path,
type and the raw data. e paths are similar to ordinary ëlepaths used in a UNIX
compatible environment e.g “/wiki/ast” which is the Abstract Syntax Tree (AST). e
use of ëlepaths made it simpler to group information.

Text is the ëltered content of the document, here multiple different parts can be stored by
an identiëer. By convention “main” is the core text, “bulletlist[3 digits]” are ëltered
versions of bulletlists and “template[3 digits]” are ëltered versions of templates. e
texts are stored as entries in the actual implementation.

Annotated documents or ConLL document which is the annotated versions of the ëltered
texts. ese annotated documents are stored in a format where you can assign multiple
properties to a token and arrange the tokens in sentences.

e entries can be extended by implementing a new handler. I used the same construction
myself to extend a generic document when writing an handler that could serialize and de-
serialize the AST tree created by the parser. e only requirement for a handler is that the
data types that the handler assigns must be unique otherwise a clash of formats could occur.
Unsupported entries are passed through and supported even if they can’t be deserialized. I
made this decision because it simpliëes the construction of an external reader, it only requires
a crude understanding of the model to actually be able to read and manipulate it without
destroying existing data. e only thing required when implementing a reader externally is
to have the protobuf deënition of the storage format.

4.2 Import
Figure 4.2 on the following page provides an overview of the import pipeline. It all starts with
a Wikipedia dump and the one I selected was the one created on 2013-02-25. e format is
compressed XML that uncompressed was 13.02 GiB. e dump contains raw wiki markup, a
time stamp of the last edit, and a namespace id that is deëned in a header. ese namespace ids
have a language dependent string attached to it. ese namespaces are language dependent.

To extract information from the Wikipedia dump I read the compressed ële directly and
feed the uncompressed data as a stream to a Streaming XML parser a Streaming XML parser
(StAX parser), e parser used was Woodstox [26] which appeared to be fast when reading
comparative tests of performance between different parsers [27] and it was easy to use in
my opinion. Loading the entire XML document i.e. the use of a DOM parser would be
impractical due the memory required. e Woodstox parser is a XML pull parser which
means that code has to tell the parser when to move forward instead of receiving handle
incoming events during parsing as in e.g. a SAX parser.

is output is then feed into a type classiëer that assigns a type to every page e.g if it is a
category, template or article. Because the header is language dependent a matching conëgu-
ration had to be provided in order to for a proper classiëcation to take place. Redirect pages
and disambiguation pages are not determined by looking at the namespace id instead they are

39

4. Architecture

...Input: Wikipedia
dump

.. Decompressor
(Bzip2)

.. XML Reader
(Woodstox)

.

.

Page type
extraction

.

.

Preprocessing.

.

Wiki markup
Parser

.

.

Filtering .

.

Output:
Document

......

AST

.

AST

.

Text

..

Compressed XML

.

Decompressed XML

.

Title, Date,
Namespace,
Wikimarkup

.

Raw Wikimarkup

.

Filtered Wikimarkup

.

Title, Date, Page type,
Raw Wikimarkup

Figure 4.2: Import pipeline

based on a string search of the wiki markup. Redirect pages are matched by looking if the
page starts with “#REDIRECT” or “#OMDIRIGERING” which is speciëc to the Swedish
version. Disambiguation pages are matched by looking for a speciëc template anchor that
exists in the pages, it is most commonly called “förgrening” or “gren” in the Swedish edition
which were the two matched. Stubs are matched by looking for used templates where the
template name ends with “stub”. Pages with a namespace id of 0 were assigned the Article
type.

All other type ids are called unknown if the title of the page does not begin with either
“Kategori:” (category) or “Mall:” (template) which again is speciëc to the Swedish version,
in the English edition they are called “Category:” and “Template:”.

Once a page has been read and classiëed it is put through a parser to generate ëltered text
that is used to extract links from and to display.

4.2.1 Wiki markup parser and AST tree generation
I searched for wiki markup parsers but I failed to ënd one that could be integrated into the
import. I did ënd one that worked in Java: Sweble [28]. Sweble fulëlled a subjective measure
of quality but the performance was not good so I ended up with building my own, that way
I got better performance and got full control.

e parser consists of two parts, a preprocessing stage and a deep parsing stage. All HTML
and math formulas are removed in the preprocessing step. Also, all escaped characters or entity
characters such as “&” (which corresponds to: “&”) and quote characters like “ ’ ’ ” are
converted into their proper Unicode representation before parsing. e preprocessing step
also makes sure that all links and templates are ended properly by automatically inserting
end symbols where needed. e algorithm uses the number of end symbols to determine the
nesting depth e.g. “[[[link 1]] [[link 2]]” becomes “[[link 1]] [[link2]]” and not “[[[link1]
[[link2]]”. is choice made most sense when evaluating real errors made by users. is

40

4.2 Import

algorithm makes sure that anything that follows an error is captured correctly. You could
say that the preprocessing step auto corrects fatal errors that would crash the main parser by
heuristically choosing a ëx.

e deep parser consists of two parts: a tokenizer2 and grammar logic. e tokenizer is
built using token lists and lexer rules3 deëned in the rule language used by JavaCC which
is hand tuned to accept any input and tokenize it. e full tokenizer is then produced by
JavaCC. JavaCC does produce a full parser but it is not used, only its tokenizer and lexer are
used. e grammar rules was instead programmed by hand. e reason behind this decision
was because I could not fully capture the structure and make it fault tolerant at the same time.
To use the grammar rules meant implementing full support or nothing and even that is very
hard. My hand programmed version can selectively ignore bits it does not understand without
failing. Creating a full compliant parser meant that it would most likely not be tolerant to
unexpected code written by Wikipedia users and accept incorrect wiki markup code in graceful
way.

e parser is top down recursive which means that it takes the full markup and iteratively
captures more and more ëne-grained details until the smallest detail has been found. I built it
using smaller parser functions that can handle different contexts. is could be e.g. when you
have found a link where the character “|” means to give an option, but in global context it is just
a character that should be included or just ignored. e fact that some tokens have different
meanings in varied contexts also contributed to the choice of building the parser by hand. All
rules were derived from best case scenarios by sampling Wikipedia articles, particularly the
cases that failed to parse instead of building a parser based on the user manual of how the
code should ideally be written. e AST is built directly by the parser functions which has
limited support for more complex scenarios. However, by conducting a second pass of the
AST I suspect that it would be possible to get the structure right.

This is the list of elements that the parser captures:
• Headers, with level (could be used to reconstruct the relation between paragraphs)

• Paragraphs of text and links merged together.

• Lists, which include both unordered and ordered lists

• Tables, rudimentary support, future work could extend this into a proper column and
cell structure

• Templates, with argument keys and values

• Links with target and options that are used e.g in miniature images

• Horizontal rules, i.e section dividers

e parser ignores indentations but does use it as a breaking rule when splitting up paragraphs.
From the tree that was created a main ëltered version was created that excluded bullet lists,
tables and template content. Filtered versions of template content and bullet lists was also

2a tokenizer is the part that splits incoming strings into logical parts. e.g “Sweden is a country” into
{Sweden, is, a, country} .

3a lexer is the part that ënds tokens by using a rule instead of constants e.g. sequence of numbers

41

4. Architecture

created to capture links because this signiëcantly increased the number of found links by
almost 3 times.

In the end a document is produced with an attached AST tree, ëltered versions of the text
and all links found in the wiki markup.

4.3 Indexing and storage
One of the largest issues I had was to ënd an indexing system that was simple and fast enough
and still capable of handling large amounts of data. I tested a variety of storage engines but
most failed for one reason or another. e conclusions presented here should be taken with
a grain of salt because I did not strive to write the most optimized code for every solution.
My goal was to construct a solution that was clean and simple and still get good performance
characteristics.

4.3.1 Requirements
Some requirements I had when selecting a storage solution was:

• Simple to use API, Java compatible

• Allow high concurrency, many threads (8, 16 or more) that was primarily reading

• Embeddable, not depending on a full server that must be maintained and run separately

• Handle datasets that has millions of rows or keys. Basically if the system can handle the
size of 100 million to 1 billion without problems then scaling is not a problem. is
requirement is difficult to pin down so it all comes down to testing a solution and see
if it is good enough.

Using any Relational Database Management Systems (RDBMS) was quickly ruled out because
they were not practical due to the common problem of slow interfaces. I needed something
that could process a large amount of simple (100 000 or more a second) questions from mul-
tiple threads. A RDBMS typically is connection orientated and execute statements making
thread usage cumbersome. SQLite is the fastest straightforward embedded RDBMS I know
of but the implementation I initially used: SQLite4java [29] which is single threaded and
even with prepared statements4 I could only get about 10 000 queries from Java answered a
second, but with a fully Java based solution like the database engine BerkleyDB [30] I ended
up with performance in the range of 250 000 - 300 000 questions answered a second on the
same data . ese results are heavily dependent on the input data making general conclusions
hard, suffice to say: BerkleyDB worked good enough for my purposes. If a faster solutions
is needed I would have to resort to memory based solutions which is heavily limited to the
available RAM of the computer it runs on.

I tested other solutions such as Neo4j [31] and OrientDB [32]. Neo4j showed promise
when using it with transactions as it was designed but when doing batch inserts which pro-
vided the maximum performance it failed. e frustrating bit is that I got problems with both
solutions only when scaling up by using a larger data set. is made it hard to write down a

4SQL based queries that has been compiled to minimize overhead

42

4.4 Resources

bug report because it worked in smaller test cases I wrote. It could be that I misunderstood
some aspect of how the solutions should have been used.

4.3.2 Indexing
I selected Lucene [33] as my fulltext indexing engine. Lucene is very well documented, mod-
ular, has great community support and can handle large amounts of data. e only drawback
I found was that Lucene primarily uses hashtables meaning that a sorted list could not be ex-
tracted without doing the sorting in memory which would defeat the purpose. A sorted list is
useful in some cases such as quickly ruling out that a sequence of tokens exists in a dictionary.
e rule of thumb was that Lucene could provide quick answers for speciëc questions. When
I needed a sorted list I then resorted to BerkelyDB. BerkleyDB uses a variant of a binary tree
which is optimized for hard drive storage.

4.3.3 Storage
Most of the time the raw data was processed in a sequential fashion by the algorithms, oth-
erwise data was accessed randomly which depending on the type of hard drive could be very
slow. e absolute fastest way to do sequential read is to naturally store the information in se-
quential order on the disk. I created a custom solution in the end because I wanted something
simple, that supported multiple threads writing or reading (not both). I also did not have to
worry about supporting very memory-constrained systems which meant I could use 128 MB
for an intermediary buffer before writing it to the ële-system. I used a dedicated thread to do
all writing. When reading linearly I prefetched data i.e. read ahead before needing it.

e storage format is a sequential list of records where each record has a header with a
size deëned by a 32 bit integer and followed by stream of compressed data with that length.
I created a indexing ële parallel to the storage ële that is a list of longs (64 bits) so that you
instantly can ënd where a record is stored. I used a library called Snappy [34] to compress
the records and the records were a serialized version of the document model. I used snappy
because it provides a good tradeoff between processor usage, size reduction, compression and
decompression performance. In practice when using Snappy the overall size was reduced to
47,1% of the uncompressed size.

4.4 Resources
In Nedforia I created a concept that I call resources. ere are two types of resources: data and
computational. A data resource is basically some form of index, data storage or something
else that you can read from or write data to. A computational resource could be a resource
that generates statistics, does evaluations or more. An index that knows how to create itself is
both a data and a computational resource.

e basic requirement for a resource is that it has to be able to tell if it exists. For data
resources it must deëne how to open and close it, the open differs if it is a readable resource
or just a resource that writes. e computational resource must specify resources it depends
on and method that does creation and deletion. e fact that computation resources deënes
dependencies mean that Nedforia can check if the required resources exists and if they do
not and are computational, they are automatically created. In Nedforia e.g. the popularity

43

4. Architecture

dictionary that contains the mapping from entity to a popularity count is a computational
data resource because it knows how to create itself and allows reading of data from the index.

4.5 Annotation
e ëltered text that originated from the AST produced by the parser is annotated by us-
ing two components: Stagger and Maltparser. Stagger is a part of speech tagger created by
Robert Östling. Stagger provides automatic segmentation of sentences and it is trained on the
Stockholm-Umeå Corpus (SUC) version 3.0 with additions such as the Swedish morpholog-
ical lexicon SALDO [24]. Stagger scored an 96.4% accuracy when trained and tested against
SUC 2.0 and 96.57% against SUC 3.0. [24].

Maltparser is a dependency parser that creates a projective tree and gives a structure of how
words relate to each other and was also trained on SUC. Maltparser got a F-measure score of
84% on Swedish in 2007 [35]. I used a model from 2012 downloaded from Maltparsers main
page[36] which I did not ënd any updated scores for.

Maltparser [36] can be used to ënd noun and verb phrases as described in section 2.1.3
on page 15. e product of these two components is a document with sentences and tokens
with attached properties such as surface form, lemma form, part of speech tags, dependency
relations and morphological features such e.g. if the word is in singular form.

4.6 Front end
e front end has two interfaces: one that is accessible from a web browser and one that is
accessible by invoking Nedforia from the command-line.

4.6.1 Command line
is is were most heavy work is invoked from. ere are 2 main commands: import, create.
Import does what it sounds like, it does a full import from a Wikipedia dump. is is done
by specifying where it is, and where the workspace shall be located.

Create is the most used function after import, it allows you to specify a goal and the
dependencies for that goal is automatically found and computed from code if possible. A
typical goal could be annotation which performs annotation of all wiki pages. Annotation
needs links to be resolved and this will be done before annotation begins. e create command
ëts a rudimentary deënition of a build system.

To ënd resources that could be created from command-line I used reìection with the
help of the library “reìections” [37] version 0.9.9-RC1 and it simpliëed the implementation
of new commands. e reìection library was integrated with my build system which was
Maven [38] and it has a plug-in that scans the project and creates a ële containing all types
that exists in the project. is mitigates some of the drawbacks that exists in the Java reìection
implementation. For the command-line I used the library Commons CLI [39] to format and
parse the command line, a simple and powerful library that was enough for my needs.

44

4.6 Front end

4.6.2 Web interface
is is were most of the power from using Nedforia comes. e web interface was built using
Jetty [40] version 9 which is a web server that was embedded as a module inside Nedforia in
conjunction with the Spring Framework [41]5 version 3.2.2.

From the Spring Framework I used a module that provides the MVC6 pattern which
simpliëed the construction of the server side code and JSP7 as the view engine. e imple-
mentation of MVC in Spring Framework uses reìection to ënd controllers and know when
a particular request handler should be called. To add support for a new URL it is as simple as
adding a new java method and annotating it with the annotation type “RequestMapping”.

All this combined results in quick and easy development of web applications on the java
platform. e only downside is that there was a lot of dependencies. It took some painstaking
effort to make it all work initially. Finding the right dependencies to use and assembling the
right set of libraries that work together was not easy. Searching the Internet for solutions
resulted in that this was eventually sorted out.

User Interface
ere are three main parts: search functionality, document browsing and a web based ter-

minal.

e search functionality enables the user to quickly ënd an indexed document and it was
implemented using Lucene as the indexing engine. You can search via title, fulltext
and type of document (wiki page type) in the user interface. e ranking was done by
Lucene.

Document browsing displays the data computed and data extracted from a Wikipedia page.
e information is in-links, out-links, entities, what entries exists in the document,
the original raw wiki markup text, the AST tree and the ëltered text with highlighted
named entities as determined by Staggers NER.

Web based terminal is most likely the most important part of the user interface when doing
prototyping and development. It is a web based command-line interface that allows
the user to enter commands that runs code on the server side and returns the result to
the browser. e output could be a table, HTML, text or formatted text. is allows
inënite possibilities to get back powerful presentations of results from the server side
code. e server side code uses java reìection to ënd commands and adding a new
command to the terminal is as simple as adding a new method in a class. ere is also
a state object that is managed by the browser, this allows to execute commands that
operates on speciëc input data. e terminal uses the JavaScript “jQuery terminal”
on the client that was modiëed to accept HTML output as a result. ere was also
JavaScript code written to do asynchronous communication with the server that used
JSON to transmit its content.

5It is a collection of libraries that simpliëes web development on the Java platform.
6Model-View-Controller (MVC) is a architectural design pattern that is commonly used when designing

user interfaces. It provides a good separation of concerns.
7JSP is a markup language that combines server side code (that could output dynamic data) with HTML

code

45

4. Architecture

e design is based on a template from Twitter called Bootstrap [42], it provided a clean
design and was easy to work with.

46

Chapter 5

Evaluation

In this section, a presentation of how the results were computed will be provided along with
the evaluation methods used.

5.1 Gold standard
All evaluations are based on a gold standard which deënes what the correct answers should
be. For Swedish I could not ënd any gold standards on named entity disambiguation using
Wikipedia as a source of knowledge. e gold standard was therefore created by me using
manual annotation.

I took in total 10 articles from Aftonbladet, Dagens Industri, Dagens nyheter, Helsing-
borgs Dagblad, IDG, NyTeknik, Svenska Dagbladet. In order to get a representative result I
took articles of varying topics, the topics were ordinary news, sport news, tech news, economic
news and an article about culture.

Annotation procedure e articles found were hand annotated in the following
way:

1. I took the raw text and made Nedforia annotate it but not disambiguate. is produced
a ConLL ële that contained all sentences and tokens, it did however contain Staggers
NER result.

2. Using an editor that I built and began to mark all Named Entities I could ënd by hand.
e tool only showed the tokens and sentences, you could hover and see the speciëcs
of each token but I ignored those details. Some examples of named entities I looked
for was persons, organizations, countries and so on. I did not follow the guidelines of
Wikipedia that the ërst concept or named entity found in a text should be linked but
not the ones that followed, I marked them all. All choices here arguably impacts the
result, there will be a deeper discussion of this in section 7.1.

47

5. Evaluation

3. I then attempted to resolve each named entity I had marked to a Wikipedia article. I
used title search, fulltext search and Google to make sure that it did exist in Wikipedia
and compared it with my dump.

4. Finally when I veriëed that the named entity existed I added the entity URL in a format
my system understands. is is equal to the Wikipedia URL and if there was no hit the
hand-annotated named entity was removed.

5.2 Implementation
e system tries to map sequences of tokens in an input text to an article. A link is a sequence
of tokens and only when this sequence fully matches a gold link will it be considered as a
possible match.

e possible match is checked against the gold standard to see if it points in the correct
direction otherwise it will be determined as incorrect. To use the theoretical framework of
precision and recall: a relevant document is a link that points to the correct article and matches
the exact same tokens as the gold one and a retrieved document is a link the system mapped.

Concretely, I then computed precision and recall as follows:

precision =
|{found gold link and it was correct}|

|{found links}|
(5.1)

recall =
|{found gold link and it was correct}|

|{gold links}|
(5.2)

48

Chapter 6

Results

6.1 Statistics
It is hard to describe the contents of my dataset because it is large and I do not have the time
to read through it all, it is simply too big. Because of this reason I will here present some
statistics extracted from the dataset I used (2012-02-25 dump) and give some remarks about
the results.

Type Count Relative freq.
Pages in dataset 1 690 600 100.0%
Articles and stubs 815 056 48.2%
Redirects 632 686 37.4%
Other (Template, Categories, Administrative pages, and more) 225 321 13.3%
Disambiguation pages 16 396 0.97%
Articles and stubs without links 1 141 0.067%

Table 6.1: Page statistics

In table 6.1 you can see the distribution of page types, one thing that stands out is that
the number of redirects is high compared to the number of articles. is makes a case for that
redirects are a good source for alternative names. ere are also few articles and stubs with
absolutely no links which means that most articles will have a popularity value.

All links was extracted from the AST and not the ëltered text. e links used was however
extracted from annotated text in articles and stubs. e results are presented in table 6.2
where it can be seen that roughly half of all the found links are used. e rest lies in primarily
templates which I ignored.

49

6. Results

Type Count Relative freq.
Links found 20 392 129 100.0%
Links resolved 18 612 117 91.3%
Links in articles and stubs 19 738 403 96.8% (100%)
Links resolved in articles and stubs 18 079 921 88.6% (91.6%)
Links used in articles and stubs 10 593 781 52.0% (53.7%)

Note: Numbers in parenthesis is relative to articles and stubs

Table 6.2: Link statistics

6.2 Detection
e ërst part of disambiguation is to ënd suitable candidates to disambiguate which is the task
of the detector. Nedforia has two primary indices for doing this: the title index and the title +
anchor + disambiguation index. Both are surface form indices in that they look at normalized
tokens, but they do work a little differently. e title index uses a normalized form that is
provided by Lucene and the larger index uses lower case lemma forms provided by in this case
Stagger.

Type Count
Search terms in title index 1 441 117
Search terms in title + anchor + disambiguation index 1 835 117

Table 6.3: Index statistics

A search term is a single sequence of tokens that has been used in e.g. a title or anchor text.
I did not expect that the number of search terms to be only be 27.3% more when compared to
the smaller title index in table 6.3. e reason for this is that the number of anchor texts was
more than 7 times as great as the number of article, stub, disambiguation and redirect page
titles combined. I hypothesized that the anchor texts contained signiëcantly more variants
than the page titles but this proved to be false when reading the actual results. e results
arguably proves that most anchor texts corresponds to the page title.

Detection algorithm Recall Precision F1-score
Title 83.58% 19.40% 31.49%
Title + Anchor texts + Disambiguation page titles 86.57% 19.21% 31.44%
Language NER (Stagger in this case) 72.14% 81.46% 76.52%

Table 6.4: Detection method results

For the detectors the ënal results are in table 6.4 and it shows how well the detectors ënd
named entities when compared to my hand annotated test set. It is easy to see that you lose
a lot of precision to get higher recall when using texts that is used to refer to an entity. Only
when using a real NER does precision go up. It is interesting to see that the precision is always
at the expense of recall, however this is a small test set and hard to general conclusions from.

50

6.3 Disambiguation

6.3 Disambiguation
I computed results for all 6 combinations shown in tables 6.6 and 6.7, the summary of the
results are presented in table 6.5. From the results, using a real NER and popularity gives the
best results at the expense of recall. It is also clear that popularity is a good metric as can be
seen since it consistently produces a better result compared to title similarity.

When using one of the surface form indices and popularity recall is good but precision is
low. e reason for this is that it is over linking, it treats even common words as references to
article pages which is an indication that many articles in Wikipedia does not describe a named
entity.

F1-scores Title similarity Popularity
Title 11.81% 20.81%
Title + Anchor texts + Disambiguation page titles 11.74% 26.02%
Language NER (Stagger) 28.50% 66.49%

Table 6.5: Disambiguation f1-scores summary

Detector Recall Precision F1-score
Title 31.34% 7.27% 11.81%
Title + Anchor + Disambiguation titles 32.34% 7.12% 11.74%
Language NER (Stagger) 26.87% 30.34% 28.50%

Table 6.6: Title similarity

Detector Recall Precision F1-score
Title 55.22% 12.82% 20.81%
Title + Anchor + Disambiguation titles 71.64% 15.89% 26.02%
Language NER (Stagger) 62.68% 70.78% 66.49%

Table 6.7: Popularity

51

6. Results

52

Chapter 7

Discussion

7.1 Evaluation
e major evaluation error sources are:

• Limited test set of only 201 named entities from 10 news articles

• e selection articles

• e way I determined that a named entity exists and could be disambiguated.

ese three error sources could be mitigated by increasing the size of the test set or asking more
persons to create a hand annotated test set. However, I could not ënd any publicly available
named entity test set for Swedish on the internet. is made hand annotated by myself the
only viable option for an evaluation.

When selecting the articles, I tried to the best of my ability to create a balanced test set
that tested the good and the bad of Nedforia. Nevertheless, from an analytic standpoint I
could subconsciously have affected the selection despite my best intentions. You could argue
that a solution to this problem would be to make the selection automatic e.g. take the top
article from multiple sources. But in order for this method to be successful I would argue that
the number of articles you have to gather must be large. e size increases the chances for the
test set to be balanced which due to time constraints was not possible.

Another important source of error is that I used title search and Google to determine if a
named entity could be resolved to an entity within Wikipedia. is method has its drawbacks
for the reason that it is dependent on normalized string matches in either the text or the
title of an article. Despite this drawback I would argue that the method is good enough. In
my opinion, no method could give a 100% deënitive answer unless someone read it all and
manually veriëed it.

53

7. Discussion

7.2 Wikipedia
e Swedish edition contained as can be seen by table 6.1 on page 49 a large amount of
redirects. ese redirects in combination with anchor texts provided a good source to connect
words in a text to a potential candidate. e recall was the highest when detecting named
entities by using anchor texts, redirect titles and article titles. It could have been better if I
dropped the requirement that it had to start with a noun, an example of this is “Vita huset”
which in English is “White House”, “Vita” is not a noun however the entire sequence is
a named entity. e Stagger NER detected “Vita huset” correctly but its database did not
contain many newer articles which is why the recall dropped. In addition, as can be seen by
the results recall was always at the cost of precision.

A large untapped resource for disambiguation was the category system. It provides a way to
semantically group relevant articles together. However the categories are not always consistent.
Take the idea of turning all name pages such as “Mats” into a disambiguation page. One way
of ënding these is by looking at categories because “Mats” belongs to a category “Svenska
mansnamn” which has the top category of “Förnamn”. But in this top category articles such
as “Tilltalsnamn”, “Förnamn” are also found which are semantically related but they should
not be classiëed as a disambiguation page. In this case there are only few exceptions but it
does require some manual effort in order to achieve high quality.

7.3 Data mining
e part that affects the performance of the system the most would be how data is gathered
and processed. If the information could not be extracted, the system would not be able to
ënd it later.

7.3.1 Page classification
I used a heuristic to classify a page as described in section 4.2 on page 39. As I stated before
pages that deal with names such as “Mats” are not classiëed as disambiguation pages. ey
contains many links to speciëc targets, and has a small hint of differences between the persons
which makes it useful for disambiguation. I speculate that the reason is that “Mats” is a generic
name which has a history with a meaning which results in that it do not ët the strict deënition
of a disambiguation page. However, for the problem of Named Entity Disambiguation it
would be preferable to classify it as a disambiguation page. ese kinds of gray cases where it
is not a disambiguation page but it would have been desirable to be classiëed as such requires
some amount of manual effort which is language speciëc.

Category pages, template pages and other administrative pages could reliably be classiëed
by only looking at the title, this had to do with the fact that they must belong to a namespace
which is separated by a colon e.g. “Kategori:Svenska mansnamn”. Disambiguation pages was
classiëed by looking for speciëc templates but there are more variants than those I searched
for which could impacted the end result.

54

7.4 Resources for the Swedish language

7.3.2 Parser
e parser that I built is not in any way fully compliant with the wiki markup, it basically
ignores any bit it does not understand and excluded math formulas and HTML code early
which could contain important information. ere was a parser that claimed high precision
and that was Sweble [28] which I ruled out due to being slow. e quality of the parser and
the resulting AST does contribute to the end result because I harvest all ëltered information
from the AST. I recognized that templates are not good candidates for text but they do contain
interesting links, one example is an episode summary of a TV series where the use of a template
is common. e infoboxes also often link to other persons and capturing these was important.
I started with just links in the main text but later extending it to use bullet lists and templates
which resulted in that about 3 times as many links were found.

Including ëltered copies of templates and bullet lists into the main text would also mean
the introduction of unwanted noise. e main text should ideally be separated paragraphs
containing only sentences. If you include ëltered templates and bullet lists it would distort
this paragraph separation and also introduce elements which is not natural text. is was
solved by separating each bullet list and template into its own ëltered part, in that way I could
easily differentiate between the noise and good parts.

ere was also a need to balance the amount of information extracted and the amount of
information to ignore. Nedforia uses bullet lists, template content, and paragraphs at the top
level, to harvest links from. Tables were initially completely ignored but contained important
information such as bullet lists so I built partial support to parse tables into Nedforia. It should
be relatively easy to create a good AST structure for the tables by doing a second processing
pass of the tree.

7.4 Resources for the Swedish language
As mentioned earlier, I could not ënd any test data for named entity disambiguation for
the Swedish language. A standardized comparison between different works arguably requires
the access of an impartially and publicly available created gold standard for named entity
disambiguation. e prior works I went through used different datasets to evaluate their
methods. e fact that they did not use a coherent test set meant that I had a hard time
drawing any far reaching conclusions from them, other than a subjective feeling that this
method would work well and the results seem to conërm that.

However, for the Swedish language there does exists large hand annotated corpora and
one of them is: Stockholm Umeå Corpus (SUC). e corpora contains part of speech tags,
syntactic, and morphological features for a variety of texts and it is balanced, meaning it
contains a selection from a variety of sources in order to cover most aspects of the language.
is corpus was essential in order to create high quality part of speech taggers like Stagger.
Nevertheless, there is one dataset that is largely missing for Swedish and that is an equivalent
of WordNet that is easily accessible and is of high quality. A equivalent resource like WordNet
could provide generalizations of words and provide semantic connection between words and
much more.

55

7. Discussion

7.5 Detection
ree methods were tested and only the real NER provided reasonable precision. e reason
that the other two methods got poor precision was that they found too much. e root cause
is that Wikipedia contains many articles that are not a named entity such as articles about
almost every punctuation mark there is, numbers, years, etc.

e ërst method that from the beginning only used Lucene generated unrelated results,
which had to do with its normalization functions that strips of suffixes and then removes
very common words. When searching for “Danmark” the two top hits are in order “Hans av
Danmark”, and “Danmark”. e words “Hans” (name) and “av” (eng: of) will be removed
due to that they are very common i.e. stop words. is is due to “Hans” is a name in this
context and not his as it means in another context.

One way to improve this would be to use heuristics to determine if an article is a named
entity or not based on its title and content. Some methods to do this were used in previous
works as can be read in section 2.5 on page 20. However, while these heuristics might work
well for English, Swedish is a little different. An example of this is the named entity “Sveriges
regering” with the English equivalent article “Government of Sweden”. is named entity
consists of multiple tokens but only the ërst token “Sveriges” has a capital letter and not the
latter which would make the heuristics fail to detect this as a named entity. Nevertheless,
many names would work such as “Göran Persson”.

One approach to mitigate these drawbacks could be to combine heuristics and an entity
catalog such as YAGO. Here, YAGO would be the gold standard dictating which articles are
named entities and the cases when YAGO do not contain them, the heuristics would decide.
In any case, having access to a good NER is crucial for precision. In addition, in order to get a
good recall the entity catalog should also be somewhat up to date and capture many different
topics, something Wikipedia primarily provides.

Another way that might improve detection is to implement coreference, which means to
connect words in the text that refers to the same entity. is is helpful because you can then
gather multiple presentations of the same entity such as abbreviations and other ways that
you could refer to an entity. is would only work if articles from the start were assigned the
Named Entity status.

7.6 Disambiguation
Title similarity was bad in most cases as it tries to match strings approximately and give

scores after it. It meant that an close match always produced the best results. I used
the same cost for all characters and this could be improved by using statistics of letters
and adjusting the costs to match the statistical weights. However, I do not believe that
this method should ever be used because it generates too many false hits. e biggest
issue is that when you have two candidates with equal scores the ranking fails. It then
requires some other method to differentiate like comparing the text via a method such
as cosine similarity.

Popularity performed as expected, however it had a large drawback in that it will never ënd
unpopular articles. Popularity is good for when you have something that almost always
only refers to one single thing. But if there is a more unclear division of popularity

56

7.6 Disambiguation

or if the popularity is low uncertainty would be high. Should the system ever hope to
match human ability to disambiguate, then more data has to be put into consideration
when ranking. Popularity could be improved by using commonness statistics. One
example when popularity fails due to not taking into account how often a particular
surface form refers to an candidate is the word “stad” which means city. e correct
article is “Stad” (city) but “Frankrikes kommuner” which in English the Municipalities
of France will be the one selected. is was very strange at ërst, but I found that in a
few anchor texts that refers to “Frankrikes kommuner” it had been called just “stad”.
Commonness would most likely have solved this issue.

Context similarity is another way to improve previous methods described. By looking at the
actual text, anchor texts, use key phrases, categories and compare it against the input
text a greatly improved disambiguator could be created. e main issue with context
similarity is that the quality is dependent on how the context is modeled and there
exists many ways to model a context as can be seen by previous work. Basically what
context similarity gives is a measure of how compatible a candidate is compare to an
input text, it would be helpful when popularity is uncertain or when popularity needs
to be suppressed.

Coherence could be used as a way to ensure overall compatibility of named entity matches
but it is based on the assumption that the input text is homogenous. I would also
describe it as a way to model a global context and make sure that the named entities
found ëts that context. One method would be to compare the semantic relatedness
between all candidates and reevaluate candidates that has poor semantic relatedness.
is method however quickly becomes unfeasible if the number of candidates is large, so
approximations must be used to solve the combinatorial explosion that could otherwise
occur.

57

7. Discussion

58

Chapter 8

Conclusions

8.1 Future work
Improving the disambiguation and testing out heuristics for named entity detection are big
candidates for future work. e disambiguation could be improved by using context similarity
measures primarily by either implementing cosine similarity or some other method that work
better. Another improvement would be to use an entity catalog such as YAGO to dictate
detection and use heuristics to extend the YAGO catalog. Given some manual effort that is
speciëc to Wikipedia I suspect that you could greatly improve extraction of some types of
information.

Another thing which is important in order to scale up Nedforia is to implement a storage
solution that works in a clusters such as when you use Hadoop [43]. Implementation of more
languages such as English would be highly desirable in order to compare methods against the
English language.

8.2 Summary
Much time and effort went into the technical and practical issues of solving the core problem
of this thesis. is meant that more advanced methods could not be tested because there
was little time to do that. I proved that it is possible to create a named entity disambiguator
for the Swedish language using simple methods. e size and scope of Wikipedia presented
some unique challenges and I found out that simple and solid solutions worked best. e
ënal F1-score of 66.49% is nothing spectacular but not surprising considering the method
used. Subjectively the methods that ënd potential candidates from a given string works sur-
prisingly well and can be conërmed by looking at the recall ëgures. ere is a clear path for
improvement and a foundation that hopefully will accelerate future work.

59

8. Conclusions

60

Terminology

API
Application Programming Interface, A deëned interface that speciëes how software
modules communicate with eachother. 42

AST
Abstract Syntax Tree is a high level abstraction of how a bit of source code is writen. It
can be used to extract expressions in the case of programming languages and in the case
of wiki markup: links, paragraphs and more. 39, 41, 42, 44, 45, 49, 55

BOW
Bag of Words is a class of methods that operates on a collection of tokens in some way.
Something that distingues BOW methods is that they do not need to understand what
the token mean or what is semantically related to it. 24

DOM
Document Object Model is an API standard deëned by W3C to access contents of e.g.
XML, it typically has the entire document loaded in memory. 39

HTML
HyperText Markup Langauge is the language used to deëne content in web pages. 17,
40, 45, 55

JSON
JavaScript Object Notation is compact text based format which is used to serialize and
deserialize javascript objects. 45

JSP
Java Server Pages is a mix of HTML code and server side code for web development.
45

NED
Named Entity Disambiguation is about the automatic identiëcation of a real-world
reference to a given string. 21

61

Terminology

NER
Named Entity Recognizer is a detector for named entities, it detects things like names,
organizations, country names and so on. 34, 38, 45, 47, 50, 51, 54, 56

NLP
Natural Language Processing is the disciplin of processing natural language that humans
use to communicate with eachother. 11, 13–15

RDF
Resource Description Framework is a way to attach metadata to web page or other
sources. Examples of metadata could be when a page is created. In the case of an entity
catalog such as YAGO it could be when a person has been born. 18

URI
Uniform Resource Identiëer is a way to identify a resource of some kind. An example
of an URI could be a URL, URL extends with information about how you can retrieve
a resource. 18

URL
Uniform Resource Locator is commonly known as a web address. 38, 45, 48

XML
eXtensible Markup Language is a hierarchical text based storage format that is portable
and easy to read. 18, 39

YAGO
Yet Another Great Ontology is a knowledge database that semantically connects entities
such as persons and deënes relations between them. 18, 19, 56, 59

62

Bibliography

[1] IBM. IBM Watson. 2011. Last accessed: 2013-11-10. URL: http://www-03.
ibm.com/press/us/en/presskit/27297.wss.

[2] Wikipedia. Statestik. http://sv.wikipedia.org/wiki/Wikipedia:
Statistik, 2013. Last accessed: 2013-11-10.

[3] MediaWiki. Welcome to MediaWiki.org, 2013. Last accessed: 2013-10-13. URL:
http://www.mediawiki.org/wiki/MediaWiki.

[4] e PHP Group. PHP: Hypertext processor, 2013. Last accessed: 2013-10-13. URL:
http://www.php.net/.

[5] Wikipedia. Wiki Markup, 2013. Last accessed: 2013-11-10. URL: http://en.
wikipedia.org/wiki/Help:Wiki_markup.

[6] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: A nucleus for a web of open data. In e semantic web, pages
722–735. Springer, 2007.

[7] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World Wide Web, pages
697–706. ACM, 2007.

[8] W3C. Resource Description Framework (RDF). Last accessed: 2013-11-10. URL:
http://www.w3.org/RDF/.

[9] DBpedia. About, 2013. Last accessed: 2013-11-10. URL: http://wiki.
dbpedia.org/About.

[10] DBpedia. DBpedia 3.9 downloads, 2013. Last accessed: 2013-11-10. URL: http:
//wiki.dbpedia.org/Downloads39.

[11] DBPedia. DBpedia Data Set Statistics, 2013. Last accessed: 2013-11-10. URL: http:
//wiki.dbpedia.org/Datasets/DatasetStatistics.

63

http://www-03.ibm.com/press/us/en/presskit/27297.wss
http://www-03.ibm.com/press/us/en/presskit/27297.wss
http://sv.wikipedia.org/wiki/Wikipedia:Statistik
http://sv.wikipedia.org/wiki/Wikipedia:Statistik
http://www.mediawiki.org/wiki/MediaWiki
http://www.php.net/
http://en.wikipedia.org/wiki/Help:Wiki_markup
http://en.wikipedia.org/wiki/Help:Wiki_markup
http://www.w3.org/RDF/
http://wiki.dbpedia.org/About
http://wiki.dbpedia.org/About
http://wiki.dbpedia.org/Downloads39
http://wiki.dbpedia.org/Downloads39
http://wiki.dbpedia.org/Datasets/DatasetStatistics
http://wiki.dbpedia.org/Datasets/DatasetStatistics

BIBLIOGRAPHY

[12] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. Yago2:
A spatially and temporally enhanced knowledge base from wikipedia. Artiícial In-
telligence, 194(0):28 – 61, 2013. URL: http://www.sciencedirect.com/
science/article/pii/S0004370212000719, doi:http://dx.doi.
org/10.1016/j.artint.2012.06.001.

[13] Max-Planck-Institut Informatik. YAGO2s: A High-Quality Knowledge Base,
2013. Last accessed: 2013-11-10. URL: http://www.mpi-inf.mpg.de/
yago-naga/yago/index.html.

[14] Nancy Chinchor. Muc-4 evaluation metrics. In Proceedings of the 4th conference on
Message understanding, MUC4 ’92, pages 22–29, Stroudsburg, PA, USA, 1992. Asso-
ciation for Computational Linguistics. URL: http://dx.doi.org/10.3115/
1072064.1072067, doi:10.3115/1072064.1072067.

[15] Razvan Bunescu. Using encyclopedic knowledge for named entity disambiguation. In
In EACL, pages 9 – 16, 2006.

[16] Silviu Cucerzan. Large-scale named entity disambiguation based on Wikipedia data.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 708
– 716, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL: http://www.aclweb.org/anthology/D/D07/D07-1074.

[17] David Milne and Ian H. Witten. Learning to link with wikipedia. In Proceedings of
the 17th ACM conference on Information and knowledge management, CIKM ’08, pages
509–518, New York, NY, USA, 2008. ACM. URL: http://doi.acm.org/10.
1145/1458082.1458150, doi:10.1145/1458082.1458150.

[18] Xianpei Han and Jun Zhao. Named entity disambiguation by leveraging wikipedia
semantic knowledge. In Proceedings of the 18th ACM conference on Informa-
tion and knowledge management, CIKM ’09, pages 215 – 224, New York, NY,
USA, 2009. ACM. URL: http://doi.acm.org.ludwig.lub.lu.se/10.
1145/1645953.1645983, doi:10.1145/1645953.1645983.

[19] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred
Pinkal, Marc Spaniol, Bilyana Taneva, Stefan ater, and Gerhard Weikum. Robust
disambiguation of named entities in text. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11, pages 782 – 792, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics. URL: http://dl.acm.
org/citation.cfm?id=2145432.2145521.

[20] Google. Guice (version 3.0), 2011. Last accessed: 2013-11-10. URL: https://
code.google.com/p/google-guice/.

[21] Conll-x shared task: Multi-lingual dependency parsing. Last accessed: 2013-11-09.
URL: http://ilk.uvt.nl/conll/.

64

http://www.sciencedirect.com/science/article/pii/S0004370212000719
http://www.sciencedirect.com/science/article/pii/S0004370212000719
http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2012.06.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2012.06.001
http://www.mpi-inf.mpg.de/yago-naga/yago/index.html
http://www.mpi-inf.mpg.de/yago-naga/yago/index.html
http://dx.doi.org/10.3115/1072064.1072067
http://dx.doi.org/10.3115/1072064.1072067
http://dx.doi.org/10.3115/1072064.1072067
http://www.aclweb.org/anthology/D/D07/D07-1074
http://doi.acm.org/10.1145/1458082.1458150
http://doi.acm.org/10.1145/1458082.1458150
http://dx.doi.org/10.1145/1458082.1458150
http://doi.acm.org.ludwig.lub.lu.se/10.1145/1645953.1645983
http://doi.acm.org.ludwig.lub.lu.se/10.1145/1645953.1645983
http://dx.doi.org/10.1145/1645953.1645983
http://dl.acm.org/citation.cfm?id=2145432.2145521
http://dl.acm.org/citation.cfm?id=2145432.2145521
https://code.google.com/p/google-guice/
https://code.google.com/p/google-guice/
http://ilk.uvt.nl/conll/

BIBLIOGRAPHY

[22] Wikipedia. Wikipedia Dump (2013-02-25), 2013. Last accessed: 2013-
11-10. URL: http://dumps.wikimedia.org/svwiki/20130225/
svwiki-20130225-pages-articles.xml.bz2.

[23] Robert Östling. Stagger – e Stockholm Tagger, 2013. Last accessed: 2013-10-
13. URL: http://www.ling.su.se/english/nlp/tools/stagger/
stagger-the-stockholm-tagger-1.98986.

[24] Robert Östling. Stagger: A modern pos tagger for swedish. 2012.

[25] Protocol Buffers - Google’s data interchange format (Version 2.5.0). Last accessed: 2013-
11-09. URL: https://code.google.com/p/protobuf/.

[26] Codehaus Foundation. Woodstox - high-performance XML processor (version 4.2.0),
2013. Last accessed: 2013-11-10. URL: http://woodstox.codehaus.org.

[27] Eduardo Rodrigues. A comprehensive XML processing benchmark. 2008. Last
accessed: 2013-11-10. URL: http://java2go.blogspot.se/2008/04/
comprehensive-xml-processing-benchmark.html.

[28] Open Source Research Group at Friedrich-Alexander-Universität Erlangen-Nürnberg.
Sweble wikitext components, 2011. Last accessed: 2013-11-10. URL: http:
//sweble.org/projects/swc/.

[29] ALM Works Ltd. sqlite4java (Version 0.282), 2012. Last accessed: 2013-11-10. URL:
https://code.google.com/p/sqlite4java/.

[30] Oracle. Oracle berkeley db java edition (version 5.0.73), 2013. Last accessed:
2013-11-10. URL: http://www.oracle.com/technetwork/products/
berkeleydb/overview/index.html.

[31] Neo Technology, Inc. Neo4j (Version 1.9.4, Beta 2.0.0-M3), 2013. Last accessed:
2013-11-10. URL: http://www.neo4j.org/.

[32] Orient Technologies LTD. OrientDB (Version 1.3), 2013. Last accessed: 2013-11-10.
URL: http://www.orientdb.org/.

[33] e Apache Software Foundation. Lucene (Version 3.6.2, 4.2), 2013. Last accessed:
2013-11-10. URL: http://lucene.apache.org/.

[34] Google. Snappy (Version 1.1.0-M3), 2013. Last accessed: 2013-11-10. URL: https:
//code.google.com/p/snappy/.

[35] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler,
Svetoslav Marinov, and Erwin Marsi. Maltparser: A language-independent system for
data-driven dependency parsing. Natural Language Engineering, 13(2):95–135, 2007.

[36] Johan Hall, Jens Nilsson, and Joakim Nivre. Maltparser. Last accessed: 2013-11-10.
URL: http://www.maltparser.org/.

[37] Reìections (Version 0.9.9-RC1), 2013. Last accessed: 2013-11-10. URL: https:
//code.google.com/p/reflections/.

65

http://dumps.wikimedia.org/svwiki/20130225/svwiki-20130225-pages-articles.xml.bz2
http://dumps.wikimedia.org/svwiki/20130225/svwiki-20130225-pages-articles.xml.bz2
http://www.ling.su.se/english/nlp/tools/stagger/stagger-the-stockholm-tagger-1.98986
http://www.ling.su.se/english/nlp/tools/stagger/stagger-the-stockholm-tagger-1.98986
https://code.google.com/p/protobuf/
http://woodstox.codehaus.org
http://java2go.blogspot.se/2008/04/comprehensive-xml-processing-benchmark.html
http://java2go.blogspot.se/2008/04/comprehensive-xml-processing-benchmark.html
http://sweble.org/projects/swc/
http://sweble.org/projects/swc/
https://code.google.com/p/sqlite4java/
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.neo4j.org/
http://www.orientdb.org/
http://lucene.apache.org/
https://code.google.com/p/snappy/
https://code.google.com/p/snappy/
http://www.maltparser.org/
https://code.google.com/p/reflections/
https://code.google.com/p/reflections/

BIBLIOGRAPHY

[38] e Apache Software Foundation. Apache Maven (Version 3.0.5), 2013. Last accessed:
2013-11-10. URL: http://maven.apache.org/.

[39] e Apache Software Foundation. Apache Commons CLI, 2010. Last accessed: 2013-
11-10. URL: http://commons.apache.org/proper/commons-cli/.

[40] e Eclipse Foundation. Jetty (Version 9.0.2), 2013. Last accessed: 2013-11-10. URL:
http://www.eclipse.org/jetty/.

[41] GoPivotal, Inc. Spring Framework (Version 3.2.2), 2013. Last accessed: 2013-11-10.
URL: http://projects.spring.io/spring-framework/.

[42] Mark Otto and Jacob ornton. Bootstrap (Version 2.3.2), 2013. Last accessed: 2013-
11-10. URL: http://getbootstrap.com/2.3.2/.

[43] e Apache Software Foundation. Apache Hadoop, 2013. Last accessed: 2013-11-10.
URL: http://hadoop.apache.org/.

66

http://maven.apache.org/
http://commons.apache.org/proper/commons-cli/
http://www.eclipse.org/jetty/
http://projects.spring.io/spring-framework/
http://getbootstrap.com/2.3.2/
http://hadoop.apache.org/

	2013-40 Framsida
	Tom sida
	2013-40 Rapport
	Introduction
	Motivation
	Problem
	Input and output
	Formulation

	Scope
	Contributions
	Outline

	Background
	NLP Concepts
	Language
	Entities
	Semantics
	Cosine similarity

	Wikipedia
	MediaWiki
	Content

	Entity catalog
	Resource Description Framework (RDF)
	DBpedia
	YAGO

	Precision and Recall
	The F-measure
	Usage

	Previous work
	Context
	Categories and Tags
	Relevance
	Concepts
	Mention-Entity Graph
	Connections

	Implementation
	Framework
	Extensibility
	Creational patterns

	Multilingual
	Scalability
	Rich querying

	Entity detection
	Disambiguation
	Method A: Title edit distance
	Method B: Popularity

	Architecture
	Overview
	Document model

	Import
	Wiki markup parser and AST tree generation

	Indexing and storage
	Requirements
	Indexing
	Storage

	Resources
	Annotation
	Front end
	Command line
	Web interface

	Evaluation
	Gold standard
	Implementation

	Results
	Statistics
	Detection
	Disambiguation

	Discussion
	Evaluation
	Wikipedia
	Data mining
	Page classification
	Parser

	Resources for the Swedish language
	Detection
	Disambiguation

	Conclusions
	Future work
	Summary

	Terminology
	Bibliography

