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An Overview of Speech Synthesis and Recognition

1.1 Introduction

Speech processing comes as a front end to a growing number of language processing
applications. We already saw examples in the form of real-time dialogue between
a user and a machine: voice-activated telephone servers, embedded conversational
agents to control devices, i.e., jukeboxes, VCRs, and so on. In such systems, a speech
recognition module transcribes the user’s speech into a word stream. The character
flow is then processed by a language engine dealing with syntax, semantics, and
finally by the back-end application program. A speech synthesizer converts resulting
answers (strings of characters) into speech to the user. Figure 1.1 shows how speech
processing is located within a language processing architecture, here to be a natural
language interface to a database.
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Fig. 1.1. Speech recognition and synthesis front ends.

Speech recognition is also an application in itself, as with speech dictation sys-
tems. Such systems enable users to transcribe speech into written reports or docu-
ments, without the help (pain?) of a keyboard. Most speech dictation systems have
no other module than the speech engine and a statistical language model. They do
not include further syntactic or semantic layers.

Speech processing for synthesis as well as for recognition involves techniques
somewhat different from those we have already used in this book, namely a high
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volume of mathematics in the form of signal processing and statistics. In this chapter,
we will examine essential issues while trying to keep the material legible.

1.2 Some Basics of Phonetics

1.2.1 Sound Capture

Multimedia computers and signal processing are the basic instruments of modern
phonetic studies. In addition to a computer, a digital sound card and a microphone
are equipment we need to capture speech and to visualize waveforms – signals. Dig-
ital signal processing is the fundamental technique that enables us to modify the
waveform representation and to ease the description of speech properties.

Many sound cards sample signals at a frequency of 44.1 kHz, which is that of
compact disks. That means that the sound card captures a speech element 44,100
times per second. An analog-to-digital converter (ADC) digitizes the amplitude (vol-
ume) of each sampled element onto a digital scale. Amplitude values range from 0
to a maximum that depends on the encoding. Common encoding uses two bytes or
16 bits that can represent 65,536 amplitude values (Fig. 1.2).
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Fig. 1.2. Sampling and digitization of signals.

Digital sound synthesis is the reverse operation. It is carried out using the digital-
to-analog converter (DAC) of the sound card that maps digital codes onto analog
signals. Sounds can be amplified and made audible by a loudspeaker. Sound file
formats might be different for different operating systems or software. Sounds can
be stored and played back using, for example, .wav or .au files. Sound recordings
can be digitized in other formats and compressed to save storage.

At the end of the 18th century, Fourier showed that any waveform – including
speech – is a sum of sinusoids, each with a definite frequency. A discrete Fourier
transform and its computerized optimization, the fast Fourier transform (FFT), are
methods to decompose digital time signals into their corresponding sinusoids and
hence to map a signal onto its composing frequencies. The frequency set of a signal
is also called the Fourier spectrum. Table 1.1 shows examples of Fourier transforms
for some functions.
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Table 1.1. Fourier transforms for some functions.

Time domain Frequency domain
(Fourier Transforms)

Unit constant function: f (x) = 1 Delta function, perfect impulse at 0: δ (x)

1 

Cosine: cos(2πωx) Shifted deltas: δ (x+ω)+δ (x−ω)
2

−1

π−π π
2− π

2

Square pulse : wa(x) =
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1 − 1
2 ≤ x ≤ 1
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0 elsewhere

sinc(x) = sin(πx)
πx

1

π−π

1.2.2 Phonemes

Frequency analysis is a more natural observation tool for speech than time analysis.
However, the spectrum of a complete utterance, such as a sentence, is not of interest.
Relevant acoustic properties are attached to sound units that show relatively stable
properties over a time interval. A sentence or even a word span are obviously too
large a unit. This was noticed as early as the end of the 19th century, well before
automated spectrum analysis. Phoneticians then invented the concept of phoneme to
delimit elementary speech segments.

Phonemes are a finite set of abstract symbols that are used to annotate real
sounds: the phones. Inside a same phoneme class, phones show acoustic variations
since speakers never pronounce a phoneme exactly the same way. The allophones
are the members of the phone collection represented by a same phoneme.

Phonemes are not universal but are specific to a language. Two different phones
may belong to a single phoneme class in one language and to two different classes
in another. An English, a French, and a German r correspond obviously to different
sounds. However, most native speakers would recognize them as the same phoneme,
an r. They are thus allophones of a same phoneme. On the contrary, leave /li:v/

and live /lIv/ are different words in English because pronunciations of /i:/ and /I/

are perceived as different phonemes. This is not true in French, and many French



4 1 An Overview of Speech Synthesis and Recognition

native speakers have trouble distinguishing between both words because sounds cor-
responding to /i:/ and /i/ are allophones of a same phoneme in this language.

Phonemes of many languages in the world have been itemized and have received
a standard symbol from the International Phonetic Association (IPA), typically 40–
50 or so for European languages. Phonemes are classically divided into vowels and
consonants. Vowels /æ/ as in sat, /2/ as in come, /U/ as in full can be pronounced
alone. Consonants need an additional vowel to be uttered: /el/, /em/, /en/, /pi:/

(pee). Phonetic symbols enable us to annotate fragments of speech as well as words
of a dictionary to indicate their pronunciation.

A phoneme’s spectrum yields its acoustical structure. To obtain it, we could
record isolated vowels or, for consonants, two adjacent phonemes – diphonemes –
and carry out a Fourier transform on them; but this wouldn’t be real speech con-
ditions. So a better idea is to record a complete utterance and to carry out a FFT
over short intervals or frames. The frame size is selected so that signal properties
are stable – quasi-stationary – in it. Phoneme duration depends on the speaking rate,
roughly 40 to 160 ms. Typically frames span 20 ms and overlap by 10 ms (Fig. 1.3).
A sufficient sampling rate for speech analysis is 16 kHz, which corresponds to 320
speech samples per frame.
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Fig. 1.3. The principles of a speech spectrogram: a FFT is carried out on time waveforms
spanning 20 ms and mapped onto the sequence of spectra.

Using a spectrogram, we can then observe the frequency properties of an utter-
ance over time and the sequence of phonemes composing it. Figure 1.4 displays a
time waveform corresponding to the utterance

The boys that I saw yesterday morning

and below its spectrogram.

Vowels. Frequency features of a vowel include its fundamental frequency, the pitch,
also denoted F0, and its “harmonics,” the formants. The pitch is directly related to
the vibration frequency of the vocal cords in the throat. Although musical harmonics
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Fig. 1.4. Waveform and spectrogram of The boys that I saw yesterday morning obtained with
the Speech Analyzer 1.5 program from JAARS Inc.

are multiples of a fundamental frequency, formants do not necessarily correspond to
exact multiples of the pitch. Formants merely combine harmonics of the pitch with
resonance properties of the vocal apparatus: cavities, tongue, lips, etc.

Each vowel has typical values of formants (Table 1.2), which are visible on the
spectrogram. They correspond to the darker horizontal stripes that sometimes go up
or down. Phonetic studies consider mainly the two first formants, F1 and F2, be-
cause they enable us to discriminate vowels and others formants are much less audi-
ble. However a third and fourth formants, F3 and F4, are also visible. Among other
features, loudness refers to the intensity of phonemes and timbre to the intensity of
formants.

The pitch value is specific to each individual. This value corresponds to the natu-
ral tone of our voice. Men have a pitch value located somewhere around 120 Hz, and
women around 220 Hz. From its average value, the pitch varies during an utterance
as people can change their voice from deep to high-pitched. Typically the pitch value
of a man can range from 50 Hz to 250 Hz, and for a woman, from 120 Hz to 480 Hz.

Table 1.2. Average formant locations of vowels of American English. After Peterson and
Barney (1952), cited by Deller Jr. et al. (2000).

Formants (Hz) /i:/ /I/ /E/ /æ/ /A/ /O/
F1 270 390 530 660 730 570
F2 2290 1990 1840 1720 1090 840
F3 3010 2550 2480 2410 2440 2410
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Voicing refers to the vibration of vocal cords. Vowels are the best examples of
voiced sounds, and spectrograms help track their periodic structure. Figure 1.5 shows
the English diphthong /OI/ between 0.350 s and 0.600 s. It starts as an /O/ and termi-
nates as an /I/. The formant pair (F1, F2) evolves accordingly and goes from (∼550
Hz, ∼850 Hz) to (∼400 Hz, ∼2000 Hz). The vowels can also be classified according
to the tongue position in the mouth.

Fig. 1.5. Spectrogram of The boys.

Consonants. In contrast with vowels, consonants have a more even power distri-
bution over the frequency spectrum. An ideally constant distribution over the fre-
quency range is termed a white noise in signal processing. White noise sounds like
the shhhhh of an unplugged loudspeaker. We can now understand some consonants
as types of noise.

Consonants obstruct the airflow, and their distinctive features come from mod-
ifications they undergo in the mouth and from a possible periodic vibration. Some
consonants are just similar to sorts of noise and are said to be unvoiced: /p/, /t/, /k/,
/f/, /s/. Others involve vibrations of the vocal cords and are said to be voiced: /b/,
/d/, /g/, /v/, /z/.

Consonants are classified using two parameters: the place and the manner of
obstruction. Table 1.3 shows the classification American English consonants.

Consonants do not show a completely stable pattern in spectrograms. They are
subject to modifications according to their left and right context, i.e., their neighbor-
ing phonemes. This phenomenon is called coarticulation, and it is the consequence
of two overlapping articulations. Figure 1.6 shows an example of coarticulation in
the imaginary word keekoo /ki:ku:/ where /k/ of diphoneme /ki:/ has a different
pattern from diphoneme /ku:/.

Narrow and Broad Transcription. In fact, the two letters k in keekoo /ki:ku:/

correspond to two different classes of allophones. We can represent them more pre-
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Table 1.3. Place and manner of articulation for American English consonants. Places corre-
spond to columns and include the lips (labial), teeth (dental), ridge (alveolar), palate (palatal),
velum (velar), and the vocal cords (glottal). Manners correspond to rows and include con-
stricting (fricative) or blocking (plosive) the airflow, lowering the velum (nasal), narrowing
(approximant). After the International Phonetic Association (1999).

Labial Labio- Dental Alveolar Post- Palatal Velar Glottal
dental alveolar

Plosive p b t d k g P

Affricate tS dZ

Nasal m n N

Fricative f v T D s z S Z h

Approximant r j w

Lateral
approximant l

cisely using a finer transcription that will show a difference between these two vari-
ants. In this context, the representation we have used so far where a phoneme is
written between slashes as /k/ is said to be a phonemic or broad transcription. The
narrow transcription refers more closely to sounds, the underlying articulation, and
uses square brackets [k]. It describes allophone classes using more phonetic symbols
and additional diacritic signs as [ci:ku:] for keekoo, where [c] designates a palatal
/k/ and [k] a velar one. The allophone classes are then members of a set as for /r/ =
{[r], [ö], [K], [ô], . . . }.

The phonemic transcription is the one we find in dictionaries. It corresponds to a
lexical viewpoint. Phoneticians often use the narrow transcription, which is more de-
tailed, to transcribe what has really been pronounced. This is a general rule, however.
In the official Handbook of the International Phonetic Association (1999), depending
on the language, authors do not use the two notations exactly in the same way.

Allophonic variation due to coarticulation is to some extent predictable and can
be modeled using phonological rules. Chomsky and Halle (1968) is a classical work
for English that introduced a rule notation used in many other contexts such as mor-
phology (see Chap. ??). A phonological rule specifies a phoneme variation given a
right and left context.

1.2.3 Phonemes of English, French, and German

Tables 1.4–1.6 show the phonetic alphabets used for English, French, and German.
Classically, the vowel class divides into monophthongs – simple vowels – and diph-
thongs – double vowels. The consonant class divides into obstruents (plosives, af-
fricates, and fricatives) and sonorants (nasals, liquids, and semivowels).

In addition to the IPA symbols that require a specific font, several coding schemes
using standard ASCII have been proposed to encode phonetic symbols. Among them,
the ARPAbet from the DARPA for US English is the most famous. Speech Assess-
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Fig. 1.6. Waveform and spectrogram of /ki:ku:/.

ment Methods – Phonetic Alphabet (SAMPA) is another attempt aimed at multilin-
gual coverage.

The phonetic annotation can also describe suprasegmental features, i.e., speech
characteristics that extend over more than one phoneme or are independent of it. The
stress is an example of it because it applies to a syllable and to a vowel or a consonant.
Table 1.7 shows the suprasegmental features of the International Phonetic Alphabet.

1.2.4 Prosody

Prosody corresponds to the melody and rhythm of speech. It accounts for a significant
part of the intelligibility and naturalness of sentences. Prosody conveys syntactic,
semantic, as well as emotional information. Prosodic aspects are often divided into
features such as in English stress and intonation. Stress is a shorter-term variation
that highlights a specific syllable or a semantically important word. Intonation is
a longer-term variation that is linked to the grammatical structure. For instance, it
applies differently to questions and declarations.

Prosodic features are roughly comparable to suprasegmental features. The pitch,
loudness, and quantity are among the most notable ones. They correspond to physi-
cal properties, respectively the fundamental frequency, the intensity (or amplitude),
and the duration. Perceptual and physical features are often confused. The relations
between them are not trivial, however.

Prosodic features extend over a sentence, a phrase, and a word syllable. Each
feature has specific parameters and a distinct model according to the information it
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Table 1.4. US English phonetic alphabets. IPA and ARPAbet symbols.

Symbols Examples Symbols Examples Symbols Examples
IPA ARPAbet IPA ARPAbet IPA ARPAbet

Vowels Semivowels and Plosives
liquids

[i:] [iy] beat [l] [l] let [p] [p] pop
[I] [ih] bit [ô] [r] red [b] [b] bob
[E] [eh] bet [j] [y] yet [t] [t] tot
[æ] [ae] bat [w] [w] wet [d] [d] dad
[1] [ix] roses [k] [k] kick
[@] [ax] the Nasals [g] [g] gag
[2] [ah] but [m] [m] mom [P] [q] bat
[u:] [uw] boot [n] [n] non (glottal stop)
[U] [uh] book [N] [ng] sing
[O] [ao] bought Closures of plosives
[A] [aa] cot Affricates [b^] [bcl] voiced
[Ç] [er] bird [tS] [ch] church [p^] [pcl] voiceless
[Ä] [axr] butter [dZ] [jh] judge

Flaps
Diphthongs Fricatives [R] [dx] butter

[ei] [ey] bait [f] [f] fief [̃R] [nx] winner
[aI] [ay] bite [v] [v] very
[Oi] [oy] boy [D] [dh] they Syllabics
[aU] [aw] bough [T] [th] thief [n

"
] [en] button

[oU] [ow] boat [s] [s] sis [m
"
] [em] bottom

[z] [z] zoo [l
"
] [el] battle

[S] [sh] shoe [N
"
] [eng] Washington

[Z] [zh] leisure
[h] [hh] hay Others

[sil] silence

carries. Features are also specific to a language, although they exhibit many universal
properties due to the common anatomy of all human beings. Sometimes prosodic
features interact intricately in a way that has not been completely elucidated.

The sentence level intonation governs affirmations, exclamations, questions, and
other grammar or discourse patterns. Yes/no questions such as Is it correct? requiring
yes or no as an answer are uttered with a raising voice. Other questions such as What
do you want? have a more constant tone. Pitch variation along the utterance is the
main component of this level.

Pitch characteristics of questions are common to English, French, and German.
Other pitch patterns are often different according to languages. For French, Delattre
(1966b) has itemized ten types of intonation, which are shown in Fig. 1.7. Pierre-
humbert (1980) is a frequently cited and comparable study for English.
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Table 1.5. Phonetic alphabet used for French; IPA symbols.

Symbols Examples Symbols Examples Symbols Examples
Vowels Semivowels and Plosives

liquids
[i] il [j] yeux [p] père
[e] blé [w] oui [t] terre
[E] lait [4] huile [k] cou
[a] plat [l] lent [b] bon
[A] bas [ö] or [K] rue [d] dans
[O] mort [g] gare
[o] mot Nasals
[u] genou [m] main Fricatives
[y] rue [n] nous [f] feu
[ø] peu [ñ] agneau [s] sale
[œ] peur [N] camping [S] chat
[@] le [v] vous

[z] zéro
Nasalized vowels [Z] je

Ẽ matin [h] hop!
Ã sans [x] jota
Õ bon
œ̃ lundi [’] haricot

The pitch curve can be approximated to a polygonal line or linear segments inside
phrases, that is, noun groups and verb groups. Each linear pitch segment has a starting
and an ending value and is superimposed to other phoneme parameters.

Respiration is also part of the phrase prosody. The speaker tends to make a pause
to breathe when s/he reaches the end of a syntactic or a sense group. Pauses and
speech rate (speed of speech production) determine the rhythm. Speech rate is not
linear over a sentence but is merely constant within breath groups – groups of words
delimited by short pauses. In addition, breath groups and pitch groups – groups of
words showing a specific intonation pattern – are related.

Within phrases, some words are more accented – or stressed in English. Phrase
stress is associated with meaning in English, where informative words are more em-
phasized. French accent is more grammatical and falls regularly on the final syllable
of syntactic groups. Some words in French can also receive a specific accent to mark
an insistence.

The accentuation occurs on certain syllables of words. Again, it is different in
English and French. The English stress is a matter of intensity unlike French, which
shows little variation of this parameter. French accent is basically a question of dura-
tion. Accented syllables have a duration that is, on average, the double of unstressed
syllables (Delattre, 1966a). In English, the stress position is indicated in the lexi-
con. French accent falls systematically on the final syllable except when the speaker
insists on a word. The accent is then on the first or second syllable.
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Table 1.6. Phonetic alphabet used for German; IPA symbols.

Symbols Examples Symbols Examples Symbols Examples
Vowels Additional diphthongs Fricatives

[a] hat [i5] Tier [f] Folge
[a:] Bahn [y5] Tür [v] Wein
[e] Methan [ø5] Gehör [s] Gasse
[e:] Beet [E5] Gewähr [z] Sonne
[E] fällen [e5] Gewehr [S] Schaden
[E:] wählen [a5] Jahr [Z] Genie
[@] Hacke [o5] Tor [ç] dich
[I] Wind [u5] Ruhr [x] lachen
[i:] Lied [h] halten
[o] Moral Semivowels and liquids
[o:] rot [l] laden Plosives
[O] Ort [ö] reichen [p] platt
[œ] göttlich [K] waren [b] Birne
[U] und [j] jagen [t] Topf
[u:] Blut [d] dort
[y] müssen Nasals [k] Karte
[y:] Rübe [m] Mann [g] gehen
[Y] süß [n] nein
[ø] Ökonom [N] ging Syllabics
[ø:] Öl [ñ] Kognak [n

"
] hatten

[5] besser [m
"
] großem

Affricates [l
"
] Kessel

Main diphthongs [pf] Pfahl [N
"
] Haken

[aI] Eis [ts] Zahl
[aO] Haus [tS] deutsch
[OY] Kreuz [dZ] Dschungel

Table 1.7. Suprasegmental features. After the International Phonetic Association (1999).

Symbols Descriptions Examples
" Primary stress [­foUn@"tIS@n]

­ Secondary stress
: Long [e:]

; Half-long [e;]

. Syllable break [ôi.ækt]
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Type Pitch pattern Type Pitch pattern

Question
(yes/no)

 4 
3 
2 
1 Parenthesis

 4 
3 
2 
1 

Major continua-
tion

 4 
3 
2 
1 Finality

 4 
3 
2 
1 

Implication

4 
3 
2 
1 Wh-question

 4 
3 
2 
1 

Minor continua-
tion

 4 
3 
2 
1 Order

 4 
3 
2 
1 

Echo

 4 
3 
2 
1 Exclamation

4 
3 
2 
1 

Fig. 1.7. The ten fundamental intonations of French (Delattre, 1966b, pp. 4–6).

1.3 Speech Synthesis

1.3.1 Rudimentary Techniques

A first rudimentary method to synthesize speech is to record complete or partial
messages: welcoming announcements, whole questions, or answers. The application
program, a speech server for instance, will play static messages when it needs them,
possibly concatenating partial messages. Although this method is used in airports,
railway stations, and in many other places, it does not prove very flexible. All mes-
sages must be recorded in advance to be uttered by a machine. If a message changes,
it has to be rerecorded. This requires careful organization to be sure that the appli-
cation program will not require a nonexistent message. However, recorded speech is
sometimes preferred because it sounds more natural than other synthesis techniques.

A second method is to record all the words of the application lexicon in a digi-
tal format. To generate a spoken message, the synthesizer sequentially looks up the
words in the lexicon, fetches their digital recordings, concatenates them, and converts
the digital codes into sounds using the digital to analog converter of the sound card.
This second method is a close extension of the first one. It requires recording all the
words of the vocabulary, but it makes it more flexible for an application program to
synthesize a message. The synthesizer is no longer constrained by fixed templates.
However, the synthesized speech does not sound as natural. The concatenation of
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words is never perfect and leaves some glitches on word boundaries. In addition,
utterance of words varies according to prosodic context. So different pronunciations
of the same word, corresponding to different prosodic features, would have to be
recorded. If not impossible, this makes this kind of synthesis much more expensive.

1.3.2 Speech Synthesis with Phonemes

From whole messages and words, we can further shrink our sound synthesis units
to phonemes. Instead of a database containing a recording of all the words, we sim-
ply need a sound recording of all the vowels or consonants. This dramatically scales
down storage requirements. In addition, speech synthesis with phonemes enables us
to deal with a potentially unlimited vocabulary and to generate any message dynam-
ically. Phonemic speech synthesizers are also called text-to-speech converters (TTS)
because they can read any text aloud.

At a first glance, speech synthesis of a message using phonemes is easy to imple-
ment. It would consist in concatenating sounds of all the phonemes (phones) making
up the message, and in uttering them. In fact, coarticulation has a considerable in-
fluence that completely modifies the phone patterns. It makes a synthesized message
using single phones sometimes hardly understandable.

A simple experiment with a sound editor can help us realize how we perceive
coarticulation. Recording the “word” keekoo [ki:ku:] (Fig. 1.6) then cutting the phone
[k] from diphone [ki:], to assemble it with phone [u:] of diphone, [ku:] yields a sound
resembling [pu:] or [tSu:]. It may seem paradoxical, but anyone can carry out this
experiment on a computer equipped with a sound card. This explains why synthesis
using a concatenation of single phones yields poor-quality results.

Two main strategies are available to cope with coarticulation. The first one is
similar to the ones used in electronic music synthesizers. It uses a digital oscillator,
noise generators, and frequency filters. It uses rules to model the modification of
the formants while pronouncing the words. This technique requires a lofty phonetic
knowledge, and specific rules are necessary for each language. It yields acceptable
results when well implemented. This technique often has the favor of senior and
knowledgeable phoneticians.

A second technique consists in recording all possible sound patterns, here the
phoneme transitions, rather than modeling them. This technique is much more naïve
than the first one and yet often has a superior quality. To implement it, we first
collect a waveform for all the diphonemes of a given language. A speaker reads a
text containing all the possible diphoneme combinations with a homogeneous voice
and intonation. The recorded spoken text is then annotated with a sound editor, ei-
ther manually or semiautomatically. A diphone is selected and extracted for each
diphoneme. The diphones extend from the middle of the first phone to the middle of
the second one. In addition, an instance of every phoneme is also isolated and stored
to constitute the database.

In French, there are 39 phonemes. This produces the reasonable maximum figure
of 1521 diphonemes (392), many of them never occurring in reality. To synthesize
a text, the synthesizer splits the word stream into the sequence of diphonemes that
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composes it. Then, the synthesizer looks in the database for the corresponding di-
phones and concatenates them. Single phones replace word beginnings and endings.
For example, Paris [pærIs] pronounced in English uses the diphone sequence: #P,
PA, AR, RI, IS, and S#.

In practice, in addition to diphones, the current trend in speech synthesis is to
use large databases of sound patterns to include more polyphones: triphones, quadri-
phones, etc. Using phonetic units of variable length has enabled a dramatic progress
in speech synthesis quality in recent years. This made it possible to combine the
quality of prerecorded messages with the flexibility of diphone synthesis. For a pi-
oneering work implemented in commercial systems and applications, see Le Meur
(1996).

To have a flexible synthesis or to implement prosodic patterns, it is necessary
to adjust suprasegmental features: the phone duration, intensity, and fundamental
frequency (pitch value), as in Table 1.8.

Table 1.8. Diphones with duration in milliseconds, intensity, and pitch in Hz. The pitch value
is defined at the beginning of the diphone. The pitch curve is interpolated as linear segments
between diphones. Naturally, pitch applies only to vowels and voiced consonants.

Diphones Duration Intensity Pitch
#P #[p] 70 80 120
PA [pæ] 100 80 180
AR [ær] 100 70 140
RI [rI] 70 70 120
IS [Is] 70 60 100
S# [s]# 70 60 80

Since original diphones have probably been recorded with different pitch and du-
ration values, the speech synthesizer must modify them before the digital-to-analog
conversion. This is achieved by techniques such as pitch-synchronous overlap add
(PSOLA) (Moulines and Charpentier, 1990).

The PSOLA technique splits the voiced parts of the diphones into a sequence of
frames. The size of each frame is two pitch periods and is obtained by multiplying the
original waveform by a Hamming window. The pitch is detected from the waveform,
and the windows are centered on the pitchmarks corresponding to the closure of the
glottis. Repositioning the pitchmarks at the desired pitch value creates a diphone
with a new pitch value. Closer pitchmarks produce a higher pitch, while spacing
the pitchmarks at a greater distance produces a lower pitch. Finally, the frames are
overlapped and added to produce the new diphone. PSOLA has the advantage of
being an efficient algorithm that is able to carry out the pitch modifications in real
time.
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1.3.3 Text Processing for Speech Synthesis

Pronunciation of a word does not always correspond to its spelling, and a text syn-
thesizer requires a module mapping a text’s letters onto phonemes. Phonetic tran-
scription is regular in languages like Spanish, where a word spelling often gives
sufficient hints to pronounce the word properly. The letter-to-sound conversion can
then be handled by a small set of transcription rules. In other languages, like English,
a lexicon is needed due to a large number of exceptions. Consider, for instance, the
letter i in give [gIv] and in life [laIf]. Other similar examples are countless; this does
not even include the stress accent, which is often random and sometimes different
between US and British English.

A text-to-speech program is usually organized in several stages:

1. Tokenization. Sentence separation, punctuation processing, and word breaking.
2. Lexical access and morphological analysis. A morphological parsing splits

words into morphemes: lemma and affixes. Search of the words in a dictionary to
process the exceptions. Some morphological rules may lead to an irregular pro-
nunciation, as in English. Compare played and worked with rugged and ragged.

3. Grammatical analysis. This stage is not always implemented. A grammatical
module can carry out a part-of-speech tagging, a group detection, or a full syn-
tactic parsing, depending on the desired performance. The grammatical module
removes part-of-speech ambiguities that may have a consequence on the pronun-
ciation and enables the synthesizer to generate prosodic features.

4. Phonetic translation. Transcription rules process the words supposed to be reg-
ular. These rules generally consider right and left contexts of a letter to produce
its phonetic transcription.

1.3.4 Letter-to-Phoneme Rules

The current tendency to produce a phonetic transcription of a text is to use big pro-
nunciation dictionaries, where the synthesizer looks up the individual transcription
of each word of text. However, a part of the phonemic transcription still depends on
rules, notably to deal with unknown words or with proper nouns. Depending on the
irregularity of a language, these rules are simple or more complex to write, but they
follow the same formalism.

Transcription rules translate letters into a sound given constraints on their left
and right neighbors. Letter-to-sound mapping may concern one single letter, as for k
and s in keys [ki:z], or a string of two or more letters, as for ey or for qu and ay in
quay [ki:]:

k ey s qu ay

[k] [i:] [z] [k] [i:]

In the context of text-to-phoneme conversion, strings of letters mapped onto a
phoneme are generally called graphemes.

The transcription rule format is the same as what we saw with morphological
processing (Chap. ??). The rule
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X → [y] / <lc> __ <rc>

means that grapheme X is mapped onto the phone [y] under the constraint of a left
context <lc> and a right context <rc>, both being graphemes:

Text <lc> X <rc>

Phonetic transcription . . . [y] . . .

Rules may have no constraint on their left or right context, such as the rules

X → [y] / __ <rc>
X → [y] / <lc> __

or may be context-free, such as the rule

X → [y]

Such a rule format is derived from the Sound Pattern of English formalism
(Chomsky and Halle, 1968).

As a simplified example, modified from Divay and Vitale (1997), let us model
the pronunciation of the letter c in English. Let us suppose it is pronounced either [s]

before e, i, or y, or [k] elsewhere. The rules governing the transcription are

c → [s] / __ {e, i, y}
c → [k]/ __ {a, b, c, d, f, g, h, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, z, #}

where # denotes the end-of-string symbol. The rules are usually tried from top to
bottom. If the first one fails, the second one succeeds since the context of both rules
complements each other. This means that no context is necessary in the second rule.
The previous set could have been more compactly written as:

c → [s] / — {e, i, y}
c → [k]

The transcription rules can handle the English stress in some cases such as for
suffixes. Ending morpheme ation, as in information, is transcribed by

ation → [1][eI] = [0][S][@][n] / __ +

where 1 indicates a primary stress, 2 a secondary stress, 0 an unstressed syllable, and
= a syllable boundary. The symbol “+” is a morpheme boundary mark (Divay and
Vitale, 1997).

The transcription rules are certainly more intricate in English than in other Eu-
ropean languages. A frequently cited example is ough, which has a very ambiguous
pronunciation. Consider: rough [2f], through [u:], bough [aU], though [O:], dough
[@U], and cough [O:f]. To give some idea of the complexity of transcription, the pio-
neering DECtalk speech synthesis program had a lexicon of 15,000 words and 1500
rules for English (Hallahan, 1996).
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1.3.5 Text-to-Phoneme Transcription

The text-to-phoneme converter translates a text into a sequence of phonetic sym-
bols. It uses the dictionary and the set of grapheme-to-phoneme rules. The converter
applies rules with the longest match algorithm. That is, when several rules match
a text string and are therefore potentially valid, the converter retains the one with
the longest matching string. In the case when the rules have a left-hand-side symbol
of a same length, they are tried from top to bottom until the converter finds a valid
matching context (left and right contexts of the rule are true).

The conversion program processes the input text sequentially from left to right.
A pointer is set on the next character to be processed. Initially the pointer is set at
the beginning of the input text. The program selects the rule that has the longest
match between its left-hand-side string and the text string starting from the pointer.
If the left and right contexts match the text, the program applies the rule and converts
the text string into phonemes. The size (span) of the translation buffer is that of the
left-hand-side string of the selected rule. Once the string translation has been carried
out, the pointer is moved forward to the next unprocessed character. If left and right
contexts do not match, the program tries rules in decreasing length of their matching
left-hand-side string.

As for morphological parsing, the phonetic transcription rules can be compiled
into efficient finite-state transducers (Roche and Schabes, 1997).

1.3.6 Remaining Transcription Ambiguities

Grapheme-to-phoneme rules and a dictionary do not solve all problems. Sometimes
the same word form has different pronunciations according to its part of speech or
sense. A part-of-speech or sense tagging is then necessary to disambiguate more ac-
curately all the word forms. Examples of pronunciation depending on part of speech
include, in English, use, which has a different pronunciation whether it is a noun or
a verb: I use [ju:z], but a use [ju:s]. Stress may also depend on category. Compare to
object [@:b"dZekt], where the stress is on the second syllable, and an object ["AbdZIkt]

with a stress on the first syllable. In French, the sentence

Les poules du couvent couvent
‘Hens of the convent are brooding’

provides another example. The first couvent is a noun and is pronounced [kuvÃ].
The second one is a verb in the third-person plural and is pronounced [kuv]. More
generally, the suffix -ent of French adverbs is pronounced [Ã], while this same suffix
is not pronounced in verbs of the first group, third-person plural.

Solving pronunciation ambiguities related to a part-of-speech membership re-
quires a parser or a POS tagger. The transcription rules take the word annotation
(adverb, noun, verb, . . . ) into account. The rule discarding the -ent suffix of French
verbs reads:

ent/verb→ ε / __ #
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where # denotes the end-of-string symbol, and ε the null symbol.
In some other relatively rare contexts, the pronunciation depends on the sense.

In English, compare read in I read it yesterday [rEd] and in I read it everyday [ri:d].
Compare deserts in You get your just deserts [dI"zÇts] and in The deserts of Sudan
["dEz@rts]. In French, compare fils in

Les fils de la nation [fis]

‘The sons of the nation’

and

Les fils du destin [fil]

‘The threads of destiny’

To solve the two last cases, deserts and fils, text-to-phoneme transcription can
resort to a sense tagger. Yarowsky (1996) describes an algorithm based on unsuper-
vised techniques comparable to the one described in Chap. ??. It annotates words
with ambiguous pronunciations with their sense, and hence disambiguates English
homographs such as lead ([led]/[li:d]), bass ([beis]/[bæs]), wound ([wu:nd]/[waUnd]),
dates from fractions, 5/16, (five-sixteenths or May 16th), titles, St. (Street or Saint),
etc. However, pronunciation ambiguities due to a particular sense are not that fre-
quent, and a couple of rules of thumb applied to doubtful words are often sufficient.

1.3.7 Generating Prosody

Prosody synthesis involves the annotation of phrases with speech rate, pitch patterns,
pauses, and phones with intensity and duration. Prosody is certainly the most diffi-
cult speech feature to reproduce. It is controlled by multiple factors, sometimes of
a nonlinguistic nature. It is still a subject of active research. A distinctive metallic
touch still betrays the imperfect implementation of prosody in most current artificial
speech systems.

Annotation of a text with prosodic features requires parsing the input text either
with a group detector, a chunker, or with a full parser before the phonetic transcrip-
tion. Group detection is a first step to handle phenomena like junctures (transitions)
between words. French liaisons linking two words are an example of it. Liaisons
occur within breath groups and discard pauses between words. In addition, some let-
ters, namely s, z, r, t, d, and n, which are usually silent when they are at the end
of a word, are pronounced if the next word begins with a vowel. In a liaison, s is
pronounced [z] as in

les petits ânes [leptizAn]

‘the little donkeys’

Breath groups roughly correspond to noun groups and verb groups. A group de-
tector would annotate les petit ânes with tags such as

les/BeginNGroup petits/InsideNGroup ânes/EndNGroup.
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and the transcription rules would use the group annotation to insert the liaison be-
tween two words

- → [z] / s/BeginNGroup __ Vowel
- → [z] / s/InsideNGroup __ Vowel

where - denotes a blank space, and BeginNGroup and InsideNGroup annotate the
beginning and inside words of a noun group, respectively. Liaisons, however, are not
systematic. Modeling them completely would require additional processing.

Transcription rules can help annotate phonetic strings with more complex prosodic
features, such as a pitch pattern. This requires a full parse of the input text. For each
sentence, the transcription rules have first to consider the parse result and select an
appropriate pitch pattern within a predefined set, such that of Fig. 1.7. Then, rules
apply the corresponding pitch curves to groups or to the whole sentence. Finally,
curves are divided into linear segments and each phoneme is assigned with a pitch
value. Boula de Mareüil et al. (2001) describe a complete implementation for French.

1.4 Speech Recognition

1.4.1 Defining Speech Recognition

Although it deals with the same raw material, speech, recognition is often stated
as more complex than synthesis. Speech recognition complexity can be classified
according to several factors:

• Number of speakers. Some devices can recognize speech from one single speaker
and are then speaker-dependent. Others can recognize speech from any native
speaker (speaker-independent). When a system is speaker-dependent, a user has
to train it to her/his voice before the system can recognize her/him, often by
reading a text of several pages. Speaker-independence is obtained by pretraining
recognition systems with a large number of speakers, so when a new speaker
talks to the system, s/he can expect to fall within already trained or modeled
voice patterns.

• Fluency of speech. Older systems could recognize isolated words only, that is,
the speaker had to pause between each word. Current systems operate with dic-
tated continuous speech. Another technique – referred to as word spotting – is
meant to recognize key words in a sequence of unknown words. Continuous
speech recognition is more difficult because the combinatory to decode words
from a phoneme string is increased. Compare, for instance: an ice cream and a
nice cream. If there is a slight pause between each word, word decoding is nat-
urally easier. Research is now focused on improving recognition performance of
naturally flowing speech, that is, speech with hesitation or repairs.

• Size of vocabulary. Vocabulary is a limiting factor of many recognition devices. A
larger vocabulary introduces more chances of confusion and requires more mem-
ory and computing resources. In fact, the size is not the only factor to take into
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account. Many different words are easier to recognize than few similar words.
Current commercial dictation systems reach vocabulary sizes surpassing 64,000
words, while digit recognition – small similar words – is still sometimes a prob-
lem.

• Syntax. A constrained syntax helps recognize words by disambiguating similar
sounds. The average number of words that can follow a given word is also called
the branching factor or perplexity. Given a word, a grammar reduces the per-
plexity. However, syntax often limits the domain of an application. In addition,
sentences of naturally occurring speech contain speech repairs, which cannot be
covered by classical syntactic formalisms.

• Environment. Many laboratories reported experiments with high recognition rates
as early as 1980. Figures were then subject to interpretation. Environmental con-
ditions accounted for much in these results. Very careful speakers were uttering
words in insulated rooms. This yielded results that were not reproducible in real-
world conditions. Real applications should provide telephone services or spoken
control of machines, and these conditions make the figures decrease in a dramatic
way. Current research includes the assessment of recognition of broadcast news,
possibly with music in the background, or conversations.

• Language. Many laboratories working on speech recognition focus their research
on English and optimize their tools for it. The research effort for English and, to
a lesser extent, Western European languages (German, French, Spanish, Italian)
is tremendously superior to that devoted to other languages. This means that
systems available for English perform better. Recognition of other languages,
even with a very large community of speakers like Arabic, Chinese, or Hindi,
has for now a substantially lower quality.

In summary, it is easier to recognize a small number of isolated words from a
single speaker in a quiet environment rather than real continuous speech through a
telephone from anybody: you and me, possibly nonnative speakers.

1.4.2 The Structure of a Speech Recognition System

Speech recognition systems are usually split into several components that are based
on mathematical considerations. Speech recognition is formulated in terms where a
speaker utters a sequence of words

W = w1,w2, ...,wn.

The speaker transmits this information using a string of acoustic symbols. Let A
be the sequence of symbols corresponding to W :

A = a1,a2, ...,am,

where acoustic symbols are members of a finite alphabet. Although acoustic symbols
and phonemes are tied, they are not to be confused. Next, we will describe how they
are connected together.
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The objective of a speech recognition system is to determine A and then to decode
the most likely word sequence Ŵ knowing A. The first part resorts to acoustic signal
processing techniques, and the second one to linguistic modeling. The recognizer
obtains the sequence of acoustic symbols A using an acoustic processor as a front
end. It extracts parameters from speech frames and, depending on parameter values,
labels each speech frame with an acoustic symbol (Fig. 1.8).
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Fig. 1.8. The speech recognition process.

Word string decoding is then optimally formulated by

Ŵ = argmax
W

P(W |A).

Using Bayes’ theorem,

P(W |A) =
P(A|W )P(W )

P(A)
.

P(A) is the probability of the acoustic sequence. It is fixed for a given utterance
and plays no role in the word sequence determination, which is a probability maxi-
mization. Ŵ can then be rewritten in

Ŵ = argmax
W

P(A|W )P(W ).

From this formula, we can divide word decoding into two distinct linguistic com-
ponents that operate in parallel. The first one concerns the acoustic modeling of
speech. Its goal is to optimize P(A|W ), that is, the acoustic string probability know-
ing that word string W has been uttered. The second one resorts to language models
in order to optimize P(W ), that is, the word sequence probability.

Acoustic symbols do not map directly onto phonemes. A same phoneme can
be realized by two different acoustic symbols. And conversely, in some contexts,
two phonemes can be realized by a same acoustic symbol. Hidden Markov mod-
els (HMMs) are a mathematical device that enable us to decide which string of
phonemes is behind a string of acoustic symbols (see Chap. ??).

The second component of word decoding uses probabilities on word sequences
to find the most likely sequence uttered. This is also termed a statistical language
model. Models are based on n-grams, that is, statistics on sequences of n contiguous
words, and typically include unigrams, bigrams, trigrams, and even 4-grams (see
Chap. ??).

Finally, the transcription of acoustic symbols into words attempts to find a string
maximizing language and acoustic models. Trying all possible words to retain the
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optimal sequence is not possible with large vocabularies. Therefore, in parallel to
computing probabilities, the word decoder system carries out a hypothesis search
and discards some candidates to reduce the search space.

1.4.3 Speech Parameters

Recognition devices do not process the waveform directly. Instead, they use signal
processing techniques to derive a set of acoustic parameters from speech frames.
Parameters should provide means of a decision, that is, to discriminate between
phonemes and, as far as possible, be relatively easy to compute.

To have a discriminating potential, parameters should be related to “natural” fea-
tures of speech such as whether a frame pertains to a voiced or unvoiced phone.
Let us imagine a simple parameter giving a rough estimate of it. On spectrograms,
voiced segments appear to be darker than unvoiced ones or silences. The darkness
level of a frame can be computed by summing the gray level values of all pixels in the
frame. This level visualizes the so-called energy of the frame: the darker the frame,
the higher the energy. Although imperfect and in practice never used alone, energy
is a parameter that when above a certain threshold enables us to classify roughly the
frame as voiced.

Energy is easier to derive from a time waveform. Let us suppose that frame k, Fk,
consists of N speech samples s(m),s(m + 1), ...,s(m + N − 1). The definition of the
frame energy is:

E(Fk) =
m+N−1

∑
n=m

s2(n).

While energy is relatively easy to understand, other parameters involve a more
elaborate signal processing knowledge. Common parameters used in speech recog-
nition are derived from linear prediction coefficients. The idea behind linear pre-
diction (LP) is that a speech sample is not independent from its predecessors. It can
be approximated by a linear combination, where speech sample s(n) is extrapolated
from the m previous samples s(n−1),s(n−2), ...,s(n−m). The prediction equation
is:

ŝ(n) = a(1)s(n−1)+ a(2)s(n−2)+a(3)s(n−3)+ ...+a(m)s(n−m),

where ŝ(n) is the predicted value, and a(1),a(2), ...,a(m) are the LP coefficients. Pre-
diction coefficients are specific to each frame and are constant values over the frame.
Prediction is made possible inside a frame because of the relatively slow transition
of phones compared with the frame duration.

LP coefficients are estimated so that they result in the “best fit” to the real signal.
This is often recast as a minimization of the mean squared error. The prediction error
for the sample n is the difference between the predicted and the actual values:

e(n) = s(n)− ŝ(n),

and LP coefficients should minimize the summed squared error over a frame:
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k+N−1

∑
n=k

e2(n).

The precision of linear prediction depends on the number of coefficients. Typi-
cal numbers range from 10 to 14; beyond these numbers, LP does not show much
improvement. Optimization methods, namely covariance and autocorrelation, enable
us to solve this equation and estimate the best coefficients. Both methods are based
on the differentiation of the summed squared error with respect to each coefficient.

As typical figures used in state-of-the-art speech recognition systems, speech
is sampled at 16 kHz and parameter vectors are computed every 10 ms. It corre-
sponds roughly to 5 to 10 vectors per phoneme. The frames span from 20 to 30 ms
and are overlapping. Each frame is represented by vector of typically 40 parameters
(Fig. 1.9). The parameters consist of the frame energy, a dozen LP coefficients, and
their first- and second-order derivatives.

Fig. 1.9. The parameter vectors (in gray) are extracted from the speech signal (in black). The
parameters are computed in each overlapping window.

Linear prediction coefficients are computed on the signal cepstrum, rather than
on the raw waveform samples. The cepstrum is a sequence of a Fourier transform
operated on the time samples, then a log transform, and finally an inverse Fourier
transform (Fig. 1.10). The cepstrum shows better analysis properties.
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Fig. 1.10. The cepstrum.

Frame vectors are classified into a finite set of categories according to values
of their parameters. Categories correspond to the acoustic symbols used to annotate
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frames. Let us simplify the problem to understand the category’s purpose, and let us
suppose that the vectors can fall into two categories corresponding roughly to vowels
and consonants – ω and χ . As a fictitious example, assess [@"ses] could possibly pro-
duce the observation string ωωωωωχωχχχχωωωωωχωχχχχ , and essay ["eseI]

ωωωωωχχωχχχχχωωωωω . Ideally, the categories would exactly correspond to
the phonemes. In fact, parameters are never perfect and, because of variations in the
pronunciation, phonemes are sometimes annotated with a wrong symbol.

Because of the huge quantity of data, acoustic symbols are not crafted manually
but are automatically obtained from speech corpora using classification techniques
such as K-means. The set of symbols is called a codebook. Earlier systems used a
codebook of 256 symbols. Present systems use raw frame vectors without a classi-
fication step. For the sake of simplicity, we will use the codebook notion from now
on, first with two symbols ω and χ .

1.4.4 Acoustic Modeling: Hidden Markov Models

The signal processing stage transforms speech into a stream of acoustic symbols.
The acoustic modeling component relates it to a string of phonemes or a word. Most
speech recognition devices are based on HMMs to carry this stage out. We saw
Markov models and the associated algorithms in Chap. ??. We will describe now
how to apply them to on words or phonemes.

When the recognition unit is a single word, the automaton is a network where a
subchain represents each word of the vocabulary. The modeling network has a unique
starting state and a unique final state that correspond to bounding silences surround-
ing the pronounced word. All the words of the vocabulary are linked to these states.
Thus, there are as many branches as there are words. The acoustic symbol sequence
provided by the acoustic processing unit will proceed along these branches and will
receive a probability value for each branch. The recognized word corresponds to the
highest value.

Each chain has a number of states that depends on the word length it represents
(typically 30). Each state features a self-looping transition and a transition to the
next state. The looping transitions model the phoneme durations, and other transi-
tions model the passing from a phoneme to the next one. From then on, we will
successively model a two-word vocabulary using plain automata, Markov chains,
and finally Markov models.

1.4.5 Markov Chains

The automaton in Fig. 1.11 models the words essay ["eseI] and assess [@"ses]. respec-
tively with three and four states. The states here are very simplified and are related
either to a consonant emitting the acoustic symbol χ , or a vowel emitting ω . When
a state is entered, the automaton outputs the associated symbol, that is, ω or χ .

Markov chains are weighted automata, where each transition has probability.
The sum of all the outgoing probabilities of a state is equal to 1. When enter-
ing a state, the Markov chain outputs a symbol – called here an observation –
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Fig. 1.11. An automaton representing the words essay ["eseI] and assess [@"ses].

as for classical automata, and it associates a probability to strings of symbols it
produces. Figure 1.12 shows an annotation of edges with numbers. According to
Fig. 1.12, the probability of having sequence ωωωωωωωχχχχχχωωωωωωω is
0.5×0.756×0.25×0.75×0.3×0.656×0.35.
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Fig. 1.12. A Markov chain with output probabilities.
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1.4.6 Markov Chains in Prolog

Markov chains in Prolog are just an extension of simple automata. Let us describe
the transitions of the chain in Fig. 1.12 using facts, where ω is transcribed as o, and
χ as k:

% The start state
start(q1).

% The final state
final(q9).

% The transitions
transition(q1, o, q2, 0.5).
transition(q2, o, q2, 0.75).
transition(q2, k, q3, 0.25).
transition(q3, k, q3, 0.7).
transition(q3, o, q4, 0.3).
transition(q4, o, q4, 0.65).

transition(q1, o, q5, 0.5).
transition(q5, o, q5, 0.8).
transition(q5, k, q6, 0.2).
transition(q6, k, q6, 0.8).
transition(q6, o, q7, 0.2).
transition(q7, o, q7, 0.75).
transition(q7, k, q8, 0.25).
transition(q8, k, q8, 0.7).

silent(q4, q9, 0.35).
silent(q8, q9, 0.3).

The Prolog rules compute the chain probability by multiplying the transition
probabilities:

accept(Observations, Probability) :-
start(StartState),
accept(Observations, StartState, 1.0, Probability).

accept([], State, Probability, Probability) :-
final(State).

accept([Observation | Observations], State, Prob, ProbOut) :-
transition(State, Observation, NextState, ProbTrans),
NextProb is Prob * ProbTrans,
accept(Observations, NextState, NextProb, ProbOut).

accept(Observations, State, ProbIn, ProbOut) :-
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silent(State, NextState, ProbTrans),
NextProb is ProbIn * ProbTrans,
accept(Observations, NextState, NextProb, ProbOut).

?- accept([o, o, o, o, o, o, o, k, k, k, k, k, k, o, o,
o, o, o, o, o], Prob).
Prob = 2.96099e-005

1.4.7 Hidden Markov Models

From the Markov chain, we can go to a hidden Markov model. We saw in Chap. ??
that a HMM is a Markov chain, except that a state is no longer linked to a single out-
put symbol but with all possible acoustic symbols and each symbol has a probability
of occurring. Of course, some symbols will be much more probable than others.
Using HMM, we have now a model of emission of spurious symbols since a state
corresponding to a specific phoneme can output any symbol.

Let us take the words essay ["eseI] and assay [@"seI], and let us suppose that we
have a set of three acoustic symbols. Two acoustic symbols are related to two vow-
els, ω1 to [e] and [eI] and ω2 to [@], and the third one, χ , to a consonant [s]. Let us
annotate states with a probability distribution over these three symbols (Fig. 1.13).
The first vowels of both words are similar. There are occasions, especially in fluent
speech, where speakers will mix them up. The Markov model states here that one
symbol is more frequent than others when a user utters a specific vowel. When ut-
tering the vowel [e] of ["eseI], the probability of generating ω 1 is 0.6, ω2 is 0.3, and
χ is 0.1.1 This corresponds to entering the top leftmost state of the network. On the
contrary, the leftmost bottom state has a probability of generating ω 1 that is 0.3, ω2

that is 0.7, and χ that is 0.
Recognition with HMM corresponds to searching the most likely path to traverse

the automaton. Let us suppose that a speaker utters a word yielding the acoustic
symbol string ω1ω2ω1χχω1ω1. The upper path, [1, 2, 2, 2, 3, 3, 4, 4, 8], yields the
value:

0.5× 0.6× 0.75× 0.3× 0.75× 0.6× 0.25× 1× 0.7× 1× 0.3× 0.65× 0.65×
0.65×0.35 = 1.533 10−4,
where the consonant symbols are both generated by state [3]. The lower one, [1, 5,
5, 5, 6, 6, 7, 7, 8], yields the value:

0.5×0.3×0.8×0.7×0.8×0.3×0.2×1×0.8×1×0.2×0.65×0.7×0.65×
0.3 = 5.238 10−5,
and hence this automaton would recognize the string as being the word essay.

In fact, there are other possible paths. The subchain ω 1ω2ω1χχ could also have
been generated by path [1, 2, 2, 2, 2, 3]. The second χ symbol is necessarily gen-
erated by state [3] since it is a barrier for vowels – the probability of them being 0.
Two competing paths can then reach state [3] and output the same string. However,
the likelihood for [1, 2, 2, 2, 2, 3] is

1 Probabilities are fictitious.
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Fig. 1.13. A hidden Markov model.

0.5×0.6×0.75×0.3×0.75×0.6×0.75×0.1×0.25×1= 5.7 10 −4,
compared with a likelihood for path [1, 2, 2, 2, 3, 3] of

0.5×0.6×0.75×0.3×0.75×0.6×0.25×1×0.8×1= 6.1 10−3,

when both consonant symbols are generated by state [3]. From then on, we are sure
that successors of path [1, 2, 2, 2, 3] will be more likely than those of [1, 2, 2, 2, 2],
and we can prune the former.

Such a pruning corresponds to the Viterbi optimization that we saw in Chap. ??.
It avoids searching all possible paths. When competing paths reach a state j having
generated the same string of symbols, here ω1ω2ω1χχ , the path with the highest
probability is retained and others are discarded.

1.4.8 Hidden Markov Models in Prolog

The hidden Markov model is just an extension of the Markov chain program. We
need to modify the facts to add the observation probabilities in Fig. 1.13. We tran-
scribe ω1 as o1, ω2 as o2, and χ as k:

% The start state
start(q1).
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% The final states
final(q8).

transition(q1, o1, q2, 0.5, 0.6).
transition(q1, o2, q2, 0.5, 0.3).
transition(q1, k, q2, 0.5, 0.1).
transition(q2, o1, q2, 0.75, 0.6).
transition(q2, o2, q2, 0.75, 0.3).
transition(q2, k, q2, 0.75, 0.1).
transition(q2, o1, q3, 0.25, 0.0).
transition(q2, o2, q3, 0.25, 0.0).
transition(q2, k, q3, 0.25, 1.0).
transition(q3, o1, q3, 0.7, 0.0).
transition(q3, o2, q3, 0.7, 0.0).
transition(q3, k, q3, 0.7, 1.0).
transition(q3, o1, q4, 0.3, 0.65).
transition(q3, o2, q4, 0.3, 0.25).
transition(q3, k, q4, 0.3, 0.1).
transition(q4, o1, q4, 0.65, 0.65).
transition(q4, o2, q4, 0.65, 0.25).
transition(q4, k, q4, 0.65, 0.1).
transition(q1, o1, q5, 0.5, 0.3).
transition(q1, o2, q5, 0.5, 0.7).
transition(q1, k, q5, 0.5, 0.0).
transition(q5, o1, q5, 0.8, 0.3).
transition(q5, o2, q5, 0.8, 0.7).
transition(q5, k, q5, 0.8, 0.0).
transition(q5, o1, q6, 0.2, 0.0).
transition(q5, o2, q6, 0.2, 0.0).
transition(q5, k, q6, 0.2, 1.0).
transition(q6, o1, q6, 0.8, 0.0).
transition(q6, o2, q6, 0.8, 0.0).
transition(q6, k, q6, 0.8, 1.0).
transition(q6, o1, q7, 0.2, 0.65).
transition(q6, o2, q7, 0.2, 0.25).
transition(q6, k, q7, 0.2, 0.1).
transition(q7, o1, q7, 0.7, 0.65).
transition(q7, o2, q7, 0.7, 0.25).
transition(q7, k, q7, 0.7, 0.1).

silent(q4, q8, 0.35).
silent(q7, q8, 0.3).
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The Prolog rules compute the path probabilities by multiplying the transition
probabilities by the observation probabilities:

accept(Observations, States, Prob) :-
start(StartState),
accept(Observations, StartState, 1.0, States, Prob).

accept([], State, Probability, [State], Probability) :-
final(State).

accept([Observ | Observs], State, Prob, [State | States],
ProbOut) :-

transition(State, Observ, NextState, ProbTrans, ProbObserve),
ProbObserve =\= 0.0,
NextProb is Prob * ProbTrans * ProbObserve,
accept(Observs, NextState, NextProb, States, ProbOut).

accept(Observs, State, ProbIn, [State | States], ProbOut) :-
silent(State, NextState, ProbTrans),
NextProb is ProbIn * ProbTrans,
accept(Observs, NextState, NextProb, States, ProbOut).

We obtain the probability of one path using accept/3:

?- accept([o1, o2, o1, k, k, o1, o1], States, Prob).

States = [q1, q2, q2, q2, q2, q3, q4, q4, q8]
Prob = 1.64228e-005 ;

States = [q1, q2, q2, q2, q3, q3, q4, q4, q8]
Prob = 0.000153279 ;

States = [q1, q2, q2, q2, q3, q4, q4, q4, q8]
Prob = 1.42331e-005

Yes

Finally, we write the most_probable_path/3 predicate to obtain the most
probable path using the built-in predicates findall/3 and keysort/2:

most_probable_path(Observ, MP_Path, MP_Prob) :-
findall(-(Prob, States),
accept(Observ, States, Prob), L),
keysort(L, Sorted),
append(_, [-(MP_Prob, MP_Path)], Sorted).

where append(_, [-(MP_Prob, MP_Path)], Sorted) finds the last element of
the list Sorted.
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?- most_probable_path([o1, o2, o1, k, k, o1, o1], Path, Prob).
Path = [q1, q2, q2, q2, q3, q3, q4, q4, q8]
Prob = 0.000153279

1.4.9 The Viterbi Algorithm in Prolog

The Viterbi algorithm optimizes the search by taking the path with the maximum
probability among all the paths that lead to a state. We need to modify the program
to consider the paths simultaneously. For sake of simplicity, we rewrite the silent
transitions as ordinary transitions with the epsilon symbol:

transition(q4, e, q8, 0.35, 1.0).
transition(q7, e, q8, 0.3, 1.0).

The program proceeds in two steps. Given a set of paths and an observation, it
computes all the possible paths that can generate the observation. It then discards the
nonoptimal ones.

search(Observations, Paths) :-
start(StartState),
viterbi(Observations, [-(1.0, [StartState])], Paths).

viterbi([], Paths, OptimalPaths) :-
findall(-(Prob, [State | Path]),
(member(-(Prob, [State | Path]), Paths), final(State)),
OptimalPaths).

viterbi([Observation | Observations], Paths, Result) :-
extend_paths(Observation, Paths, NewPaths),
keysort(NewPaths, SortedPaths),
discard_paths(SortedPaths, OptimalPaths),
viterbi(Observations, OptimalPaths, Result).

From a list of paths and an observation, the extend_path/3 predicate extends
all the paths in the list:

% extend_paths(+Observation, +Paths, -NewPaths)
extend_paths(_, [], []).
extend_paths(Observ, [Path | Paths], NewPaths):-
findall(NewPath, extend_path(Observ, Path, NewPath),
FirstNewPaths),

extend_paths(Observ, Paths, RestNewPaths),
append(FirstNewPaths, RestNewPaths, NewPaths).

%extend_path(+Observation, +Path, -NewPath)
% Given an observation, extend_path/3 extends one path
extend_path(Observation, -(Prob, [State | Path]),

-(NextProb, [NextState, State | Path])) :-
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transition(State, Observation, NextState, ProbTrans,
ProbObserve),

ProbObserve =\= 0.0,
NextProb is Prob * ProbTrans * ProbObserve.

The discard_paths/2 predicate discards the non-optimal paths:

% discard_paths(+SortedKeyList, -OptimalList)

discard_paths([], []).
% There is another path leading to a same state with a
% higher probability. We discard it.
discard_paths([-(_, [State | _]) | SortedPaths],

OptimalPaths) :-
member(-(_, [State | _]), SortedPaths),
discard_paths(SortedPaths, OptimalPaths).

discard_paths([-(Prob, [State | Path]) | SortedPaths],
[-(Prob, [State | Path]) | OptimalPaths]) :-

\+ member(-(_, [State | _]), SortedPaths),
discard_paths(SortedPaths, OptimalPaths).

And finally:

?- search([o1, o2, o1, k, k, o1, o1, e], Paths).

Paths = [0.000153279-[q8, q4, q4, q3, q3, q2, q2, q2, q1]]

1.4.10 Modeling Phones with Hidden Markov Models

We have applied hidden Markov modeling to whole words. In this case, given a
predetermined number of states, we need to build a specific model for each word
of vocabulary. This method is not very flexible because it does not scale up nicely
when a new word has to be added. A preferred approach is to use acoustic models
of phones as basic units instead of complete words. In this case, recognition uses
a pronunciation modeling of words based on phonemes. A word acoustic model is
obtained in two steps:

• Each word is represented by one or more phoneme strings corresponding to its
possible pronunciations.

• Each phoneme of the word is mapped onto its Markov acoustic model.

The acoustic model of a word results then in the concatenation of elementary
phoneme models taken from a finite set and specific to each language. This approach
makes the introduction of a new word into the recognition vocabulary easier since it
requires only its phonetic decomposition.

On most systems, the automata do not use isolated phone models, but instead
use the triphone concept: a phone influenced by its left and right neighbors. The
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phoneme /s/ in essay ["eseI] is then modeled as [e] [s] [e] and is different from /s/

in assay [@"seI], modeled as [@] [s] [e]. Such phonemes are said to be phonemes in
context. Phonemes in context increase considerably the number of modeling units
because the number of units expands from 50 phones approximately to 50 3, that is,
125,000. Fortunately, many similar triphones can be clustered together, which results
in a reduction of this number.

The automaton model of a phoneme in context has three states corresponding to
the left context influence, the middle, and the right context influence (Fig. 1.14).

B M E 

Fig. 1.14. HMM of a phone in context.

Most speech recognition systems, as the pioneering SPHINX system, use a more
sophisticated automaton (Fig. 1.15) and feature a specific modeling for poorly artic-
ulated “function” words: “a”, “the”, “of”, . . . (Lee et al., 1990). Looping transitions
model slow pronunciation, and skipping transitions model faster pronunciations.

B M E 
0.8 

0.1 
0.1 

0.1 

0.9 

1.0 

0.8 0.8 0.7 

0.2 0.2 0.3 
1 

5 6 

7 

Fig. 1.15. The HMM phone model in the SPHINX system. After Lee et al. (1990).

The coefficients used in HMMs are determined from speech corpora annotated
with their phonetic transcription. The coefficients are trained using the forward–
backward algorithm seen in Chap. ??. Corpora usually try to include a wide variety
of speech accents so that models are valid for any kind of speaker.

1.4.11 Word Decoding

While Markov models deliver a probabilistic mapping of a string of acoustic sym-
bols a1,a2, ...,am onto a string of phonemes ϕ1,ϕ2, ...,ϕm, the language model
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P(W) = P(w1,w2, ...,wn) applies a second probability to a word sequence. The com-
plete speech recognition then consists in decoding word sequences w 1,w2, ...,wn

from phonemic strings and weighting them using the language model. This can be
restated as a hypothesis search problem that matches words to contiguous subse-
quences of the string (Jelinek, 1997).
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If the vocabulary contains k words v1,v2, ...,vk, w1 is to be selected among k
possibilities, w2 among k possible choices again, and so on. Figure 1.16 shows a
search tree corresponding to an utterance of a three-word sequence with a vocabulary
of three words. The nodes of the tree represent HMMs mapping a word phonetic
transcription and weighted by the language model,

P(W ) = P(w1)P(w2|w1)P(w3|w1,w2).

For such a small vocabulary, there are already 27 paths to search. With a real-size
vocabulary, it would be impossible to explore all the branches, and most systems use
specific techniques to reduce the search space. Decoding is usually done in several
stages: first synchronously with the acoustic modeling stage, and then in a second
pass to refine results. The main techniques are based on the Viterbi search and the
fast match algorithm derived from the A* search strategy.

The Viterbi search applies to HMMs of phonemes weighted by the language
model. The Viterbi search enables us to optimize the number of competing paths.
However, potential paths are still usually too numerous. To keep the search tractable,
improbable paths are pruned according to a probability criterion. This is done while
processing the acoustic symbol string. The paths reaching a state corresponding to
the end of a word with a probability under a specific threshold are discarded. This
threshold depends on the maximum probability that is estimated for all remaining
ongoing paths while processing the speech frames.

The Viterbi search and pruning is also called a beam search. Since paths are
pruned before completion, the algorithm does not guarantee to keep the most likely
word sequence. However, it is possible to prune 80–90% of hypotheses without loss.
The beam search results in an N-best list: the list of the N best utterances. Many con-
tinuous speech engines can complement decoding with a grammar made of phrase-
structure rules that can constrain the search even more.

The complete description of word decoding is outside the scope of this book.
Jelinek (1997) is a good reference on the topic, where he reviews search strategies in
detail.
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Fig. 1.16. Searching with a vocabulary of three words.

1.5 Application Programming Interfaces for Speech Processing

To develop a spoken system, language application programmers will likely resort to
speech engines available on the market, unless they are bold enough to start a speech
recognition system from scratch. Speech processing – recognition and synthesis –
comes then as a packaged module that a developer can integrate into a larger appli-
cation.

Most speech engines offer an interface to program them: a set of built-in func-
tions that programmers can call from their application. Such function sets are called
application programming interfaces (APIs). The developer of a conversational
agent incorporates calls to the API functions in her/his program to control the speech
engine and to get speech transcripts of commands, questions, etc. (Fig. 1.17). The ap-
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plication programmer then has no need to know precisely what is inside the speech
processing box; s/he has just to use relevant functions to start the engine, obtain the
stream of recognized words, modify parameters, and so on.

 Conversational agent logic 
morphology, syntax, semantics, dialogue 

Speech application programming interface 

Speech engines 
recognition and synthesis 

Function calls Function results 

Fig. 1.17. Speech API and the rest of a conversational agent.

Speech APIs interact with the operating system they are running with, that is,
MacOS, Unix, or MS Windows, and adopt their programming style. Common pro-
gramming languages of these APIs include C, C++, Basic, or Java. There is unfortu-
nately no instance of speech API in Prolog. Therefore, a Prolog program intended to
process speech will have to call a “foreign” program written, for example, in C++ or
in Java.

Common speech APIs generally offer two ways to program them. One is said to
be the command and control mode, and the other the dictation mode. The dictation
mode refers to freely dictated text. The command and control mode accepts only a
limited set of words that are comparable to commands of a window interface, such
as File and then Open, or Save or fixed templates, such as Send mail to <Name>,
with <Name> being selected from a directory.

In the dictation mode, a program’s basic structure consists in initializing a speech
session, loading the vocabularies and language models, setting up parameters, and
finally processing speech input. In the command and control mode, a speech program
also has to load an application grammar. The grammars required by speech engines
are context-free and resemble DCG rules without variables, as this kiosk example
from IBM ViaVoice (2001):

<kiosk> = <greeting1>? <greeting2>? <sentence1>
| <greeting1>? <sentence2> .

<greeting1> = hello | excuse me | excuse me but .
<greeting2> = can you tell me | I need to know
| please tell me .

<sentence1> = where <destination1> is located
| where is <destination1>
| where am I
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| when will <transportation> <destination2>? arrive
| when <transportation> <destination2>? will arrive
| what time it is
| the local time
| the phone number of <destination1>
| the cost of <transportation> <destination2>? .

<sentence2> = I am lost
| I need help
| please help me
| help
| help me
| help me please .

<destination1> = a restaurant
| the <RestaurantType> restaurant
| <BusinessType>? <BusinessName> .

<RestaurantType> = best | nearest | cheapest | fastest .
<BusinessType> = a | the nearest .
<BusinessName> = filling station
| public rest room
| police station .

<transportation> = the <TransportType>? <TransportName> .
<TransportType> = next | first |last .
<TransportName> = bus | train .
<destination2> = to metro central
| to union station
| to downtown
| to national airport .

where “?” denotes an optional symbol, and “|” a disjunction.
The command and control mode obviously constrains the user more than the

dictation mode: its grammar needs exact utterances that match a predefined set of
templates, otherwise the user will not be recognized. Unlike command and control,
the dictation mode has no grammar and is usually able to process much a larger
vocabulary. The engine only uses the built-in language model.

The main advantage of command and control lies in its robustness to noise or to
possible hesitations such as the many ugh embedded in natural speech. In this mode,
the speech engine will attempt to match the utterance to the grammar rules and skip
mumbles. The dictation mode, which does not have this sort of constraints, would
probably result in more transcription errors. Dictation, however, is less prone to hes-
itations than spontaneous utterances, and therefore the dictation mode of speech en-
gines can operate without a grammar.
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1.6 Further Reading

A frequently cited reference on phonetics in English is that of Ladefoged (2001).
Although not the most recent, a clear introduction to phonetics in French is due to
Malmberg (1954). Pompino-Marschall (2003) is an introduction in German. A good
guide to phonetic symbols is due to Pullum and Ladusaw (1996).

Spoken language processing by Huang et al. (2001) is an outstanding book that
covers the field of speech recognition as well as speech synthesis. Dutoit (1997) pro-
vides an interesting introduction to speech synthesis. Grapheme-to-phoneme rules
can be implemented by the way of finite-state automata. Roche and Schabes (1997)
is a good survey of these techniques applied to language processing and phonetics.
Among research topics in synthesis, prosody is a matter of active study. Delattre
(1965) is an old but valuable reference where he describes and compares phonetic
features in European languages.

Books on signal analysis are numerous. Introductory references include Lyons
(2004), Bellanger (2006), and Kammeyer and Kroschel (2002). More specifically,
Deller Jr. et al. (2000) is an excellent reference dedicated to speech signals. The
book addresses many aspects of speech processing. The authors present and discuss
theoretical background, methods and efficient computer implementations. Boite et al.
(1999) and Vary et al. (1998) are also good references in French and German on
speech signal processing. Jelinek (1997) is an outstanding presentation of statistical
methods in language modeling and speech recognition. It is still worth reading Lee et
al.’s (1990) description of the SPHINX system, which was one of the first continuous
speech recognition systems. Teams from the University of Cambridge (Woodland
et al., 1999) and LIMSI (Gauvain et al., 2000) are regular winners of the DARPA
speech recognition competitions.

Speech engines for recognition as well as for synthesis are available from sev-
eral vendors. Among APIs, IBM SMAPI is probably the best designed. IBM’s de-
veloper’s guide (IBM, 2001) should enable a programmer to develop speech applica-
tions in C++ . Other APIs include Microsoft’s SASDK (SAS, 2005) and Sun’s JSAPI
(JSAPI, 1998).

Two notable systems mostly used for English are available with their source code
from the Web. These are the Cambridge Hidden Markov Toolkit (Cambridge HTK,
http://htk.eng.cam.ac.uk/) from the University of Cambridge for speech recog-
nition and Festival from the University of Edinburgh for speech synthesis (http:
//www.cstr.ed.ac.uk/projects/festival/).

Exercises

1.1. Write ten grapheme-to-phoneme rules in a language you know. Take a short
newspaper article and apply the rules manually using the longest-match algorithm.
Measure the error rate.

1.2. Write a Prolog accepting grapheme-to-phoneme rules and using the longest-
match algorithm. Apply the program on a short text with rules you have written.
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1.3. Take five sentences in a language that you know and, using four levels of pitch
– 1, 2, 3, 4 – from low to high, try to annotate syllables of the sentences.

1.4. Write a search algorithm in Prolog decoding words from a sequence of phonemes.
Use a brute-force search strategy.

1.5. Write a search algorithm decoding words from a sequence of phonemes. Incor-
porate a trigram language model and use a beam search strategy.

1.6. Using a speech API, program an interactive dialogue system based upon the
kiosk grammar.
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