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Abstract

We present property probes, a mechanism for helping a devel-
oper interactively explore partial program analysis results
in terms of the source program, and as the program is edited.
A node locator data structure is introduced that maps be-
tween source code spans and program representation nodes,
and that helps identify probed nodes in a robust way, af-
ter modifications to the source code. We have developed
a client-server based tool supporting property probes, and
argue that it is very helpful in debugging and understanding
program analyses. We have evaluated our tool on several
languages and analyses, including a full Java compiler and a
tool for intraprocedural dataflow analysis. Our performance
results show that the probe overhead is negligible even when
analyzing large projects.

CCS Concepts: • Software and its engineering → Inte-
grated and visual development environments; Compilers; •
Theory of computation → Program analysis.

Keywords: program analysis, debugging, property probes
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1 Introduction

Modern software tooling includes many kinds of program
analysis. For instance, compilers do type analysis, IDEs sup-
port type-based navigation and editing, and bug-finding tools
may use analyses based on dataflow and effects. However,
developing new analyses can be difficult. There are often
many subanalyses, and they might need to handle many
corner cases of the analyzed language.
In this paper, we propose a new interactive mechanism,

property probes, to help the analysis developer. The main idea
is to allow the developer to inspect and display properties, i.e.,
(partial) analysis results tied to specific parts of an editable
source code (as plain text). The developer can interactively
explore analyses by creating probes for different program
elements, and the results are updated as the source code is
edited, and even after updates to the analysis tool itself.
It is a challenge to match a probe for a particular prop-

erty to the corresponding program element after source code
mutations, and we provide a robust algorithm for this pur-
pose. Our approach also supports the probing of properties
of implicit program elements that are not directly visible in
the edited source code, e.g., imported libraries or predefined
elements built into the programming language, like class
Object in Java. We see property probes as a complement to
traditional development support such as automated tests and
traditional breakpoint/step-debuggers or “print debugging”.

We have implemented a property probe tool, CodeProber,
specifically targeting analyses built with Reference Attribute
Grammars (RAGs) [12]. The attributes of an attribute gram-
mar match the probed properties, and the interactive probing
fits the demand evaluation used in RAGs. However, the con-
cept of property probes can in principle be applied to any
analysis that uses an abstract syntax tree (AST) as the span-
ning tree over its program representation, and that associates
partial analysis results with nodes of the tree. We therefore
expect the ideas to be useful for analyses built with a much
wider range of approaches than RAGs.

We have applied CodeProber to a number of different
languages and analyses, in particular to ExtendJ [7], a full
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(1) The user first right-clicks on the
use of variable a in the source text and
selects "Create Probe".

(2) Then, the AST nodes that span
the clicked variable appear in a menu,
and the user selects the desired node,
VarAccess in this case.

(3) The user is presented with a menu
of all available properties on the
VarAccess node, and selects the decl
property.

(4) Finally, the window for the prop-
erty probe appears, showing the result
value, in this case a reference to the
variable declaration, represented by a
VariableDeclarator node.

Figure 1. Interactively creating a property probe

Java compiler, and to IntraJ [16], an extension of ExtendJ that
supports intraprocedural control-flow and dataflow analysis.

Our contributions are as follows:

• We introduce the concept of property probes, and illus-
trate typical usage of them in CodeProber (Section 2).

• Wepresent an algorithm for robust identification of the
probed AST nodes after mutations of the source code.
We also present known limitations of the algorithm
(Section 3).

• We present the architecture of CodeProber, and the
requirements an AST must follow to be used with
CodeProber (Section 4).

• We present experiences from using CodeProber in
case studies, and performance measurements to ex-
plore its limitations with regards to the size of the
edited code and number of active probes (Section 5).

Finally, we present related work in Section 6, and then
conclude in Section 7.

2 Property Probes

In this section, we present the concept of a property probe,
and the overall architecture of a property probe tool, using
CodeProber for examples.

2.1 Property probes

A property probe is an interactive element, presented in
the context of a source code text editor, and acting as a live
observer of a property of an AST node. In CodeProber, each
property probe is displayed as a small window.

Internally, a probe is represented by a node locator (a way
of identifying a particular node in the AST), a property name,
optionally a number of arguments (if the property takes ar-
guments), and a result value, i.e., the most recently computed
value of the property. The result value is a collection of prim-
itive values, like string or integer, and AST node references
(represented as node locators).

A probe has two main responsibilities:

1. It adjusts the node locator after source code edits.
2. It presents up-to-date results to the user, reevaluating

the property as needed.

Evaluating a property means, in practical terms, invoking
a function in the context of an AST node. Keeping the result
up-to-date means re-invoking the same function whenever
needed, such as when the source code is modified.

The user can create a probe starting from a location in the
text, selecting the desired AST node in case several nodes
match the same location. It is also possible for a user to create
a new probe starting from the result of another probe. This
allows property exploration not only directly related to the
edited text, but also by exploring probe results, which can
again be explored further, supporting an interactive way of
investigating partial results of an analysis.

Exploration of probe results opens for exploring properties
of nodes that have no matching location in the edited source
text. One example is nodes corresponding to ASTs of im-
ported libraries. Another example is synthetic nodes created
to represent implicit program entities. This could be implicit
types, like class Object in Java, or desugared representa-
tions of language constructs, or computed complex proper-
ties resulting from some analysis. Attribute grammars can
use higher-order attributes for such purposes, i.e., attributes
whose values are new AST nodes that may themselves have
attributes [20].

2.2 Examples

Figure 1 shows an example of using CodeProber on the
ExtendJ Java compiler to create a probe.
The user right clicks in the source code and selects the

menu option "Create Probe" (1). A list appears, showing AST
nodes that overlap with the clicked location. The user selects
one of them (2). A new list appears, showing all properties
available on the selected AST node. The user selects a prop-
erty (3). A window (property probe) appears which shows
the result of evaluating the selected property on the selected
node (4). The user can then, if desired, use the probe to bring
up more probes. This can be done either by investigating
more properties of the same node by clicking on the title of
the probe, or by investigating properties of the result node,
by clicking on the result value.
It can be noted that for node locators that correspond to

a text location, CodeProber shows the text location in the
probe, both for probed nodes and for results. These locations
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Figure 2. Probe result automatically updated after changing type from int to float (dotted box).

Figure 3. Probe on a synthetic Exit node.

are hoverable, making the corresponding text fragment light
up. In the example, the user hovers over the probe result,
making the variable declaration in the source text light up.
Figure 2 shows an example of how a probe is updated

when the user edits the source code. In this case, the user has
created a probe for the bytecode of a method. When the user
edits the source code, changing the type of the variable from
int to float, the bytecode in the probe result is updated, for
example, changing the istore_1 and iload_1 instructions
to fstore_1 and fload_1.

Figure 3 shows an example of a probe on a synthetic node.
Here, CodeProber is run on IntraJ, an analysis tool that adds
intraprocedural control flow and dataflow to the ExtendJ Java
compiler.When IntraJ constructs the intraprocedural control-
flow graph for a method it also creates synthetic Entry and
Exit nodes, and gives them positions based on the start/end
of the method. The probe in the figure is evaluated on the
Exit node for f, and the probe result shows the predecessors
for Exit, i.e. last statements before method f ends. The user
hovers over the location in the title row of the probe, and
the corresponding curly brace on line 12 is highlighted.

2.3 Tool Architecture

To implement property probes for a specific analysis tool, we
propose a client-server architecture, see Figure 4. The client
side uses a customizable code editor such as Monaco [4] or
similar. The server side consists of two components; a server
and an analysis tool.
It is the responsibility of the analysis tool to parse the

edited text into an AST (as well as any other files needed for
the analysis), and to populate the AST with the functionality
to be explored using probes. The server uses an API to access
the analysis tool, e.g., to get the root of the current AST and

to query properties on different AST nodes. The server also
handles the communication with the client-side code editor.

The probes are stored on the client-side, using node loca-
tors as references to node objects. This allows the AST to be
reparsed at any time, or even the analysis tool to be restarted
from scratch during the editing session. This also allows the
server to be completely stateless.

In CodeProber, the client is a web page, mostly written in
TypeScript, and using the Monaco code editor. The server is
written in Java, and can use any analysis tool written using
the JastAdd metacompiler (packaged as a jar file, following
certain conventions). For example, in Figures 1 and 2, the
underlying analysis tool is ExtendJ [7], a Java compiler im-
plemented using JastAdd, whereas in Figure 3, the analysis
tool is IntraJ [16], an extension to ExtendJ that adds intrapro-
cedural analysis. In principle, other kinds of analysis tools
could also be used if they are adapted to follow the same
conventions as JastAdd (discussed more in Section 4).
For practical purposes, CodeProber packages the client

and the server together as a single jar file which takes a
path to the analysis tool as its argument. When started,
CodeProber opens a local HTTP server that serves the
webpage, and a local WebSocket server for all dynamic re-
quests. The user can then simply go to the webpage and start
editing and creating probes.

3 Node locators

As mentioned earlier, so called node locators are used to
identify the AST nodes referenced by probes. These node
locators need to be updated after mutations of the source
code in the text editor. There are many potential ways to
identify where an AST node is located. Some examples in
plain English are:

1. "The call expression on line 12, column 9"
2. "The third child of the fifth child of the root AST node"
3. "The class declaration with ID set to ’Foo’"
These ways of identifying nodes might work, but they

are fragile to changes: The first example will break if, for
example, a statement is added at the beginning of the source
code; The second example will break if, for example, the
construct of interest is nested inside a new statement; The
third example will break if, for example, the class is renamed
to "’Bar’".



SLE ’22, December 06–07, 2022, Auckland, New Zealand Anton Risberg Alaküla, Görel Hedin, Niklas Fors, and Adrian Pop

Furthermore, there can be probes on synthetic nodes that
have no textual representation, and that require more sophis-
ticated identification methods.

We have designed the node locators with the goal of mak-
ing them both resilient to different kinds of mutations of the
source code, and efficient to apply, i.e., to resolve them to
actual object references. Another design goal is that node
locators should be as language agnostic as possible, and not
make assumptions of how source text is parsed. This prevents
potential solutions that rely on inserting tracking markers in
the code, for example using annotations or block comments,
as annotations and block comments aren’t supported in all
languages. In addition, such tracking markers would not be
possible to use with synthetic nodes.

Our current design is the result of an iterative development
process where we have tried out probes on many different
properties for several different analysis tools and for different
languages. In our experience the design works very well in
practice, although there will always be cases when node
locators can fail, for example when the corresponding code
is completely removed.

3.1 Node Locator Steps

A node locator is a list of steps where each step moves a
current position to a new position in the AST. The steps
are applied in order, starting at the root of the AST. Any of
the steps can fail, in which case the whole application of
the node locator fails, and no node could be identified. The
following steps are supported:

Child has the form
Child(𝑖)

It means go to the 𝑖’th child node.
TAL stands for Type At Location and has the form

TAL(𝑡, 𝑑, 𝑙𝑠 : 𝑐𝑠 → 𝑙𝑒 : 𝑐𝑒 )
Here, 𝑡 is an AST node type, 𝑑 is a number of steps
down in the AST, and 𝑙𝑠 : 𝑐𝑠 → 𝑙𝑒 : 𝑐𝑒 is a line/column
start/end span in the text. This step moves the current
position to the "best" node of type 𝑡 in the subtree of
the current position and whose text span has at least
one character overlap with 𝑙𝑠 : 𝑐𝑠 → 𝑙𝑒 : 𝑐𝑒 .1 "Best"
here means the node closest to being at depth 𝑑 from
the current position. In case there are several such
nodes, then the node whose start/end most closely
matches the TAL start/end is picked. In case there
are still multiple identical matches, the first one in a
depth-first traversal is chosen.

FN stands for Function and has the form
FN(𝑓 , 𝑎1, .., 𝑎𝑛)

where 𝑓 is the name of a function on the current node,
and 𝑎1, .., 𝑎𝑛 are arguments to the function (𝑛 ≥ 0). The

1Nodes that are not given explicit spans by a parser should have the span
0 : 0 → 0 : 0 and are considered to overlap any other span.

function is expected to return an AST node reference,
and the current position is moved to that node.

The Child steps provide a simple way of locating a node
in an AST, but it is not very resilient to changes. Even a
small change, like changing something in the beginning of
the source code, would result in old node locators to fail or
resolve to the wrong node in the new AST.
The TAL steps are introduced to provide a resilient so-

lution. They can handle variations in the placement of the
nodes due to additions, deletions, and nesting changes. The
TAL steps also make use of text spans in the edited source
code. For this to work, the editor adapts the TAL text spans
in its stored probes as the text is edited. If, for example, the
user inserts a newline between lines 𝑁 and𝑀 , then for all
TAL steps on line 𝐿 ≥ 𝑀 , the line count must be increased by
1. Similar adjustments must be made for lines and columns
on all insertions and removals.

The FN steps were introduced to handle synthetic nodes,
constructed by the analysis tool in a different stage than pars-
ing. In particular, they can be used for higher-order attributes
(HOAs), in which case the function is simply the name of the
HOA, and returns the root of the HOA subtree. In Reference
Attribute Grammars, the HOAs are evaluated on demand
and memoized, so in case the attribute had not already been
accessed for other reasons, calling the function will result in
the HOA being created before its root is returned.

The FN steps might be useful also for other purposes. They
are very versatile as the function may return any node in
the AST. One possible use might be to introduce application-
specific steps, such as jumping to a particular declaration
node. However, we have not experimented with that, since
our main goal has been to provide an algorithm that works
out of the box for any language and analysis tool.

3.2 Example Node Locators

In the Java compiler ExtendJ, the root AST node is of type
Program. Program has a List, which in turn contains a num-
ber of CompilationUnit nodes, each corresponding to a
single source file. Most AST nodes for a source file can be
identified by first identifying a CompilationUnit, and then
using a TAL within that file.
As an example, assume we have the following variable

declaration at line 5 in a given source file:
int a = 1;

An example node locator for the variable declarator ("a = 1")
is:

[ Child(0),
Child(131),
TAL("VariableDeclarator", 10, 5:13 -> 5:17) ]

Here, Child(0) goes from the root AST node (Program) to
the List node. Child(131) goes to the 132:nd Compilation-
Unit, which happens to represent the source file. "10" is the
number of steps from the CompilationUnit down to the
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VariableDeclarator node. "5:13" is the starting line and
column and "5:17" is the ending line and column.

For library compilation units, we rely on FN instead, since
libraries are implemented using higher-order attributes in
ExtendJ.

For example, to identify the Integer class, we would use:
[ FN("getLibCompilationUnit",

"java.lang.Integer"),
TAL("ClassDecl", 2, 0:0 -> 0:0) ]

Here, the FN step represents the function call
getLibCompilationUnit("java.lang.Integer")

on the root node, and results in a CompilationUnit node.
The TAL step then locates the ClassDecl two steps down
from the CompilationUnit. The text span in this case is 0:0
-> 0:0, which is expected for AST nodes that do not get
created from a normal source file.

3.3 Creating Node Locators

To create a node locator for an AST node 𝑛, the following
two stages are performed:

Create Create a list of steps corresponding to the path
from the root down to 𝑛. For each edge on the path,
the corresponding step is either a Child (for a normal
child), or an FN (for a higher-order attribute).

Merge Merge sequences of 1 or more Child steps into a
single TAL step if the TAL step is unambiguous, i.e., if
applying it results in exactly one node.

Strictly speaking, only Create is necessary. Merge exists
to reduce the risk of failure when applying the locator later,
after changes to the code.
As a simple example of when a TAL can be ambiguous,

consider the following statement:
i += 1;

In some languages this is equivalent to writing:
i = i + 1;

Suppose the analysis tool transforms the AST by replacing
the first statement by the second one, in order to obtain a
normalized AST that is easier to analyze. A question then is
what text location information to associate with the nodes
in the transformed statement. One possibility would be to
not set the location at all (i.e., using the default 0:0 -> 0:0).
Another possibility is to use the text location from "i" in
the original statement for both occurrences of "i" in the
transformed statement. Either way, it is likely that the two
variable reference nodes get identical location and type. This
would make a TAL locator ambiguous, hence the need to
take ambiguity into account when performing the Merge
step.

3.4 Adapting to Mutations

Asmentioned, the client keeps track of the active probes with
their node locators, and adjusts the text spans of the TAL

steps as the code is edited. However, the client does not have
any knowledge of the syntax, so it only adjusts according to
textual changes. The consequence is that the node locator
might not fit exactly with the AST of the reparsed code. The
flexibility of the TAL step usually makes it possible to find
the node, but this also means that there can be a better, more
exact node locator that should be used in the future. For this
reason, when the server sends updated probe results to the
client, it also sends the updated node locator for the probe.

As an example, assume we have the following source code:
if (x) {

a();
}
if (x) {

b();
}

The node locator for the first if-statement contains a TAL
step TAL("IfStatement", 3, 1:1 -> 3:1). Suppose now
that the user decides to clean up some duplicated code, so
they remove the two lines in the middle. The source code
now looks like the following:

if (x) {
a();
b();

}

Because of the removed lines, the client adjusts the TAL step
to TAL("IfStatement", 3, 1:1 -> 2:9), covering only
the first two lines (up to and including the a() statement).
The client then informs the server that there are changes,
and the server then sends back the updated probe result,
together with a new more appropriate node locator with a
TAL("IfStatement", 3, 1:1 -> 4:1).

3.5 Known Limitations

The proposed design for node locators has some known lim-
itations. This section describes those limitations, and some
potential ways to solve them.

3.5.1 False Positives. Node locators can sometimes give
false positives. For example, assume we have the following
expression:

a(b(c))

The user adds a probe for b(c). The locator for that probe
looks like this:

[ TAL("CallExpr", 7, 5:13 -> 5:16) ]

Then the user changes the source code to:
a(c)

After the change, the probe will be re-evaluated on a(c),
since it is the only AST node that matches CallExpr and
overlaps with the original TAL position. If the user wanted
the probe to keep matching the first argument to a, then
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matching a(c) is a false positive. The user would rather
match c.
One potential solution to this scenario is to make use of

subtyping: The call b(c) has the AST node type CallExpr,
and according to the abstract grammar, its parent expects any
node of the supertype Expr at that position. By using Expr
instead of CallExpr in the TAL step, the new expression c
would match, solving the user’s problem.

Node locators need to balance resilience and risk of false
positives when deciding how strictly they should match
nodes. We found that being strict with types and permissive
with locations seems to work well. Being less strict with
types (for example by using subtyping) could potentially
introduce more false positives, even if it would help the
specific example above.
Perhaps locators could search both with exact types and

supertypes simultaneously, and use some heuristic to sort
the results. Building UI/UX that supports this in an under-
standable way is an interesting challenge.

3.5.2 Ambiguous IntentWhenCreating Locators. When
a property result is a node reference, the user can click on
the reference to create new probes based on the resulting
node. The meaning of that click can be interpreted in two
different ways. Did the user want to create a probe for..

• ..the node they clicked on?
• ..the result of the property?

In more concrete terms, if the user clicks on the
VariableDeclarator in step 4 in Figure 1, then we can iden-
tify it in one of the following ways:

[ TAL("VariableDeclarator", ..) ]
[ TAL("VarAccess", ..), FN("decl") ]

We use the first option, i.e. we don’t keep any reference to
the original VarAccess node. But there is an argument to be
made for using the longer locator instead, as it would allow
the user to create more complex probes. However, there are
a few challenges to solve:

• By using a longer locator, performance is expected to
degrade. The more steps, the more time it will take to
create and apply the locator.

• Building UI/UX that explains longer locators is a chal-
lenge.

4 Implementation

The overall architecture of CodeProber has three com-
ponents: a client, a server, and an analysis tool, see Fig-
ure 4. The implementation is open source and available on
https://github.com/lu-cs-sde/codeprober. This section de-
scribes the APIs between the three components, together
with rules and recommendations on how the AST produced
by the analysis tool should work.

Figure 4. High level architecture

4.1 Client↔Server API

The client and server communicate with remote procedure
calls (RPC) overWebSocket. There are three different request
types sent by the client: ListNodes, ListProperties and
EvaluateProperty, corresponding to the three steps when
the user creates a probe, as in Figure 1. The client sends the
EvaluateProperty request also when the user edits the text,
as in Figure 2.
There is one message sent from the server to the client;

Refresh. This is sent when the server detects that the un-
derlying analysis tool has been updated. The client is not
expected to respond to this message, but will instead re-
evaluate all active probes by sending EvaluateProperty
requests.

In all requests sent from the client to the server, the client
includes the current editor state, i.e., the full text. The server
will then ask the underlying analysis tool to parse this text
into a new AST. For responses to requests on node locators,
the server includes updated node locators in the response,
based on the new AST. The client then uses the new locator
in subsequent requests. This way, the node locators on the
client side are constantly adapted to the most recent AST, as
was discussed in Section 3.

Example. Figure 5 shows a sequence diagram for the
messages sent when the user creates the probe in Figure 1.
In the first step (1 → 2), the user clicks in the text to create a
probe. The client then sends the ListNodes request, with the
full text and the cursor position as arguments. In response,
the server sends a list of node locators, corresponding to the
nodes that match the cursor position.
In the second step (2 → 3), the user selects one of the

nodes. The client then sends the request ListProperties,
with the full text and the node locator as arguments. In
response, the server sends an updated node locator, along
with a list of property identifiers, each containing a property
name and its argument types.

In the third step (3 → 4), the user selects one of the prop-
erties. The client then sends the request EvaluateProperty,
with the full text, the node locator, the property identifier
and any arguments to the property. (If the property has
arguments, the client prompts the user to supply them in-
teractively.) In response, the server sends the updated node

https://github.com/lu-cs-sde/codeprober
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Figure 5. Sequence diagram for Figure 1

locator, as well as the probe result. Any AST nodes in the re-
sult are encoded as node locators that can be used for future
ListProperties requests.

For the scenario in Figure 2, the client will send one Eval-
uateProperty request for each of the active probes.

4.2 Server↔Analysis Tool API

The concept of property probes can in theory be used for anal-
ysis tools implemented in any language, but CodeProber
is written in Java and currently requires the analysis tool to
run on the JVM. The server communicates with the analysis
tool using reflective calls.

The AST is parsed or reparsed by calling the mainmethod
on the analysis tool jar file, with the path of a temporary file
containing the client state (the full text). The main method
should store the parsed AST in a static field in the main class,
that should be declared as follows:

public static Object DrAST_root_node;

This integration strategy is also used by DrAST [13], an-
other AST exploration tool. For simplicity, we use the same
field name, since many tools built with the JastAdd meta-
compiler are already prepared to work with DrAST.
Once an AST is produced, the server uses reflection to

access and traverse it. The server assumes that the AST
follows a certain structure. A number of methods should be
available on each AST node for traversal purposes:

1. getNumChild() - returns the number of children on
this node.

2. getChild(int) - returns a child at a given index.
3. getParent() - returns the parent node for this AST

node, or 𝑛𝑢𝑙𝑙 for the root AST node.
4. getStart() / getEnd() - returns the start/end position

for this AST node.
When listing available properties, reflection is again used,

via java.lang.Class.getMethods(). The full list is filtered before

being returned to the client. Methods that are non-public or
contain "_" or "$" in the name are removed. Methods with ar-
guments can only contain arguments of type int, boolean,
String or AST node references. Methods with other argu-
ment types are removed.

To compute node locators, it must be possible to determine
the connection between a parent and child AST node in the
form of either a Child or FN step.

Child steps are determined by iterating over all children
in the parent node. Using identity comparison, we can detect
the index of the child node.
If a node is a higher-order attribute (HOA), an FN step

should be used, including the name and the arguments of the
HOA. This can be determined thanks to the fact that JastAdd
caches the arguments to, and results of, all HOA invocations.
To construct an FN step for a HOA, CodeProber selects the
parent of the HOA, and then iterates through all the parent’s
HOA caches, again using identity comparison to find the
name and arguments of the appropriate child HOA.

In case no parent/child connection can be determined, the
child node is considered to not be attached to the AST. This
causes node locator creations to fail, and the server sends an
error code to the client.

4.3 Desirable AST Features

To use property probes, some design choices for the analysis
tool are desirable to help improving the user experience:
good source locations in the AST, on-demand evaluation
of properties, and pure properties. We will discuss these in
turn.

Source locations. For property probes to work well, it is
desirable that the parser captures line and column positions
and stores them in the AST nodes at parsing. Also, the posi-
tions should honor the AST hierarchy: CodeProber assumes
that a node with an explicitly set position has an equal or
larger span than all nodes in its subtree. Otherwise, our TAL
algorithm might miss the best matching node, since it uses
positions to prune subtrees in its search.

In many tools, nodes do get appropriate positions, in order
for the tool to be able to report locations of errors and warn-
ings. However, in a given tool, there might be nodes that lack
this information. Perhaps locations have been added only
for the nodes with associated error messages; Perhaps the
AST is transformed, and location information is not carried
over to the transformed parts.
Missing locations will degrade the user experience, as

features like highlighting and right clicking to select AST
nodes will not work. In the client of CodeProber, a small
warning triangle is shown next to each AST location that
has its line and column set to zero.

However, CodeProber also tries to compensate for miss-
ing location information. It uses a position recovery strategy
to infer suitable location information in case it is missing.
There are multiple supported strategies, and the user can



SLE ’22, December 06–07, 2022, Auckland, New Zealand Anton Risberg Alaküla, Görel Hedin, Niklas Fors, and Adrian Pop

select which (if any) to use. The default strategy looks at
nearby parent and child nodes, progressively searching fur-
ther up and down in the AST until a valid location is found. A
recovered position usually covers a slightly larger or smaller
span than the real span of the AST node. Therefore, position
recovery should be seen as a temporary solution, and it is
better if all AST nodes carry their own position instead.

On-demand evaluation. The user can create probes for
any property the AST supports, but usually only a tiny subset
of the functionality is ever probed for at the same time. This
fits well with on-demand evaluation. Rather than comput-
ing everything up front, it is advantageous if properties are
lazy and their values computed only when demanded. On-
demand computation is not strictly necessary, but if all po-
tentially probed values are computed up-front, as soon as the
source text is edited and the AST is reparsed, re-evaluation
of all these values might take a long time and be at odds with
the user experience. Of course, if the user does not edit the
source text, but only explores properties, the probes can still
be very valuable for tools that do up-front computations.
Pure properties. The probed properties should be ob-

servationally pure, i.e., without visible side-effects when
accessing them. If accessing properties has side-effects, and
they behave differently depending on in which order they
are invoked, then the benefits of property probes diminishes.
In addition, there is a caching setting in CodeProber that
greatly improves performance by reusing the AST whenever
possible, to avoid unnecessary reparsing. If properties can
cause mutations in the AST, then caching is not reliable.
All our evaluations have been performed with JastAdd-

based tools, where all property evaluation is on-demand and
all properties (attributes) are observationally pure.

4.4 Program Representation

In this paper, we have assumed that the program representa-
tion is an AST. However, it is sufficient if the representation
has a spanning tree, with the traversal interface discussed
above, and where source text locations can be attached to the
nodes in the spanning tree. In fact, this is the case for JastAdd
tools: Many of the JastAdd attributes are node references, so
the program representation is actually a graph, but with the
AST as the spanning tree.

Many analysis tools work on the bytecode level, and per-
haps use a control-flow graph as their main representation.
We have not experimented with using property probes for
such tools, but we think it should be possible to use a suitable
spanning tree consisting of hierarchies of, for example, files,
classes, methods, basic blocks, and instructions, all annotated
with suitable source code locations.

5 Evaluation

This section presents the findings from case studies and
performance measurements of CodeProber.

5.1 Case Study: ExtendJ

During development of CodeProber we continuously tested
functionality against the Java compiler ExtendJ. Based on
this experience, we added a few features that we think are
useful also for many other analysis tools.
The position recovery strategy mentioned in Section 4.3

was added specifically because some node types in ExtendJ
don’t carry their own position information.

We also added a few features that improve multi-file sup-
port. We noticed that when we added multiple external files
to ExtendJ, some problems appeared. For example, the per-
formance of creating and applying node locators initially
scaled poorly with the number of external files. The issues
stemmed from CodeProber traversing through the entire
AST, when it should ideally have avoided AST nodes that
correspond to external files. We added support for a few
optional functions that can tell CodeProber to not traverse
through certain nodes, which is used in ExtendJ to avoid
unnecessarily traversing through external files. This greatly
improves the performance of creating and applying node
locators.

During development we also identified and fixed two dif-
ferent caching issues in ExtendJ, which we contributed back
to ExtendJ. We hypothesize that these issues hadn’t been
discovered before because ExtendJ had not before been used
in the live, incremental way that CodeProber uses its un-
derlying analysis tools.
In general, our experience is that using property probes

with ExtendJ has been an excellent way of building under-
standing of the compiler. One common use case for ExtendJ
is to write program analysers or experimental extensions
to Java. To do this you need to know what AST node types
are available, and what properties they contain. This can
be accomplished by consulting the official API documenta-
tion [3]. However, as CodeProber took shape, we found
ourselves using it more often instead. For example, if you
want to know what properties are available on a "for-each"
statement, then you can write such a statement, right click
on it and see the list of properties. If any property looks
interesting, you can click it to immediately see how it works.
With the API documentation you need to first find the name
of the node ("EnhancedForStmt") and then you get a list of
property names, but these cannot be directly invoked since
there is no concrete code attached.

5.2 Case Study: IntraJ

IntraJ [16] is an extension to ExtendJ that adds intraproce-
dural control-flow and dataflow analysis. The main author
and developer of IntraJ used CodeProber in developing new
types of analysis. Before using CodeProber, the IntraJ de-
veloper had used the following cycle when developing new
features:

• Write code for the new feature.
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Figure 6. Control-flow graph rendered on top of code.

• Add print statement(s) to check that the feature works
correctly ("print debugging").

• Iteratively modify the code and print statements until
you get the expected behavior.

• Remove the print statement(s).
Now, property probes have replaced most of the "print

debugging" steps, since it is much faster and simpler to open/-
close probes than it is to add/remove print statements and
recompile IntraJ.

The IntraJ developer also mentioned that they use the Ex-
tendJ API documentation less, since it often is quicker to ex-
plore functionality via the property probes in CodeProber.
One new feature was added specifically for IntraJ; the

possibility to visualize the control-flow graph directly in the
source code. Previously, the control-flow graph was usually
inspected in textual form, which was inconvenient, or on
a dot visualization of the AST with control-flow edges, but
it could become very large even for a small program. We
therefore added a feature that allows property probes to
declare arrows to be drawn between two positions in the
source code, and used this to display the control-flow graph,
as seen in Figure 6. The implementation was inspired by the
bug explanations in Clang Static analyzer [2].

Each probe is responsible for zero or more arrows. When
you close a probe, its associated arrows disappear too. This
means that the amount of currently visible arrows depends
on which probes are open. The user can choose to show the
full control-flow graph for the entire program, or just for a
single method, etc.

5.3 Case Study: Other Compilers

We used CodeProber with three different compilers for the
languages Oberon-0 [9], Bloqqi [10] and SimpliC, a simple C-
like language. The experience worked well for all compilers.
We did, however, discover that every compiler had a few
AST nodes that didn’t carry correct location information.
Nodes that produced errors/warnings generally had correct
locations. Missing locations were usually attributed to either
desugaring or that multiple nodes were created in the same
parser production (the parser generator attached location
only to the return node of a production). This was no major
issue however since the position recovery strategy developed
for ExtendJ worked fine here, as well.

We have a compiler course where students create SimpliC
compilers during the lab sessions.We presented CodeProber

to ∼70 students early on in the course, and later asked about
their experiences using it. We found that many students
thought CodeProber was useful and they kept using it
throughout the entire course. They used it to explore and
debug name and type analysis, call graph construction, code
generation, and more. Based on the feedback we received,
CodeProber will be used in future iterations of the course
as well.
We also used CodeProber with a student implementa-

tion of a ChocoPy [15] compiler. ChocoPy is a subset of
Python, commonly used for educational purposes. Here we
had more severe location-related issues. One of the chal-
lenges with parsing Python is the indentation sensitivity.
The ChocoPy implementation we used had solved this by
making the parser a two-step process; first it transforms
all indentation into whitespace-insensitive indentation to-
kens, and then it parses the transformed source code. AST
nodes produced from the transformed sources always had
line numbers that matched the original source code, but their
columns were usually wrong by a few characters, since the
whitespace-insensitive tokens didn’t match the width of the
original indentation. You could still create probes, but the
user experience was not very good. Of course, these prob-
lems could easily have been solved by fixing the ChocoPy
implementation to set proper line and column numbers, but
it illustrates the kinds of problems a user can run into.

5.4 Performance

Wehavemeasured the performance of property probe-related
operations in CodeProber in order to find out the limita-
tions on sizes of projects and number of active probes. This
section presents the methodology behind the measurements,
and the results.
The processing time it takes to use property probes can

be divided into three main groups:

• Parsing
• Property evaluation
• Probe administration

Parsing and property evaluation can be mitigated to some
extent, for example by doing incremental parsing or keeping
fewer probes active. The processing time for these groups
depend on the underlying analysis tool, which is ExtendJ
in our benchmarks. ExtendJ has support for incremental
parsing on a file level. I.e., when the user changes a file, we
only need to re-parse that file, and then we can merge the
result with all previously parsed files.

"Probe administration" contains all the functionality that
is required to support property probes. This includes list-
ing nodes that overlap with the user’s cursor, creating and
applying node locators, serializing probe results, etc.

The cost of parsing and property evaluation has to be paid
even when ordinary debugging approaches are used, like
unit tests or "print debugging". The administration cost is
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Figure 7. Time to create and evaluate probes
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unique to property probes, and therefore wewant to measure
it to ensure that the overhead of using property probes is
acceptable.
CodeProber is implemented with a client/server archi-

tecture, but all time-consuming work happens on the server
side, so that is what the benchmarks are focused on. A head-
less client is used for measurements, and it runs on the same
machine as the server in order to avoid any network latency
in the data.
The measurements in this section were generated on a

benchmark machine running Java 11 on Ubuntu 21.20 with
an Intel i7-11700K CPU and 128GB DDR4 RAM. The machine
is configured with a minimal amount of background services
to reduce noise in the data. We also ran the same benchmarks
on a normal development laptop, for comparison purposes.
The laptop is running Java 17 on Mac OS 12.2.1, an Apple
M1 Pro CPU and 16GB LPDDR5 RAM. The laptop results are
not included in this paper, but they were roughly 1.5 times
slower than the results from the benchmark machine.
Benchmarking is done with three variables: project con-

figuration P, action type T, and number of actions N.
P is one of 6 project configurations. The minimum config-

uration is a single file containing 5 lines of code. The largest
configuration is the source code of Apache FOP [1], which
contain over 900 files and 96K lines of code.

The action type T is either creating or evaluating probes.
The number of actions N is 1, 5, 10 or 15. Whenever

CodeProber performs more than one action for the same
source code, it will reuse the AST. Therefore, the parsing
cost only needs to be paid once per source code version. The
overhead for action𝑘 (𝑘 > 1) is property evaluation time and
probe administration.

For each combination of P, T, and N, we performed the
following sequence:

1. Simulate a change to the source code.
2. Perform N actions of type T.

This sequence was performed in a loop until steady state
had been achieved. After that we performed the sequence
an additional 5000 times, and recorded the average time to
finish the N actions in Table 1.

5.4.1 Creating a Probe. This involves two operations:
1. List all AST nodes overlapping with the user’s cursor.
2. List all properties available on a given AST node.
The two operations correspond to the ListNodes and

ListProperties requests in Section 4.1. Note that we don’t
measure EvaluateProperty. The result of the actions we
simulate here is a correctly configured probe, but its result
area in the probe will be empty until an EvaluateProperty
request finishes, which we have benchmarked separately.
The first operation is skipped when a probe is created

based on the result of an existing probe, for example by
clicking on VariableDeclarator in step 4 of Figure 1. In
our benchmarks we always measure both operations, which
gives us a worst case time for creating a probe. The average
probe creation time is expected to be slightly better, since
you sometimes skip the first operation. The results can be
seen in Figure 7a.

5.4.2 Evaluating a Probe. A probe is evaluated for one
of two reasons:

• either a new probe was created,
• or some underlying data changed, and existing probes
must be re-evaluated
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Table 1. Performance measurements, all times in millisecond.
The data for creating and evaluating probes is plotted in Figure 7.

Project Name Size Time to create N probes Time to evaluate N probes Full parse
LOC N=1 N=5 N=10 N=15 N=1 N=5 N=10 N=15 Steady state Startup

Mini 5 0.8 3.3 6.1 9.1 0.3 1.2 2.1 2.9 0.1 126.5
Probe Server 2K 1.4 4.4 7.7 11.0 0.9 1.9 2.9 3.9 9.1 200.6

Commons Codec 10K 3.9 7.1 10.6 14.1 3.3 4.5 5.6 6.7 44.0 287.6
NetBeans 18K 6.3 9.9 13.7 17.8 5.6 7.0 8.2 9.4 58.1 346.8
PMD 50K 15.6 20.6 26.5 32.5 14.5 16.3 18.1 19.8 153.9 492.3
FOP 96K 31.7 39.6 48.5 57.7 30.2 32.8 35.3 38.0 358.0 720.1

Evaluating a probe corresponds to the EvaluateProperty
request in Section 4.1. Probes are expected to be evaluated sig-
nificantly more often than they are created, but exactly how
often that happens depends on how you use CodeProber.

The property you evaluate has a large impact on the total
evaluation time. We are mostly interested in measuring the
probe administration time, so therefore we intentionally
selected lightweight properties that finish in a short, constant
time. Our measurements should therefore almost entirely
consist of parsing time and probe administration time.

The results can be seen in Figure 7b.

5.4.3 Full Parse Time. The performance numbers shown
in Figures 7a and 7b are using incremental parsing. For each
measurement, all files in the project configuration are parsed
once, and then only one file is re-parsed after each source
code mutation. Therefore the initial request is expected to
be significantly slower than the rest. With the current imple-
mentation of CodeProber, changing project configuration
requires restarting CodeProber with new parameters. This
means that the initial parse will likely happen without bene-
fits from JVM optimization. We have benchmarked the full
parse in two scenarios. Once where the parsing code had
reached steady state, and once where the parsing code had
just been loaded into the JVM ("Startup"). Full parse is mea-
sured for all project configurations P, but only with N=1,
since multiple full parses wouldn’t benefit from AST reuse,
so there is no point in e.g N=5. The time for the initial parse
can be seen in Table 1.

5.5 Overall Results

The case studies show that property probes are useful for a
variety of analysis tools.

The performance measurements show that the overhead
is negligible for practical use. J. Nielsen defined three time
limits to keep in mind when talking about responsiveness
[14]. According to that definition, responding in less than
0.1 second is enough to appear instant, and responding in
less than 1 second is good enough to not interrupt the user’s
flow of thought. All normal actions in the benchmarks are
faster than 0.1 second. The initial parse, which only happens

once, is faster than 1 second even for the largest project
(97 kLOC). In the smaller project configurations, the time
usage consists almost entirely of probe administration. For
the larger configurations we tested, a majority of the time
is spent parsing-related tasks. This includes both reparsing
modified files, and flushing away cached values from the
reused parts of the AST. Flushing scales linearly with the
size of the AST, which is why total time grows linearly too.
With some sort of incremental flushing, we could possibly get
better results. Either way, with current scaling characteristics
we predict that performance is going to be acceptable even
for much larger projects than the ones we tested.

Overall, property probes have shown to be very helpful in
exploring how an analysis works, and for implementing and
fixing features. The approach fits very well for analysis tools
that use on-demand evaluation for individual properties, like
the JastAdd-based tools we have tried it on. However, we
think the approach can be very useful also for tools that do
up-front evaluation, as long as the results can be tied to an
AST with source text locations. In this case, properties can be
explored interactively, although the user will of course have
to wait for a possibly lengthy reanalysis if the underlying
source text is edited.

6 Related Work

CodeProber allows interactive exploration of properties
based on the source code. Earlier tools for debugging and ex-
ploring attribute grammars include, for example, Noosa [17]
and DrAST [13]. Noosa is a special-purpose interactive de-
bugger for compilers implemented in the Eli attribute gram-
mar system. It supports, e.g., visualization of the AST, display
of attributes of the AST, linking between source text and AST,
monitoring the stream of abstract events during attribute
evaluation, and setting breakpoints relating to such events.
In contrast to CodeProber it does not have any concept of
probes that are updated after changes to the source text.

DrAST is an interactive tool for visualizing JastAdd ASTs
and inspecting AST node properties. It introduces a filtering
language to collapse subtrees in order to reduce the visual
complexity of the AST, and to specify which attributes to
show directly in the tree for certain node types, possibly
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conditionally. Individual attributes can also be inspected, but
there is no concept of probes that are updated after source
text changes.

The concept of node locators has relations to origin track-
ing [19]. This is a set of techniques for identifying where
a node came from after tree rewrites. This is useful, for ex-
ample, when generating error messages for transformed
trees. Origin tracking has also been integrated with attribute
grammars with higher-order attributes [21] (HOAs), which
might be useful for improving locations for HOAs used in
our CodeProber.
Node locators also have connections to edit scripts. Edit

scripts describe differences between two versions of a source
file. This can be used to generate detailed program diffs, or
track nodes acrossmultiple versions of a source file. However,
existing techniques, like GumTree [8], IJM [11], MTDIFF
[6], are focused on detecting differences between two files,
without any knowledge of the actual input sequence that
transformed one file to another. Our node locators require
that we have input information available while editing. This
is a limitation, but it also makes the algorithm much simpler.
It might be possible to derive input information using edit
scripts, and thus make it easier to integrate property probes
with, for example, the Language Server Protocol (LSP).

Property probes in CodeProber can be viewed as being on
liveness level 3 out of 6 according to Tanimoto [18]. Probes
are automatically updated when either the input source file
or the analysis tool have been changed, but do not predict
user actions.
Property probes can also be compared to watch expres-

sions found in many debuggers. Watch expressions typically
only run while a debugging session is running, and the ex-
pressions are evaluated in the context of the current debug-
ging session state. Property probes, on the other hand, are
always active, and are evaluated without any state (except
the source file contents that were used to initially construct
the AST).

Beller, Spruit, Spinellis and Zaidman found that "develop-
ers spend surprisingly little time in the debugger" [5], citing
complexity of debuggers as a potential reason. Many develop-
ers they surveyed preferred using "print debugging" instead,
despite its limitations. This indicates to us that there is a
need to develop new ways of exploring/debugging programs.
It might be easier to develop debugging tools for particular
use cases, like for exploring partial program analysis results.
This paper represents one such tool.

7 Conclusion

We have presented the concept of property probes, an inter-
active mechanism for exploring program analyses in terms
of the source code.

To support probes to be updated after edits, we introduced
node locators with three kinds of steps: Child, TAL, and FN,

and illustrated how they are used to robustly map between
source code and the nodes in the program representation,
and to handle synthetic nodes that have no representation
in the source code.
We have developed CodeProber to support property

probes, and discussed its client-server architecture and im-
plementation. To validate our work, we successfully applied
CodeProber to a number of tools for different languages
and analyses, all based on Reference Attribute Grammars.
This initial testing has already showed the utility of the tool;
We are now using the tool extensively in our own work on
program analysis. We have also shown through experiments
that the overhead of using probes is very small, even if the
analyzed project is large, giving latencies in the interactive
tool that are far below the recommended limit of 0.1 seconds.

In going forward, we plan on performing more user stud-
ies. In addition to continuing to use CodeProber in our
compilers course, we plan to use CodeProber in a program
analysis course where students develop different analyses
on top of a small procedural language.
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