

Recent Advances and Future Trends in Graphics **Hardware**

Michael Doggett **Architect** November 23, 2005

Overview

- XBOX360 GPU : Xenos
 - Rendering performance
 - GPU architecture
 - Unified shader
 - Memory Export
 - Texture/Vertex Fetch
 - HDR rendering
 - Displaced subdivision surfaces
- RADEON X1800
- Graphics Hardware
 - Graphics APIs
 - GPU Research

ATI - Driving the Visual Experience Everywhere

Products from cell phones to super computers

System architecture

Rendering performance

- GPU to Daughter Die interface
 - 8 pixels/clk
 - 32BPP color
 - 4 samples Z Lossless compression
 - 16 pixels/clk Double Z
 - 4 samples Z Lossless compression

Rendering performance

- Alpha and Z logic to EDRAM interface
 - 256GB/s
 - Color and Z 32 samples
 - 32bit color, 24bit Z, 8bit stencil
 - Double Z 64 samples
 - · 24bit Z, 8bit stencil

GPU architecture

Unified Shader

- A revolutionary step in Graphics Hardware
- One hardware design that performs both Vertex and Pixel shaders
- Vertex processing power

Unified Shader

- GPU based vertex and pixel load balancing
 - Better vertex and pixel resource usage
- Union of features
 - E.g. Control flow, indexable constant, ...
- DX9 Shader Model 3.0+

Memory Export

- Shader output to a computed address
- Virtualize shader resources multipass
- Shader debug
- Randomly update data structures from Vertex or Pixel Shader
- Scatter write

Texture/Vertex Fetch

- Shader fetch can be either:
 - Texture fetch (16 units)
 - LOD computation
 - Linear, Bi-linear, Tri-linear Filtering
 - Uses cache optimized for 2D, 3D texture data with varying pixel sizes
 - Unified texture cache
 - Vertex fetch (16 units)
 - Uses cache optimized for vertex-style data

Texture Arrays

- Generalization of 6 faced cube maps to 64 faces
- Each face is a 2D mip mapped surface
- Not volume texture
- Applications
 - Animation frames
 - Varying skins for instanced characters / objects
 - Character shadow texture flipbook animations

Texture array application: Unique seeds for instanced shading

Texture array application: Hundreds of instanced characters

Texture compression

- All of the old DXT formats
 - DXT1, DXT2/3, DXT4/5
- Several new formats (variations on above formats)
 - DXT3A
 - 4 bit scalar replicated into four channels in shader
 - DXT3A as 1111
 - 1 bit per channel pixel
 - DXT5A
 - · 3bit selection between 2 8bit endpoints
 - DXN
 - 3Dc normal compression,
 - 2-channel version of DXT5A
 - CTX1
 - 2bit selection between 2 8.8bit endpoints

CTX1 vs. DXN

- Both have 8.8 anchor points
- CTX1
 - x and y share 2-bit interpolation value
 - 4 representable normals per 4×4 block of texels
 - 4 bits per texel
- DXN
 - Independent 3-bit interpolation values for x and y
 - 64 representable normals per 4×4 block of texels
 - 8 bits per texel

High Dynamic Range Rendering

- Special compact HDR render target format:
 - Just 32 bits: 7e3 7e3 7e3 2
 - Compatible with multisample antialiasing
 - R, G and B are unsigned floating point numbers
 - 7 bits of mantissa
 - 3 bits of exponent
 - Range of 0..16
 - 2 bits of alpha channel
- 16-bit fixed point at half speed
 - With full blending

Displaced subdivision surfaces

- Prototype algorithm
- Vineet Goel, ATI research Orlando

Displaced subdivision surface algorithm

- Tessellator:
 - Generates 64 vertices for each patch that are fed into the VS.
- Vertex Shader:
 - Reads in one-ring, computes Stam's method using precomputed table lookup
 - Adds Displacement map
- Pixel Shader
 - Adds bump mapping and surface color

Displaced subdivision surfaces

Base mesh
• Used by Tessellator to generate vertices

Subdivision surface

Displaced subdivision surface

RADEON X1800

- DirectX 9.0 Shader Model 3.0
- Pixel Shader
 - 32bit IEEE Single Precision float
 - 4 quad based, threaded units
 - 512 threads of 16 pixels allow efficient dynamic branching

Graphics Hardware

Graphics APIs

- Windows Vista
 - Virtual Memory
 - Improved state change efficiency
- Vista DirectX9
 - ClearType
- DirectX10
 - Unified shader programming model
 - Geometry Shader
 - Access to entire triangle and adjacent vertices
 - Output to array of render targets, cube maps
 - Stream output from Geometry Shader

GPU research

- Improved multi-GPU performance and antialiasing
 - CrossFire
 - · Multi-chip, multi-core
- Higher Order Surfaces
 - Subdivision surfaces, NURBS
- General Purpose GPU (GPGPU)
 - Driving improved 32bit float performance
 - Xenos shader scatter write

GPU research - Shadows

- Performance enhancements for stencil shadows and shadow buffers
- Hierarchical rendering
 - User low resolution shadow map to find areas that require detail rasterization
 - · Chan, Durand EGSR04
 - Stencil shadow volumes using 8x8 pixel tiles
 - · Aila, Akenine-Möller GH04
- Improving Z, stencil performance

GPU research – Ray Tracing

- Accelerating ray tracing on GPUs
 - Uniform grid
 - · Purcell et. al. SIG02
 - KD-Tree, performance improvement greater than hardware improvement
 - Foley et. al. GH05
 - EarlyZ Volume rendering ray casting
 - · J. Krüger, R. Westermann VIS03
 - Build and update acceleration structures
 - · Xenos shader scatter write
- FPGA based ray tracing design
 - · RPU, Woop et. al. SIG05
- GPU evolution affected by ray tracing

GPU research – Anti-Aliasing

- Multisample efficient, effective solution
- Custom filtering of multisampled images
- Use Multisample sample mask to control transparency
 - Alpha to coverage
 - Foliage, Chicken wire
- Order independent transparency

RADEON X1800 Demos

- The Assassin
- Parthenon
- Toyshop

Questions?

