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Abstract

The programmability of modern graphics processing units (GPUs)
provide great flexibility for creating a wide range of advanced ef-
fects for interactive graphics. Developing such effects requires writ-
ing not only shader code to be executed by the GPU but also sup-
porting code in the application where the effect is to be used. This
support code creates dependencies between effects and the applica-
tions that use them, making it harder to evolve applications and to
reuse effects. Existing effect frameworks, such as DirectX Effects
and CgFX, can only provide partial encapsulation because they con-
sider effects as passive data structures. In this paper we present an
effect framework written in an ordinary scripting language where
effects are active entities. This makes it possible to completely en-
capsulate both shaders and support code thereby minimizing the
dependencies to the application.

1 Introduction

The availability of programmable graphics processors has made
procedural effects a key ingredient in real-time graphics produc-
tions. Where content creation previously was mainly the combina-
tion of a wide range of different kinds of artwork such as geometric
models, textures, and motion data, it now also has to include algo-
rithmic development. Writing the shader code to be executed on
the graphics processors is something which traditionally is not part
of an artist’s skill set. Instead this new development model requires
a closer relationship between artists and shader programmers. Pre-
viously programmers of interactive graphics applications were pri-
marily concentrated with loading and displaying content created by
the artists in an efficient and correct manner, a task which is handled
fairly independent of the actual content. But with programmable
graphics processors the roles of artists and programmers become
more intertwined. When the artist conceives of a visual effect it is
the programmers job to supply shader programs and the necessary
modifications to the application for achieving that effect. But once
written, the shader program typically requires actual textures and
parameter values and it is the artists job to supply that.

For efficient collaboration it is important, to both artists and pro-
grammers, that the graphical effect is a well-defined entity. It
should include all relevant resources and functionality, both shader
code and application support, required for correct operation. This
need for encapsulation is the motivation behind technologies such
as the DirectX Effects by Microsoft and CgFX by NVIDIA. In these
frameworks the notion of an effect is used as the key unit of abstrac-
tion. But although these technologies provide a number of features
which improve the handling of effects they still require a substantial
amount of application support. All but the most trivial effects have
dependencies in the application that use them.

The effect framework presented in this paper aims to provide com-
plete encapsulation of effects in the sense that specific support code
avoided and parameter passing is made with the most unobtrusive
mechanism possible. We have implemented a prototype which uses
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Python both for the implementation of the framework and to ex-
press the effects themselves. This paper is focused on the imple-
mentation of the framework and its application interface, whereas
the benefits of writing effects in Python is described in more detail
elsewhere [Lejdfors and Ohlsson 2004].

1.1 Related work

The focus on complete effects is different from most other ap-
proaches. Most real-time shading language research has been fo-
cused on mapping high-level shading languages to real-time shad-
ing hardware. Research was initiated by Cook [Cook 1984] with
the introduction of shade trees, which spawned a number of shad-
ing languages such as RenderMan [Hanrahan and Lawson 1990]
or Perlins image synthesizer [Perlin 1985]. These languages were
originally used for off-line shading but with advances in hardware
Peercy et al showed that it was possible to execute RenderMan
shaders on an extended OpenGL 1.2 platform by viewing the graph-
ics hardware as a SIMD pixel processor [Peercy et al. 2000]. Olano
et al presented an alternative approach with the pfman language
[Olano and Lastra 1998] for the Pixelflow rendering system [Mol-
nar et al. 1992], a flexible platform based on image composition
which, unfortunately, bears little resemblance to the GPUs of to-
day.

The computational model of separating per-vertex and per-pixel
computations was introduced by Proudfoot et al [Proudfoot et al.
2001] which allowed the to efficiently map shader programs to
hardware. This separation is used explicitly the in real-time shading
languages used in the industry today: Cg by NVIDIA [Mark et al.
2003], HLSL by Microsoft [Gray 2003] and OpenGL shading lan-
guage [3D 2002] introduced with OpenGL 2.0. This is also the case
with the Sh language [McCool et al. 2002][McCool et al. 2004]; a
shading language embedded in C++ which provides a number of
powerful high-level features for shader construction. Another em-
bedded shading language is Vertigo [Elliott 2004] which uses the
purely functional language Haskell as a host language to provide a
clean model for writing shaders for generative geometry.

All these efforts have focused on various aspects of shader program-
ming but the writing of effects containing multiple shaders have not
received the same amount of attention. The Quake3 shader model
[Jaquays and Hook 1999] provides a rudimentary interface for con-
trolling the application of multiple textures. DirectX Effects [Dir
] extend the HLSL shading language and introduce a richer, more
powerful interface for controlling the rendering pipeline. NVIDIA
provide a superset of this functionality with their CgFX framework
[CgF ], based on Cg. This is further elaborated on in Section 1.3.

1.2 Shader programming

To demonstrate the issues involved in the implementation of shader
based effects and how an active framework like PyFX can allevi-
ate these problems we will use a running example throughout this



Figure 1: Hemispheric lighting on bunny

paper. The description of this example will be fairly detailed be-
cause the causes of application dependencies and need for support
can often be found in those details which would usually be omitted
in a more concise description. The example we use is the lighting
model known as hemispheric lighting, where the idea is to give a
contribution of indirect light as a mixture of light from the sky and
light from the ground. A given point is colored depending on ori-
entation of its surface normal, the more it is oriented towards the
sky the more light from the above light source it receives, and vice
versa. The effect of using this model can be seen on the bunny in
Figure 1. A shader program which implements this model can be
written in Cg as

void main(float4 position : POSITION,
float4 normal : NORMAL,
out float4 clipPosition : POSITION,
out float3 color : COLOR,

uniform float4x4 ModelViewProj,
uniform float4x4 ModelViewIT,
uniform float4x4 WorldView,

uniform float3 MaterialColor,
uniform float3 SkyColor,
uniform float3 GroundColor)

clipPosition = mul(ModelViewProj, position);
float4x4 ModelWorldIT = mul (WorldView,ModelViewIT) ;
float3 worldNormal = mul(ModelWorldIT,normal) .xyz;

worldNormal = normalize(worldNormal);
color = lerp(GroundColor, SkyColor,
(worldNormal.y + 1)/2)*MaterialColor;

Listing 1: Hemispheric lighting in Cg

This shader program is a vertex shader. It computes the vertex
normal in world-space worldNormal by using the inverse trans-
pose of the model-world transform ModelWorldIT. The amount
of incident light of the vertex is then computed by linear interpo-
lation lerp of the sky and ground color where the weighting fac-
tor is determined the y-component world-space normal. The in-
cident light is weighted by the material properties of the object.
Finally, as required by all vertex programs the clip-space coor-
dinates clipPosition are computed using the projection matrix
ModelViewProj.

The parameters to the program which are marked as uniform are
those which are constant for the duration of the shader program,
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whereas the other parameters vary over the vertices of the mesh.
The extra field (POSITION, NORMAL, and COLOR in this example),
known as the semantic of the parameter specify how they are
mapped to application data. For example, an in parameter with
semantic NORMAL is specified using OpenGL’s glNormal# calls from
the application.

Shaders require application programmers to write support code for
every shader to be used. In order to access shader program pa-
rameters an application level identifier is needed. Accessing the
parameter identifiers of our example shader from C++ would be as
follows.

cg_mvp = cgGetNamedParameter(cg_prog, "ModelViewProj") ;
cg_mvit = cgGetNamedParameter(cg_prog, "ModelViewIT");
cg_wv = cgGetNamedParameter(cg_prog, "WorldView");
cg_materialColor = cgGetNamedParameter(cg_prog,
"MaterialColor");
cg_groundColor = cgGetNamedParameter(cg_prog,
"GroundColor");

cg_skyColor = cgGetNamedParameter(cg_prog, "SkyColor");

Listing 2: Finding parameter identifiers

Each time the shader is used it must be bound after which each
parameter has to be set to its current value using the corresponding
Cg parameter identifier. The target for which the shader program
has been compiled, called the profile of the program, must also be
enabled.

cgGLBindProgram(cg_prog) ;

cgGLSetStateMatrixParameter(cg_mvp,
CG_GL_MODELVIEW_MATRIX,CG_GL_MATRIX_IDENTITY);
cgGLSetStateMatrixParameter(cg_mvit,
CG_GL_MODELVIEW_MATRIX,
CG_GL_MATRIX_INVERSE_TRANSPOSE) ;
cgGLSetMatrixParameterfr(cg_wv,
camera->inverseTransform());
cgGLSetParameter3fv(cg_materialColor, MaterialColor) ;
cgGLSetParameter3fv(cg_groundColor, GroundColor);
cgGLSetParameter3fv(cg_skyColor, SkyColor);

cgGLEnableProfile(cg_profile);
Listing 3: Binding shader program and setting parameters

Changing the parameters of the effect at run-time amounts to chang-
ing the local variables used here, for example MaterialColor,
SkyColor, and GroundColor.

This code can be compiled and delivered together with the shader
code as a complete package which can be used by the artist. How-
ever, there are limitations with this approach. All but the most triv-
ial shaders require support code for setting parameters and renderer
pipeline states. This support code is specific to each application due
to differences in how textures are loaded and accessed, renderer
pipeline state are set, efc. This gives unwanted dependencies be-
tween shaders and applications. Encapsulating these dependencies
is a difficult problem since different applications have very differ-
ent notions of what is important, for instance an artist’s tool must
be able to provide GUI components for manipulating the shader
whereas an engine is primarily concerned with efficiency.

This encapsulation is made even more difficult when using shaders
written by an external party. Externally written shaders use dif-
ferent interfaces but must still be accessible in the same manner
as in-house developed ones in order to provide a unified working
model for both artists and developers. The amount of work needed
to adapt such shaders can often be too large.



1.3 Effects

The problems associated with using shaders as shown above are
caused by a lack of encapsulation. Information associated with the
shader and necessary for the shader to work is mixed with applica-
tion code and not packaged together with the shader itself. This has
called for a new level of abstraction and a new kind of entity to do
the encapsulation. These entities are known as effects.

Today there are two major effect frameworks in use, the DirectX
Effects by Microsoft [Dir ] and CgFX by NVIDIA [CgF ]. Both
provide a text-based format where shader code, parameters and pass
specifications are written in one file. This file is loaded by the ap-
plication and compiled for the current run-time platform. The two
formats are very similar and can in many instances be used inter-
changeably. Using CgFX the hemispheric lighting example can be
implemented as:

float3 MaterialColor = { 1.0, 1.0, 1.0 };
float3 SkyColor = { 0.5, 0.5, 1.0 };
float3 GroundColor = { 0.0, 0.1, 0.0 };

float4x4 ModelViewProj : MODELVIEWPROJ;
float4x4 ModelViewIT : MODELVIEWIT;
float4x4 WorldView : WORLDVIEW;

shader code as in listing 1

technique Hemispheric {

pass p0 {
VertexShader = compile vs_1_1 main(ModelViewProj,
ModelViewIT,
WorldView,
SkyColor,
GroundColor) ;
}

Listing 4: Hemispheric lighting in CgFX

This effect declares three parameters which are intended to be set at
design time, MaterialColor, SkyColor, and GroundColor, and three
parameters that are intended to be set at run-time by the application:
ModelViewProj, ModelViewIT, and WorldView. The design-time pa-
rameters, also known as tweakables, may have associated annota-
tions which can be used by design tools to automatically provide
a suitable user interface for setting the parameter. For example a
color picker control may be used to set the value of a color param-
eter. Run-time parameters on the other may have semantic iden-
tifiers associated with them, and similar to shader semantics, their
purpose is to specify the mapping to application data without rely-
ing on parameter name. Instead an application can define a number
of semantic identifiers which may be used in the effect.

Following the declaration of the effect parameters is the shader
code. It is identical to Listing 1 and is therefore omitted here. Fi-
nally the effect declares a so called technique which describes num-
ber of rendering passes needed and the render states to be used in
each pass. In this case there is a single rendering pass and in that
pass the vertex shader main is to be compiled for the shader profile
vs_1_1 and the uniform shader parameters should have the values
of the corresponding effect parameters.

Once loaded an effect can be used in the application like this

unsigned int numPasses;
effect->Begin(émumPasses, 0);
for (unsigned int p = 0; p < numPasses; p++)
{

effect->Pass(p);
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renderMesh (mesh) ;

}
effect->End();

Listing 5: Effect usage with CgFX

The textures used by an effect are generally declared as tweakables
where an annotation is used to specify the filename.

texture colorTexture : DiffuseMap <
string File = "default_color.dds";
>3

Using a texture in a shader program is done indirectly through
something called a sampler which specifies how the texture is ac-
cessed. Declaring a simple 2-dimensional sampler using linear
minification and magnification filters for the above texture we write

sampler2D colorSampler = sampler_state {

Texture = <colorTexture>;
MinFilter = Linear;
Linear;

MagFilter =
};

This sampler is then passed to a shader program just as any other
parameter.

Effects provide a number of mechanisms for separating applica-
tions from shaders. First, the effect format give a clear, high-level,
and concise specification of shader programs, textures, and render
states. This includes a unified method for handling multipass ef-
fects as well as having multiple implementations (fixed-function
fall backs etc.) of the same visual effect. This specification is inde-
pendent of the target architecture on which the effect is to run.

Second, tweakables provide the artist with a method for setting pa-
rameters at design time. This reduces support code since the en-
gine only needs to concern itself with providing run-time parame-
ters such as projection matrices etc.

Third, user-defined semantics provides a method for the engine to
provide such run-time parameters. The application defines a num-
ber of semantic identifiers which it support and this creates an rudi-
mentary interface to effects which, together with default values for
parameters, relieves the effect developers of writing per-effect sup-
port code (cf. listings 2 and 3).

However, as in the case with using shaders directly, there still exist
a problem of encapsulation. The application defines an interface for
the effects by using user-defined semantics. This interface is fixed,
and this limits the number of shaders that may be expressed and
used within a single application.

2 PyFX

The limitations in encapsulation of existing effect frameworks is
due to the fact that effects are passive entities, text files, which are
operated on by the application, which is the active party. If this
relationship could be reversed so that effects are active instead, a
better interface can be built where they can be responsible for re-
trieving the data they need from applications rather than the other
way around. To achieve this reversed flow of control the effects
must be embedded in a context which can do actual execution on
their behalf.



2.1 PyFX overview

We have used Python, an existing scripting language to develop an
active effect framework called PyFX. The current implementation
supports applications using OpenGL and shaders written in Cg and
its feature set closely resembles that of CgFX. In PyFX however,
Python is used both to implement the framework and to write the
effects themselves.

In an object-oriented language, it is natural to represent different
effects as subclasses to a common effect base class. The subclasses
implement specific functionality whereas functionality common to
all effects are inherited from the base class. The object-oriented
model also provides a natural mapping to the collaborative work-
flow between programmers and artists. Effect programmers write
new effects by making new effect subclasses, whereas the artist pro-
vides textures, sets parameters, etc. to make effect instances from
existing classes.

Below is the hemispheric lighting example written in PyFX. It
shows the Python class Hemispheric as a subclass of the general
Effect class.

class Hemispheric(Effect):

vs = cg(nnn

shader code as in listing 1
lII|lI)
SkyColor = (0.5, 0.5, 1.0)

GroundColor = (0.0, 0.3, 0.0)

def __init__(self,
MaterialColor = (1.0, 1.0, 1.0)):
Effect.__init__(self)

self .MaterialColor = MaterialColor

self.technique = [Pass(VertexShader = vs())]
Listing 6: Hemispheric lighting in PyFX

The declaration has two main parts: the class variables and the con-
structor (the __init__ member). The first class variable vs contains
the shader program as a string wrapped by an instance of a Python
class called Cg. and the other two class variables SkyColor and
GroundColor are simply effect parameters. The class constructor,
which creates new instances of the class, takes one additional effect
parameter MaterialColor as an argument. The ability to differenti-
ate between class variables and instance variables allows the effect
writer to indicate that some parameters are intended to be the same
for all instances of the class whereas other parameters may be dif-
ferent. The constructor body calls the superclass constructor and
sets the instance variable MaterialColor of the object. Finally, the
instance variable technique is set to specify that this is a single pass
effect and that the pass should use the shader vs as its vertex shader.

Having instantiated this effect, for example like this

effect = Hemispheric(MaterialColor = (0.0,0.0,1.0))

it can be applied to a mesh by

while effect.hasMorePasses(mesh):
renderMesh(mesh)

The Effect member function hasMorePasses does setup for each
pass of the effect and also specifies how many times the mesh needs
to be rendered.

Having applied effects to meshes the next issue is the passing of in-
formation from the application to the effect and its shader. In PyFX
this data can be passed through a number of different channels.

The most obvious way is through constructor parameters when the
Hemispheric effect is instantiated. The example above shows how
MaterialColor is set to the color blue.

In the hemispherical lighting example the constructor parameters
correspond exactly to an instance variable of the effect. Another
method of passing data to the shader is to assign new values to this
variable. For example

effect.MaterialColor = (0.5, 0.5, 1.0)

changes material color so that it is now light blue. Similarly class
variables can also be assigned new values

Hemispheric.GroundColor = (0, 0, 0)

The framework then make sure that these changes are made avail-
able to the shader code.

Another type of parameters are the transformation matrices used by
the effect; ModelViewProj, ModelViewIT and ViewWorld. The ma-
trices ModelViewProj and ModelViewIT can be retrieved from the
OpenGL rendering pipeline and in PyFX this is handled automati-
cally.

The third parameter ViewWorld needs special treatment. It is
the inverse camera transform, used by the effect to compute the
ModelWorld transform, neither of which can be automatically re-
trieved from the pipeline. It must therefore be provided by the ap-
plication. Since this parameter is the same for different instances it
makes sense to make it a class variable. However, it is even more
general than that since you could easily think of other effects that
might need it. In this case we can therefore set it as a class variable
on the Effect base class, for example:

Effect.ViewWorld = camera.inverseTransform()

Yet another method for passing data from the application is when
the effect needs additional data at each vertex, i.e. non-standard
varying parameters. In our hemispherical lighting example this is
not the case, but a more advanced version of hemispheric lighting
can used to illustrate this case [Hem ]. This version use additional
per-vertex mesh data, called the occlusion factor, which determine
the amount of hemispheric light which reach the point in question.
If the shader program has the following prototype

void main(..., float OcclusionFactor : COLOR )

Then, if the mesh has an array member OcclusionFactor, PyFX
will automatically bind this to the varying parameter with the same
name.

2.2 PyFX details
2.2.1 Techniques

The structure of PyFX effects is inspired by that of DirectX Effects
and CgFX frameworks. As in these each effect contain one or more
techniques. Each technique contain a number of passes which are
to be run consecutively. Each render pass has associated render
states specifying the necessary pipeline states required to run the
pass. Specifying that back-face culling should be disabled while
alpha-blending is enabled is written in CgFX as



pass p0 {
CullMode = NONE,
AlphaBlendEnable = True
}

In PyFX the same render pass specification would look like

Render(CullMode = None,
AlphaBlendEnable = True)

A single technique effect for CgFX is shown in listing 4. The cor-
responding effect in PyFX is given in listing 6. Providing two tech-
niques Hemispheric and Ambient in CgFX is done by providing
multiple technique blocks

technique Hemispheric {
pass p0 {
VertexShader = compile vs_1_1 main();
}
}

technique Ambient {
pass p0 {
Color =
}
}

<ambientColor>;

The same would be written in PyFX as

technique = {}
technique [’Hemispheric’] = [
Render (VertexShader = vs())]

technique[’Ambient?] = [
Render (Ambient = AmbientColor)]

2.2.2 Textures

Texturing in PyFX is, as in CgFX, divided into textures and sam-
plers. Declaring the same texture and sampler as above (Section
1.3) in PyFX would be written as

Texture(filename="default_color.dds")
Sampler(colorTexture,
MinFilter = Linear,
MagFilter = Linear)

colorTexture =
colorSampler =

This sampler can then be used either by a shader program, using
parameter resolution, or in the fixed-function pipeline by

Render(Texture0 = colorSampler)

Multi-texturing is naturally supported and when using multiple tex-
tures in a shader program this is automatically handled by the
shader parameter resolution code. For fixed-function effects the
different texturing-units are accessible via

Render (Texture0 =
Texturel =

colorSampler,
lightMapSampler)

where colorSampler and lightMapSampler are two samplers with
appropriate settings.

2.2.3 Shaders

Shaders are provided via strings wrapped with classes providing in-
formation on the type of shader code contained in the string. Some-
times it is useful to specify the target for which a given shader
should be compiled. This can be achieved via
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Render (VertexShader = vs(target=arbvpl))

Also, passing explicit parameters to shader programs can be done
by adding keyword arguments to the shader invocation. Suppose
we have an outlining effect which draws a gradually more transpar-
ent outline around an object. This effect should run multiple passes
with the same shader program (called outline) but with a parame-
ter offset determining the size and opacity of the outline

[Render (VertexShader = outline(offset=1.0)),
Render (VertexShader = outline(offset=0.75)),
Render (VertexShader = outline(offset=0.5)),
Render (VertexShader = outline(offset=0.25))]

Listing 7: Setting compile-time parameters

The same thing can be expressed in CgFX but the result is more
verbose since every shader parameter must be passed explicitly.

If a shader program source code shader contains multiple pro-
grams, say a vertex shader shadeVertex and a pixel shader
shadePixel, these programs entries can be accessed by the corre-
sponding methods on the shader object

Render (VertexShader =
PixelShader =

shader.shadeVertex(),
shader .shadePixel())

2.2.4 Parameter resolution in PyFX

Application level variables having the same name as the shader
program parameters are used as arguments to the shader program.
These arguments are defined in one of the following places:

e Either it is a compile-time parameter to the shader program
(see listing 7), or

e an attribute of the effect object, or
e an attribute on the mesh currently being rendered, or, lastly,

e amember of a predefined set of state parameters giving access
to current pipeline states.

Attributes of the effect instance include both instance parameters,
such as the material color parameters above (Section 2.1), and class
parameters, SkyColor and GroundColor above. As usual the class
scope includes the scope of its superclass making the WorldView
transform accessible to the shader programs. In the above examples
the OcclusionFactor is a mesh attribute and them ModelViewProj
and ModelViewIT matrices are both pipeline state parameters.

If there are multiple variables with the same name the order of
precedence is that compile-time parameters take precedence over
instance attributes, which take precedence over class variables. Ef-
fect class variables take precedence over mesh attributes and state
parameters are used last.

This gives a natural correspondence between parameters to the
shader program and application data. Setting effect class-specific
values amounts to setting effect class-variables whereas effect
instance-specific values are set by setting the appropriate attribute
on the effect instance in question. Effects take a more active role
since they are allowed to extract information from the mesh cur-
rently being rendered thus minimizing the amount of application
level dependencies.

The mapping is recursive so the following Cg shader program



struct Light {
float3 position;
float4 color;

};

void main(..., uniform Light light) { ... }

will use position and color member of the application level vari-
able light.

2.2.5 Name maps

The lookup scheme above gives great flexibility in both writing
and using effects. However when dealing, for instance, with third-
party effects a name-based lookup is not always sufficient since
naming conventions may differ. Suppose we wish to use an ef-
fect which uses the name DiffuseMap where our application use
DiffuseTex. An obviously unattractive solution would be to add
DiffuseMap to our code and make sure to update it each time we
change DiffuseTex.

PyFX solves this problem by having user defined name maps. The
Effect class allows us to pass a dictionary of how parameter names
at the shader level should be mapped to parameter names at the
application level. Defining a dictionary containing our mappings
and passing it to the effect nicely handles this.

myNameMap = {’DiffuseMap’ : ’DiffuseTex’}

effect = SomeTexture(nameMap = myNameMap)

A request for the DiffuseMap will now be automatically translated
to a requests for DiffuseTex.

2.2.6 Language embedding

The fact that Python is used to write effects and not only for im-
plementing the framework is convenient but not strictly necessary.
It would have been possible to write an interpreter and for example
use the CgFX format. However, the complete embedded of effects
in Python has the advantage that all the ordinary language features
such as lists, tuples, loops, functions, dictionaries, list comprehen-
sion, etc. are available to the effect writer[Lejdfors and Ohlsson
2004]. As a very simple example we could have used a list compre-
hension to write the pass specification of the outline effect (listing
7) as

[Render (VertexShader=outline (factor=f))
for £ in [1.0, 0.75, 0.5, 0.25]]

2.2.7 Module-style effects

When using concrete subclasses of Effect the application needs to
know about every such class at compile-time, something known as
the library problem. This is clearly not desirable in a graphics ap-
plication and it was one of the problems effects where created to
alleviate. In traditional object-oriented design it is solved by in-
troducing an abstract factory for handling instantiation of concrete
subclasses [Gamma et al. 1994]. However, using the flexibility of
Python we can provide a method which simultaneous solves this
problem while giving a cleaner and more direct syntax for declar-
ing effects. Effects can be implemented simply as Python modules
which can be loaded by

effect = Effect (’Hemispheric?’)
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This loads the Hemispheric effect module which can be used just
as any other effect. Note however, that since the actual subclass is
not known setting class variables such as GroundColor (cf. Section
2.1) is not possible.

2.2.8 Image processing

PyFX also provides a mechanism for specifying render targets other
than the frame buffer to which rasterization should occur. Further-
more it is possible to have passes which do not render geometry
but instead do shader based image processing. These two features,
which are not available in CgFX or DirectX, allow effects such as
blurring, edge detection, image compositing efc. to be expressed in
an application independent manner.

3 Implementation

PyFX is implemented on top of PyOpenGL [PyO ] and a SWIG
[SWI ] generated interface to the Cg runtime library. The imple-
mentation consists of about 800 lines of Python code. The bulk of
it is concerned with basic functionality needed in any effect frame-
work such as loading and binding textures, compiling shader pro-
grams, and initializing OpenGL extensions. The remaining part im-
plements the distinguishing features of PyFX, i.e. mapping declar-
ative state specification to function invocations and performing pa-
rameter resolution. This part is remarkably small, only about 10%
or 80 lines of code. This compactness is possible because of
Python’s dynamic object model and introspection facilities.

3.1 Renderer management

The entry point of the PyFX framework is provided by the top-level
Effect class. It is essentially a container for other objects, i.e. tech-
niques, passes, textures, samplers, and shaders. These classes inter-
act with the underlying graphics API through a global RenderState
singleton class which implements manipulation of the renderer
pipeline state. The majority of its methods correspond one-to-one
to the available state variables. For instance the CullMode state is
implemented as

class RenderState:

def CullMode(self, val):
if val:
glEnable(GL_CULL_FACE)
glFrontFace(val)
else:
glDisable (GL_CULL_FACE)

When a Render is activated it instructs the RenderState object
state to change the state of the rendering pipeline. This is done
by mapping every state specified in the pass object to a method in-
vocation. For example, a pass specified by

Render(Color = (1.0, 0.0, 0.0),
CullMode = None)
will result in the following method calls on:

state.Color((1.0, 0.0, 0.0))
state.CullMode (None)



Doing this mapping is the responsibility of the Render class and by
using the dynamic introspective features in Python, it can have a
very small implementation:

class Render:
def __init__(self, **kwords):
self .kwords = kwords

def use(self, state):
for s,v in self.kwords.items():
marshalFX(state,s,v)

The marshalFX maps the state name s to the proper method name
and calls this method with argument v. It is similar to the mar-
shaling used by RPC (remote procedure calls), whereby serialized
data (dictionary tuples) are converted to method invocations. Im-
plementing marshalFX is a two-liner:

def marshalFX(obj, name, *args):
method = getattr(obj,name)
return method(*args)

3.2 Texture and sampler state

The class Texture provides an encapsulation similar to
RenderState but for the available texture states such as fil-
tering, texture coordinate wrapping, etc. The texture state
information is maintained by the corresponding Sampler and it is
responsible for marshaling this information to method invocations

on the Texture object.

When a Sampler is used by either the fixed-function pipeline or by
a shader the framework allocates a free texture unit and asks the
sampler to bind itself to that unit.

3.3 Shaders

Just as samplers are responsible for performing binding textures
and setting texture states, every Shader object is responsible for
performing its own loading, binding, compilation, and parameter
resolution. This implementation is actually contained in subclasses
for different shader programming languages. Currently the only
subclass implemented is Cg.

When the pass specifies a vertex or fragment shader the state ob-
ject instructs the shader to bind itself. A shader binding itself in-
cludes setting the value of every parameter needed by the shader.
The mapping scheme of PyFX between parameters and application
variables is implemented by a Resolver object whose responsibility
it is to search the effect and mesh name spaces as well as providing
name mapping (Section 2.2.5). The resolver searches a list of ob-
jects for a given attribute, optionally transform the attribute name
via the name mapping dictionary:

class Resolver:
def __init__(self,nameMap,*objs):
self .nameMap = namelap
self.objs = objs

def __getattr__(self,attr):
if self.nameMap.has_key(attr):
attr = self.nameMap[attr]

for obj in self.objs:
if hasattr(obj, attr):
return getattr(obj, attr)
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The Cg class use the resolver to locate shader parameters and set
these by invoking the corresponding CgGL functions. For simple
variables the cgGLSetParameter-family of functions are used. Ag-
gregate parameters, such as arrays and structs, are handled by iter-
ating over the members and setting each element recursively.

4 Conclusions and future work

The most prominent features provided by the PyFX framework is
the decoupling of effects from the application. This “activation”
of an effect, enabling it to obtain needed data from e.g. the cur-
rent mesh without the need to introduce application level support
code, greatly reduces dependencies between effects and the appli-
cation. Using this activation together with the introspection features
of Python gives a natural mirroring between data at the application
level and data at the level of shader programs. This also elimi-
nates the need for user-defined semantics since there is no longer
any need to provide ad hoc hooks for applications to provide spe-
cialized data and operations. Instead the object-oriented extensible
nature of the host programming languages can be used to provide
this functionality natively at the effect level.

There are some limitations however, in the current implementation
of PyFX. Support for manipulating fixed-function effect parameters
is limited. Consider a simple effect such as

class SimpleColor:
color = (1,0,0)
technique = [Render(Color=color)]

Manipulating the color attribute of this effect will not have the de-
sired effect, the color used for drawing will remain red. The reason
why the parameter resolution algorithm (Section 2.2.4) can not be
applied in this case is that it requires access to the parameter names.
These names are only available to shader based effects where they
are supplied by the Cg run-time library.

The overall purpose of PyFX is to be a flexible tool for investigating
what kind of features and functions are needed to make effect pro-
gramming as easy and productive as possible. Future work includes
investigating how effects can be combined efficiently at run-time
allowing, for instance, stencil-buffer shadow algorithms to coexist
with other visual effects.
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