Automating Traceability in
Agile Software Development

THESIS SUMMARY
RICHARD SIMKO

software development projects becomes

harder and harder as sofware grows more
complex, projects become larger and less cent-
ralized and more and more companies shift to
agile. This leads to developers wasting a lot of
time manually documenting why their changes
are made. This Master's thesis explores the abili-
ty to automate these tasks.

Keeping track of why changes are made in

The Current State of Traceability

When developing software today most functions of
traceability are manual. For example when tracing
changes in code to requirements, change requests,
bug reports or similar, this is done through the de-
veloper writing the ID of the work item a particular
commit connects to in the commit message. One can
easily guess that this is prone to errors since IDs can
grow long and complex which increases the risk of
a developer inputing the wrong data. This then leads
to data which can not be trusted which in many cases
can be worse than not having any data at all.
Previous research shows that this is the case as well
as documents the need for a more automated appro-
ach to generating traceability links to code. In addition
to that a survey and a series of interviews are perfor-
med as part of the thesis, further strengthening the
view that there is a need for automation in this area.

Solution

Instead of implementing a traceability solution which
should fit all types of projects and work with every
tool, as has been tried previously, this thesis was quick-
ly narrowed down. The focus was to develop a proto-
type of a tool that can present the developer with sug-
gestions regarding what work items are most likely to
have been worked on in his current commit.

Supervizor: Lars Bendix (LTH), Emil Sjodin (RefinedWiki)
Examiner: Ulf Asklund (LTH)

This is done by analyzing previous commits by the
same developer as well as the state of tickets in the
project/issue tracking system. This data is then aggre-
gated and a few best guesses are generated for the
developer to choose from. This completely eliminates
the process of manually entering numbers and gets
rid of the risk that a developer should enter incorrect
numbers.

Results

The prototype proved hard to test due to technical
constraints. As such no good data regarding its perfor-
mance could be provided. Instead analysis of its per-
formance was made on a more abstract level, through
demonstrations and interviews with developers and
configuration management experts. Overall the re-
sponse was positive and it was commonly said that
people wanted a tool like this. However it was inte-
resting to note that there were several, especially CM
professionals, persons who could not at all see the
need for a tool like this. This proved to be related to
how well traceability generation worked in their or-
ganization today, since they had good guidelines in
place which were followed by everyone the need for
a tool was non-existant.

Traceability Automation Framework

In addition to developing a prototype the thesis also
creates a framework for analyzing other types of tra-
ceability and the possibility for automation. This was
purely theoretical and the idea was to uncover which
areas would be most interesting to focus on for future
researchers. One thing which stood out was traceabi-
lity links between failed test cases and issue reports,
eg. being able to run a smoke test when an issue has
been fixed greatly speeds up development. However
in order to be able to do this today someone has to
manually tie issue reports to failed test cases.



