
Master’s Thesis

Requirements for an Interactive Logging
Framework

Joakim Persson D00
Department of Computer Science
Lund Institute of Technology
Lund University, 2006

ISSN 1650-2884
LU-CS-EX: 2006-2

 Public

1 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Master Thesis: Requirements for an Interactive Logging
Framework

Keywords

Embedded systems logging, test requirements, interactive log tools, log data

representation

Abstract

This thesis deals with increasing requirements for logging of embedded

devices, especially mobile platforms. The main problem is how to handle

increasing data flows from many independent software modules within a

mobile phone, without sacrificing efficiency for both the embedded device and
for the testers and developers. The challenge is the migration from the

straightforward logging – with printed text strings – to a binary log format

where the log information can be used to trigger logging events and to
represent data in a more readable way, preferably with a standardized tool.

Focus has been on log information that is related to signaling for WCDMA

(“3G”) radio signaling, which can be hard to represent and can also potentially
generate a lot of log data information in a short period of time.

The results of the experiments show both promising results, but also a need

for reengineering the log tool framework on the PC side. There are problems

with both maximum data flow and latency, which means that it will be difficult
to use the existing interfaces for high-speed logging. However, on the bright

side it is likely that the interfaces on the User Equipment side are sufficiently

advanced to allow logging with performance enough to satisfy the test
requirements, and the thesis finishes with the actions needed to achieve this.

 Public

2 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Table of contents

1 Foreword..3

2 Introduction ..4

3 Methodology ..7

3.1 Experimentally driven development..7

3.2 Extreme programming..8

3.3 Language choice and tool development ...8

4 Problem context ...10

4.1 Embedded devices...10

4.2 Mobile platforms...11

4.3 WCDMA...12

4.4 Radio Resource Control and other radio protocols14

5 Problem description and analysis ...16

5.1 Logging and embedded devices...16

5.2 Role of testers and developers...19

5.3 Tool support for logging..19

5.4 WCDMA protocol logging ...20

5.5 COM programming and communication ...21

5.6 Why is a new log tool needed?...22

5.7 Other tools ...23

5.8 List of problems and requirements ...23

6 Results ...25

6.1 Requirements for log tools ...25

6.2 Architectural ideas..27

6.3 Implementation issues..30

6.4 Tests of the prototypes...31

6.5 Maximum practical TVP throughput..33

6.6 Number of simultaneous TVP log points...33

6.7 GUI and representation ..34

6.8 Stimuli activation and triggers...34

6.9 Sampling and exporting log data ..35

7 Discussion of results and future work ...36

8 Conclusions ...39

Appendix A: Abbreviations and terminology ...41

Appendix B: References ..43

 Public

3 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

1 Foreword

A few words about the audience of this thesis – the thesis is mostly suited to

developers, testers and log tool designers within the EMP organization, as
well as anyone with an interest in embedded software and logging solutions.

Further, an interest in telecommunication as well as PC client/server

programming is beneficial. Finally, the use of experiments, spikes and
throwaway solutions can perhaps provide enlightenment for students of test-

driven development, extreme programming, and other related topics.

Many of the details in this thesis, regarding proprietary tools and protocols,

have to be omitted in this report due to confidentiality reasons. This is
especially true for the “results” chapter, where quantitative measurements and

such details related to the EMP and used third-party products are omitted. If

these details are desired, please contact the NS Stack Test department at
EMP. Still, the main tasks and conclusions are public and are included in this

report.

 Public

4 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

2 Introduction

Large-scale software engineering projects always need some kind of

assistance for test and debug of the developed software. This means that the
role of tools and the toolsmith (see for instance discussions in [1]) is often

underestimated when it comes to overall success for the project as a whole.

The toolsmith is needed to create efficient ways of working for both
developers and testers, so that the information that is needed to develop,

debug and verify functionality is easy and convenient to access. This is the

core reasoning behind the topic of this thesis, namely investigating ways to

improve log tool functionality for embedded devices, or, to propose a new way
to create an interactive logging framework.

The thesis has been carried out at Ericsson Mobile Platforms (EMP) [2]. The

products encountered during the thesis work has been embedded devices, or
“mobile platforms” (in practice “the most technical half” of a mobile phone or

similar user equipment (UE)), which have special considerations when it

comes to processing power, memory capacity, bandwidth and power

requirements. This means that there is only a limited amount of memory and
CPU that can be allocated to log and debug information, and preferably the

level of logging can be varied during test and development of new

functionality. A very important consideration is that the embedded device
must be testable. Many embedded devices are built from a hardware-

centered view, but it is also important to consider higher-level software, what

hardware interfaces are available for logging, how can the software within the
embedded device be loaded and debugged, how can memory and other

status information be retrieved when something goes wrong, and so on.

At the company, a part of the product architecture is dedicated to debug and

logging. The most basic part consists of a “PrintServer”, a module which is
dedicated to handling log information sent as strings from different modules in

the platform. The more advanced logging part is a protocol of its own, called

TVP (Test and Verification Protocol), which is a binary format for sending log
data. This is much more efficient and means that more logging can be

performed for the same amount of CPU, memory and bandwidth. Basically,

the setup can be viewed as follows, with one UE, USB for communication

where log and user data is sent back and forth, and one Host PC for receiving
the information.

 Public

5 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

UE Host PC

USB

Figure 1: UE and log environment

The PC Applications used today are both produced internally at EMP for

specific purposes, but a major commercial log tool is also increasingly being
used. The main log tool handles both TVP and PrintServer information. A

drawback of the main log tool is that it is not possible to rebuild the tool when

new functionality or new TVP log points are added to the software (as it is
third-party software), which severely limits its usefulness during the

development phase. Further, the internally produced log tools all mostly rely

on Print Server logging, which is becoming more and more inefficient as the

volume and rate of data which needs to be logged increases. The solution
would be a tool which could both use powerful TVP logging, but also a tool

which can be flexible enough to add and remove temporary log points for

debug information rapidly (for instance, between different platform software
builds).

All this leads to the main practical focus of the thesis – how can an interactive

logging framework be built, based on the architecture already in place? The
creators of the main log tool have implemented a COM interface, where it

should be possible to extract arbitrary log point information and handle them

in a separate application through this interface. This means adding yet

another protocol and application to the architecture, but has the benefit of
testers and developers being able to migrate to the main log tool while still

being able to activate and view debug log point information in a new

application – combining the strengths of both logging the old-fashioned and
flexible way with the more efficient binary type of logging.

This thesis explores the options available for realizing the “new log tool” part

of this architecture, given the requirements and needs of the network
signaling test organization (NS Stack Test) at EMP. There are many

organizations with different logging needs (for example, Multimedia or

Operating Systems) within the organization, and this thesis is restricted to the

network signaling parts, which is large enough (over 100 developers and 70
testers) to motivate careful log tool investigation while not covering a too

broad scope – some general background is given with regards to WCDMA

radio signaling [3], which is very complex and needs to generate a lot of
information in order to debug and understand what is going on.

 Public

6 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

A brief study has been made generally about how to integrate logging and

debugging with other major development suites, such as Eclipse [4]. The
investigation and tests of the new log interface has been carried out mostly

through the use of experimental programming in a light-weight, high-level

programming language, to be able to test as many alternative ways as
possible to collect, represent and save log information. The experimental

programming has centered around data transfer and parsing, and has

explored options provided by Python [5], Java and C++.

The thesis begins with a discussion regarding the problem context – what is
the environment like where the thesis results can be used, and what is the

situation today (when the thesis work started)? The chapter “problem

description and analysis” contains discussions and digs deeper into the
reasons why a change is wanted. The chapter “results” contains the findings

and prototype implementation, using the problem analysis as input. After this,

the results are discussed and solutions proposed. The final chapter contains
general conclusions, written once the entire thesis work was completed. The

interested reader will find more literature and explained terminology in the

appendix.

 Public

7 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

3 Methodology

A thesis such as this, dependant on a lot of experimental programming and

exploring the problem space through prototyping, has a somewhat different
kind of methodology connected to it. It has been my intention to try and

explore many different solutions, rather than focusing on one single

implementation. Therefore, the thesis work has been driven by changing
requirements, observing the strengths and weaknesses of existing tools, and

trying to apply the lessons learnt during observation to the environment

available.

A solid methodology is needed to prove that the work process is robust,
provides results that can be verified, and to make sure the conclusions and

discussions about the results can be generalized and validated. That is, the

scientific goal of this kind of work is to ensure, as much as possible, that
engineers further studying the subject can learn from the work in this thesis

and depend on the conclusions, and hopefully avoid the pitfalls and limitations

encountered.

The methodology centers around light-weight, experimentally driven
development. This way of working was initially chosen, since the problem

description was intentionally vague. Exploring the current log environment

and trying to adapt a new log interface to current ways of working meant that
the process consisted of learning the details of the protocols, trying to activate

the log points associated with the protocol, and then trying to parse and

present the log points to see if it is feasible to include this kind of
representation in a future log product. Each of these iterations were to be

rapidly executed, once the basic interface was working.

A drawback of the methodology was that even though progress was good

initially, it is still easy to become reluctant regarding abandoning trails. At first,
the thesis was thought to be heavy on quantitative issues, but lack of time has

meant that the results and prototype work has focused on more qualitative

issues, answering questions such as “is this the best way of doing things?”
rather than “exactly what is the throughput, latency and memory benefits?”.

3.1 Experimentally driven development

The main topic of interest during test development was experimentally driven
development, which basically means that the software development should be

performed iteratively and with the aid of testing (preferably unit tests or

module tests) while development proceeds. Each development cycle is short,
to be able to properly evaluate the progress or lack of progress, so that there

is always a possibility to step back.

 Public

8 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

This is to be seen in contrast to more heavy-weight development

methodologies, such as RUP or other models with larger iterations. This is the
dominant process within the company studied in this thesis. The reasons for

not choosing to conform with a top-down requirements analysis, design and

implementation is that the end result was not ever expected to be a complete
application – but rather a collection of prototypes and ideas that can be used

within the company to improve the tools. Therefore it was decided that smaller

prototypes developed rapidly was the main method to solve the thesis

problems. Performing the project completely separated from the projects
within EMP also meant that a lot could be learned by observing test and

development while the thesis was being written, without participating.

3.2 Extreme programming

The concept of Extreme Programming (XP) [6] fits well into a lightweight

methodology. XP has become famous for its unorthodox way of looking at

software engineering – more like a sequence of very short iterations, where
each iteration is executed through test-first development (that is, writing test

cases before actually implementing the code) and simple design, among

other things. This is in contrast to more formal, waterfall-like models, where
there are always separated phases for requirements collection, design, code,

and test. The decision to use a kind-of XP methodology was taken since the

test-first, simple-design way of working seemed like a good fit together with
the task.

The way XP is used in this thesis is mainly as support for the development

process – by putting up short-term goals and attempting a lot of experimental

spike activity to learn more about the system. Since the whole system is
complex and dependant on many external factors, it is important not to lock

development to one single train of thought. Instead, rapid feedback (from

testers, developers, and tool creators) should be allowed to change the
requirements and design once work progresses.

3.3 Language choice and tool development

In practice, there are several ways of developing software within a large
organization. Within EMP, software is either developed targeted towards an

embedded device (for instance an ARM embedded processor or a specialized

ASIC), or targeted towards a PC environment. In most cases, C or C++ is the
language of choice for all kinds of development. Some PC tools have

however started to be developed in more light-weight languages, such as

Python, but most tools are written in C++ or Java. Apart from programming

languages and IDE:s (Eclipse is the preferred choice), version control is
essential for all development as there is a huge amount of versions, branches

and variants for the software – this also impacts test cases, which need a

similar version control system. Version control is implemented using
ClearCase and an additional configuration layer, called CME.

 Public

9 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Traditionally, NS Stack test tools also obey strict version control. All scripts

and tools need to be controlled this way, in order to handle different variants
(for instance, for different hardware architectures or network vendor

configurations) with as little maintenance as possible. Any new tool should

preferably fit well into this configuration system, which means that it is better
to create tools that are small and open, rather than large and monolithic.

This has impacted the methodology of this thesis. In order to achieve a

maximum fit for a prototype within the test tools organization, it would have to

be written in C++. However, the effort involved in doing this would far exceed
the 20 weeks that were at the disposal for this thesis. Also, not all possible

options for exploring the ideas and new interfaces would be covered in this

time if everything was to be done in a high-level, “waterfall” mode.

Instead, a different development choice was chosen. Python was chosen as

the main development language, as this is a light-weight, high-level language

that still contains all the relevant pieces needed for completing the project.

As an option, Java programming was considered, to try and perform the same

tasks there. And finally, should both Python and Java seem inadequate, C++

is to be used – most other tools are developed in C++, as well as the main log

tool and a very brief example program using the Bridge interface.

 Public

10 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

4 Problem context

In order to understand the complete system that the logging problems involve,

it is necessary to present some basic facts and information about different
system components. Since this thesis was written at EMP, the focus has

naturally been tools for embedded devices. Exactly how these devices

operate is of course confidential, but the basic ideas can be outlined to show
why logging is not such a straightforward operation as it might seem.

The users that come into contact with the products from EMP can be roughly

grouped into three categories – developers, testers and customers. Each

group has different needs, and this needs to be reflected by the test tools.

4.1 Embedded devices

To start with, embedded devices are any kind of computer that resides within

the device that it controls. Embedded devices place special considerations on
the designers and testers of such devices. The main obstacles of embedded

devices that are usually not taken into account for normal computers are as

follows:

• CPU and memory architecture limitations: Embedded devices are

manufactured in hundreds of thousands of units, and the cost

constraints placed for mass-market products means that all CPU and
memory solutions must be as cheap as possible. This means that the

designers must be careful not to waste precious CPU and memory

resources during development and deployment of the product. The

impact this has on testing is that test functionality takes CPU and
memory resources that could have been better spent doing real work.

• Power limitations: Embedded devices are typically battery-powered.

CPU- and memory/disk-intensive tasks consume a lot of current, and
this must be minimized as much as possible. If a test or log process is

consuming a lot of CPU, it will naturally also drain power from the

battery, which in turn will shorten battery life – a very undesirable side
effect for data which is only needed by a limited amount of people.

• Interface bandwidth limitations: Embedded devices cannot always be

logged by software running on the same device. This means that

some kind of interface between the embedded device and a stationary
computer is needed to perform certain kinds of logging.

• Hard real-time constraints: Embedded devices often require an OS

with deterministic scheduling, to make sure that important tasks are
performed within a certain time. This is especially important for

communication devices.

 Public

11 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Taken together, the task of programming and testing embedded devices is

usually more complex than ordinary PC applications. For instance, ideally you
would want to be able to step through the instructions of a device with a

debugger to catch exactly where unexpected situations or memory leaks

occur. For embedded devices, this can be quite hard for real-time situations –
the debugging process itself can throw off the timing of the processes.

Apart from straightforward logging from different processes in the embedded

device, it is also important to have access to the memory contents of the

device. The ability to perform and capture memory dumps is important to be
able to reproduce and solve software errors.

4.2 Mobile platforms

A mobile platform, in the EMP perspective, is basically the “technical half” of a

mobile phone. For instance, the mobile platform is a blueprint, combined with

hardware and software, that enables customers to build their own phones. A

mobile platform in itself is not of much use, so EMP also produces reference
designs to show how the platform can be used, including both hardware and

application software. This reference design together with the platform

software is what has been studied during the thesis.

A mobile platform can be seen as hardware chips (for instance a baseband

processor together with some specialized ASICs), together with software that

can basically be modeled as stacks – for instance, a network signaling stack,
a data communications (such as TCP/IP) stack, and so on. This is a fairly

natural way of viewing communications software, and for this thesis, it will

provide most of the conceptual visualization needed.

The actual terminals are known as User Equipment (UE) in the standards
organization Third Generation Partnership Project (3GPP). A UE consists of

many interfaces, some of which are useful for testing. For instance, a UE

usually has a keypad and a display for navigation and user input, but more
importantly a UE also has a USB, RS232, Bluetooth and/or Ethernet interface

in order to move data from the UE to another device. For network signaling

test purposes, it is also important that the UE has an external antenna

interface (so that the antenna can be replaced by an RF cable connected
directly to a base station or a base station simulator).

In a test environment, the testers would like to have as much control over the

UE and the test equipment as possible. Since a controlled environment is
important for validity and reproducibility of test cases, the UE and the

associated tools and interfaces must work in a deterministic way. The

antenna interface is easy to control, as it is a one-way interface, but the USB
interface can be a bit harder, since the bandwidth is limited and the physical

USB interface carries log data, UE commands and user data in both

directions. A low-latency interface is desired, since many of the tests are time-

critical and it is easier to debug if log data and UE commands can be
synchronized as much as possible.

 Public

12 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Often, it is enough to process the log information after it has been collected,

but it is also valuable to be able to see what is going on in real-time or near
real-time. Tests can be performed in the labs of EMP, but it is also important

to execute tests at other network vendor labs or at type approval facilities, and

the ability to trace the error while the test is being executed is valuable. Some
tests are being performed on-the-move (in a car, high-speed train or other

mobility environment), and sometimes it is important to pinpoint the location of

the problem. So, there are different “environmental” concerns with regards to

the nature of mobile platforms that involve logging. The temporal aspect (in
which order and how often/for what duration) do things occur is most

important, but state transitions and periodic measurements are similarly

important, as are the mentioned location issues – where the test is executed
can have tremendous importance.

4.3 WCDMA

Wideband Code Division Multiple Access (WCDMA) is the dominating “3G”
standard for wireless communication. In this context, WCDMA and the

protocols associated with it are the key research area at the department

where this thesis was written. It is therefore natural to describe some of the
characteristics of WCDMA, to show some of the complexities involved.

WCDMA can be compared with older mobile standards such as GSM/GPRS

and EDGE, which are TDMA-based standards.

WCDMA, on the other hand, is a CDMA radio access technology – this very

briefly means that UE:s can transmit simultaneously over the air, spread and

scramble the signal over a wide spectrum (5 MHz), and then the base station

can despread and descramble the signal by using a special agreed-upon
code. The details of the physical layer WCDMA procedures can be seen in

[3]. Some special points of interest to logging might be that the physical layer

performs very rapid power control, in order to counter fading and other radio
phenomena. A characteristic of CDMA – where different UE:s can transmit

simultaneously – is that the power level at the base station must be roughly

the same for all incoming signals, and this means that the base station must

control the UE:s output power frequently – up to 1500 times per second in the
WCDMA case. This is also the smallest “unit” on the physical layer, known as

a WCDMA slot (taking up 666.6 µs). 15 slots make up one WCDMA frame (10

ms).

WCDMA frame (10 ms)

WCDMA slot

(0.666 ms)

Figure 2: WCDMA frame and slot structure

 Public

13 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

These figures can be seen as an indication of what kind of resolution the

different logging points could possibly have, something which is important to
the analysis of the logging situation. Also, WCDMA is suitable for both voice

traffic, data traffic, and a mixture of voice and data traffic. The different

possible configurations (of different radio bearers, etc) must also in some way
be represented. The actual user data (speech, video, packet data) could also

be interesting to process – for the UE:s of today, this means that anywhere

from 0 to 384 kbit/s of user data could be processed, and possible uplink and

downlink speeds are of course projected to rise in the future. Note that
because the same data is being transferred in different layers, it might not be

sufficient to capture data in one layer alone (such as IP), but data from

different layers might need to be collected simultaneously (both IP packets,
the segmentation in RLC, and the physical frames), which multiplies the

bandwidth requirement.

The UE does not live alone in an isolated world – as always in the cellular
communications world, there is a large and complex infrastructure supporting

the UE. This infrastructure is known as the UMTS Terrestrial Radio Access

Network (UTRAN) in the 3G world. A view of how this can look like:

Node B RNC CN

Figure 3: UTRAN main nodes

Here, the UE communicates directly only with the Node B (base station). The
Node B is controlled by the Radio Network Controller (RNC), which in turn

relays the user data to the core network (CN) – the user data can either be

speech or SMS, and then belong to the circuit-switched part of the core
network, or packet switched (e.g. WAP, e-mail, Internet access), which

belongs to the packet switched part of the core network. For mobile platform

manufacturers, the most interesting interface is the radio interface between

the UE and the Node B / RNC (the “Uu” interface). The exact details of the
UTRAN and the core network are not important for the rest of this thesis, but

can be studied in [3] or [7]. The thing to recognize here is that there are

different peer entities communication with the UE, and that logs taken on the
network side of the UTRAN should be synchronized with the UE logs to

debug things like timing and ordering of messages. Some messages are

terminated in the RNC, while some messages are terminated back in some

server in the CN.

As can be seen, there are many entities and interfaces involved in radio

communications, and the desired state for the test organization is to have full

control over every one of them. The following chapter will describe one of the
protocols needed to control the communication in a WCDMA network.

 Public

14 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

4.4 Radio Resource Control and other radio protocols

An important subset of the WCDMA standard is the radio resource control

(RRC) protocol [8]. This is the protocol which has been used for testing the

conceptual ideas in this thesis. In order to understand the complexity and why

it is worth the effort to construct better log tools, some explanations regarding
what possible interesting things can be analyzed and debugged is needed.

For all telecommunications design, a good conceptual grasp of the Open

Systems Interconnection Reference Model (OSI) is needed. This is the
classical “seven layers” structured way of describing communication protocols

functions. OSI divides the protocol functionality into layers that (in theory) only

communicate with the layers directly above. A brief description:

Layer number OSI Name Functionality WCDMA radio

equivalent

7 Application layer This is where the
applications enter the

protocol stack.

N/A, as this is
represented by

applications within the

mobile platform.

6 Presentation layer Translates application
data (such as user input)

into machine-readable

format.

N/A, as this is
represented by

applications within the

mobile platform.

5 Session layer Allows applications on

different computers to

establish and use a

session.

Typically handled by, for

instance, TCP in the case

of packet switched

communication.

4 Transport layer Handles error

recognition, recovery,

and segmentation.
Repackages long

messages into shorter

fragments.

Typically handled by, for

instance, TCP in the case

of packet switched
communication.

3 Network layer Addresses messages
and translates logical

addresses into physical

addresses, handles
routing and resource

management.

IP is usually used. For the
radio-specific network

routing, RRC is used.

2 Data link layer Handles the transmission

of error-free, sequential
frames.

The Radio Link Control

(RLC) and Medium
Access Control (MAC) are

 Public

15 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

located on this layer

1 Physical layer Transmits the raw data
over the physical medium

and regulates the

transmission of data, for

instance between the
network card and the

physical cable.

Proprietary physical layer
(PHY) protocol is used.

The OSI model does not perfectly capture the specifics of radio
communication, but a rule of thumb for network signaling is that all the

protocols involved are in some way placed on layers “one to three” in the

model. During practical discussions between testers, developers and

customers this is usually divided into “L1” issues and “L2/L3” issues, to divide
problems between physical layer problems, data link layer problems or logical

(network) layer problems.

Understanding the OSI model makes it easier to understand points of interest
during protocol negotiations, and such points are important in order to

develop the probe and “log point” concept used as a metaphor during the tool

development. From an end user (“higher layer”) point of view, for instance, a

mobile phone is not very complex – the log points could be represented as
the perceived state of the mobile phone. When the user starts to use the

phone, it is in an “idle” state, not performing anything useful for the user

(except being able to receive incoming calls and messages). Once the user
has dialed the number he or she wishes to call, the user presses the “dial”

button and perceives the phone as being in a “dialing” state. Finally, once the

person on the other side answers, the phone is in a “talking” state. This entire
flow can be visualized in, for instance, a state diagram1.

Idle Calling Connecting Alerting Active

Figure 4: State diagram for a voice call (“call control”)

Apart from state transitions, typical functions for radio communication

protocols also involve measurement collection and measurement reporting,

as well as sending and receiving other messages for setting up and tearing
down radio connections. This is what happens on the RRC layer, which can

generate messages and measurements at a considerable pace2. Also, before

the control data is actually sent over the air, it must be fragmented,

sequentially controlled and integrity checked by the lower layers (RLC/MAC)
and properly sent over the air (PHY).

1
 The “call control” state diagram here also contains additional states important to the network – a UE in a “calling”

state has, for instance, not yet received confirmation from the network if the other UE exists at all or the number
dialed is valid, while in the state “Alerting”, both UE:s play dial tone sounds.
2
 The RRC protocol is specified by the 3GPP organization, and the specification (25.331) contains over a thousand

pages in the latest version.

 Public

16 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

5 Problem description and analysis

The importance of logging and representing log data has been described in
the previous chapter. Some of the key points have regarded the full

complexity of the system – network signaling requires a lot of information for

debug purposes. Another key point is that many things in the air and in the
software occur at a very rapid pace – this means that it is important to

timestamp and trace different events and measurements to be able to

recreate the situation. As the target platform is an embedded device (a UE), it

is also important that it is testable and that the logging itself does not
introduce a different behavior in the UE (such as degraded performance or

different timing since the logging processes consume CPU and memory).

This is the input used for defining the goals of the thesis, of wanting to
construct better tools than those used today. In this chapter, issues that were

important to the problem are discussed and analyzed.

5.1 Logging and embedded devices

Logging of embedded devices can be implemented in several ways – the log

data can either be stored on the embedded device, to be extracted in a future

moment, or immediately be transferred to a host device (such as a PC). This
thesis will only look at logs transferred to the PC, and how they can be

processed. The reason behind this is that there is currently no implementation

that writes log information directly to the UE, although that would certainly

solve performance issues – for instance, by writing log data to a memory card
and extracting this later on for post-processing.

Currently, developers implement all the logging, and the testers observe and

analyze the logs that are generated during test execution. The main part of
the log framework implemented by the network signaling modules are

implemented using printf() functions in the source code. These functions

transfer the strings to the PrintServer module, where the prints are later sent
with the DebugMux over USB (or, in some cases, sent over RS232).

 Public

17 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

The ownership of the actual log prints is completely in the developers hands.

This is something which is inherited from the traditional project way of working
– designers develop and implement new functionality, which are then

normally transferred to the testers as-is in the form of complete builds. There

is no clear distinction between log prints that are harmless, part of normal
procedures, warnings or errors. This has lead to a situation where different

groups focus on different kinds of procedures and error conditions, and where

there exists some tools for post-processing logs to filter out warnings and

errors. Since the number of log prints is vast, it can be difficult to spot “side-
effect” errors through manual inspection, unless the test case exposes the

error. For instance, a voice call might be perceived as successful by the

tester, even though later inspection of the logs show that signals are
unnecessarily sent many times or some procedure is not executed as

optimally as possible. All in all, leaving testers outside the task of specifying

and discussing what kinds of prints and logging should be implemented can
be dangerous for the future, as much of the information regarding why a

certain print string is implemented could be lost if nobody within the test

departments knows why it is present.

The amount of prints also means that there is no way that all prints can be
enabled at the same time. This has lead to a categorization of prints as “A-

prints”, “B-prints” and “C-prints”, where “A-prints” are always printed, while B-

and C-prints can be turned on through an interactive debug facility or by
rebuilding the platform. The question of which prints to enable or disable is

mostly determined through experience and of which modules are being used

in the test case, or through analysis of incidents found during test.

This all boils down to the question of whether the current log concept works

today – and the consensus at EMP seems to be that although “printf()”

logging has some advantages (easy to implement, powerful for experienced

testers), it also has many disadvantages (performance and flash code size).
This means that a reevaluation of how to log is needed, and that should also

include a reevaluation of the roles of testers and developers (and also

possibly customers).

There exists an option to PrintServer logging in the UE – namely the Test and

Verification Protocol (TVP). This protocol is used by some departments to

transfer log data from the UE to the PC in a much more efficient way –

instead of sending raw strings to the PC, the log data is sent as packets using
a standardized protocol (with header and payload), and the processing

burden is thereby placed on the PC side. This protocol and the tools

associated with it are used extensively by some departments, but not as
much by the NS stack and NS stack test departments. Part of the reasoning

behind this is the sheer volume of existing prints and the effort it would take to

refactor the code to use TVP log points instead of printf() functions. The main
objective of this thesis is to investigate if existing log tools can be expanded to

combine the advantages of the two log formats.

 Public

18 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Both Print Server data and TVP data is transferred to a data link module,

known as the DebugMux server. The DebugMux server packages the
information, and sends it over USB to the host PC application. The host PC

application contains a DebugMux client, which unpacks the data, and then the

data is ready to be used. A simplified view of the architecture can be seen as
follows:

DebugMux
Server

UE side

PC side

Print
Server

DebugMux Client

TVP

DebugMux Client

RS232 client

Figure 5: A basic view of the modules required for logging EMP products

The information that is sent through the Print Server is in the form of simple

strings, generated by calls to the standard printf() function in the C
programming language. This means that printf() strings can also be sent raw

through the RS232 interface (serial cable), which is a simple way to log what’s

happening. On the other hand, TVP packs the log point information into binary
data structures and transports them through a data link layer (DebugMux),

guaranteeing lossless delivery. The picture below shows the basic structure

(note that Print Server strings are usually sent through the DebugMux layer

these days, with the RS232 option rarely used as a residual option):

USB

DebugMux

PC Application

USB

DebugMux

TVP PrintServer

UE module

TVP PrintServer

RS232 RS232

Figure 6: Overview of protocols used for logging, dark arrows indicate the

main log paths, light arrows indicate redundant log paths

 Public

19 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

5.2 Role of testers and developers

In a large organization such as EMP, the roles of testers and developers are

separated. This means that the system itself is complex enough to warrant a

separate organization for test development, test execution and test reporting.

Tests are not separated at all levels, as the developers tend to design their
own tests for unit and module testing, but function and system tests are

owned by the test departments. This means that the role of the testers are

often to verify system requirements, perform load and stress tests, perform
interoperability tests against network vendors and operators, and perform

internal type approval tests. It is important that the logging framework is

mutually beneficial for both the developers and the testers.

When introducing TVP log points to replace the PrintServer log points, it

would therefore be important to agree upon exactly what kind of contents

must be included in each log point, and how this log point is optimally

represented. This means that some sort of cooperation, for instance during
requirements specification, should be made regarding how test and

verification of the functionality should work. Testers should be involved in the

review of requirements specifications and implementation proposals of
functionality which requires new log points, to make sure that the

representation of the log data can be developed in parallel with the

functionality.

The reasoning behind this is that there could otherwise be a risk that TVP log

points are implemented without including the data that is important to log –

TVP might be implemented without enough regard to the ability to verify the

functionality. If testers are involved in the specification and design of log
points (and also involved in the design of the new log tool), there is a greater

chance of doing the right thing. This is more of a project management issue

than anything else – one might also argue that the scarcity of resources
means that the testers should do what they do best, namely using the existing

functionality and system, finding the bugs, and aiding with the debugging, and

thus leave all the implementation details to the developers.

5.3 Tool support for logging

The mentioned architecture within the UE and the definition of the logs would

not be worth much if there was no good tool support on the PC side for
logging the platform. As it turns out, the protocols implemented on the UE

have peer entities on the PC – the functionality of the PrintServer is easily

implemented on the PC with the help of a good windowing class, the

DebugMux server on the UE has a corresponding DebugMux client on the
PC, and the physical transmission is made through the use of USB.

There are two tools used for logging – one EMP-made product for logging

PrintServer logs, and one third-party product (“the main log tool”) that logs
both PrintServer and TVP (a selected subset of TVP points). The main log

tool includes many desired features, making logging easier to understand as

well as dividing streams of information into different windows. The main log
tool is also delivered to customers, to aid them in their own debugging.

 Public

20 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

5.4 WCDMA protocol logging

The information in chapters 4.3 and 4.4 has served as important input

regarding how to log WCDMA protocols. In order to analyze this situation,

some clarification is in order regarding how the system behaves. The easiest

way to visualize complex communication protocols is to draw layer diagrams,
using the OSI model. For the relevant WCDMA protocols, the protocol stack

(encompassing layers 1-3) can be visualized as follows:

PHY

MAC

RLC

RRC

User PlaneControl Plane (NAS)

L1

L2

L3

U
u
interface

Figure 7: The network signaling protocol stack

Thus far, only the UE side of things has been discussed. Each protocol layer
also has a peer entity on the network side. For instance, the RRC protocol is

terminated in the RNC (see figure 3). Being able to synchronize logs on both

the RNC and the UE is extremely important, as many issues can be related to

timing, retransmissions or messages being sent and received in the wrong
order. Also, things like ciphering (encryption) can complicate things further. If

RRC is taken as an example, for these reasons, it should be possible to log

both the actual control message (RRC), over which radio bearer and logical
channel the message is sent (RRC -> RLC), how the message is fragmented

(RLC/MAC) and exactly how the message is sent over the air (PHY). Each of

these layers generate data at a different pace, and this means that log points
can and should be inserted at the different points of interest in the stack.

 Public

21 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

For demonstration purposes, this thesis has studied measurement reporting.

In WCDMA, measurements are performed by PHY, and the results are
reported to RRC. If a voice call is active, then PHY performs measurements

every 70 ms, and if certain thresholds and conditions are fulfilled,

measurement reports are sent to the network where addition of a new cell is
desired. Without going into more details, this scenario is good for observing

operations at all interesting protocol layers, including internal operations

within each layer (in this case – PHY measurements).

Recall the resolution and amount of log points desired, as described in
chapter 4.3 and 4.4. It seems like it should be possible to get data on a frame

level (10 ms resolution), but logging data on the slot level (0.666 ms

resolution, or 1500 slots per second) seems a lot more difficult – a worry is
that such a high level of logging strains the CPU on both the UE and the PC

too much. The implemented log points studied also do not usually include

slot-level resolution.

5.5 COM programming and communication

COM communication is one of the main means of inter-process

communication in Windows environments. A lot of information regarding COM
can be obtained from the specifications in [9]. COM is basically about

exposing different kinds of interfaces between different programs – the actual

object model of each COM object is hidden from view.

COM is used, for instance, between many of the common Windows

applications, such as Office, Matlab, etc. COM interfaces come in different

flavors, where the simplest one is known as the “Dispatch” COM interface.

For users of a dispatch interface, there is no need to know exactly how the
invoked program is made or what exactly is executed, which makes it easy to

call standard functions without knowing how they are implemented.

For the log environments at EMP, COM is used for communication between
the main log tool and the new Bridge interface. Initial analysis of the interface

showed that the task of implementing calls to the interface should be easy –

but after a lot of testing, each interface call worked except for one non-

standard COM interface call. The Bridge COM interface is not implemented
as a standard Dispatch interface, but rather as a kind of “Dual” interface which

has less extensive support in languages other than C++. Eventually, this led

to the solution that all COM communication was performed in C++, while all
parsing and representation was performed in Python through the use of

shared files. This should later be replaced with other COM interfaces or

named pipes for inter-process data transfer.

Recall that both the main log tool and the specifications of the Bridge interface

are already created – and a basic implementation of the “Bridge Client” was

used initially before creating other prototypes. Also note that the “main log

tool” implements the DebugMux client, as can be seen in figure 6.

 Public

22 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

5.6 Why is a new log tool needed?

The major issue regarding the tool situation is that there is no utopia. The

PrintServer logging is easy to implement and has decent tool support, but is

somewhat unreliable and wastes resources in both the UE and the PC. TVP

logging is already partly implemented, but the main log tool used for this is not
owned by the EMP organization, but instead developed by a third party. This

third party does not deliver updates to the main log tool very often, and this

means that the procedure of adding new log points cannot be performed on a
day-to-day basis, as with PrintServer logging. In order to combat this

situation, EMP has requested and received a new interface to the main log

tool, where arbitrary log points can be activated and deactivated, and thus
controlled by a new log tool. The investigation and prototyping of this new log

tool and the “Bridge” interface has been the practical focus of this thesis.

Summary of characteristics of the main log methods:

PrintServer logging TVP logging

Flexible, easy to implement new log points in the

UE (just add a printf() line)

Implementing new log points in the UE requires

more effort in a TVP module, but the end result in
the regular software modules is just one extra line

No effort required to print additional prints on the

PC

Complete rebuild is needed of the main log tool if a

log point is added

The main processing and memory burden lies on
the UE

The main processing and memory burden lies on
the PC

A high level of activity can cause print overflow Log points are sent as packets over a reliable

connection-based protocol

Most prints have to be added through rebuilds of
the platform, some can be added or removed

during runtime

TVP points can be activated, deactivated,
stimulated (to execute “target test code” in the

UE), and several other tasks

Actual prints in the source code can take a

considerable amount of valuable flash space in the
target device

A separate module in the UE for handling TVP

information is needed, but less data needs to be
stored as there simply are no print strings

As can be seen, TVP looks like the more attractive protocol, but the main

disadvantages means that TVP points cannot be added or removed on a day-

to-day basis, something which is absolutely essential for new development.
This is what the new Bridge interface is supposed to relieve – effectively

removing this drawback, and also enabling the NS Stack Test department to

implement new tools to represent log points not only through text strings but
also through other means.

 Public

23 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Debugging software often means changing the behavior of the software. A

test case which fails can often be troubleshot by adding prints, but to see if
changes are effective, it must be possible to change the functionality as well.

This is usually of course done through rebuilding the software, but during

software development it would be very beneficial to do it without rebuilding.
For instance, a typical situation could be tests performed at a network vendor

lab during a limited period of time. Spending hours rebuilding the software is

an unnecessary waste of time, if the same kind of functionality can be

switched on and off during run-time. Of course, this is not practically possible
for many features of the software, but things like parameters and alternative

paths of execution should be possible to trigger and/or change without

rebuilding. This is something which is partly possible today – the “interactive
debug” facility is available for some modules, and the TVP points can be

“stimulated” and thus execute target test code in the UE, but this is not yet

possible to do without special software builds.

5.7 Other tools

Software testing does not merely mean executing tests and logging/analyzing

the results. There are a range of other tools needed to fulfill the tasks of the
software departments. A point of interest here is how these tools are affected

by changing the log architecture, and if the tools can somehow be integrated.

For example, EMP has recently switched to the Eclipse IDE. Eclipse is an
open-source IDE which is basically just a shell for different software

development tools, such as a C++ compiler, debugger, software version

control tools, and so on. Other tools that could be included in Eclipse in the

future include for instance logging tools and software loading tools. A brief
analysis has been done regarding how this can be solved – the main log tool

used for connecting to the UE must in this case be started, but the new log

tool could be integrated into Eclipse. Eclipse uses java for all kinds of
development, and it is rather easy to incorporate new plugins into the Eclipse

environment.

5.8 List of problems and requirements

The problems described in this chapter can be summarized in the following

list, which has served as input for the main work of the thesis:

• TVP logging from an embedded device means that performance, in
terms of latency and bandwidth, is important for PrintServer to TVP-

migration.

• Because TVP is a binary protocol, the binary information must be

transformed into readable information by the PC application.

• The representation should take several different forms, to

accommodate different types of logging. Printing strings is the only

option available now.

• The representation should be a collaborative process, so it should not

be too difficult to add new log points with the same format.

 Public

24 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

• COM inter-process communication is a constraint, since this is the

chosen method for communicating with the main log tool.

• TVP and DebugMux are also constraints, although these protocols are

under EMP control – still, for this thesis the current TVP and

DebugMux implementations must be treated as constants.

• For debug purposes, the tester should not have to rebuild the entire

platform, but rather change parameters and software behavior during

run-time, in the standard build variant.

 Public

25 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

6 Results

In the previous chapters, the problem context and initial problem description

and analysis was described. This chapter contains the results of interviews,
experiments, and evaluation of tests using the newly developed prototypes.

As has been written, there are several requirements that cannot be changed

while analyzing and trying out solutions to the problems.

6.1 Requirements for log tools

By starting from the beginning, with collecting requirements and thoughts over

what testers and developers actually need to perform their work, an
exhaustive list of possible requirements was collected. This eventually led to a

list of requirements, which is not included in this thesis but which served as

input for the prototype work. For instance, it is important that the tool is easy

to use and gives a clear representation of what is going on. The current
PrintServer style of logging requires quite a lot of experience and training until

it can be properly used – mostly because the myriad of log prints means that

it is nearly impossible to see in real-time what is going on, and even post-
processing the logs can take a lot of time. Using PrintServer logging, all prints

are mixed (row by row), so different modules and stacks all carry on printing

at the same time, which means that it can be tough to see the procedures
clearly. The situation becomes severe when prints other than the A-prints

need to be added, as this adds to the clutter of the main log window.

There are of course workarounds to this, but most involve post-processing the

rather large logs to make them more readable, for instance by filtering out
prints that do not belong to the network signaling stack. The sequential way of

logging is also not a very natural perspective of what is actually going on in

the code, and thus is not optimally suited for debugging. Although the
temporal sequences are well suited for PrintServer logging, radio network

signaling is very much about state machines and measurements, and it would

be more natural to view this as one single variable or state being changed,
rather than a lot of prints each time the state changes. For instance, if the

tester wants to know what state a certain module is in a certain point of time,

it is likely that the tester needs to scroll or otherwise parse through hundreds

of log lines to find out the current state. The protocols and procedures can in
turn depend on up to ten different state variables, something which is very

time-consuming to look up. The same thing is true for measurements and

triggered events. Procedures such as handover and cell reselection (when the
UE decides to listen to a different base station) depend on signal strength and

signal quality becoming greater than certain thresholds, and this would also

be more natural to represent through for instance graphs or other means.

 Public

26 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

This input, taken together with the wish to be able to dynamically add and

remove log data, meant that certain basic primitives were introduced to
symbolize different kinds of log data. Before concluding that these were the

correct primitives, some discussion and analysis was performed – the

reasoning behind moving towards a binary form of logging instead of the
straight-forward way of logging is that less information needs to be transferred

from the UE to the host device. It was observed that it seemed like a lot of

waste to let the UE handle the processing and formatting of the logging, when

the PC (which is less constrained when it comes to CPU and memory
performance) would be much more suitable for this. The PC should then in

some way transform the binary data into a human-readable representation,

and it should take the form of one or several outputs that can logically be
connected to the internal operations of the UE. The primitives chosen were:

• Raw output: Exactly what is executed by the code – good for lower

level debugging. This is always needed as a fallback solution, for
instance to debug if the logging actually works.

• Print output: The basic means of logging today, print a string

explaining what is going on – good for tracing sequences and function

calls within the code. Print output is still very natural for the testers and
developers today, and it seems to be impossible to abolish this form

altogether, although a good performance enhancement can probably

be seen if the actual printing is performed in the PC rather than in the
UE. An idea is to for instance create a special 16 bit log point, only

containing an index, which could then be connected to a generated file

containing all static print outputs in the PC. Things like printing
“entering function A()” should not be stored within the UE – rather, the

UE should just send the 16 bit variable to the PC, which then maps the

value to the correct string for output.

• Graph output: Draw a graph of a certain variable, represented by a
log point – good for measurements, power levels, downlink and uplink

throughput rates, etc. This is a very natural way of observing these

things, and is also something which is used in the actual 3GPP
specifications when describing certain procedures. This is also one of

the main ways log points are used today within the main log tool, so it

is very natural to want to duplicate this for log points not yet added in

the main log tool. This is however also a more advanced
implementation task, but the option should still be available in a final

product.

• State machine output: Change a static image of a state machine to
represent the changing states – good for state machines (the “talking

states” shown above is much easier to understand if logged this way

rather than with text strings that get lost among other strings). The
reasoning behind this is that state machines are used in so many

modules, and it is probably the thing that is most difficult to visualize

since all the tester sees is a large amount of print strings being printed

at a rapid pace.

 Public

27 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

• Table output: Change a static table – good when for instance

debugging cell changes, handovers or other events that depend on
several variables and their relationships. This could also be a cheaper

way to implement state machine outputs – just display a table and

change the variables accordingly when a log point is sent by the UE.

Other requirements include wanting to be able to rewind and replay the

logging that occurred during the test execution – it was seen that a way to

debug errors is usually to compare the execution with variants of the same

software, older software, or older logs when the test case was working. It is
also good to be able to take logs and insert them into other tools, such as

Matlab or Excel, for post-processing. This is something which is possible but

cumbersome with the current text-based logging, requiring much manual
script effort (and also sensitive to format changes in the PrintServer output!).

For controlling the activation, deactivation and stimulation (injecting data into

the log points to execute code in the platform), a GUI or console is needed,
but for automation purposes this should also be able to execute through

scripts. Another wish is to activate and deactivate log points based on events

that occur – for instance, if something unexpected happens, the log

application should have the possibility to sense this and add extra prints to
capture more information. This implies a logical script language for

intelligently sensing when something goes wrong, when a state variable

makes a forbidden transition, and so on.

6.2 Architectural ideas

After having collected the requirements and gotten a view of what was

needed to accurately perform test execution and logging, initial architectural
spikes were performed. The developers of the main log tool had implemented

the Bridge interface according to the requirements of the test department at

EMP, but the interface was neither tested and the performance and
possibilities were not explored before this thesis work was performed.

The existing architecture can be described as a collection of communication

modules, transferring TVP and PrintServer data over a special data link

protocol (DebugMux) and transferring this information to the PC over USB.
Once the TVP packets and PrintServer data arrives at the PC, the DebugMux

client (the main log tool) unpacks, parses and displays the information on the

screen. The architecture can be described through the following picture:

 Public

28 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

DebugMux

Server

UE side

PC side

Print

Server

DebugMux Client

TVP

Log tool

Figure 8: The existing log architecture

To make it possible to fulfill the new requirements, the Bridge interface was
added to the main log tool (by the third-party developers), and this was later

used in the practical work:

DebugMux

Server

UE side

PC side

TVP

COM

BridgeServer

Log tool

COM

Bridge -

Client

New log tool

DebugMux

Client

Figure 9: Architecture with support for Bridge

The Bridge interface is the prerequisite for all the practical work performed in

this thesis. This existing architecture, together with the ideas presented in

chapter 6.1, led to architectural spikes to decide what the most appropriate
design would be. After having worked for a while with protocol stacks, the

“layers” metaphor was chosen for the architecture – splitting the new log tool

into a “COM communication”, “Data parsing” and “Presentation” layer.

 Public

29 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

One advantage of separating the inter-process communication layer and the

presentation layer is that this makes adaptation against a possible future log
tool interface is made much easier, if the decision is made to use another

main log tool but keep the TVP protocol for logging. During work, this became

a more and more attractive option, since the issues leading to drawbacks
(described later) would then be more observable and controllable. The

presentation primitives described in chapter 6.1 are all taken care of by the

“Presentation” layer, while the control and triggering of log points is being

taken care of in the other layers.

BridgeClient

Controller

ConsoleInput

ScriptInput

RawOutput

TextOutput

GraphOutput

StateMachOutput

COM

Communication

layer

Logic layer

I/O layer

Keyboard

Script file

Window / log file

Window / log file

Window / log file

Window / log file

OutputParse

OutputDB or

OutputTable

Configuration

External tool?

Figure 10: Architecture for the new log tool that fits with the existing interface

In the figure, the “COM Communication layer” could be modified in the future

to connect directly to the “DebugMux Server” seen in figure 9, rather than

going through the existing main log tool, but the other layers could be kept as-
is.

The architecture contains several tables or information storages. For instance,

the configuration when the tool is started needs to be read from somewhere

and stored in a table. This can be implemented either by using a regular
database, but for the architecture in figure 10, simple hash map tables

(meaning that values could be accessed in O(1) time) were used. The output

database has been created trough the use of “decode”-files, which guide how
each log point (represented by a number) should be interpreted.

 Public

30 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

6.3 Implementation issues

After having worked out requirements and design, a lot of work went into

attempting to realize the architecture. Here, unexpected problems related to

methodology occurred, namely that the language choice was more important

than initially thought for this type of inter-process communication in a
Windows environment – Python does not seem to be mature enough for this

yet. However, the architectural idea still meant that the situation could be

remedied by separating control and communication into a C++ program, while
performing parsing and presentation in Python, and then connecting the two

prototype programs. The initial plan was to do everything in Python, since the

total time spent coding could then be kept down.

The first attempts were made to construct all prototypes in Python, that is,

including the COM interface implementation and everything. This was the first

iteration, which almost succeeded – but Python, despite its flexibility and

power, still lacked adequate COM interface support. COM interface support
existed, but the COM interface provided by the main log tool investigated in

this thesis was somewhat more advanced than ordinary COM servers and

interfaces. This meant that the 100% Python solution was abandoned, after
having seen it almost work together with the interface (all functions except for

one could be activated, sadly this function was critical to actually receiving log

data). Several variants of third-party Python modules with COM support were
tested, including attempting to reverse-engineer the COM object and

accessing the interface that way – something which actually worked with

other COM interfaces, but failed for the Bridge interface.

Because of the lessons learnt during Python COM programming, the Java
part of this thesis became rather brief – rather soon, the same problems as

with Python regarding insufficient support for COM became apparent, and so

this thread was also abandoned. The same kind of third-party modules as
with Python were used, and they finally showed the same kind of drawbacks.

This also meant that an Eclipse spike, which would have integrated parts of

the new log tool into the main IDE, was put on hold as the Java modules did

not fit with the COM interface.

The final solution was then to perform some of the experiments in C++,

regarding the main communication through COM servers and COM clients,

and to perform all other experiments in Python through shared data with this
C++ application. This meant that some layers of the application are written in

C++, while some layers are written in Python. The main drawbacks of this

way of working is that performance is not as good as it could be – however,
the main goal of this thesis is to show if the requested functionality is at all

possible to achieve, performance issues are secondary when it comes to end

application performance. Also, C++-programming can be more time-

consuming that Python programming, and this thesis was meant to contain
more experimental types of programming – still, this setback was overcome

during later work.

 Public

31 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

After having used a very basic existing C++ prototype, the process of adding

functionality and testing log point functions through the interface went rather
smoothly – and this means that anyone wishing to continue this project will

probably not face too many difficulties regarding the actual implementation, as

the ground work has already been performed.

6.4 Tests of the prototypes

Moving from PrintServer logging to TVP logging in an external log tool is a big

step for the testers. This means that quite some work needs to be done to
ensure that a future new log tool is robust and usable in the same context as

the old log tool. This is not something that was considered for the prototypes

worked out here, but something which must be carefully tested before actual
rollout (see “discussion” chapter). Keep in mind that for some test cases,

especially during development of new functionality, a lot of data needs to be

processed fast to be able to accurately debug the behavior of the mobile

platform. This meant that fast and large log points were the main focus of the
prototype testing, to see if the data being transferred over the Bridge interface

arrived in the correct order and with the correct information in time.

Practical tests showed that the packets being transferred through the
interface did arrive sequentially and with the correct data, but there was one

major drawback – the entire TVP packet was in fact not transferred, parts of

the header (containing the internal timestamp for when the data was
generated) was not transferred. This drawback means that the packets must

be timestamped when they arrive at the PC side, which is far too inaccurate to

be usable. Investigations also showed that the DebugMux data link layer did

not transfer packets all the time, but rather buffered the packets and sent
them all at once every 200 ms (or when the DebugMux data buffer on the UE

side was full). Since a WCDMA frame is 10 ms, and lots of information needs

to be debugged on a frame-by-frame basis, this is not good enough for
practical use. On the other hand, some log points on the PHY layer contains

“internal” time stamps based on frame numbers (10 ms resolution), and for

those log points it is possible to keep track of time. Still, any interface

(including the Bridge) that relays TVP packets must not strip this vital
information.

Apart from that major drawback, the functional tests went fine – a lot of

different packets were activated and deactivated, and the information
received was correct. For testing, actually existing log points were used, so

the output from the prototype could be compared with the already existing

representation shown in the main log tool3.

3
 Note that the main reason behind the prototype is not to simply recreate what is already implemented in the main

log tool, but to make it possible to add new log points rapidly and not have to wait for rebuilds of the main log tool
to observe the same data – especially important when time is limited when new software is implemented in the
UE.

 Public

32 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

It seems like the TVP module in the UE can put different kinds of timestamps

(with different resolution) on the TVP packets, but that this is actually not part
of the TVP packet that is sent through the Bridge interface. When

disassembling a TVP packet, this is how it then looks in principle:

From UE to log tool: [Timestamp] + [TVP header] + [TVP data]
From log tool to Bridge interface: [TVP header] + [TVP data]

One reason for this behavior could be that the timestamp can be varied within

the UE, while the TVP header and TVP data are created in a different way.

Other functional tests involved designing and testing log point representations
with the help of tables – plain text files were used for this, but in order to make

things more generic, XML files should be used instead. The input required to

make these kinds of tests were the log point database, where already
implemented log points could be picked and tested, together with the log point

specifications. These two are combined into a representation-textfile that

guides to which output device the binary data should be piped, and how this
should be done.

The process of testing new log points can be set up as follows:

• Decide which log point should be activated (for instance, “log point

#400: RRC measurement reports”).

• Decide how to represent this log point (raw/print/graph/state/table),

both tester and developer should collaborate.

• Write a new “decode”-file for this log point.

• Observe if the log point is periodic or event-triggered.

• Observe throughput and latency for this log point stand-alone or

together with other log points.

• Observe timestamp and other information if available, compare to print

strings to see that the correct information is transferred over TVP.

Several of the tests were made with different kinds of measurement

information. The actual procedure for WCDMA measurement reporting is very
complex, taking up a large section of the 25.331 standard [8]. Still, this type of

more complex log point (meaning that the structure is dynamic, and the

amount of information elements can vary) was still possible to represent in
different ways without too much trouble by following the process above.

 Public

33 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

6.5 Maximum practical TVP throughput

Of course, it would be interesting to compare maximum TVP throughput with

the throughput that can be seen using PrintServer logging. The PrintServer is

constantly evolving, and works in a kind of unacknowledged mode – the

PrintServer does not care whether the print strings arrive at the host, and if
too many modules want to print at the same time, the buffer in the UE will be

filled and prints will be discarded. This is not the case for TVP packets, where

packets are sent acknowledged. At some data rate, however, it will not be
possible to send enough TVP data without losing or severely delaying

packets.

The exact measurements are confidential, but the important fact is that
throughput per se is not the limiting factor. Breaking down throughput

variables over the different layers, it can be seen that USB is not currently (at

around 12Mbit/s theoretical, ~5Mbit/s practical) the bottleneck. The

DebugMux protocol can also be tweaked to allow higher throughput. Rather, it
is the processing power of the UE that sets the limit of how much information

can be sent. For instance, if the UE is downloading data at a rate of 384

kbit/s, the CPU is already strained – if log information is added at different
levels, the log data throughput would be approximately multiples of 384 kbit/s,

but the practical limit is set by the UE processor.

6.6 Number of simultaneous TVP log points

An important consideration is the issue of how many log points could be

activated at any one time. The processing of log points is more complex than

simply concatenating everything into one print window, as with PrintServer
logging. Testing the number of simultaneous TVP log points shown at one

time is a good test of the parsing and representation parts of the prototype, as

well as stressing the communication part (at both the UE and PC). Ideally, a
large amount of log points could be enabled at any one time, to log many

layers simultaneously. For specialized tests, it may be more important to

focus on just a few, rapidly reporting log points (such as frame data, which is

generated and sent every 10 ms). In practice, if the test case and the tester
only needs certain log data, it seems to be good to not enable more log points

than is needed. This is also something which should be controlled

automatically, for instance through the test environment (when test case X is
executed, load log tool configuration file associated with that test case).

The delay experienced when adding more and more log points is significant.

This is also observed in the main log tool, which means this is not a

bottleneck problem with the Bridge interface. When more and more log points
are added, the UE response to adding further log points becomes more and

more severe. This means that triggers and dynamic activation/deactivation of

log points work much worse when there are already many active log points
available in the system – not on the host PC side of things, since the tables

and parsing is an efficient and well-known operation, but rather on the UE

side of things or in the main log tool.

 Public

34 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

6.7 GUI and representation

The two previous chapters verify that TVP can be sent and parsed by the

application, which covers the communication and data parse layers of the

application. Now, in order to realize the advantages of the new log format,

some representation needs to be tested. For this purpose, experiments were
made with a GUI module for Python, called wxPython [10]. The advantage of

this is that conceptual ideas can be tested, and then converted to another

programming language (such as C++) if the concepts are viable.

Three of the output primitives outlined in the “requirements” chapter were

suitable for GUI representation. State machines, tables and graphs are all

good candidates for this kind of treatment. Graphs seemed to be the most
difficult primitive to implement, but are nevertheless very important to the

representation of radio logging. In order to simply test GUI operations, state

machines were chosen as it was estimated to be faster to implement, and

would still demonstrate how the entire chain, from log point generation to log
point representation, would work.

Adding this kind of GUI to an application means that more concern must be

given to things like threading and real-time processing of data, compared to
before. However, no important issues were found when testing different kinds

of GUI primitives – although it is time-consuming work, which is better left to

the actual implementation phase of the real log tool. Note that the output
tables described in 6.4 are used here as well – and aid from the developer is

needed to realize how to best use the GUI.

6.8 Stimuli activation and triggers

The Bridge interface includes the capability to execute code in the platform

through a process known as “stimulation”. This is something which can be

used to trigger events based upon the reception of log points. One of the
wishes was to be able to trigger code in the UE depending on what happens

in the UE, which would be good for error handling, error recovery, etc. This

was harder to implement using the interface, as a lot of internal information

about the data structures was needed. It was discovered that stimuli
activation and that kind of manipulation is something that is not at all used

thus far by NS stack test, but several scenarios could be thought up where it

would be useful. This meant that a way to trigger code execution within the
UE from the regular software build is something which has not been used

before, and in order to make it work, support for this feature (called “target

test code”) was somewhat rough around the edges in the Bridge interface.

Execution depended on knowing the exact layout of the data structures, and
in the end only a few isolated experiments were performed.

 Public

35 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Still, the use of stimuli is intriguing and certainly something that needs to be

implemented in future tools. Since the platform is a complete OS in itself, it
would be good to be able to trigger code in the platform at the same time the

applications and real-time software modules were running – for instance, to

check memory usage, to turn on/off functionality, and so on. This can be done
using the “interactive debug” facility in the UE today, but the output consists of

print strings only, not the desired binary data. Stimuli is a much more

“interactive” way of debugging the platform, as the output is more flexible.

The format for using stimuli reminds of the format used for the actual TVP log
points. As such, it fits logically within the log framework, and it will be possible

to build scripts based on triggers and stimulation in the future. Already,

Python scripts are used within EMP for various tasks, such as test case
automation. Expanding this environment to also include TVP log point

triggering and stimulation is a task very well worth undertaking. In chapter 4.2,

some of the available options for log and control of the UE are shown – but
the thing that is actually lacking is a good way of changing pieces of the UE

software while the test case is running, something which is quite important for

stress tests and load tests (and other system test cases as well), where some

functionality should be exhaustively tested by switching it on and off, changing
parameters, etc. This is possible using TVP stimuli.

6.9 Sampling and exporting log data

A sample-and-process feature was added to the prototype to show how it

could be used in practice. This involves focusing on one single log point, but

can easily be expanded to several log points. The log points are collected

during a limited amount of time (such as 60 seconds), and the data is then fed
into a regular application for further processing. Since other parts of the thesis

work involved COM communication, it was a natural step to expand this

thinking to involve other third-party applications. In this case, Python could be
used for the COM communication, as the common applications used for

demonstration purposes here have been Excel and Matlab, both of which

implement COM interfaces.

Sampling in this context is not a real-time task, but still a good way to
visualize what is going on for a few log points. This could be a good way to

improve EMP logging functionality for customers – today, if a customer using

the EMP platform needs to test or debug errors on his own, the instructions
needed to create logs with the desired debug information can be cryptic, and

the resulting log hard to understand. If sampling and processing log data can

provide a clearer view of what is going on for the certain data points that need
to be logged and debugged, which could aid the customer in recognizing what

is actually being debugged. Sample-and-process also means that the

presentation layer can be made much simpler than if the wxPython module is

used.

 Public

36 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

7 Discussion of results and future work

The results above show that some important work remains to be done. First of

all, the main log tool needs to be improved in two major areas. A minor point
that needs to be added is that the timestamp must be preserved through the

Bridge interface. This should be relatively easy to implement. The second

point has to do with overall performance and latency of the log points. In order
to use the interface in the desired way, the performance must be improved at

several levels – investigations have shown that most of the latency reside in

the main log tool application. Also, the resolution of the DebugMux protocol –

sending packets only every 200 ms from the UE to the application is not
enough to allow real-time triggers.

The combination of these two issues unfortunately make things hard for the

user – it could be possible to compensate for one of these disadvantages. For
instance, if timestamps were missing but log points were processed in real-

time, the PC could stamp (less accurate) timestamps on the packets as they

arrived. Also, if the timestamps were preserved, the latency drawbacks would

not matter as much, since post-processing the logs would still work perfectly.
Adding a timestamp to the Bridge output should not be very difficult, but will

require changes to the implementation of the Bridge interface.

The application prototypes that are presented in this thesis will still work
without modifications once these issues are resolved. The option to use a

simpler, more light-weight interface instead of the main log tool should

definitely be implemented – this became more and more evident during the
experiments, as modifications to the prototypes could not overcome the

shortcomings of the main log tool. The main log tool is far too large and too

complex to break down and analyze from the outside. For instance, the

communication between the main log tool and the Bridge middleware
software is a COM interface of its own, which was not at all studied during the

thesis work.

This option would require some work, but gives much more control over
performance-critical parameters (both DebugMux and other protocol layers). It

would require a rewrite of the basic Communication layer presented in this

thesis, but it will not be a major task. Some of the major tasks needed to

execute this is to solve the problems of authentication (a service provided by
the main log tool together with the TVP protocol in the UE), DebugMux

performance tuning and relaying data through the Bridge COM interface.

 Public

37 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Presentation and data parsing, which has been tested using Python, could

remain in Python form for the time being. In a real life application (meant for
all groups at EMP and customers as well), the implementation should be

rewritten in C++ for better performance and better presentation capabilities,

especially if more extensive logging is activated. This is especially true for the
GUI components, as the Python modules used for representation were not

developed to be failsafe, and could not handle large amounts of data in a

good way. Rewriting the Python modules to C++ means a few difficulties,

mainly by converting the GUI code into MFC classes, but the pure
programming tasks such as communication and data parsing can be

converted on a class-by-class basis. Python as a language can be viewed as

a C/C++ front-end, which means that the objects and structures are very
much similar.

How much effort would be required to transform this thesis into something

which could be used in EMP projects? Many parts could be kept as-is, but
some refactoring and restructuring would be in order to complete the

representation classes. Also, with the proposed table lookup and log point

presentation solution, each new log point needs to be defined individually in

the log tool. An estimation of the work needed to define each log point could
be around 0-8 hours – depending on the complexity of the log point. Some log

points can simply be printed, this is especially true for static log points that are

proposed to replace static print strings – if a string is, on average, 40 bytes
long, replacing each such string with a single TVP point containing a 16-bit

index variable would save a lot of space. Other complex log points, that

represent complex data structures and measurements, need some tuning to
be able to represent (through graphs, state machines or tables). If a complete

state machine needs to be drawn and the transitions mapped, it could take a

full working day to accomplish this.

Taking the results and prototypes in this thesis and building a base
application on this should take around 40 hours. Data parsing and table

lookup should take around 80 hours to implement and test, and finally, basic

representation classes should take around 40 hours to develop. Assuming
160 hours for the development of this C++ tool for the communication, data

parsing and representation modules, the remaining part would be to also add

as many log points as is feasible. Implementing and verifying a representation

for each log point is a one-time effort, and maintenance of this work would not
take any significant amount of time. The log point “representation database”

could be stored in a version-controlled repository, and whenever the format of

a log point changes, the developers and testers with a special responsibility
for this functionality could also in parallel change the representation in the

database.

 Public

38 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

This investment would probably be paid off, as less time would be spent

debugging test issues. One huge improvement would be that there would be
much less time spent adding and removing prints, rebuilding software and

post-processing logs. Since this is work that involves 100-200 people in each

project, the individual time savings might not be large, but the total time saved
would be significant. Also, gradually switching to TVP would reduce processor

load and memory usage for PrintServer strings in the UE if these are phased

out. A gradual roll-out needs to be done, first by completing the

implementation and internal testing work, then by letting some testers use the
new tool in a regular product while other testers use the traditional way of

logging. If the new log tool provides significant advantages for testability and

tester productivity, and there are no adverse side effects in the UE, it would
then be recommended to let all testers use the new tool in the following

software project. Since each software project has a lifetime of roughly six

months where test activities are performed, this means that a pilot project
could be used during the next software project (where a limited amount of

testers use the new tools), and after an evaluation, the following six months

could possibly have a product variant where the PrintServer logging is

disabled altogether.

 Public

39 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

8 Conclusions

In general, designing a log framework that lasts through many projects with

different hardware and functionality is difficult. For this thesis, constraints
have been placed by the logging architecture already in place, and the main

log tool being used by EMP today (where more and more testers and

designers will be involved, not to mention customers). This means that these
constraints have, for the duration of the thesis work, been constant. Taken as

a whole, the current architecture is partly suitable for making new and more

efficient log tools, but most importantly, there are major drawbacks that limit

any future tool functionality. The most important drawback is that the latency
and throughput using current methods are not good enough to last for much

longer. When adding more log points and increasing the rate of log data

generation, the main log tool quickly becomes the bottleneck, consuming a lot
of available memory in the PC and delaying arrival of log data. This means

that one of the goals of the thesis, being able to design an adaptive log tool

that can react to incoming log data by for example adding more logs or

executing code on the target UE, is not possible for the moment. As the
maximum tolerable latency for some log data is in the order of milliseconds,

and the observed latency has been shown to be many seconds, this part of

the thesis could be made to work with a better main log tool, but not in the
current implementation. The delays have been roughly shown to exist in the

main log tool, with some additional delays also occurring due to the

DebugMux protocol implementation, as well as the overhead created by the
COM server data transfers – many log points generate very little data, but

generate data in such a rapid pace that the total processing time, compared

to the amount of data processed, increases to high levels.

As for observability and testability, without regard to latency, the solution
described in the thesis works good. Although extra loads with a higher rate of

log data generation slows things down considerably, the implementation is

simply a prototype written in a high-level script language, and it is still fast
enough to provide a feedback which is more informative and easier to use for

both testers, designers and customers compared to the current situation.

Already, raw probe data can be used for debug information where a complete

rebuild of the target UE software was needed. Besides, generating a good
representation of the available log points (not part of the scope of this thesis

apart from a few examples) is a one-time effort that will surely boost

productivity as ambiguous results are less likely, and training time will also
decrease as a result when the output of the actions taken are visible in a

more concrete way. There is no doubt that the NS Stack Test department will

be able to migrate to using binary log data, based on the experiments I have
been conducting, as long as the supporting tools and interfaces are tuned to

allow for higher throughput and less latency.

 Public

40 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

The ability to invoke code in the target UE based upon incoming log

information also works, but the interface makes it a bit harder to implement
this in a future log tool. However, it is a promising theme for future studies,

and can be integrated with existing tools to make automated testing less of a

burden to maintain. The possibilities to invoke target test code regardless of
which software build is used in the UE is very intriguing, and developing a test

environment based on TVP activation/deactivation/stimulation should be

analyzed more thoroughly, perhaps by a new thesis.

Finally, the formal interface specification is good enough to build future tools
upon, and is the most sensible step to take when developing the next

generation of mobile platforms. Some care must be taken when attempting

this migration, so this is preferably done as a pilot project, not involving all
testers at once.

 Public

41 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Appendix A: Abbreviations and terminology

The following abbreviations and special expressions are used extensively in

the thesis, and basic knowledge of what they mean will make it easier to
understand the text.

• 3G – The third generation of cellular mobile systems.

• 3GPP – The third generation partnership project, responsible for the
specifications of certain 3G standards (such as WCDMA), and also

responsible for future GSM/GPRS/EDGE specification evolution.

• ARM – A type of CPU for embedded devices, used extensively in most

mobile phones.

• ASIC – Application Specific Integrated Circuit, for special-purpose

chips, such as layer 1 WCDMA radio signaling.

• CDMA – Code Division Multiple Access, a way of separating users in
a cellular mobile system through the means of different scrambling

codes for different users.

• COM – Common Object Model, a standard way for inter-process

communication in a Windows environment.

• DebugMux – The data link layer protocol used for communicating

between the EMP platform and the host PC for log data.

• EDGE – Enhanced Data rates for GSM Evolution, a “2.75G”
technology for improving data rates.

• EMP – Ericsson Mobile Platforms.

• GSM – Global System for Mobile Communication, the dominant “2G”
standard employed around the world.

• GPRS – General Packet Radio Services, an evolution from GSM

designed for packet-switched data.

• IOT – Inter-operability testing, a name for the kind of testing where the
different parts of the system are tested together, for instance an

Ericsson platform together with a Nokia radio access network.

• MAC – Medium Access Control, a layer 2 radio protocol for controlling
when to access the air interface.

• NS – Network signaling, the most important protocol stack of a mobile

phone.

 Public

42 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

• NS Stack Test – The department within Network Signaling that deals

with lab testing, type approval and development test of new NS
features

• OSI – Open Systems Interconnection, a model for representing

communication protocols.

• PHY – Shorthand for “PHYsical layer”, or layer 1 in the OSI model.

• RLC – Radio Link Control, a layer 2 radio protocol for WCDMA.

• RRC – Radio Resource Control, a layer 3 radio protocol for WCDMA.

• RS232 – An interface used over a serial bus (“COM port”) for
transferring data.

• TDMA – Time Division Multiple Access, a way of separating users in a

cellular mobile system through reservation of timeslots.

• TVP – Test and verification protocol, a proprietary EMP protocol for

handling log data.

• USB – Universal Serial Bus, the standard way of transferring data to
and from a PC from small embedded devices, such as mice,

keyboards, telephones, etc.

• UE – User Equipment, a 3GPP term for a mobile phone and a SIM

card supporting 3G technology.

• Uu – The standardized name for the interface between the UE and the

network.

• WCDMA – Wideband Code Division Multiple Access, a radio access
technology for third-generation mobile networks.

• XP – eXtreme Programming, a light-weight methodology for software

development.

 Public

43 (43)
Prepared (also subject responsible if other) No.

Joakim Persson
Approved Checked Date Rev Reference

 2005-12-12 PA1

Appendix B: References

1. F. Brooks, The Mythical Man-Month: Essays on Software Engineering,

Addison-Wesley, 1995

2. http://www.ericsson.com/products/mobile_platforms/

3. H. Kaaranen, A. Ahtiainen, L. Laitinen, S. Naghian, V. Niemi, UMTS

Networks – Architecture, Mobility and Services, Wiley, 2005

4. http://www.eclipse.org/

5. http://www.python.org/

6. http://www.extremeprogramming.org/

7. Schiller, Mobile Communications, Addison-Wesley, 2003

8. TSG RAN Working Group 2 (Layer 2, 3), 25.331: RRC Protocol

Specification 3.18.0, 3GPP, 2004

9. http://www.daimi.au.dk/~datpete/COT/COM_SPEC/html/com_spec.ht
ml

10. http://www.wxpython.org/

