
UNIVERSITÀ DEGLI STUDI DI PARMA
FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

UNA TECNICA PER IL 3-WAY MERGE

DI MODELLI BASATA SU XMI

AN XMI-BASED TECHNIQUE

FOR THE 3-WAY MERGE OF MODELS

Relatore

Dott. Ing. F. BERGENTI

Correlatore

PROF. L. BENDIX

Tesi di Laurea di
ANTONIO MARTINI

ii

Ad Ildikó ed alla mia famiglia

Ringraziamenti
Desidero innanzitutto ringraziare il Professor Federico Bergenti ed il Professor

Lars Bendix per i preziosi insegnamenti durante i due anni di laurea magistrale e

per le numerose ore dedicate alla mia tesi. Vorrei inoltre ringraziare il professor

Lars Bendix per aver esteso ben oltre i confini istituzionali del "Consigliere

Scientifico" e del “Correlatore” il suo appoggio al mio lavoro. Intendo poi

ringraziare il dipartimento di informatica dell’Università di Lund per avermi

fornito le strutture necessarie, i testi ed i dati indispensabili per la realizzazione

della tesi. Desidero ringraziare l'Università di Parma per avermi dato l'opportunità

di usufruire di una borsa di studio per il soggiorno a Lund, in Svezia, durante il

quale è stato svolto gran parte di questo lavoro. Inoltre, vorrei esprimere la mia

gratitudine al Dr Maximilian Koegel presso l'Università di Monaco di Baviera per

i numerosi consigli durante la fase di ricerca. Infine, ho desiderio di ringraziare

con affetto i miei genitori e la mia sorella Francesca per il sostegno ed il grande

aiuto che mi hanno dato. Un ringraziamento in particolare ad Ildikó per essermi

stata vicina ogni momento durante questo lavoro.

iii

Indice
 Prefazione vii

 1 Introduction 1

 2 Background and context 4

 2.1 Context 4

 2.2 XMI 7

 2.3 Model serialization using XMI 9

 3 XMI merge process 14

 3.1 Requirements 15

 3.1.1 Match 15

 3.1.2 Changes detection mechanism 16

 3.1.3 Conflict, violation and context problem 17

 3.1.4 Avoiding loss of data 18

 3.1.5 Symmetry 19

 3.2 Merge process 19

 3.2.1 Change detection 20

 3.2.2 Conflict detection 23

 3.2.3 Change interpretation 29

 3.2.4 Merge rules 37

 3.2.5 Creating the batch merged file 40

 4 Merge algorithm 48

 5 Implementation 53

 5.1 Loading files 54

 5.2 Parsing models 54

 5.3 Matching models 56

 5.4 Identification of changes 56

 5.5 Problem detection 58

 5.5.1 Conflicts 58

 5.5.2 Violations 60

iv

 5.5.3 Context-problems 60

 5.6 Visualization of problems 62

 5.7 Example 63

 6 Discussion 68

 6.1 Results 68

 6.2 Related works 71

 6.3 Further research 74

 7 Conclusion 77

Appendix A 79

 A.1 Violation example 80

 A.2 Context-issue example 82

 A.3 Combination example 85

 Bibliography 89

v

Indice delle Figure

Figure 1: Merge of models...5

Figure 2: Models and XMI: we compare and merge at the XMI level..............6

Figure 3: 4-layer metamodel hierarchy [17] ...8

Figure 4: 4-layer metamodel and XMI [14] ..8

Figure 5: XMI description [13]..9

Figure 6: Moving an attribute to another level...11

Figure 7: Serialization correspondences..12

Figure 8: 5-step merge..15

Figure 9: Some examples of changes...22

Figure 10: Some examples of conflicts..26

Figure 11: Two changes have different paths...28

Figure 12: Two changes have a common prefix in the path.............................29

Figure 13: Example of violation..34

Figure 14: Merge rule...41

Figure 15: Common Ancestor from ArgoUML..66

Figure 16: Version 1 in ArgoUML...67

Figure 17: Version 2 in ArgoUML...68

Figure 18: XMI file of the Common Ancestor...68

Figure 19: XMI file of Version 1..69

Figure 20: XMI file of Version 2..69

Figure 21: The tool user interface..70

Figure 22: Conflict selection..70

vi

Prefazione

Negli ultimi anni è incrementata la realizzazione di modelli per lo sviluppo di

software, sia per la sua rappresentazione astratta, che per la creazione automatica

del codice, divenendo un passaggio critico nella fase di progettazione. Molti editor

sono stati creati per supportare la creazione grafica di modelli. Tuttavia, poco è

stato fatto per permettere una valida interazione tra modelli provenienti da

strumenti differenti, inficiando ogni attività di riconoscimento, confronto e

fusione (merge) tra di essi. Infatti, come tutti gli artefatti utilizzati durante lo

sviluppo di un software, anche i modelli possono subire variazioni, a volte anche

simultanee, da parte degli sviluppatori e sono perciò spesso gestiti da tool di

versionamento. Il fatto di non poterne automatizzare il riconoscimento, il

confronto e la fusione, provoca l'abbondanza di lavoro manuale spesso

difficoltoso e generatore di errori.

I problemi sono dovuti principalmente al passaggio dallo sviluppo orientato al

codice a quello orientato ai modelli: infatti, per la prima tipologia si possono

trovare un nutrito insieme di strumenti software ben funzionanti per la gestione

del merge (fusione) testuale, i quali però non risultano essere altrettanto utili nel

merge dei modelli. Questo perché i modelli sono serializzati utilizzando lo

standard XMI, un particolare dialetto XML che consente il salvataggio fisico di

documenti contenenti dati strutturati. La scelta di analizzare e confrontare

semplicemente le varie linee testuali non risulta essere più adatta per tale tipologia

di documenti. Si possono trovare alcuni nuovi strumenti per il merge automatico

di modelli, ma anch'essi non risultano essere abbastanza precisi, o risultano essere

legati ad uno specifico linguaggio (o più spesso ad una versione di esso). Inoltre,

hanno tutti la peculiarità di essere interattivi: questo, nonostante sia ritenuto

solitamente essere un vantaggio per l'utente, nel processo di model-merge risulta

vii

invece creare dei problemi. Tale sistema costringe lo sviluppatore a seguire

l'intero processo (che a volte può anche rivelarsi molto lungo) secondo un

“percorso” forzato dal merge-tool. Infatti risolvere un conflitto dopo l'altro non è

producente, in quanto spesso essi sono collegati tra loro e necessitano di essere

analizzati contemporaneamente. L'utente sarebbe più spesso portato a creare una

nuova soluzione “ad hoc” che integri tutti i cambiamenti apportati

simultaneamente piuttosto che risolverne uno a uno (senza contare che le

soluzioni individuali possono a loro volta creare nuovi conflitti).

In questa tesi, l'obiettivo è quello di identificare e studiare la realizzabilità di

un processo automatico che realizzi il merge di due modelli utilizzando i file XMI

generati da un qualsiasi editor. Tali modelli rappresentano le due versioni ottenute

dalla modifica di uno stesso modello detto common ancestor. Per questo si parla

di 3-way merge, nel quale è possibile sfruttare le informazioni contenute nel

modello di base da cui sono derivati i file deputati alla fusione. Presentiamo un

processo che utilizza solo l'informazione derivata dalla sintassi XMI ed è

suddiviso in cinque passi, ognuno dei quali risulta analizzabile e sviluppabile

indipendentemente. Tuttavia, è d'obbligo precisare che l'output fornito da ognuno

di essi deve essere poi utilizzato come input per il passo successivo. Si è quindi

ipotizzato un algoritmo astratto che rappresentasse i passi descritti

precedentemente. L'output di questo procedimento risulta essere un nuovo file

XMI. Tale file non può rappresentare direttamente il modello finale: è stata

preferita la rappresentazione organica dei problemi in modo da fornire tutta

l'informazione per la realizzazione del merge da parte dello sviluppatore, piuttosto

che l'automatizzazione del merge stesso. Questo per evitare l'inevitabile perdita di

informazione che si avrebbe con l'applicazione automatica di alcuni cambiamenti

(ad esempio quelli che creano conflitti). I risultati ottenuti sono stati discussi e si è

riscontrata la necessità di evidenziare alcune restrizioni sotto le quali tali risultati

mantengono la loro validità. I problemi principali sono legati ad una mancanza di

omogeneità tra documenti XMI derivati da diverse versioni del linguaggio stesso,

nonché da diverse interpretazioni dei vari editor.

viii

Infine, si è implementato in Java un nostro software (XMIMerge) che

dimostrasse l'applicabilità di alcuni principi teorici mostrati precedentemente. Tale

strumento esegue i primi tre passi del processo di merge, con l'aggiunta di una

rappresentazione grafica in grado di mostrare indipendentemente tutti i problemi e

gli elementi che li hanno causati. In questo caso si parla di “virtual merge”,

piuttosto che di merge. Tale soluzione evita i problemi di interattività e permette

all'utente di verificare contemporaneamente su un solo pannello di visualizzazione

i tre modelli, consentendo l'analisi dei possibili problemi a cui si andrebbe

incontro nella realizzazione di un ipotetico merge.

ix

Chapter 1

Introduction
Parallel working among several developers gives many advantages in a

software development process, but it causes also problems: among them, as

Babich says [3], there is double maintenance. To avoid this problem, developers

often have to integrate their works with the latest version to be able to release their

own version which includes the previous changes as well. This work is called

merging process: the developer mainly has to find changes among his own

version, the last version on the repository and, in case, the common ancestor.

Often, his changes conflict with those added by others, so these conflicts have to

be resolved. This task (the merging process) is quite important and hard to handle,

so it should be carried out frequently and carefully [9]: consequently, to be well

performed, it requires a set of tools.

In the code centric development, we find a lot of good text-based tools which

help managing the merge task. Lately, industries are increasing the use of Model

Driven Development, creating models to auto-generate code. Nevertheless, the

environment is not yet mature enough to support adequately the parallel work of

different developers. Unfortunately, moving from a code centric development

strategy to a model centric one showed that former textual-based merge tools do

not work appropriately with models [5]. In fact, models are serialized using the

standard XMI: a language which creates documents containing structured data.

Therefore, the comparison of text lines is not the best choice anymore, as a little

change at the syntax and semantic level could correspond to several changes on

2

the text level. Consequently, we need a more sophisticated solution in order to

find, compare and resolve conflicts between model files, changing for example the

granularity of the unit of comparison [13] from the text line to the node of a tree.

Model merge tools are not precise enough either, since they have some problems

such as detecting too many false positives and false negatives, or perform the

merge without taking in consideration the smallest possible element [7], but just

raising a conflict if the same top level object is modified (too coarse granularity of

the unit of comparison). Moreover, they are all oriented towards interactivity,

which means that the developer has to follow the entire merge process, conflict by

conflict. Furthermore they have to choose “on the fly” among (probably) wrong

alternatives provided, instead of looking for the connections between them,

creating an “ad hoc” solution [8].

The aim of this thesis is to investigate the feasibility of a merge process for

models using only the XMI serialization. We take three XMI files representing

three models (the common ancestor and the two changed versions) and we

provide a new file representing a merged XMI. First of all, the merge algorithm

should find all the changes and should detect the highest possible number of

conflicts among them (in order to avoid false negatives), but it should also detect

conflicts “to the bottom”, which means that there is a conflict when the same

smallest possible thing is changed (in order to avoid false positives). Moreover,

we would like to represent the information about all changes of both modified

versions in the merged file. So all the non-conflict changes have to be present and

highlighted in the merged file. In case we had a conflict between two changes, it

could be resolved by ignoring one of them: in such a situation, we would like to

know which change was ignored and why. In case we had an unsolvable conflict,

we should represent both possible alternatives in the merged file.

In the following sections, we will explain in details our context with respect to

the model merge problem, then we will deal with the characteristics of the XMI

language, its structure, problems and advantages when used to perform a model

merge algorithm (chapter 2). In chapter 3 we will describe the requirements of a

correct merge and we will explain our proposal of a 5-step merge process. Then,

we will show an abstract algorithm to be implemented (chapter 4). In chapter 5 we

3

describe our Java implementation of a tool which provide a virtual merge for

models serialized by ArgoUML [1]. Finally, we will discuss our results,

comparing our work with other related ones and presenting ideas to improve the

work and directions for further research (chapter 6).

4

Chapter 2

Background and context

In this chapter we contextualize our work presenting the general problem of

versioning and merging models. Then we list the approaches used and we explain

why we chose them over other existing solutions. Moreover, we introduce XMI

showing its basic role in the model serialization. Finally, we provide some details

about serialization patterns used by XMI in order to motivate some subsequent

assumptions, and to make the followings more comprehensible.

2.1 Context
Lately, models are widely used both to design a product and to auto-generate

code in industries with the increasing use of Model Driven Development. Another

powerful strategy in software development is the parallel work of many

developers, but it presents some drawbacks which have to be handled: especially,

the problem that Babich called double maintenance [3]. As we can see in figure

1, two developers have simultaneously modified the same version of an artifact: in

this case, one of them has to commit his version on the shared repository, but to

avoid the discard of other changes, he needs to merge them with his modification

(we suppose to have a versioning tool which prevents simultaneous updates by

forcing the developer to update his work). Since neither of them knows what the

other developer has modified, simultaneous changes may be in conflict. Thus, the

developer who performs latest has to perform what is called a merge, which

5

means resolving conflicts. This task may be very long and hard to carry out, so

developers need tools to deal with it [6].

Moreover, if we blend together models and parallel working, we encounter the

problem of performing a merge on artifacts which are models. The aim of our

work is to recognize automatically conflicts and other problems caused by the

simultaneous application of changes on two artifacts and to show them in a

merged file. This should help developers to carry out the merge task.

Our approach does not use directly models as artifacts, as developers create

them with an editor, which has its own way to represent models within the tool

itself. However, all tools have to use a way to serialize models in order to save

them. The serialization is performed using a standard markup language called

XMI (XML Metadata Interchange) [14]. This is very important, because it implies

that, theoretically, every model could be compared at the XMI level. This is the

reason why we choose XMI, i.e. to be independent from the editor (as we will see

in chapter 3, though, that this is not completely true).

Figure 1: Merge of models

6

In fact, as we can see in Figure 2, every model is serialized as an XMI file and

then reloaded by the editor. We work on the XMI area, comparing 3 XMI files

which represent two simultaneous versions, which had changed the common

ancestor, and the common ancestor itself. The result is a new XMI file which

should represent a new UML model, the merged one.

The ultimate goal of this research is having a perfect merge on the model

level. Our approach is far from performing such a merge, but it consists of the

production of a merged XMI file obtained by looking solely at the information

about the XMI syntax. This way, we remain independent from the model type

(such as UML, Petri's Net, SysML, etc. and their versions) as well as from the

editor. This means that we do not use any model semantic but only the one we can

extract from the XMI structure.

What we have just described is called a state-based approach. Working with

XMI, we could not consider the operation-based approach [11], since it relies on

comparing two sequences of operation performed simultaneously: such an

information should be extracted by consulting an editor which had recorded them.

Figure 2: Models and XMI: we compare and merge at the XMI level

7

Instead, as we have said before, we want to be independent from the editor.

Since we want to produce an XMI file as a result, we find it natural to work in

a batch mode [8]. This is an approach which has not been tested yet, since most

works dealing with model merging rely on the interaction with the developer,

suggesting correct alternatives and providing (sometimes) a model valid merge.

The problem with interactivity is that it makes the task of merging long and it

creates the necessity of being entirely followed by the user. Furthermore, an

interactive tool often forces the developer to choose his own order of analyzing

conflicts, which means choosing the right alternative in that order, following the

“path” selected by the tool. The problem in such an approach is that the developer

cannot see the whole picture: sometimes the right decision should be taken

evaluating a set of problems all together, because solving them one by one may

result in not achieving the desired solution. In other words, the user should be free

to choose his own way to analyze problems and then to find his own solution (that

often is a completely new one, and not an alternative between the previous two).

The interactive approach has often the side effect that the tool tries to provide

solutions to all the conflicts or inconsistencies caused by simultaneous changes.

Instead, we would like to create a merged file in which we apply those changes

that do not cause inconsistencies (highlighting them), but we do not make

decisions about those which do. The main goal is not to create automatically a

perfect merge, since we think it is impossible or at least very hard, especially

taking into consideration only XMI. Instead, we provide the user with all the

information about changes, conflicts, inconsistencies and context-related

problems which could be used to find the best solution by the developer himself

(or by some other future tools which elaborate the given result).

2.2 XMI
The XML Metadata Interchange (XMI) is an OMG standard for exchanging

metadata information via XML [14]. In other words, XMI is an XML dialect

proposed to serialize models. Every model instance (for example a UML model)

is derived from its metamodel (for example the UML metamodel). Moreover, we

8

have another and more abstract metamodel called MOF that should describe the

other model language metamodels (figure 3). To serialize a model is used the

scheme in the figure 4.

Unfortunately, whilst here it seems to be a set of standards to define the

Figure 4: 4-layer metamodel and XMI [15]

Figure 3: 4-layer metamodel hierarchy [18]

9

serialization of models, in real implementations we do not have all this

homogeneity. In fact, we have several versions of XMI, where the 2.x are

radically different from the 1.x series. Moreover, we could have different files

which are serialized using different patterns. These XMI problems, together with

the fact that we have different versions of metamodels as well (for example we

have several versions of the UML standard) and the different modeling tool

vendor implementations, lead to a huge incompatibility between different XMI

serialized models, as mentioned also in [16]. This means that we cannot just take

three XMI files and compare them to obtain a result. This is a great obstacle to the

realization of a useful merge result based on the XMI syntax. Therefore we are

forced to take an XMI specification (the 2.0), choosing a pattern of serialization

(even though we proposed a preliminary solution that covers all of them) and

work on the assumptions we could extract from those. However, many

considerations and assumptions we make here (with right adjustments), could be

put in practice as well, once a stable standard will be provided. This is

demonstrated by our implementation of a Java tool (XMIMerge). We have also

some proposals for the extension of such a standard to support the important task

of merging files.

2.3 Model serialization using XMI
Now we describe how XMI serializes a UML model, in order to make the rest

of the work more comprehensible. Since every XML document is structured as a

tree, the serialization patterns create an XMI tree in which elements are described

by the model in the following picture (figure 5):

Figure 5: XMI description [14]

10

The root of the XMI file could have several child-nodes: we are interested

principally in the model sub-tree. Everything about the logical part of the model is

placed here, where other elements placed out of this sub-tree are concerning

editor-oriented descriptions. We do not analyze them, though, since we do not

know anything about the tool (including the layout, that we do not consider). For

this reason, in the followings, when we mention root, we refer to the model node

(the root of the model description) and not to the root of the whole file.

Furthermore, there are some special tags of XMI such as documentation and

extension which allow tools to put their own data about the model beside the

logical model, without interfering with the meaning. This is a very useful feature

of the XMI specification which allows us to consider only the logical model (in

which we are interested) without having to find it, since it is kept separately and

clean from other things. As we will see in section §3.2.5, the extension tag could

be useful to implement a valuable feature for merge, that is the highlighting of

annotations.

Given that every child-node of the root represents a class or an association in

the MOF metamodel, we have the main problem of choosing the pattern of

serialization. In the specification we can choose to represent every MOF class as a

separate child-node of the root or we can nest classes as a child-node of the child-

node and so on, representing their composition characteristics. This way, if we

have a class C' which has a composition link with another class C, we will find

C' as a child-node of C. Instead, with the former representation, every classifier

is a different sub-tree of the root, and the composition link is represented by a

reference (we will speak about these later in this section) or an association (which

will be another sub-tree). The latter representation is more useful for our purposes,

since we can state that every sub-structure of the root is a different MOF class or

association, and, as we will see, we can gain advantage of this information to

make helpful assumptions in the merge process. In fact, if we know that every

sub-tree of the root is an entity, we can deduce that all entity moves are performed

by references instead of moving sub-trees. This avoids a lot of possible move

situations that we do not need to consider. For example, a refactoring will rarely

change the tree structure, since the links between entities are expressed by

11

references. Furthermore, we are sure that a node of a given level will not be

moved to another level, since it represents a specific kind of feature. For example,

a second level node will be an attribute or a method, but it could not be a

multiplicity.

Besides, note that choosing one or the other way to serialize is equivalent,

since it does not change the meaning of the model. Moreover, we use some

examples which were created following this pattern. For these reasons, we will

work principally using this pattern, then we will find a general solution that could

involve also the other way of serializing MOF class. Our tool (XMIMerge)

Figure 6: Moving an attribute to another level (for example beneath another
attribute) is unreasonable

Figure 7: Serialization correspondences

12

handles artifacts serialized by ArgoUML, which uses this pattern, consequently,

we had to deal with such a pattern.

As showed in figure 7, every class is represented as a first-level node, e.g. we

can call it F. Then, every feature F' of such a class, like attributes or methods, are

represented as children of F. Again, every feature of these F', like the

parameters of a method, is nested into the node F' as its sub-tree and so on. For a

class diagram, which is the type of diagram that we studied in most examples, the

average depth is five levels (it also depends on the tool). Features that are not

meant to be nested, like the name of a class, are represented as XML properties of

the node (that could also be a node without Id). Since we could create a

misunderstanding, we decided to speak about properties regarding XML (and so

XMI), while we call attributes the attributes of a class in the domain of models.

Every property belongs to its node and it is not related with any other node (in

XMI syntax), since it describes a characteristic of that specific node: this

assumption will be used later to state the independence between properties (apart

from references, that are described in the followings). It is important also to

mention that we consider XMI values as properties: in fact, having a property of

the form p=v where p is the name and v is the value, or having a node (without

an Id) tagged n containing the content c, means the same thing to us: p is the

same of n (the name to recognize the property) and v is the same of c (the value

of the property). The only difference is in their format: an XML property cannot

be very long and structured, whereas the content of a node could (since XML is a

markup language, the node content is represented as everything between the start

tag and the end tag: it could be almost everything, whereas the value of a property

is just a string and has a restricted format). However, for our purposes, we

consider them like two properties p and p' with the values v and v'.

A very effective mechanism provided by XMI is the property Id (which

enable us to create global and local identifiers). With the Id every node can have a

property that uniquely identifies them, and they are reachable without relying on

their path from the root (as we will see in the merge process, this mechanism is

very important). The Id is very useful also for matching the trees we want to

compare. At this point we are faced with a new problem concerning the

13

serialization patterns, as the Id is strongly recommended but it is not compulsory

(you can save your XMI without Ids). Being that this is not so frequent in

practice, we will work with Ids. Moreover, we have seen that some tools (like

Rational Tau) had not kept the same Id in the same node in two different versions

(see matching problems in §3.1.1).

Furthermore, there is another type of property defined by the XMI

specification: the reference. This property contains as value the Id of another

node in the document or in another document. (However, we assume that we have

the whole model in one file: it does not change anything, since we can easily parse

the two files separately and build the entire XMI tree.)This is a way to represent a

concept like the type one: as we can see in figure 7, if we have an attribute a of the

type T (that must be another Class or Datatype of the model and so another

MOF entity and consequently a sub-tree of the root), inside the node which

represents such an attribute we will have a property whose value is the Id of the

Class named T. A reference is also used in the Association Ends of an

Association to link the two classes involved in the described relationship.

14

Chapter 3

XMI merge process

In this section we present the merge process. We state some requirements and

desired features that we would like to be satisfied in a batch model merge, and we

will see which one of them is possible to satisfy (entirely or partially) using XMI.

We show how such a process could be divided into five logical parts which could

be studied and implemented separately. These parts are: change detection, conflict

detection, interpretation, merge rules definition and changes application.

Figure 8: 5-step merge

15

3.1 Requirements (analysis)
In order to produce a correct merge, there are some requirements that have to

be satisfied. We need three matched XMI trees, then we have to find changes and

conflicts among them. The most important requirement in the result is the

complete lack of loss of data.

3.1.1 Match
First of all, we have 3 files and we have to compare them. This means that we

have to match the same elements in all files, in order to find changes among the 3

different versions. Every element needs to be recognized by an identifier, and

XMI provides a mechanism to handle this (see §2.2).

There are two ways to use identifiers for matching. If the Id of a given element

is kept identical when a new version is saved by an editor, we will have the same

Id for the same element in all versions, thus we already have a match. Otherwise,

we need an algorithm which recognizes similarities among the elements of the

different versions and which reports the case in which we deal with the same

element of two different versions (on the base of some sort of mechanism). At this

point we are faced with a problem: existing mechanisms often recognize elements

using their similarity, so it is less probable to recognize an element with a

considerable amount of changes. In a merge process, we also have to detect all

changes. These two concepts lead us to the conclusion that the more changes are

present in an element, the less probable it is that a similarity-based mechanism

recognizes the element, thus the more information we lose for the merge. To

conclude, it is useful not to match with a mechanism that uses similarity for

comparison, if we want to use the match result to find changes (like in a merge

algorithm). There are several works dealing with such a match algorithm, both

tree and graph based ones, and we can also find two works about specific XMI

matching in the related literature [4]. Matching is often a very expensive

computational task, and it often causes the failure of merge algorithms [12]. We

decided to concentrate our efforts on other issues and challenges concerning the

XMI merge, for two main reasons: the matching problem is a well explored field

16

of research, its analysis could be very expansive (could in itself be the topic for

another thesis) and there is a simpler way to handle the problem concerning the

XMI context. Thus, for the following part, we assume we have a set of already

matched files (by their Id).

As explained in section 2.3, a generic node is composed by its properties

(XML attributes) and its child-nodes, which are again composed by properties and

sub-nodes, and so on. The leaf-nodes, however, are composed only by properties.

We rely on the fact (in accordance with XMI) that we have a unique identifier for

each node of the model tree. This means that we reach a node simply through its

Id and it is independent from its structure position (like the path from the root).

Inside every node, we have a set of properties which have a unique name, valid

only within the scope of the node they belong to. This means that in order to reach

them we need to access the node before, i.e they are node-dependent: to reach

them we should refer to the node name plus their literal name. For example if we

have a property p which belongs to the node X we will refer to it as X.p.

3.1.2 Change-detection mechanism
Once we have three matched XMI trees, we can look for changes among them.

Since we know that both modified versions V1 and V2 are derived from the

common ancestor CA, we only need to compare each version Vx with CA in order

to understand which changes were performed to obtain Vx. This way, we would

be able to apply all the changes on CA to create a merged file containing all the

changes.

We have to choose a way to localize changes, and we would like it to be as

fine as possible, in order to recognize as many independent changes as possible.

For example, if we choose classes to localize changes, every change concerning

that class will be represented as “class C changed”. Thus, suppose that a developer

d has changed the class C modifying the name of a method m, and a developer d'
has changed the same class modifying the name of an attribute a. Clearly, the

changes are not related (or maybe they are in a more semantic way, but it could be

analyzed later), that is, they do not affect each other. However, considering both of

17

them as “class C changed”, we deal with exactly the same change affecting the

same element, the class C, while we would prefer to consider the method and the

attribute as different elements. In other words, we need a unit of comparison

[13].

Furthermore, we need a mechanism to describe changes in order to analyze,

compare and apply them. In the example above concerning class C, we do not

explain exactly what we have to apply in the merged file. We should be able to

recognize the nature of the change (e.g. deletion, addition, update, move), the part

which has been modified (e.g. the name of the class, the value of the attribute,

etc.) and how (e.g. the name of the class is now “D”, the value of an attribute is

now 3 instead of 5, etc.).

3.1.3 Conflict-, violation-, and probably connected
change-detection mechanism

When changes are detected, we need to compare them. We could come across

changes that are incompatible, because they cannot be represented in the same

file. In this case we are faced with a conflict. For instance, suppose a developer d
modifies an element E and another developer d' deletes it: how can we represent

an element which is updated and deleted at the same time? Obviously, if we apply

the deletion, we will not see any update on it, since we cannot see it at all. On the

contrary, if we can see the update, clearly we can see the element E, so we lose

information about its deletion. Another example could be changing

simultaneously the value of the same property p from 2 to 3 and from 2 to 4.

How can we represent p that has both the value 3 and 4? We cannot. In the

examples above the conflict derives from the fact that the same unit of comparison

has been changed. Thus, we cannot apply both changes at the same time.

Nevertheless, we have to highlight them in order to make sure that developers can

manage it. A very important requirement to find all conflicts, is to define carefully

a unit of comparison. The more coarse it is, the more false positive conflicts we

find.

Furthermore, we could discover that two changes (placed in different changed

18

versions), when represented together in the merged file, would break the validity

of the XMI syntax, while separately they did not. We speak about violations: we

should detect these changes and we should report them. An example could be a

reference pointing to a deleted element, i.e. the value of the reference in V1 is the

Id of a node that doesn't exist anymore in V2. This can be represented clearly in

the final file, but it brakes the XMI syntax.

Finally, there are changes which are not directly related and which together are

not breaking the XMI syntax. However, changes could still be close to each other.

Probably (even though we cannot say exactly) they are related when we consider

the model-metamodel (for example UML or any higher constraints system like

OCL). It would be useful if the user were warned about a probable relationship (at

a higher level) between two changes. We can explain this better with an example:

a reference has been changed to point to the node N in V1 and an attribute of N has

been modified in V2. The developer d working on V1 is linking an element to

another one which in the meantime has been modified without d's knowledge.

3.1.4 Avoiding loss of data
We should make sure that all information about every modification (of both

versions) with respect to the common ancestor is present in the merged file. We

can represent the information about mergable changes simply by applying them.

Moreover, it would be useful to highlight where exactly the changes are applied to

enable the developer to localize them easily and to verify them.

In the case of those changes which could be merged but which would violate

the syntax (like XMI syntax), we have to make a decision. We can either choose

simply to apply such changes which, however, would result in an invalid XMI file

or we can discard one or both of them to obtain a valid XMI file. In the latter case

we have to report all the information regarding the changes and also not having

performed it (them).

As for those changes which could be related on a higher level (that we have no

or little knowledge about), we should apply them and insert a warning about the

fact that they could be related.

In the case of conflicts we cannot apply the related changes because they are

19

not simultaneously representable, so we need some sort of mechanism to represent

both alternatives. To do that, we have two options. We can apply one of the

changes (but which one?) and create a mechanism to represent only the one we

have not applied as an alternative to the change we performed, or we can represent

both alternatives with the mechanism used in the case of non performed changes.

In the latter case, we can decide to leave the original solution of the CA and then

connect the alternatives to it, or we can omit the whole interested element.

3.1.5 Symmetry
Even if we perform the same merge several times, we should always obtain

the same result, that is to say, the outcome should not depend either on the order

of detection, on the management of changes or the different order of the input

versions. For example in the Lindholm merge [12], a conflict is resolved by

choosing the solution proposed on the first loaded version. This means that if we

have loaded the version V1 and V2 we will have, in the merged file, the V1's

solution of the conflict. Contrarily, if we have loaded the version V2 before, we

find its solution in the merged file. We would like to avoid this kind of results.

3.2 Merge process
In the followings we describe a possible way to perform a merge process

based on XMI which satisfies the previously mentioned requirements. We divide

the merging process in five major logical steps, which could be studied and

implemented as distinguished sub-topics. We begin with detecting changes (step

1), then we compare them to each other to find unsolvable conflicts (step 2), then

we interpret them to recognize violations and hypothetical context-related

problems (step 3). The fourth step (4) consists of defining a set of merge rules to

handle the previous problems and finally, in step 5, we create the merged XMI

file.

As we will see in the part concerning the explanation of the algorithm and the

implementation of our tool (XMIMerge), the order is important because one step

requires an output from the previous step. However, sometimes it could be

20

convenient, at a practical level, to anticipate the task of a step as soon as we have

a partial output from the previous step.

3.2.1 Change detection
First of all, we have to identify the changes between the common ancestor and

the changed versions. As discussed in the paragraphs about requirements, we need

to localize and explain changes.

As explained in §2.3, a generic node is composed by its properties (XML

attributes) and its child-nodes, which are, again, composed by properties and sub-

nodes, and so on. Every node contains many sub-nodes and properties, whilst the

leaf-nodes are composed only by properties. We can state that a node is changed

if and only if one of its contents is changed: a sub-node or a property can be

added, deleted or updated (as in figure 9). Moreover, we consider a property (or

rather its value) as the smallest atomic element that could be modified, as we

cannot split its value in more parts. Later, in the part presenting conflict detection,

we will discuss a particular case in which we prefer to relax this constraint.

We can, moreover, encounter the case in which a node X is changed because

Figure 9: Some examples of changes

21

one of its property p or one of its sub-node Y has been changed. We could

represent a property change writing [X, up(p, op())] which means that the

property p of the node X is changed: op could mean del for deletion, add for

addition and up for update. For updates, we would like to specify some further

details, the reasons for this will appear clearer in the next section about conflicts

§3.2.2. Thus, we could write [X,up(p, up(v'))], which means that p is

updated with the value v'. Furthermore, a property could also be a reference (see

§2.3). In this case, being that it is used as a mechanism to point from one node to

another, we can describe the change of the value of a reference property r as [X,
up(r up(Y→Z))], which means that r is now pointing to Z instead of Y.

If a sub-node is changed, we can write the propositions [X, up(Y, del)]
or [X, up(Y, add)] respectively if we are updating the node X by deleting or

adding a node Y from (to) the node X. Both these propositions mean that all their

sub-elements are deleted or added. Consequently, we call them composite

changes. If a sub-node Y is modified, we should describe its modification further,

exactly as we did in the case of the parent node X. This means that we could have

the sequence [X, up(Y, up(...))] until we reach a leaf, where occurs a

property change. In other words, this statement represents the path from the root

to the changed property.

At this point, we introduce the move change. Even though we can consider the

move change as two different operations (deleting a content from a node and

adding the same content to another), the representation of move will be useful

later, when dealing with change interpretation and conflict detection. First of all,

we cannot recognize a property move, since a property is node-related (as

explained before, we could find two properties with the same name in two

different node, and they are identified by the Id of the node to which they belong

plus their name). In fact, a property only describes the node to which it belongs,

and moving it means simply creating a new one. Differently, nodes could be

moved from a parent-node to another. In this case, we do not have to replace the

existing representation (add + del) but we can represent the change as a new

proposition: [Y, move (X,Z)] which means that a sub-node Y is moved from

22

the parent-node X to the parent-node Z. Obviously, a move is a composite change.

The move can cause a problem with the approach of change detection mentioned.

In fact, we identify a moved node Y by its path from the root: moving it means

that the path has changed. However, we should recognize changes in the node Y
even if it is the child-node of X in the version V1 and that of Z in the version V2.
In fact, it is still the node Y with the same identifier, so it will be the same MOF

object. To do this, when we find a move, we should repeat the change detection on

the moved sub-tree, considering Y as if it was not moved. This way we can flag

changes with respect to the CA contained also in the moved elements. Let us

consider, for example, the case in which the node Y has been moved from X to Z
in the version V1, and the property p belongs to Y. Suppose that the developer d
has moved the node Y and has changed the property p. Before recognizing the

move, the node Y has not been compared with its namesake in the CA, so we do

not know that p has been changed (in fact we have recorded only that a node Y
has been deleted and another node Y has been added). Once we know that Y has

been moved, we can compare the moved Y (in the version V1) with its namesake

in the CA, because now we know that it is the same node. Thus, we know that it

has been changed because its property p has been modified. How should we

record this change? We should use the path in the CA, and not the new one (the

one in V1), because, in the conflict detection part (as we will see in §3.2.2), we

will compare p with its namesake in V2 and a change will occur on the same

element if its path is the same. For this reason, we write the change as […X,
up(Y, up(p, op(...)))] with X instead of Z (the node under which Y has

been moved).

Finally, since we have to specify in which modified file we found a change,

we should include in the above statements also the version: the statement will be

of the form Vx[stm], where Vx is V1 or V2 and stm has the form described

above. We can refer to the changes by assigning them an arbitrary (but univocal)

Id.

Note that this representation of changes avoids infinite propositions, since it is

constructed over the MOF tree structure (see §2.3) provided by XMI, and not over

23

a graph. This representation has more benefits which will be described later on.

3.2.2 Conflict detection
Our next step is finding conflicts among changes. As we said in the

requirements part (§3.1.2 and §3.1.3), we need to find a unit of comparison (we

will call it UC) which should be as fine as possible. We could take the property as

UC. In fact, we stated before that we consider it (or rather its value) the smallest

atomic element that could be modified. We are faced with a conflict when the

value of the same property is changed (see Figure 10 where the value of the

property name has been changed in y and x simultaneously), since we cannot

represent two values simultaneously. Furthermore, if we delete a property and we

update it simultaneously, we create a conflict too, because we cannot represent the

updated value and the “lack of property” at the same time. If we add property p to

the node X in the version V, it could create a conflict only if in V' we add or

modify the same property p (inside the same node X). In this case, there is a

conflict, exactly like in that in which we updated the same property. Otherwise we

have no conflict between the properties. In all these cases, we detect a conflict on

the property p of a node X, that will be managed later, and we can mark it.

Figure 10: Some examples of conflicts: the addition of a node as a child of
another deleted node and the update of the same property.

24

But what happens if someone deletes a node? In that case how can we use the

property as unit of comparison to find a conflict? Having the UC as property, we

could add a change for every property that belongs to the deleted node, and say

that it was deleted: note that, this way, we split a change like [X, del] in many

changes like [X, up(p, del)] for those properties which belong to X, while

as for those that belong to a sub-node Y there are many changes of the type [X,
up(Y, up(p, del))], and so on, for every sub-node. Since we could have

many properties, this way we would create an explosion of changes. Moreover,

and more importantly, we lose the information about the fact that the original

change was on X and not on a sub-part of it. In fact, the whole node X was deleted,

which means that, due to the hierarchical structure of XMI (§2.3), we should

consider the deletion of an element with all its description, and not as a collection

of many changes. Thus we should link the two changes as conflicting ones:

deleting a node X and updating one of its sub-parts at the same time. Clearly, the

situation is even worse when a node X is deleted and a new node Y is added under

it (Figure 10).

In our solution we prefer a dynamic UC to find conflicts, rather than a fixed

one. Since a model in XMI has a hierarchic structure, we can use an approach like

the one explained in Asklund [2]. We can compare the parent node and, if there is

a conflict, we can go deeper until we find it on the smallest node content.

Consider a node X as the root of a sub-tree of the model node (which we do not

take in consideration). If we have two simultaneous modifications within it, we

will have two changes of the type Vv[X, op(...)] and Vv'[X, op(...)]
where op could be any possible change, v and v' are the changed versions (the

order is irrelevant). If we do not find such changes beginning with the same node

X as prefix, we can claim that there are no conflicts inside the node X and all its

sub-nodes, due to the construction of the changes (for the moment we ignore

moves). However, if we have such changes, we can go a step deeper examining

them. With one step, we mean that we consider the next sub-node on the node-

path described in the change. At a certain point, we could find that the two

changes could be exactly the same to the end: in this case there is no conflict, the

25

two changes are equivalent. Otherwise, we could have several type of differences:

• two different nodes were modified, so there are two changes of the form

◦ Vv[...X, up(Y, op(...))] and

◦ Vv'[...X, up(Z, op(...))].

In this case we know that whatever the changes are, they involve two

different nodes (and then two different sub-trees, see Figure 10), so we can

deduce that there will no be any conflict between these two changes. In

fact, they are not placed in the same part of the tree, and they cannot

involve the same element.

• the same node is changed. Then we can encounter the following cases:

◦ it has been changed with the same operation in both versions. If it is a

deletion, we have reached the end of the proposition and the two

changes are identical. (As stated before, there is no conflict because the

changes are equivalent). There cannot be two additions of the same

node (as assumed in §2.2). Furthermore, there remains the case in

which the same node is updated: we have to go ahead with yet another

step deeper.

◦ It was changed with two different operations which could be only a

deletion and an update. In fact, there cannot be a node which was both

added and changed with another operation, because adding it in the

version Vv, means that it did not exist in the CA, so it could not be

Figure 11: Two updates have different paths

26

modified in any way in the version Vv'. Thus, in the remaining case,

in which the same node has been both deleted and updated, we

certainly have a conflict. In fact, the deletion of the node X in Vv is

conflicting with any other change that could be represented by an

update change of X in Vv'. We do not need to check deeper, we know

that there is a conflict between these two changes and we have to

manage it.

◦ A property is changed, as well as another sub-node. We have the same

situation in which two different sub-nodes are modified. Two different

parts of the tree are modified, thus there is no conflict.

◦ Two different properties are changed. Like in the previous case, there

are no conflicts.

◦ The same property is changed. As described at the beginning of this

chapter, in this case we always have a conflict.

To sum up, we have analyzed every pair of changes, and we have decided

whether they were conflicting or not. The method is complete, since the above

explanation itself contains the proof that it covers every case of a hypothetical

conflict (without considering moves). More detailed explanation can be found in

the chapter Discussion.

This way of detecting conflicts, allows us also to add an interesting feature. In

fact, as it is based on the depth of the structure and not on a fixed UC, once we

Figure 12: The two changes have a common prefix in the path: since one
of them is a deletion, there is a conflict

27

find an update/update conflict on the atomic value of the property, we can apply

the idea of “going deeper”. We can do this by running another specific type of

algorithm on the value, which could be a long text or structured in a way different

from XMI. In fact, considering the XMI/model field, it is possible (§2.2) for a

property to be an XML tree itself, or a slice of code. It could be extremely useful

for both of them to delegate the task of finding more conflicts to another and more

appropriate algorithm (already existent), since the detection of these new conflicts

brings us two advantages. If real conflicts emerge, we provide the user with a

more detailed merge, whereas if no conflicts occur, we have eliminated a false

positive. How to integrate such an algorithm is not discussed in this thesis.

We asserted that the conflict detection described is complete. However, we did

not consider the move changes. We left it as last issue, because it is not a change

like the others. Firstly, it consists of two different changes already analyzed, and

secondly, as said at the beginning of this chapter, using a serialization pattern

instead of another could avoid moves.

However, considering moves, a conflict can occur in two cases: if the same

node is moved in different places simultaneously, or in the case of two particular

nested moves. We can represent the latter problem in the following way: a node X
is moved under (in the sub-tree of) the node Y in Vv, and another developer

moves the node Y under the node X in Vv'. Clearly, there is a conflict, since we

cannot simultaneously represent the node X as both the progenitor and the

descendent of Y. However, the move cannot raise conflicts with other changes, as

it is independent from them. In fact, moves can only involve nodes, not properties

(because they are node-related). Thus, applying the move before or after another

change, does not change the result. In other words, changes as deletions, additions

and updates, modify the information contained in the elements, while a move

simply changes their place. For a more detailed explanation, we can analyze these

cases:

• move/add: a node has been added (V1) in a sub-tree which has been

moved (V2). Adding a node before or after the movement of a higher-level

node does not change the result.

• move/up: a move cannot be performed over a property. On the contrary,

28

updates always end in a property change. Again, modifying a property

before or after a move yields the same result.

• move/del: the only problem could be if we delete the same node that is

moved. Note that this is not causing a conflict, since the deletion of X is

just a part of the entire complex change of moving X, that consist of

deleting X and adding it again. If we do not delete the same X that we

move, we could have two cases:

◦ the deletion involves a higher-level node Z. We can apply both

changes without conflicts, since X does not belong anymore to the sub-

tree of Z.

◦ the deletion involves a sub-node of X. In this case, again, we can apply

both changes regardless of which one comes before.

In all these cases, we could insert a warning because we suspect that the two

changes could create problems, but this is an interpretation issue (and will be

discussed later).

We have proved that the move is independent from other changes, and it could

not raise a conflict with them. However, considering the move change, we could

be able to avoid some false positives and some false negatives reported by the

previous conflict detector. In fact, consider a node X: if it has been moved (and not

only deleted) in Vv, it results deleted with respect to the CA. Then, suppose that

in Vv' X has been updated: there the detector would report a delete/update

conflict. This is a false positive, because the node exists (it has just been moved)

but its path has been changed and the previous detector fails to recognize it.

Moreover, for the same reason, if some updates were performed in the sub-tree

with root Xv, they will not be confronted with the same sub-tree with root Xv'.

This means that we do not find the conflicts (because we do not compare them, as

we consider them different nodes), so there are a set of possible false negatives.

These are problems (concerning the previous conflict detector) which derive

from the use of the path-strategy, applied to find conflicts without take in

consideration the move change. As explained before in this chapter (and in §2.3),

moves are not so frequent or we can assume not having them at all, especially

29

using a certain pattern of serialization. Thus, we could accept such an

inconvenience (when it is really marginal), and we could decide to adopt the

detection method described above.

However, considering the move changes, we can modify the conflict

detection process by adding some control. In fact, we can simply ignore the

conflict raised by a delete/update (where the delete is the non recognized move)

on a node X because we know that X was moved and not deleted, avoiding this

way to mark a nonexistent conflict. Furthermore, we can use the whole process of

conflict detection described above to compare the sub-tree with root Xv (moved)

with Xv' (updated). This is possible, because we have the same node Id thanks to

which we can associate them. Conflicts are discovered this way, even if the path is

not identical. Eventually, we can handle moves and discover conflicts. However,

there are some problems of interpreting and representing moves and conflicts,

which will be discussed in subsections §3.2.3 and §3.2.5.

3.2.3 Change interpretation.
Once we have detected conflicts, we have to check the changes for further

potential problems among them, like violations of the XMI syntax or probable

context issues. We deal with them together because they both require further

information at a higher level (like considering the metamodel, running a validator

or deducing some complex operations), in other words, we have to interpret

them. In this subsection we explain the method that we used. As we discussed at

the beginning of this chapter (and as we will observe in the algorithm

explanation), the order of these steps is not strictly decisive, which means that it

could be preferable, sometimes, to perform merge rules before the interpretation.

Thus, sometimes it might seem reasonable to refer to a merge rule that could be

already performed or we know for sure that it will be. Finally, this part is not

strictly required for a batch merge [8], but it could be considered, studied and

implemented as an independent task, to be carried out after a batch merge (whose

result is a merged file that may not be XMI valid and model-semantic valid).

The interpretation part of identifying XMI syntax violations could be

performed using an XMI validator on the entire file, once it has been merged. We

30

preferred to perform such a job taking previously detected changes as inputs, and

analyzing them to discover only the violations that they could provoke.

Furthermore, as explained in §2.2 and §2.3, we might use different XMI versions

and serialization patterns, so it could be hard (or even impossible) to perform a

validation that covers every possible output file. Thus, we worked on the

serialization patterns described in [10] and in the specification of XMI 2.0 [14].

The context-related interpretation cannot be precise because we have only a

small amount of information deduced by the MOF structure and serialization

pattern about such a context (§2.3). That is merely enough to warn about

hypothetical problems. Moreover, finding relationships between changes is still an

open issue in research which could be very complex to explore, as mentioned also

in [8].

In the assumptions we set out the requirement for a series of valid XMI as

input. Thus, we know that a change itself cannot cause a violation, otherwise the

changed version would be invalid as well, and that is not possible. Therefore, we

have to explore those cases in which a set of simultaneous changes together may

break the validity of XMI syntax. In summary, we claim that a violation occurs

when a change affects another change indirectly, i.e. it breaks the validity of the

result of the other change (or vice versa).

In §3.2.2 we stated that a property change is independent from another

property change. This is true and it holds in the XMI syntax as long as we don't

consider references. In fact, a reference r is a property whose value is the Id of

another XMI node X: in other words, r points to X (§2.2). This may be source of a

set of hypothetical violations: in fact, in a valid XMI file, we cannot have a

reference pointing to a node which does not exist. For this reason, every time a

node is deleted and a reference to it is updated/added, a violation emerges (Figure

13). We can choose between two options to handle this situation. We can either

leave the violation intact (keeping an invalid XMI) and warn the user about the

problem (which could be detected later with a validator), or we can discard the

deletion, reporting, in some way, (see the 5th step, creating merged XMI) our

decision and the cause for it (to highlight a violation of the XMI syntax).

31

However, such a violation (from another point of view) could be also

considered a probably related change, since in the version Vv the developer d
changed an object O that now points to some other object O' (often in the class

diagram a reference represents a type link, as explained in §2.3), while in Vv'
the developer d' has deleted O' without being aware that an object O was changed

simultaneously to point to O'. This means that probably these changes will create

a problem also in the domain of models.

The difference between the two considerations above (considering an XMI

syntax violation or a model-domain issue) is that in the first case we know XMI

syntax and we can make a decision on the basis of a precise information;

contrariwise, in the second case we are simply making suppositions about the

model (context) related problem. In fact, the latter one is probable but not sure,

and it could depend, for example, on the type of diagram used at a higher level

(UML, etc.). This difference leads us to call violation the former problem and

(hypothetical) context-related the latter one. However, in this case the second

consideration confirms that there is not only a violation of XMI but also a

probable higher level conflict. These considerations will be used to define a set of

merge rules which handle the problems encountered. In this case, as we will see in

the next section on merge rules (§3.2.4), we opt for the solution of discarding the

deletion and report a warning, in order to maintain the semantic valid and to warn

Figure 13: Example of violation: a developer changed a
reference to a node previously deleted by another
developer.

32

about a very probable developer-intention breaking. Discarding a deletion does

not cause any loss of data, and a warning could be created with a very simple

message.

Let us recall that a violation occurs when a change affects another change

indirectly, i.e. breaking the XMI validity of the result together with the other

change. Since we claimed that properties cannot affect XMI validity of other

properties or nodes (except for the references, which we discussed before), we

should consider only the composite changes (which involve more than one node).

In fact, a composite change may affect other changes by modifying a node X that

“includes” them, in the sense that the other changes are modifying a content

which belongs to the sub-tree with root X.

At first sight, this seems hard to handle, since there might be nested changes

which are related. Furthermore, applying a merge rule for one of them before the

other, could modify the result, breaking one of the requirements (symmetry).

However, a composite change always involves a node, and it can be of the

following type: deletion, addition or move. We do not consider the node update a

composite change, since, as we mentioned in the conflict detection paragraph, it

always leads to another change, which could be one of those just mentioned, or a

property change.

Thus, we have the following cases, in which:

• having a node deletion in a version Vv could not involve other nested

changes: in Vv there are no changes involving a sub-tree of the deleted

node (there are no sub-trees anymore), and every time a change is made in

Vv', it causes a conflict, provoking the discard of the deletion (as we will

see in the merge rule part).

• when adding a node X on Vv, apart from the reference case already

explained, there cannot be nested changes, since in Vv' we cannot have

any change involving the sub-tree with root X (we do not have such a sub-

tree at all, since it was not in the CA).

• only the move change remains, and, in fact, it is sort of a “Pandora's box”.

We could have many situations in which combining nested move changes

33

with other changes could cause a lot of violations and hypothetical context

problems. Furthermore we mention again that there is a way to avoid

moves (or at least strongly limiting their occurrence). However, we found

some solutions to handle these problems.

The first and the simplest solution is to ignore the existence of such a change,

seeing moves as deletions and additions (of the same node, with the same Id). In

this case, we are faced with a problem when we have an update/delete conflict

(see also conflict detection, §3.2.2). In fact, whenever a node X is moved in Vv it

results deleted with respect to the CA, and if in Vv' X has been updated, a

conflict occurs. The merge rule for this consist of discarding the deletion, and

causing the duplication of X. This leads to an invalid XMI with two nodes with

the same Id, and to have only one of them updated, while the moved node could

not be updated since it is considered an added one from the change and conflict

detector. The most important side effect of this approach is that if there are

updates in Xv, they will not be confronted with the Xv', which means that we do

not find the conflicts (because we do not compare them, considering them

different nodes). Thus, once a validator raises a problem about these two nodes

showing that they are the same, the user is forced to check again them for changes

and conflicts. Unfortunately, moving a big sub-tree means not finding a lot of

hypothetical conflicts. However, in the pattern without nested MOF entities,

where refactoring the model involves references (see §2.3 and second solution

below), the hypothesis of not having moves is perfectly plausible. The following

solution includes this one with the addition of a small set of reasonable and safe

moves.

The second solution is connected to a specific serialization pattern used by

XMI (the one without nested MOF entities). As we can see later and we have

mentioned in the previous sections (change and conflict detection), this pattern

has more characteristics which make our algorithm working better. Furthermore, it

is equivalent to the other patterns, which means that using this one does not lead

to losing information about the model, and another differently serialized file could

be transformed in one like the this. In this pattern, every sub-tree of the root is a

first level entity (a class or an association) in the MOF representation, which

34

means that we cannot have a first level entity as a sub-tree of another entity, so we

could not move an entire subtree. That also means that we have a short XMI tree

(in analyzed class diagram the average maximum is 5, as said in §2.3) thus, there

cannot be many nested move changes. Moreover, due to the hierarchical structure,

every second level child-node represents a feature of the parent node; the same

holds for the third level node with respect to its parent and so on. This means that

the more deeply we observe a node, the smaller object it represents, the more

parent related it is, thus, a move is highly improbable. In fact, since we have a lot

of first level entities connected by references, their second level nodes represent

attributes and method, and their third nodes are parameters of the methods etc.

Clearly it does not make much sense to move a parameter from a method to

another. It is easier for an editor to allow a user to write a new parameter inside a

method specification: this means creating a new node with a new Id in the XMI

tree. Finally, note that, with this pattern, the moves of classes in model domain,

are performed in XMI changing references (we can handle reference changes

without problems) and not the tree structure (for example a refactoring, see §2.3).

This also means that there will not be many moves of nodes and that they do not

involve entities.

For these reasons, we consider only non-nested move changes in this solution,

and only move changes of a second level node. In such a case, we can have only a

node moved to another substructure (sub-tree). How could it create violations?

For the next cases we will not consider the option of leaving intact the violations

on the merged file, unless we have to discuss some particular problem. Otherwise,

leaving intact violations means exactly applying a change and creating a warning.

Furthermore, whenever we are faced with a violation, it could obviously be a

problem at a higher level: since the problem is highlighted already by finding a

violation, we need to add nothing more to the user. Follow the violations caused

by a move in a setting with the described constraints:

• move/move: the same node is moved in Vv and in Vv'. The violation

consists in obtaining as result two nodes with the same Id in the merged

file. A way to handle it is either to use alternatives or we can opt for

discarding the changes and adding a warning about both moves.

35

• move/del: every time a deletion is combined with a move, not a violation

occurs, but there is a context issue:

◦ a deletion involves the parent node Y of the moved node X. No

violations, since we can apply both changes without breaking the

syntax. We could encounter a context issue, though: in fact, the

deletion of Y could have meant the deletion of all its child-nodes, while

the sub-tree with root X is present on the merged file (but it is moved).

We should warn about the non-deletion of X;

◦ a deletion of X and the move of X itself: the same statements explained

before;

◦ deletion of a sub-tree of X and the move of X. In this case, we suppose

that moving X the developer does not want it to be affected by a

deletion. Deleting, we lose information, so a solution could be to

discard the deletion and to add a warning about what was “not

deleted”;

• move/up: there are no violations, since a property could be XMI-syntax

related to the moved node, X, only by being a reference. In that case, the Id

of the node remains the same, so if a reference was changed (added) to

point to it, the pointer is valid also after the move. Of course, in this case,

we have a probable context issue, because a developer is moving an

element E and another developer decided to point at E. In this case we

could insert a warning. Note that, as described before in §2.3, the pattern

we use in this solution, combined with the class diagram, implies that we

can have only a reference pointing to a 1st level node, that is the root of a

sub-tree representing a MOF entity and that could not be moved. In this

case, we do not have any issue;

• move/add: again, no violations. However, we are faced with a probable

context issue: the addition of a node in a moved sub-tree could probably

mean two different desired solutions on the part of the two developers. We

should create a warning.

There are no more cases of violations or context issues between two changes

36

in this solution. In the case of the second statement, we mean that even though

there could be other context issues (as mentioned before), we can find or handle

only the more probable ones deductible during the analysis of changes.

This solution handles the moves, but it is recommended to be used with a

certain serialization pattern and, preferably, when we know that the metamodel is

the class diagram (we didn't have the chance to test it on others diagrams), due to

the various assumptions made before. As we will see in the next paragraph, the

third solution has to be checked and verified more carefully: consequently, this

could be an acceptable solution if we respect the assumptions.

We also provided a third solution which is supposed to deal successfully with

nested moves. However, it is a solution that should be further verified, since we

had no time to cover all possible situations which could be many and complex.

The solution consists of adding some rules to handle nested moves and their

interaction with other composite operations. For example, we have to handle the

case in which in the version V a node X has been moved under a node Y which, in

turn, has been moved under X in the other version V'. Clearly, no such situation

occurred in the previously adopted solutions because in those cases we avoided

nested moves. This is a conflict, and, since we cannot resolve it, we should use

alternatives or warnings. The problem is that the moved sub-tree may contain

nested changes (also other moves), and applying alternatives could lead to an

explosion of them. In fact, suppose we have 3 nested alternatives: the higher

alternative duplicates all sub-trees representing 2 options. Then the second

alternative has to duplicate a sub-tree within the already duplicated sub-tree:

consequently, we have 4 options for this alternative (not only 2). Follows that,

with the third change, we will have 8 options and so on, following the power of 2.

Therefore, we should choose warnings or a different strategy for alternatives, for

example avoiding the duplication of them. However, this is a problem if there is

an extension tag (as we will see in §3.2.5) and when we want to refer to

something which is not XMI-reachable (because it is inside the other alternative

tag). We have already analyzed some examples and we have found some similar

solutions. Moreover, some further problems will be discussed in chapter §3.2.5

concerning change application.

37

Summing up, we can consider these solutions a preliminary result: if well

tuned, they handle some particular cases (but probably not all of them).

Furthermore, they could be used as a hint to review the whole method.

There might be further context issues, for example when we discard a

deletion. In this case, a deletion is discarded but the deletion or update of the

references, that previously pointed to the deleted element, are not discarded. This

could create a problem, because we ignore which other changes were related to

this deletion: the only thing we can do is to warn the user that there might be

related changes, like updates/deletions of connected references.

In this case we warn about a context issue that involves the discard of a

deletion that could be related to its close references, deducing their relation from

their proximity (in fact they were previously directly connected). So we choose to

recognize the context claiming that if they are close, they are probably related,

even though we cannot be sure about the existence of such a real relationship.

Then we decide to create a warning. However, there could be other related

changes, and there could be other strategies to make suppositions about their

relationship. We consider only those references which were connected to the

deleted node, so we use a distance-1 criterion.

We have not found more methods based only on the XMI syntax to deduce

more probable context-relationship between two changes with enough certainty.

Besides, we cannot warn about everything that could be remotely connected

because that way the result may confuse the user with too many irrelevant

suppositions. At this point, we propose a direction for future research on the

representation of warnings, which could be somehow included (although it is not

very probable) and prioritized with some mechanism. This way, a user can choose

to browse only the more probably related changes (for example those based on

proximity) or to check deeply those changes that have less chance to be

connected. However, as stated at the beginning of this section, finding all these

related changes is a widely open issue.

3.2.4 Merge rules
As explained in the previous sections, whenever a conflict, a violation or a

38

context issue arose, we have handled them to avoid a loss of information. We

mentioned also solutions, and we will follow some basic rules to be applied in

some situations.

The first cause of data loss is the deletion change. In fact, when such a change

is performed and it could affect another change, (e.g. in the case of a conflict, a

violation or a probable context issue), we should warn the user about the

information that he is losing by the simultaneous application of such changes. The

only way to do this is to represent the whole deleted sub-tree somehow in the

batch file. In conflicts and violations, we also have to discard the deletion

effectively, since in a deletion-conflict we have to represent the other change

(update or addition) that has to be applied inside the deleted sub-tree. In the

violation, as discussed before, we can opt for correcting the syntax error, but the

discard of a deletion does not cause any loss of data (apart from the non-

application of the deletion itself, which could be handled by a warning, specifying

which sub-tree was supposed to be deleted). In the context issue, we do not need

to discard the deletion. However, to inform the user about the hypothetical

context-related problem, we should represent what has been deleted, which is the

Figure 14: Merge rule: we have to restore the deleted
node in order to represent the simultaneous addition

39

entire sub-tree. To do that, we can represent such an information somehow:

however, the simplest solution is, again, to discard the deletion and create a

warning (the same thing that we do in other conflicts and violations which involve

a deletion), instead of creating a new rule that does the same thing but in a

different way. Thus, we have a unique merge rule to handle the deletion when it

affects other changes: discarding it and creating a warning (Figure 14).

Note that we could also have used a mechanism of alternatives, creating two

options which represent the void option of the deletion and the modified sub-tree

as the other option. However, this solution seemed to create problems when an

option of this alternative overlaps with an option of another alternative (like of a

move). The problem consists in representing them clearly, so we decided to follow

the discard way, since it does not cause loss of information and it does not show

representational issues.

For the update/update conflict, as we mentioned above, a property has been

changed: we cannot represent two values of the same property, so we cannot apply

them. As we will see in the next section we have to find a way to represent both

changes in the same file. We are speaking about an alternative mechanism, that

allows us to represent two different options for the same element (to be XMI

compliant).

We have another conflict to manage: when we have two moves in which a

node X is moved under a node Y in Vv and the node Y is moved under the node X
in Vv'. This situation could not be represented: the best thing to do is to discard

changes and to insert a warning about their conflict. Another solution could be to

adopt the same mechanism used for the conflicts (as we will see later) to represent

both possible alternatives.

The rules presented above are exhaustive, i.e. they include all violations and

conflicts that need to be handled. Further changes are applied modifying directly

the CA and applying the change. Since conflicts and violations are already dealt

with, every other change could be performed. The only thing we should consider

is that it is safer to apply first every change which is not a move, and only then to

proceed with moves. This rule is necessary, because all the registered changes are

recorded with respect to the CA. Since we saw that applying a move before or

40

after other changes does not influence the result (see the conflict detection §3.2.2),

we can apply first all the changes modifying the CA and then we can apply the

moves. We will explain this more in detail in the next section.

Note that the number of rules is rather small because when performing a batch

merge, we want to record the widest possible amount of information about

conflicts, violations and context issues without taking decisions instead of the

user. The purpose of this batch merge is, in fact, to help the user understand

relationships between related changes and then to facilitate the manual merge (or

using other tools to be implemented), rather then to perform a completely

automatized merge (which would require at least a huge component of Artificial

Intelligence relying on a large set of information that we do not have) [8].

3.2.5 Creating the merged file
The final step of the merging process is to create the merged file. We have to

apply the changes to the CA and insert annotations about changes, conflicts,

violations and potential problems.

First of all, we proceed with the application of all changes that do not

provoke a conflict. We create a copy of the CA, then we can simply modify it. We

can gain access to the changed element by finding the path described on the

change statement and then by applying the change. For an addition we create a

new substructure identical to the one we have in Vv or Vv'. In the case of

properties, we delete, add or change the value. We have to be very careful about

the combination of deletions and moves. In fact, if we apply a deletion and we

have previously moved a child node (which is not considered a conflict or a

violation, because the result is valid) we lose trace of the source of the node. Even

though we have the entire deleted sub-structure in an annotation (as we will see

later), it is safer to apply the move before the deletion. But delaying deletions, in

case a child-node, placed below the moved node, is deleted, we are not able to

reach it by its path. Thus, the question about which one is preferable to be applied

first emerges. We choose to apply these changes in a bottom-up way: first the

changes in the lower nodes are inserted, so that their path will not be modified by

a higher level node move or deletion. Notice that by applying the addition and the

41

updates before the moves, we avoid many problems of the same type. In fact,

suppose that we have an added node X and a moved node Y under X: if we did not

apply the addition of X, such a node would not exist, and it would be impossible

to apply the move. Furthermore, applying additions and updates before moves

avoids the path problem explained in the case of deletion. We do not need to be

careful about a move whose source is placed below an added node or a property,

since these cases are impossible. Doing these operations is quite easy using an

XML parser like DOM, so we decided not to explain further details about it.

During the application of changes, we would also like to mark them with

annotations: the aim is to show the developer which part of the document has

been changed and how. To represent the whole information, we have to report

both the modified and the original piece of XMI. We stated that we mark changes

“during” and not “after” the application, because, to mark a change, we use a path

strategy and we could encounter the same problems as the ones on the application.

An annotation should show, as changed, only the latest element in the change

statement, which is also the smallest and deepest element changed in the XMI tree

hierarchy. For example, if we are speaking about updates, we should highlight

only the changed property. If we have a deletion or other composite changes, we

should mark the root node of the interested sub-structure. In details:

• addition: we can mark the root node of the added sub-structure or we

could put a mark of starting and one of ending. The first solution seems to

be the best, since we can put a mark element beside the structure without

modifying the original XMI tree. The second solution is more readable,

which means that by looking at the XMI document it is more visually clear

which part has been changed. Furthermore, the first approach could be

tricky since it could happen that a node is added and another sub-tree is

moved below it. Thus, marking only the first added node means that we

are marking also the moved sub-structure. However, since we mark the

moved node as well, in the end, it will be easy to deduce changes anyway.

When we add a property, we have no such problems;

• update: as we have previously discussed in the change-detection section

(§3.2.1), every update ends with the modification of a property. Thus, we

42

can create an annotation which points to the property and explains what

has been changed (we recall the fact that to reach a property we need the

parent-node in the path). We should insert a field into the annotation to

show the previous value, in order to avoid loss of information: the user

may need to know about it to resolve another conflict;

• deletion: here we have two choices. The first is not to apply the deletion

and mark the node as “to be deleted”; the second consists of deleting the

node and adding an annotation containing the whole deleted structure, in

order to avoid a loss of information about the change. To prevent

confusing the user, we prefer to choose the second solution. Since we do

not have the node anymore, we should put a reference that includes the

parent node as well. For example, if we want to say that the node Y has

been deleted from the parent node X, we should not refer only to Y but we

need to refer to X.Y;

• move: to highlight this change we need an annotation that refers to the

moved node, as well as to the changed parent nodes. For example, we

should claim in the note that we have moved the node Y from X to Z. This

could create a problem when the node X is deleted. However, we saw that

the deleted node is available in the deletion annotation. Moreover, we

create a warning in this case (see conflict detection §3.2.2), so the change

can be entirely recognized.

Furthermore, we should associate every change to its author: thus, we need to

put this information in the batch file, enabling the merge-user to know which

changes are connected by the same “owner”. This is an information that should be

represented in all annotations (including alternatives and warnings which will be

explained later).

To highlight changes, we need a mechanism. Unfortunately, XMI does not

provide it, so we have to use an expedient. We will use this term to define a way

that is useful or necessary for our particular purpose, but not always following

completely the existing rules. We have two possibilities: using a comment (like in

a text-based merge) or using the XMI extension element. We will discuss such

possibilities at the end of this chapter, since we have to deal with other kinds of

43

additional notes (alternatives and warnings) which need the same representation.

We have spoken many times about creating alternatives and warnings, so we

need to define these mechanisms in details: which requirements do they have to

satisfy and which are the main related issues. We start with the alternative, then

we will explain the warning.

 An alternative represents a set of options for the same element. Since we are

speaking about the comparison of two different versions with a common ancestor

(3-way merge), there might be only two possible options represented with respect

to the original one. However, we could have more then only two alternatives at

our disposal to represent the correct result, since we may combine alternatives

creating more options. In the followings, we will deal with two alternatives for the

sake of simplicity, but the mechanism could be easily extended to show more

options. Creating an alternative means that the same element should be duplicated

in order to represent differences. Since we have elements that are recognized by

their Id or name, we cannot duplicate them, otherwise we lose the possibility of

reaching them uniquely. We could create two new elements which are of the same

type as the one we want to duplicate, which would mean that they have a new Id.

Note that when we have a name (like in XMI properties), there is a problem

concerning the duplication of such an identifier. Furthermore, and more

importantly, how could the user know that they are alternatives of an element and

they are not simply new independent elements? We should mark them somehow,

but we need a mechanism that does not break the language syntax (as for

annotations. In our case such a language is XMI). Otherwise, we could use a new

and different element (an appropriate alternative element) that should refer to the

element that has to be represented by the alternative and its options. In both

examples, as we have shown also in the case of annotations, if we want to mark

alternatives without breaking syntax at the same time, we need a language support

(for example from XMI) like an appropriate metamodel that “understands”

alternatives. Otherwise, we need to use some expedients (as we said before, we

use this term to define a way that is useful or necessary for our particular purpose,

but not always following completely the existing rules). For example, in text-

based merge tools such alternatives were performed commenting the same

44

duplicated piece of text (line or lines) representing both options and marking the

comment somehow (often with special character sequences). As the next chapter

will illustrate, using XMI comments could be a solution to implement an

alternative, but we also provide another solution using the XMI tag extension.

However, it is still a non standard mechanism, since it has not been created to

represent alternatives and it does not provide most of the specified fields

(described below). Consequently, some requirements need to be satisfied. In fact,

analyzing alternatives, we found some requirements to be satisfied when

implementing a (generic) alternative mechanism in a structured data file like an

XMI document (tree). The alternative element could be composed by more

separate parts (for example a nested move) that could be dislocated in different

places of the structure. Thus, an alternative element should have:

• an Id: every alternative should be uniquely identifiable. Every sub-

structure that belongs to the same alternative should have such an

attribute;

• an option Id: for the same reason described above, every fragment

belonging to the same option should have this Id to be put together with

the others. This way the user (or a hypothetical tools) could clearly see

what belongs to the whole option;

• an author Id: we should show the user the authors of each option;

• a difference marker: sometimes we might need to represent the whole

element that has been changed in the alternative (for example, if the value

of a property is in conflict, we duplicate the whole property but we mark

only the value with this tag). Marking the effective part that has been

changed could be useful for the user or for a tool to read the differences

(e.g. in the case of property we could mark only the value as changed);

• a position mechanism: sometimes, we do not want to duplicate a changed

element but its different position in the structure. To represent that, we can

duplicate the two options in different places. Otherwise, we could leave

the sub-structure choosing one solution (for example the original one in

the CA) and find a way to say that the root could be placed in two

different places (to avoid duplication of a whole sub-structure).

45

We choose to use alternatives only to represent options for a conflict of the

type update/update on the same property. The main aim is to avoid situations in

which we may have overlapping alternatives. There is no problem having

alternatives for atomic changes (involving properties): they cannot overlap each

other, since they are independent and they do not have any part in common. On

the contrary, we have some problems using alternatives on composite changes. In

fact, if two composite changes need an alternative representation, it could happen

that one or more fragment, which should be represented in an alternative, appear

in the other one as well. This leads to a very complex representation which could

create confusion. Furthermore, such alternatives on composite changes are not

very realistic: probably the user will not choose either of them, but he will create a

new solution ad hoc [8]. Our main task then is to let him know which are the

problems to solve instead of dealing with them ourselves, since we do not have

enough information. To do that, we can use a more appropriate mechanism,

described below: the warning.

A warning is a mechanism whose aim is to show a problem that involves (or

may involve, in the case of probable context-related problems) two changes. The

difference between the warning and the alternative is that the warning does not

propose a solution, but just flags and describes a (hypothetical) problem. We use it

widely in the majority of the cases described above because the information that

we have, using only XMI, is not enough to deduce a limited set of reasonable

options (apart from property conflicts). In the followings, we show some required

elements that should be included in the definition of warning:

• an Id: sometimes it could be useful to refer to other conflicts and reach

them uniquely;

• an author Id: we should show the user the authors of each option;

• two (or more) change references/descriptions: if we have a set of saved

changes on the batch merge or if we have marked them within the original

elements (in other words we are sure that all information about changes is

reachable by identifier in the merge file) we would use references to

connect the involved changes. Otherwise, we need some sort of language

to represent appropriately the changes, in order to explain exactly to the

46

user (or to a tool) which changes are involved. In this thesis we use the

change-detection mechanism described in sections §3.1.2 and §3.2.1.

Thus, for example, the update with the value v of a property p of the node

Y belonging to the sub-structure X will be described as the statement [X,
up(Y, up(p, up(v)))]. Suppose we detect a conflict, a violation or

a probable context-related issue with another change: for example, a

reference r, placed within the sub-tree with root Z, which is the child-node

of a node W, that now points to X instead of another sub-structure S. We

will also have the description [W, up(Z, up(r, up(S→X)))],

together with the previous one. With this pair of descriptions placed inside

the conflict element, we have the information to highlight all what we

want to attract the user's attention (or that of the tool);

• a priority mechanism: this is rather a desired component than a

requirement. It might prove useful to distinguish an important problem

(for example involving a conflict) from a notice referring to a probable

context-problem. The way to implement such a mechanism should reflect

how crucial the warning is: for example, in this thesis we may use the

priority mechanism with three different values to flag conflicts, violations

and context issue;

• an “explanation” field: it is important to explain properly the problems that

have been detected, for example, if there was any conflict or violation or if

we discarded some of the changes described. It could also explain why we

create the conflict, for example when we discard a deletion because it

causes a violation with a reference update. In this thesis we do not discuss

the way to represent such a field, we simply use the natural language for

the explanations.

As mentioned in connection with alternatives and annotations, XMI does not

provide a warning mechanism, so we have to use the same expedient. At this point

we have to discuss which expedients are available in XMI and which one do we

prefer. We identify two possibilities: inserting a comment, like in a text-based

merge file, or using the XMI tag extension.

In the case of comments, we can simply write notes as we wish, using XML

47

format or even a natural language. The main problem is that such comments are

not distinguishable from others. To prevent this problem, we should put some kind

of special character sequence to show that we are not dealing with a common

comment, but it represents a merge note.

What we have found interesting in the tag extension, is that, according to

XMI, we can use a special attribute that makes the element (“wrapped” by this

tag) an extension of another. This satisfies a requirement described before, in

which we desire to create annotations that refer to nodes. For example, if we have

to represent an added node, we can add an extension element pointing to it. The

extension tag, since it was created to support interoperability, allows us to specify

which tool we are using: this could be useful, since we can simply find a string to

define every extension element as belonging to a “batch merge tool”. This way we

have a mechanism to formally distinguish the merge elements we added from

other elements inserted by other tools. Finally, every extension element has its

own Id, which is a good way to reach them. We have problems when we have to

mark a property (which has no Id), but it could be solved simply by marking the

parent-node (we need to mark it anyway, since a property is reachable only by its

parent-node). Unfortunately, there are no more positive features, so we have no

other way to represent further information using standards. This is due to the fact

that the XMI language lacks the definition of a mechanism to handle annotations,

alternatives and warnings. The main reason is that the batch method for merging

models (and generally structured data) is not so widespread, thus there are no

standards to represent such mechanisms. The best solution might be a standard

definition: once we have a batch merged file, it could be processed and elaborated

by other tools created separately and relying on such a standard. This is a way to

separate the different tasks of merging, interpreting or visualizing results [8].

48

Chapter 4

Algorithm

We propose an algorithm which implements the merge process described

before. The abstract algorithm is expressed in natural language to simplify its

reading. The following instructions are meant to cover all the serialization patterns

used by XMI. However, as we discussed before, it works very well if we have no

moves at all (described before as the first solution). It works properly if we have a

pattern without nested MOF classes and thus a few amount of moves, especially

involving the second level of nodes (usually class diagrams). We did not have the

chance to test the algorithm thoroughly on the remaining pattern (nested MOF

classes and frequent moves of nodes), conseqently, we cannot assure a correct

result in a very complex combination of various changes (there may occur

problems in the application of changes and in the representation of alternatives

and warnings). The algorithm is annotated with comments which explain the

reasons for the choices made.

◊ COLLECTING CHANGES (1)

• find the MODEL node (we call it R as root) in the XMI tree;

• for each child-node E (we choose E for “MOF Entities”) of R do:

• (a) if E has been added or deleted then report in CHANGES (2)

• if E has been added and deleted at the same time report in

MOVES (3)

49

• (b) if an XML property XP or a REF of E is deleted, added or

changed then report in CHANGES (4)

• for each child-node E' of E do the same 2 steps (a) and (b) and so

on until the leaves;

• for each M in MOVES do the same steps (a) and (b), taking E as

the root of the sub-tree instead of R, and keeping the prefix related

to the CA (not to the prefix after the move) (5)

Comments:
1. This whole set of instructions is meant do be executed on both changed versions Vv and

Vv' with respect to the CA in a non-deterministic order.

2. The CHANGE set contains all the changes: every change is structured as described in

section §3.2.1 dealing with change-detection. For example, if a node X has been deleted

we have […path…X, del()]

3. It reports the different parents. It is explained in details in §3.2.1

4. If it has been changed, then it reports how, for example the new node pointed by the

reference

5. As said in §3.2.1, whenever we have a move of a node N, this should be matched with the

original one placed in the CA and we should continue the change detection: otherwise, the

whole sub-tree of N is considered simply deleted (whereas it is not) and it will not be

compared with the same one belonging to the CA, hiding changes.

◊ CONFLICT DETECTION, MERGE RULES (6)

• for each deletion DEL check its suffix and

• if there is a node N that is also (in the other version) in a prefix of

other updates, additions, it is a destination of a move or of a

new/updated/added reference, then remove the DEL and add a

report in WARNINGS (7) explaining why it has been discarded;

(8)

• for each reference that previously pointed to the deleted node and

now is updated/deleted, report in WARNINGS (9)

• if there is a node N which is the source of a move, then report in

WARNINGS (9)

50

• for each update UP of an XML property or a reference in V

• (c) if the same property/reference is changed (with a different

value) in V', then remove the UP and report in ALTERNATIVES

(10)(11)

• if the original reference in the CA pointed to a deleted node N

in V or in V', then remove the DEL and report it in

WARNINGS (12)

• if the same property/reference is deleted in V', then remove the

DEL and report in WARNINGS (8)

• for each added XML property or reference, if they are added in both V

and V' , then do the same thing described in the previous step (13)

• for each move M in MOVES of V

• if there is another M' of the same element in V' (and it is not moved

to the same new father-node) then remove M, the deletion and the

addition and report in the WARNINGS (14)

• if there is a reference REF in V' which has been added or updated

in a way that now REF points to a node that belongs to the moved

sub-tree or to the prefix of the destination of M, then report in the

WARNINGS (8)

• if in the new prefix of the moved node N there is a node A which is

moved in V' under a node B that is placed in the suffix of N, then

remove both moves and report in WARNINGS (15)

Comments:
6. Sometimes it is necessary to mix them.

7. WARNINGS is a set which contains records as described in § 3.2.5

8. Every deletion conflict, violation or context issue is managed by discarding the deletion, as

explained in §3.2.4

9. It recognizes every distance-1 related reference that could be context-connected with the

deletion.

10. Here we can put a further and specific algorithm to find conflicts between the two values.

11. ATERNATIVES contains elements as described in §3.2.5: every element (that represent a

conflict) has a sub-set of options, extracted from the changed versions.

51

12. Keeping the original reference to a node N could break the validity if one of the changed

versions have deleted N. Then we have to act as when we want to avoid syntax

violations. In this case, discarding the deletion also causes the warnings about connected

references. Since all these operations are caused by the initial conflict (c), we should

report the cause in the case of every element inserted in WARNING.

13. This situation corresponds to the situations in which the same property has been changed.

14. Conflict due to the move of the same node. As mentioned in §3.2.2 and §3.2.3, this

conflict could not be resolved and we can discard both moves inserting a warning, or

represent them as alternatives: the latter representation is more visual, but it could lead to

inconsistencies with other nested move conflicts.

15. Useful only for those patterns which has nested moves.

◊ CHANGE APPLICATION, ANNOTATIONS, WARNINGS AND

ALTERNATIVES

• copy the whole CA in a new file MERGE (16)

• for each addition in CHANGES, it is performed in MERGE

• mark the new nodes as added

• for each update in CHANGES, the property is changed in MERGE

• for each alternative in ALTERNATIVES

• create two duplicates of the original element and apply the changes

separately

• if there is no original duplicated element (two additions) then

choose non deterministically one of the two options and apply

it (17)

• “wrap” the two options using the comment or the extension

mechanism

• refer to the original element (or the applied one in the case of two

additions)

• for each move in MOVES and deletion in CHANGES apply them

using a bottom-up strategy (18)

• for each warning in WARNINGS create the extension sub-tree (or a

comment) referring to the involved nodes.

52

Comments:
16. Since we saved the changes with respect to the CA, we need to duplicate and modify it with

them.

17. In the case of an add/add of the same property we have nothing to refer to (there is not an

original property in the CA). Then we apply one of them and we use the other as alternative. This

is the only case in which we do not respect the symmetry constraint, but we should consider that it

is a very rare situation. Furthermore, it does not cause any problem.

18. As mentioned in §3.2.5.

53

Chapter 5
Implementation

In this chapter we propose a practical application of the theoretical principles

discussed in the previous chapters.

We opted for creating a tool which elaborates three models serialized by the

UML editor ArgoUML. The reason for this preference is mainly that ArgoUML

provides the fundamental requirement (see §3.1.1) of keeping the Ids unchanged

throughout the saving process. Besides, ArgoUML uses the first serialization

pattern described in §, which means that we did not have to handle the move

changes (although the tool is extendible so that this feature could be added later

on).

The tool performs a virtual merge [8] which consists of the first three steps of

the whole merge process with the addition of a graphical interface that shows the

changes and the detected problems. Among these, the tool displays all conflicts,

reference violations and two kind of context-related problems. The tool is

supposed to provide an initial framework which could be easily expanded.

We have created various classes which are contained in the

it.unipr.XMIMerge package.

54

5.1 Loading files

First, those files must be loaded whose virtual merge has to be shown. You can

load directly XMI files exporting them from the editor, or you can directly load

the ArgoUML project files with the extension .zargo. In fact, it is simply a

container which stores files (compressed with zip) describing the model: among

these, we can also find the XMI file. Thus, we can extract the XMI automatically,

(without requiring the user additional step of exporting from the editor) loading

the project that he saved during the development of the model. This is a function

implemented in the class FileManager in the it.unipr.XMIMerge.io
package. It includes two methods:

• showFileChooser, which allows the user to open the file he prefer (he

can choose .xmi or .zargo) using the Swing libraries, and

• unzipFileIfNecessary which extracts the XMI part if we have

chosen to open a project developed in ArgoUML.

The first method is repeated three times at the beginning of the execution of

the program. In fact, the user has to choose three files: the Common Ancestor
and the two modified versions. It is important that the first file is the CA, while the

other two files can be selecting according to the user's order of preference (an

order which is then used to show differences between the models). The second

observation implies that the appearing result will not depend on the order in which

we open the different versions, which is an important feature to ensure that the

result is the same every time the program is launched with the same input files in

a different order (satisfying the symmetry requirement stated in §3.1.5).

5.2 Parsing models
Once we uploaded the files they have to be interpreted as XML, and we used

JDOM libraries to perform the parsing. For every file a SAXBuilder is created,

which produces Documents enabling the browsing of the XML tree. Thus, it

was necessary to create the structures that represent the abstract trees of MOF type

55

to be compared subsequently. Not every node is important for the logical

description of the model: for example, we are interested only in the contents of the

XML subtree, named by the tag model. The structure represents a tree

(MOFModel) which contains a root node, a hashmap to reach its nodes with

their Id and a set of all references contained in XMI. The nodes are instances of

MOFNode, a class dedicated to the representation of each element of the model, in

which the Ids are saved: the father, children, properties and references. This

allows us to browse the MOF tree easily. In addition, the MOFModel provides

some functions which calculate the path of the nodes (getPrefix) and their

descendants (getDescendants). As we will see, these two functions may be

useful indeed.

The parsing is operated by the XMI2MOFTranslator class through the

parseXMItoModel method. First, the model element is identified, then the

subtree (which has model as root) is visited in pre-order: every time we find a

node with an Id, a corresponding MOFNode is created. The XMI format of

ArgoUML includes nodes without Id, used to "encapsulate" the other nodes

(containing semantic information possibly useful for the internal editor). We

emphasize, in fact, that XMI is defined so as to be extensible and customizable if

necessary, thus, we have to manage these nodes. The XMI2MOFTranslator
class provides two methods, one is "verbose", the other not:

• The first creates MOF nodes for the nodes without Id, as if they were

elements of the model: a new Id is created concatenating the Id of the

father (which is unique) and the name of the XML tag. Since the Id must

be unique, we must make sure that also the one created by the tool is that

way: it was proved that in ArgoUML sibling nodes never have the same

name (whilst they may have the same name to those of other elements

created as children of different nodes). Thus, concatenating the (unique)

Id of the parent with the name of the child (unique among the siblings)

we obtain again a unique Id;

• The second ignores the nodes without Id, building a simpler structure

MOF. Sometimes it can cause problems if the nodes without Id contain

56

references (they would be lost, it must be fixed).

Once you've created three MOF models, they are ready to be compared to find

those differences that concern us.

5.3 Matching models
The matching of models, thanks to the Ids, is pretty simple. In fact, ArgoUML

keeps the Id of the items that have been changed throughout the saving process.

This means that if you open a model with an E element with the Id I, this will be

saved at the end of the session with the same I. This is obviously essential for the

identification of nodes.

The only case when this does not happen is when we change the items of the

type Multeplicity. These are items that are always close to the leaves (or

they are leaves themselves) and they are re-created (resulting in a change of Id)

every time one of their properties is changed in the editor. This does not present a

serious problem, since we are able to recognize and identify them as "changed"

instead of "deleted and added" ones (as we can limit the occurrence of the

problem only for this type of elements).

Having the Id, we can then refer to the same element in three different

models to investigate the changes in which it is involved, and, thus, provide the

differences between the modified versions and the CA.

5.4 Identification of changes
We can start from the root of the tree described by the CA (and necessarily

shared by the other two models as they are derived from the modification of the

CA) and visit it in pre-order, gathering in an instance of the class Difference
the set of changes. We compare every element we find with the one of the

modified version which has the same name. The following three situations may

57

arise then:

• an element in the CA is not detected in Vx (the procedure is identical for

both V1 and V2, so we use Vx to identify the version that is being

analyzed);

• in Vx an item which was not present in the CA is detected;

• a property (including references) of the same node has been changed.

In all cases an instance of the class Change is created:

• a unique Id is created (so that we can refer to it in an unambiguous way

later on),

• the type of the operation is set which is identified by static variables

belonging to the class:

◦ ADD - if an element has been added to Vx;

◦ DELETE - if an element has been deleted from Vx;

◦ UPDATE - if the value of a node property has been altered.

We can observe that the operations have a "direction", ie we have to interpret

them as "all what happened to the CA to obtain Vx". For example, if there has

been an ADD, it is understood as an addition of the node N to the parent node F in

Vx, which means that N was not present as a child of F in CA. This will be

important later on to determine whether two changes from two different

Difference might create problems;

• the type of element involved is set (node, property or reference);

• it creates a list of nodes representing the path from the root to the node

involved in the change. This can prove to be very important, as we shall

see, when we will search for problems;

• in the case of a property or a reference, the new and the old value is

memorized: this may also be useful in further investigations of context

issues.

This is carried out by the class Differentiator with the method diff,

which returns an instance of Difference. This class provides access to various

subsets of changes, for example, with getUpdates only those changes are

58

shown which have the value UPDATE as operation. Moreover, it also keeps track

of which models are involved in the comparison and which one of them is the CA.

5.5 Problem detection
Once the program discovered the differences, it has two sets of Difference

to compare. We can observe that this procedure does not necessarily force us to

use only two Difference, as it may as well, insert a problem detector which

may involve, for example, more than two versions V1 and V2, enabling us to

deduct information or probable context problems in a more accurate way.

However, in this first version of the tool we will provide a comparison of two

versions only.

At this point, being faced with three types of problems (as described in chapter

3), conflicts, violations and context problems, we decided to create three types of

detector (detector) different and disconnected from one another. We need this

to keep responsibilities properly separate. Furthermore, it is unlikely that we

decide to change the detection of conflicts, whilst it may be more common that we

need to add a new context problem for analysis. Thus, we have a

ConflictDetector, a XMIViolationDetector and

ContextIssuesDetector, which produce, after having scanned the two sets

of Difference, a collection of instances of Conflict, XMIViolation and

ContextIssue respectively (all classes derived from the generic class

MergeProblem). Let's see how they work in detail.

5.5.1 Conflicts

The ConflictDetector generates, given as inputs models and sets of

Difference in the right order, a set of hash consisting of Conflict
instances. This class contains the information about the conflict, such as the

unique Id (between the conflicts) and the Ids referring to the changes which are

in conflict. How does the detector find the conflicts? This class has a detect

59

method, which executes in turn three distinct methods:

• delDetection: examines all those changes whose operation is a

DELETE contained in the first Difference object (given as argument),

and checks if they are in conflict with the changes which are in the second

instance of Difference. This operation has a direction, i.e. it is

necessary to execute the same method twice on the Differences
passed via input with a reverse order. In fact, we have to check whether

also the deletions of the second Difference cause problems with the

changes contained in the first one. In particular, the method analyzes the

change and identifies the deleted node (in case the deletion involved a

node and not a property), then it collects all the descendants (deleted as

well). Subsequently, it visits all the changes of the other Difference,

analyzing the path of each of them from the root to see if it contains at

least one deleted node. In case it finds one, the removal of that node will

surely lead to conflict, since a deleted node (or a descendant, or the node

itself that we are analyzing) was simultaneously changed (a child node has

been added or a property has been changed). In this case an instance of

Conflict is created. In case the removal involved only one property, the

method checks only if it had also been changed into another change.

• AddAddDetection: This method deals with finding those conflicts that

arise from the addition of the same property but with different values to

both versions. In fact, if we add property P to node N (where the Id of P is

accessible only through the name of the node N) with value T in version

V1, but the same property P in V2 with a value T’ different from T is

added, a conflict would arise. This because within the same node two

properties with the same name cannot coexist, otherwise one of them

would not be reachable.

• UpUpDetection: it detects conflicts which involve the same property P
changed simultaneously by the value T in V1 and by T' in V2. Also in this

case an automatic merge would not be possible without losing information

about at least one of the two changes.

60

5.5.2 Violations

The XMIViolationDetector works similarly to the previous detector.

The biggest problem that can affect the XMI syntax (and which has not been

detected as a conflict yet) occurs when a reference points to an object which was

deleted. This is not considered a real conflict because the reference and the

absence of the referred object can coexist within the file, however, this invalidates

the XMI syntax. The main method is once again detect and it returns a set of

instances of XMIViolation. This class, apart from containing an Id and

references to the changes involved (as Conflict), it also contains a field of the

String brokenElement type, which provides information about the element

causing the violation. The primary method used for the detection of violations is:

• findDeletedReferredElement: runs all the changes of the type

deletions. It identifies the deleted node and it collects in a set all its

descendant nodes (they are deleted as well, of course), then it checks

whether in the other version there have been additions or changes

concerning the references which, once modified, point to one of the

elements contained in the set (they will become Ids of the node). In that

case it creates an XMIViolation.

We can observe that this method detects a certain type of XMI violation: it

may happen that in later versions of XMI, other combinations of elements may

invalidate this format without causing a conflict. Then one could simply add a

method called by detect which identifies this type of problem.

5.5.3 Context problems

Also the class ContextIssuesDetector provides a method detect to

find the context problems. Context problems, as mentioned above, may be

infinite, some of them more frequent, more probable or more critical whilst others

less so. Above all, though, they require the knowledge of a higher semantic level

which is often not detectable in the XMI format. Thus, we can speculate about

61

hypothetical problems, but without having the certainty that they really are

problems. In fact, the detection of all validity problems concerning the language

used by the model (eg UML) is a field of study which is still open to research. It is

not the ultimate goal of this work to explore this field, however, we have created a

framework that could allow the evolution of a recognition system for context

problems. The class ContextIssuesDetector, being a prototype, includes

two methods which are able to detect two types of ContextIssue, to show

how it happens. In the future, it will be possible to simply add methods that the

detect method can recall in order to find new hypothetical context problems. It

is also important that for each detected problem a priority index is associated,

which provides an estimate of how problematic the combination of the two

changes could actually be. This can prove useful for a developer who wants to

select a priority threshold and filter the potential problems shown. An explanation

of the two methods created in the tool to detect two different ContextIssues
may help to understand this clearly. One of the examples is rather generic and has

a lower priority, whilst the other one is more specific and has a very high priority.

The two methods for these detection are:

• sameNodeInvolved
In this case, the idea is that by changing simultaneously two properties

within the same element, the two changes can cause semantic problems.

This does not necessarily create a problem: if, for example, we change the

property name and the property isAbstract, it is unlikely that the two

changes together create problems. In general, the probability that two

properties are connected does not seem very high. Therefore, we chose to

assign a (fictitious) priority of 30 out of 100 in order to quantify this

probability. This way the user will be aware that the two changes may

create a problem, even if it is not very likely that such a situation occurs.

Perhaps it may be useful to know about the eventuality in case there is

only one potential problem, but what would happen if we had a hundred of

them? The user should have the power to avoid analyzing all possible

problems, especially the less probable ones.

• UpperLowerDetection

62

As we can guess from the name, this method tries to find all the elements

which contain the properties upper and lower. Usually these elements

are referred to as cardinality (or multiplicity), i.e. elements that

specify the minimum and the maximum of the occurrence of their father

elements (for example, an attribute that can have a minimum of 1 to a

maximum of 5 occurrences).

It may happen that in Vv the minimum (lower) is modified and in Vv' the

maximum (upper) is changed. This would not create a problem in itself, or it

could fall in the cases described by the previous method. However, after the two

independent changes the maximum may become lower than the minimum, which

arises almost always a semantic problem. Being able to detect this particular

situation (it is sufficient to check whether one value is greater than the other one),

we can detect a combination of changes that creates a context problem with high

probability. We can then give such ContextIssue a priority of 90 out of 100.
If the user chooses to reduce the number of potential problems and, thus, to raise

the threshold below which potential problems do not appear, this kind of problem

will often be above such threshold, having more chance of being detected by the

user (it would be reasonable given its critical nature).

5.6 Visualization of problems
For the visualization of problems, we created an interface that represents the

models as trees (the user could see the objects of its model as nodes). Since the

XMI format is not an easily readable, we decided to show each element as a node

identified by its name and type property. The properties and references are, thus,

displayed in subtrees with the same name which belong to each node. Three trees

of the three compared models are displayed (on the left the CA, in the middle and

on the right the two modified versions). First, the nodes changed compared to CA
are shown in the two new versions (using different symbols to indicate whether

they have been added, changed or deleted). This can prove very convenient for the

user, who can check all changes to determine whether the problems encountered

are related to a set of changes, which, considered together, have a more complex

63

meaning. For example, a refactor consists of more changes at a time, and if one of

them creates a conflict, the user is aware of the fact that he has to take into

consideration also the others (but, obviously, the program is not). In addition, on

the top of the screen, three lists were inserted, one for each type of problem:

conflicts, violations and context problems. Here all the identified problems are

shown, and it is possible to select them. Then in the two trees, representing the

modified versions, those nodes (and thus those elements) will appear highlighted

which are involved in the two changes that create a (potential) inconsistency.

Under the representation of nodes also a TextArea is inserted where a detailed

message corresponding to a given problem is displayed (it is inserted in the

instance of MergeProblem at the time of its creation). We decided to omit the

description of the part concerning graphical programming which involves the Java

Swing libraries, as it is not strictly relevant to this work. It allows a better

visualization, but it does not add any information.

5.7 Example
Follows a very simple example of how the tool works (an update/update

conflict). In the appendixes there are more examples which show some other tool

features.

We created three models using ArgoUML: the first is the CA and the other two

were created by modifying the CA.

64

CA:

In version V1 we find that the attribute's name his name now is z instead of y:

Figure 15: Common Ancestor from ArgoUML

Figure 16: Version 1 in ArgoUML: the name of the attribute y is now z

65

Finally, in V2 the same attribute has been modified as k:

In the following image we can see the XML attribute named y belonging to

the CA:

Figure 17: Version 2 in ArgoUML: the name of the attribute y has been changed
into k

Figure 18: XMI file of the Common Ancestor

66

We can observe the same changed attribute in V1:

and in V2:

The tool, once we uploaded the files, will show the trees of the three models in

the following way: on the left the original (CA) appears, and on the right we can

see the two versions. The nodes (the elements) that have been modified,

respectively, in V1 and V2, are shown in green. At the top we can find the list of

problems detected: among the conflicts there is an update/update one:

Figure 19: XMI file of Version 1

Figure 20: XMI file of Version 2

67

If we select the conflict, the elements involved appear:

Figure 22: If we select the conflict, the tool shows (red) the sources of the conflict
in both versions

Figure 21: The tool user interface shows the CA (left) and the changes (green) in
V1 (center) and V2 (right)

68

Chapter 6
Discussion

In this chapter we will discuss our work. We have shown that the XMI

approach is not supported enough by the XMI standard itself and by tool vendors

to perform a model merge. Nevertheless, we have said that it is possible to define

a process to handle the task of merging with three XMI files. We will summarize

our results and we will specify under which restrictions they hold. Then we will

compare our work with other three related ones: an operation based, a formal

approach in the model domain and an XML merge algorithm. Finally, we will see

how the work could be extended by further research.

6.1 Results and restrictions
In chapter 2 we have seen how XMI shows a non homogeneity in representing

models, caused both by the language definition and by the implementations of

different tool vendors. Then we have to state that we cannot provide a general

merge tool that covers every possible set of XMI files. This is the first (negative)

result that emerges from this work. However, by adding some restrictions, like

choosing an XMI version and ignoring tool implementations, we have showed

that a merge process could be defined to handle the merge task among XMI files.

We will present the restrictions and the results we obtain in each part of the

process.

We are able to identify every possible change between two versions of a

model with the help of the common ancestor: this is possible because for each

69

XMI element we have a correspondence (provided by the Id) in both changed

files. Consequently, we can state that if something has been changed inside the

same element, we are able to find it. This is true only if we assume that all the

XMI files were serialized with the same pattern of serialization (specification

restriction) and if the same id is kept for the same XMI element (implementation

restriction) or if a match was provided in advance (environment restriction).

However, if the first and one of the other constraints are satisfied, we are able to

report all the information about both changed versions in the merged result.

The same restrictions have to hold again to guarantee a conflict detection

among changes, since this process depends on the change detection (and generally

they have to hold for the whole merge process for the same reason, so we will not

repeat this in the next paragraphs). However, such a conflict detection is correct,

complete and cheap: we prove the first two statements only informally, since it

can be easily deduced from the detection definition in section 3.2.2. In fact, we are

faced with a conflict only when the same property is modified, when a change is

placed in a deleted sub-tree, or if the same node has been moved. The method of

using a dynamic unit of comparison, which follows the branch of the tree in depth,

makes sure that we cover every change in every branch, even if there are moves

(thanks to identifiers). We come across conflicts in all of the previous cases, so the

method is correct and complete. We also have the positive side effect that it is

cheap, since when it finds a deletion (and it surely finds the root node of the

deleted sub-tree first) it finds all conflicts involving the deleted sub-tree without

analyzing it. Moreover, this particular working policy allows us to integrate other

algorithms (even if we have not tried it) in order to refine the conflict detection

within the leaf value, depending on the different format (for example if we have a

piece of code in a node value, we can continue to analyze it, selecting a dedicated

text algorithm when we reach it).

In the interpretation part we required also the analyzed files to be XMI valid.

This is not a strong restriction, since there is no reason for any editor to serialize

an invalid XMI. The good result was, in the case of (XMI syntax) violation

detection, to find only those situations in which the separate application of two

changes produced two valid files, while their application in the same document

70

violated the syntax. This means that we avoided to process the whole file finding

violations, since the part of the document that was not changed remained valid:

instead, we found only a small set of such “dangerous” changes (involving

references and moves), which had to be checked in order to detect violations.

Even though we did not provide a better result than the one performed by an XMI

validator, we proposed a cheaper and faster way to discover violations (we do not

have to validate the whole document against all XMI rules, but only those

dangerous changes). The part dealing with the context-related problems provided,

as expected, only a small set of those recognized probable problems that we could

encounter at the model level. This is reasonable, since (on such a level) we have

only a small amount of information provided by the MOF structure and

represented by the XMI tree, which represents a very high abstraction of the

model. We provided a mechanism that uses the proximity of changed MOF

entities to determine whether they could be related at a higher level. We have not

found any other way to deduce related problems without proposing excessively

case-related ones. In fact, the problem of detecting related changes is a very

complex and open issue even if we know the specific semantic of the model [8],

so using XMI we can simply speculate on it.

With the merge rules and the application of changes, we create a new XMI

file. The aim of these steps is to represent the whole information about changes

and to show every problem we have found maintaining the XMI validity. First we

discard the deletions and the moves which have caused violations or conflicts.

Then we create the alternative mechanism to highlight conflicts and to represent

possible options. Finally we insert warnings to report about everything that could

cause a problem or about discarded changes. In order not to break the XMI

validity, we represent alternatives and warnings with comments (like in textual

merge tools) or using the XMI tag extension. This way we have a merged XMI-

valid file, with all the applicable changes performed, all conflict representations

and problem warnings.

On the one hand we can provide an XMI valid result, while on the other we

cannot guarantee a valid model as a result. In fact, even if we are provided with

three valid models (represented by XMI files), we cannot apply changes and

71

discard them considering the correct result with respect to the model semantic,

since we do not know enough about it. As an example, consider two changes that

modify the minimum and the maximum of the cardinality of a relationship: we

have no possibility to know if the minimum is higher than the maximum after the

application of these changes, because we do not know such meanings and,

consequently, we cannot avoid the occurrence of a model violation.

The approach of the merge is batch oriented, since we do not expect the

developer to choose interactively from various options, but we provide a merge

that represents rather than resolves problems (like conflicts, violations, etc.). In

fact, the small amount of information that we could extract from XMI, permitted

us to recognize changes but not to interpret them, except for low level conflicts.

The batch result could be regarded as an intermediate step in the whole merge

process (completed by the developer elaboration or by running another

interpretation/resolution tool over it), but could be useful by itself as explained in

the paper [8]. In fact, it could improve communication between parallel-working

developers to resolve merge issues, or it may help developers to get a clear picture

quickly about the problems concerning their work together with the others',

without the necessity of finding an immediate solution (virtual merge). A clear

example of how it could work is given by our tool (XMIMerge), which performs a

virtual merge between the artifacts serialized by the editor ArgoUML.

6.2 Related works
In this work we proposed a “low level” merge based on the standard

serialization language XMI, in which we do not have to rely on further

information provided by a specific editor or by a higher level language. We have

not found a similar work that deals with the merging process at XMI level and

with a batch approach. However, there are some related works which are similar

for some aspects, but they usually used different approaches.

We have explained (previously in this thesis) that we used a state-based

approach to perform our merge. There is, however, another way to produce a

merge, that is called operation-based [11]. In this approach we are provided with

72

two sequences of changes (or operations) and the goal is to merge them. This is

often put in contrast with the state-based approach. Both methods have their pros

and cons, and often these depend on which method is used: for example, in the

context of a state-based merge, if we have to match elements using a similarity-

based algorithm, as we saw in §3.1.1, the task could be very expensive, while

using identifiers is very easy and cheap. This means that in the former case we

have a whole expansive merge process, while in the latter we do not. Thus we

cannot simply assert that the state-based approach is more expensive. In the case

of the operation-based approach, we know from somewhere (often recorded by a

model editor) which operations have taken place, while in the state-based one we

have to deduce them: thus, it seems better to know operations instead of deducing

them. In fact, with the former approach we avoid some false positives and false

negatives (sometimes we could deduce a single change from a modified element,

while it could be the result of a set of operations), so if there are less problems, the

developer does not have to deal with them. Nevertheless, we need a way to store

operations during the modification of the artifact: it is usually carried out by the

editor while the developer performs such operations. However, we choose XMI to

be independent from editors: such a feature is quite valuable, since it means that

this work does not rely on a precise tool or a model specification version, but it

could be used in a wider setting (even though we need XMI to be more

homogeneous). Thus, we have used XMI, but its main drawback is that we could

not obtain information about operations: consequently, we were forced to choose

the state-based approach.

Another related work is the one proposed by Westfechtel [17], in which he

adopts a formal approach to provide a state-based 3-way merge of models. The

fact that he proves a completely valid merged model, including moves and

recognizing both context-free and context-sensible conflicts, makes his work very

interesting, but still it is not suitable for our purpose. Unfortunately, we cannot

apply the logic he uses to the information provided by XMI because there is no

correspondence between them. In fact, as we can deduce from the title, “A Formal

Approach to Three-Way Merging of EMF Models” it is based on the EMF

metamodel. Since it is a new work, it may be adapted to the domain of XMI by

73

further research.

Lindholm presented a 3-way merge on XML documents in his master thesis

[12]. Since XMI is an XML dialect, the approach is very close to this work.

However, considering the XMI syntax, we can deduce more information from its

structure and from the serialization patterns used (that we have knowledge about),

so we can make more assumptions than in a generic XML file. For this reason,

even though there might have been some similar cases to analyze (since XMI files

are also XML files), we provided different solutions to handle certain changes.

Furthermore, we can exclude some cases that we know we cannot find in XMI;

and, on the other hand, we can add some specific cases regarding only XMI.

Using Ids (from the XMI specification) allows us to avoid the match part of his

merge, which is the most expensive and failure prone phase. Furthermore, Ids

prevent the copy operation considered in his work. Moreover, we do not need

child-node order: in Lindholm's work, in fact, a change could affect a node if it is

swapped with another sibling one, whilst for our purpose it does not cause

relevant changes (it is the same case of an attribute placed before or after another

one). Furthermore, we changed the context definition in our work. Lindholm

assumes that there is a context problem when there are changes between a node

and other nodes surrounding it, so every structural change on close nodes is

discarded in order not to interfere with semantic (unknown) dependencies.

However, we do not need to discard them: we do not know the exact context and

it is not necessary to apply automatically every change (since we insert warnings

and alternatives among unsolvable conflicts), so our approach highlights

hypothetical problems due to proximity but without discarding changes. We use

the same strategy to handle conflicts: this is one of the most important difference

between the two works. In our solution, in the case of unsolvable conflicts, we

include different options on the merge result which will be left to be checked by

the developer. In Lindholm's work (as well as in Asklund's [2]), conflicts caused

by the modification of the same property are solved choosing the “first” change.

This depends, however, on the order in which we read changed versions, which

breaks our requirement of symmetry (§3.1.5). Again, in the case of deletion-

conflict (when we have another change on a deleted sub-tree), the deletion is

74

performed erasing other simultaneous changes on the same deleted sub-tree. This

results in a loss of information in the merged file, which we managed to avoid. On

the other hand, the drawback of our approach is having a non complete merge

which has to be validated again, whereas Lindholm needs to perform a merge and

has to take all the decisions about all conflicts.

The last issue we discuss represents an important difference between our work

and that of others described in the previous paragraphs. By choosing the batch

approach and creating a merge with all the information but without all the

solutions, our result presents no “dangerous” change-applications (the ones that

could lead to a loss of information). It proposes a non complete merge (conflicts

still need to be resolved), which means that the result needs to be elaborated

again, before being considered completely merged. When dealing with models

this solution seems reasonable, but if we have to merge files quickly between

mobile phones (like in a scenario involving XML proposed by Lindholm), it

might be preferable having a valid (but possibly not correct) merge despite some

loss of information.

6.3 Further research
Our work could prove useful also for presenting further research proposals

concerning the XMI approach.

First of all, XMI itself and its implementation could be improved to obtain

greater homogeneity and only then to be used to perform a generic model merge.

The language presents valuable characteristics such as the Id mechanism to match

files and the extension tags to report annotations of different tools. However, tool

vendors should provide a more standard compliant implementation in order to

apply what is proposed by the specification in real life. For example the habit of

using Ids and keeping them over saves and loads could be a very nice feature in

order to avoid the dangerous and expensive task of matching.

Still, the language itself presents some rules of serialization that, although

allows flexibility, it could lead to ambiguities and issues concerning the merge

problem. One of them is the choice of nesting MOF entities as sub-structures of

75

other nodes which represent other entities: it does not add more expressivity since,

as we saw in chapter 2, the two patterns of nesting and using references are

equivalent.

Moreover, XMI could be provided with a new mechanism(s) to represent

warnings and alternatives. This would be very useful to represent such elements in

a standard way: having a specification to followed lets everyone free to create new

tools to elaborate such information derived from a merge result, without creating

all the other merge steps. For this purpose, in §3.2.5 we listed some requirements

to be respected in case one decides to implement the useful mechanisms of

alternative and warning.

The same thing could be expressed by the metamodel: for example, the same

mechanism could be described in the MOF specification, and it would have the

same meaning (since XMI uses the MOF specification).

There are several ways to improve this work: first of all, the techniques

described should be verified on a wide set of models which we could not perform

due to a lack of time and, as said, of homogeneity in XMI artifacts. In fact, to do

that, we would need a more evolute state of XMI, in which tool vendors produce

more homogeneous artifacts. At that point it may be necessary to adjust the

presented algorithm (in case XMI was changed).

Using the serialization pattern without nested entities allows us to have all

MOF classifiers well defined and separated in different sub-trees of the root: this

information may be used to create a tool which reasons over the connections

among entities. We know that those connections are represented only by

references. A changed reference means that a dependency between entities has

been changed (for example the fact that A was included in B and now it is not),

but they have not been structurally modified (a good example could be a

developer performing a refactoring). Therefore, a tool could create a reference

graph to study only dependencies between entities and it could try to resolve only

problems concerning references.

We proposed a batch merge, a result with a lot of annotations: XMI is not very

human-readable, it is a mechanism to serialize models. For this reason, a

visualization tool could be very useful in order to show the developer a more user-

76

friendly representation of the different and connected alternatives, warnings and

changes, possibly with a model representation. Besides, a tool which helps

resolving conflicts, violations and other context related problems could be very

useful. We provided a first Java implementation of such a tool (XMIMerge),

which works for the artifacts serialized by the editor ArgoUML. Some examples

could be found in Appendix A and in chapter 5.

77

Chapter 7
Conclusion

The study of the XMI language has highlighted some problems, first of all, the

fact that the same model could be represented by different XMI productions

(different patterns of serialization and different versions), which means that we

cannot compare a set of any XMI files. Furthermore, some patterns contain more

model semantic information than others, or they represent it differently, which

means that we can make assumptions when dealing with a certain pattern, but

these are not valid when dealing with another one. These considerations forced us

to define some restrictions which have to be satisfied in order that this work can

be considered valid.

We proposed a 5-step merge process which takes as input three XMI files and

provides as output a new XMI valid file that represents the merged XMI tree.

Such a process makes a diff of the files relying on unique identifiers (avoiding the

expensive job of matching).

The proposed algorithm, once all changes are obtained, finds conflicts among

them. The algorithm works deeply, which means that two changes are in conflict

only if they involve the same smallest structural element (fine-grain unit of

comparison) and widely, which means that it should find every direct conflict. The

algorithm warns also about syntax violations and distance-1 hypothetical non-

direct conflicts; it could be extended in a way that it will be able to warn also a

distance-n non-direct conflict. The algorithm merges non-conflict changes, which

means that if two changes are not in direct conflict, they are applied correctly with

78

respect to the XMI syntax.

The output is represented as a file in which we can find traces about all

changes (also those in conflict), so the algorithm runs in batch-mode. In fact, it

reports about all ordinary changes, unsolvable conflicts, syntax violations and

hypothetical problems. To handle such reports, three approaches are used:

annotations to label a changed element, alternatives which show all possible

solutions for a conflict, and warnings that report about violations or context-

related problems. Since such mechanisms are not supported by the XMI language,

we propose the use of the extension XMI tag and XMI comments. We also

provided a specification which could be verified and extended by further research.

Discussing the outputs of the algorithm (which should be verified on a wider

set of examples), we can observe how this XMI approach suffers from the lack of

semantic information, which leads to a lack of warranty about correct model

semantic output.

Finally, at present the algorithm is not completely environment-independent,

since it needs to analyze a set of XMI files which are necessarily serialized using

the same pattern, and it works better on a specific pattern. However, once the XMI

language found homogeneity in the specification and in the implementation

performed by tool vendors, we showed how we can provide, without any further

information (other than the three provided files), a preliminary XMI valid merge

which includes all information about changes, conflicts and some model-semantic

problems which could be elaborated subsequently by the developer or by further

tools.

Following all these considerations, we have created a Java tool (XMIMerge)

which provides a graphical virtual merge of three XMI files given as input. The

tool is meant to work with artifacts serialized by the model editor ArgoUML. This

strengthened our beliefs that the proposed merge process can be implemented, but

it also became obvious that an XMI-based merge tool cannot be fully

environment-independent at the moment.

79

Appendix A
Tool Examples

In this appendix we will present some examples: for each of them the changes

at the model level (ArgoUML screenshots of the CA, V1 and V2) are shown and

then we can see how the tool handles the merge problems detected. In the first

example XMIMerge reports a violation, in the second a context issue and in the

third it manages a combination of two problems.

80

A.1 Violation example
In this example we show how the tool XMIMerge reports an XMI violation.

In CA, observe the attribute's type C and the class D.

In V1 the type of x is changed into D:

In V2 the class D has been deleted:

Merging V1 and V2 would result in a reference pointing to a non-existent

element. How does XMIMerge handle this problem?

81

We can see how XMIMerge finds the changes:

And then that it finds the violation:

82

A.2 Context-issue example
In this example we show how the tool XMIMerge reports a context issue.

In the CA note the attribute x, it is public and not static:

In V1 the attribute x has been changed and now it is static:

83

In V2, x is set to protected:

We are not sure whether these two changes could cause a problem or not.

However, XMIMerge finds two changes on the same element, and it reports a

context issue with low priority (for example, 30):

84

If we select the reported issue the tool shows where the problem could be:

85

A.3 Combination example
In this example we can see how XMIMerge handles multiple problems.

In the CA pay attention on the cardinality of x (Molteplicità) which says

that this attribute can occur at least 2 and at most 5 times. Moreover, let's see also

its visibility (Visibilità) which is set to public:

In V1 the lower bound of the cardinality of x has been incremented to 4, while

the Visibility is now private:

86

In V2 the upper bound has been decremented to 3 and the Visibility has

changed to be protected:

Here we have two merge problems: the first is that merging the cardinality we

will have the lower bound set to 4 and the upper bound set to 3, which is clearly a

UML problem thus the model is invalid. Moreover, we cannot set the

Visibility of the attribute to protected and private at the same time.

XMIMerge detects the changes (green), a conflict and two context issues:

87

We can select the conflict from the list to display only that specific problem.

XMIMerge found the Visibility conflict. The other changes remain green:

We can then select one of the context issues:

88

There appear two context issues, but they are, as a matter of fact, the same

issue which has been considered separately by two different detections. One with

low priority (30 out of 100) reports that the same element has been changed,

whilst the other one specifically finds the upper – lower problem, which is

registered with a value of 90 out of 100 (higher priority).

Now we can select both the displayed problems: the tool shows both of them

(the common path has been colored with the color of the last problem selected):

89

Bibliography

[1] ArgoUML open source project, argouml.tigris.org.

[2] Asklund, U., Identifying conflicts during structural merge, Proceedings

of Nordic Workshop on Programming Environment Research, 1994.

[3] Babich, W. A., Software Configuration Management – Coordination for

Team Productivity, Addison-Wesley, 1986

[4] Baisley, D. E., Method in a computer system for comparing XMI-based

XML document for identical contents, 1999

[5] Bendix, L.; Emanuelsson, P.: Collaborative Work with Software Models

- Industrial Experience and Requirements; p.x in: Proc. 2nd Intl. Conf.

Model Based Systems Engineering - MBSE'09, Haifa, Israel, March 2-

6, 2009; http://www.mbse-org.org/; 2009

[6] Bendix, L.; Emanuelsson, P.: Diff And Merge Support For Feature

Oriented Development; p.31-34 in: Proc. 2008 ICSE Workshop on

Comparison and Versioning of Software Models, May 17, 2008,

Leipzig; ACM; 2008

[7] Bendix, L.; Emanuelsson, P.: Requirements for Practical Model Merge

- An Industrial Perspective; p.167-180 in: Proc. 12th Int.l Conf Model

Driven Engineering Languages and Systems, MODELS 2009, Denver,

CO, USA, October 4-9, 2009; LNiCS 5795, Springer; 2009

[8] Bendix, L., Koegel, M., Martini, A., The Case for Batch Merge of

Models – Issues and Challenges – International Workshop on Models

and Evolution - ME 2010, Oslo, Norway, October 3, 2010.

90

[9] Fowler, M., “Continuous Integration”, published on the internet, URL:

http://martinfowler.com/articles/continuousIntegration.html

[10] Grose, T., Doney, G., & Brodsky, S., Mastering XMI: Java

Programming with XMI, XML, and UML, Wiley, New York, 2002.

[11] Kögel, M., Hermannsdoerfer, M., von Wesendonk, O., Helming, J.,

Operation-based Conflict Detection on Models, in proceedings of the

International Workshop on Model Comparison in Practice, Malaga,

Spain, July 1, 2010.

[12] Lindholm, T., Master Thesis, A 3-way Merging Algorithm for

synchronizing ordered trees - the 3DM merging and differencing tool

for XML, Helsinki University of Technology,

[13] Oliviera, H., Murta, L., Werner, C., Odyssey-VCS: A Flexible Version

Control System for UML Model Elements, in proceedings of the 12th

International Workshop on Software Configuration Management,

Lisbon, Portugal, September 5-6, 2005.

[14] OMG-XML Metadata Interchange (XMI) Specification, version 1.0-2.0

http://www.omg.org/technology/documents/formal/xmi.htm

[15] Pagano, D., Brüggemann-Klein, A., Engineering Document

Applications, From UML Models to XML Schemas. Presented at

Balisage: The Markup Conference 2009, Montréal, Canada, August 11 -

14, 2009. In Proceedings of Balisage: The Markup Conference 2009.

Balisage Series on Markup Technologies, vol. 3 (2009).

doi:10.4242/BalisageVol3.Bruggemann-Klein01

[16] Persson, A., Gustavsson, H., Lings, B., Lundell, B., Mattsson, A., Ärlig,

U., OSS tools in a heterogeneous environment for embedded systems

modelling: an analysis of adoptions of XMI, 2005

[17] Westfechtel, B., A Formal Approach to Three-Way Merging of EMF

Models, in proceedings of the Workshop on Model Comparison in

Practice, Malaga, Spain, July 1, 2010.

[18] Wikipedia, http://en.wikipedia.org/wiki/Unified_Modeling_Language

http://www.omg.org/technology/documents/formal/xmi.htm

