
Merge of models: an XMI approach

Author: Antonio Martini

Supervisor: Lars Bendix

Parallel  working  of  several  developers  gives  many  advantages  in  a  software  development 

process,  but  it  causes  also problems:  among them,  there  is  double  maintenance.  To avoid  this 

problem, developers often have to integrate their works with the latest version to be able to release 

their  own  version  which  includes  the  previous  changes  as  well.  This  work  is  called  merging 

process: the developer mainly has to find changes among his own version, the last version on the 

repository and, in case,  the common ancestor.  Often,  his  changes conflict  with those added by 

others, so these conflicts have to be resolved. This task (the merging process) is quite important and 

hard to be done, so it should be carried out frequently and carefully: consequently, it requires a set 

of tools to be well performed. 

In the code centric development, we find a lot of good text-based tools which help managing the 

merge task. Lately, industries are increasing the use of Model Driven Development, creating models 

to  auto-generate  code.  Nevertheless,  the  environment  is  not  yet  mature  enough  to  support 

adequately  the  parallel  work  of  the  developers.  Unfortunately,  moving  from  a  code  centric 

development strategy to a model centric one showed that former textual-based merge tools do not 

work appropriately with models. In fact, models are serialized using the standard XMI: a language 

which creates documents containing structured data. Therefore, the comparison of text lines is not 

the best choice anymore, as a little change at the syntax and semantic level could correspond to 

several changes on the text level. Consequently, we need a more sophisticated solution in order to 

find, compare and resolve conflicts between model files, changing for example the granularity of 

the unit of comparison from the text line to the node of a tree. Model merge  tools are not precise  

enough either, since they have some problems such as detecting too many false positives and false 

negatives, or not merging considering the smallest possible element, but just raising a conflict if the 

same top level object is modified (too coarse granularity of unit of comparison). Moreover, they are  

all oriented towards interactivity, which means that the developer has to follow the entire merge 

process, conflict by conflict. Furthermore they have to choose “on the fly” among (probably) wrong 

alternatives provided, instead of looking for the connections between them, creating an “ad hoc” 

solution.

The aim of this thesis is to investigate the feasibility of a merge process for models using only 

the XMI serialization. We take three XMI files representing three models (the common ancestor and 

the two changed versions) and we provide a new file representing a merged XMI. 

The study of the XMI language has highlighted some problems, first of all, the fact that the 



same model could be represented by different XMI productions (different patterns of serialization 

and different versions), which means that we cannot compare a set of any XMI files. Furthermore,  

some patterns contain more model semantic information than others, or it is differently represented 

which means that we can make assumptions when dealing with a certain pattern, and these are not  

valid when dealing with another one. These considerations forced us to define some restrictions 

which have to to be satisfied in order to consider this work valid.

We proposed a 5-step merge process which takes as input  three XMI files and provides as 

output a new XMI valid file that represents the merged XMI tree. Such a process makes a diff of the 

files relying on unique identifiers (avoiding the expensive job of matching). 

The  proposed  algorithm,  once  all  changes  are  obtained,  finds  conflicts  among  them.  The 

algorithm works deeply, which means that two changes are in conflict only if they involve the same 

smallest structural element (fine-grain unit of comparison) and widely, which means that it should 

find every direct conflict. The algorithm warns also about syntax violations and distance-1 possible 

non-direct conflicts; it could be extended in a way to be able to warn also distance-n non-direct 

conflict. The algorithm merges non-conflict changes, which means that if two changes are not in 

direct conflict, they are applied correctly with respect with XMI syntax. 

The output is represented as a file in which we can find trace about all changes (also those in  

conflict),  so  the  algorithm runs  in  batch-mode.  In  fact,  it  reports  about  all  ordinary  changes, 

unsolvable  conflicts,  syntax  violations  and  possible  problems.  To  handle  such  reports,  three 

approaches are used: annotations to label a changed element, alternatives which show all possible 

solutions for a conflict, and warnings that report about violations or context-related problem. Since 

such mechanisms are not supported by the XMI language, we propose the use of the extension XMI 

tag and XMI comments. We also provided a specification which could be verified and extended by 

further research. 

Discussing outputs of the algorithm (which should be verified on a wider set of examples), we 

can observe how this XMI approach suffers from the lack of semantic information, which leads to a 

lack of warranty about correct model semantic output.

Finally, the algorithm at present is not completely environment-independent, since it needs to 

analyze a set of XMI files which are necessarily serialized using the same pattern, and it works 

better  on  a  specific  pattern.  However,  once  the  XMI  language  had  found  homogeneity  in  the 

specification  and  in  the  implementation  performed  by  tool  vendors,  we  showed  how  we  can 

provide, without any further information (other than the three provided files), a preliminary XMI 

valid  merge  which  includes  all  information  about  changes,  conflicts  and  some  model-domain 

problems which could be elaborated subsequently by the developer or by further tools.


