
A state-based 3-way batch merge algorithm

for models serialized in XMI

Aron Lidé

Supervisor: Lars Bendix

Department of Computer Science

Faculty of Engineering

Lund University

When working in a group of developers, it's pre-
ferrable to not lock the files from being edited by
more than one developer at a time. Therefore the
developers will have to copy the files in the sys-
tem to their own workspace where they can work
on them by themselves. This in itself is not a prob-
lem, but when the developers need to commit the
changes they've made to the system into the shared
version of the system, in the repository, the files
need to be merged with the new version of the sys-
tem in the repository as other developers have com-
mited their changes. There are di�erent ways to
merge �les, but most of them look at the two ver-
sions of a certain �le and their common ancestor to
see what changes that have been made in the dif-
ferent versions. These changes are applied in the
merged version as long as there aren't any con�icts
between the changes, like when the developers have
changed the same lines, in which case both changes
are represented in the text and the developer has
to manually fix the con�ict.

Since software development traditionally is done
in text form, almost all merge tools are developed
with text file merging in mind. However, with the
ever-increasing usage of UML and other models
for development in the industry, the need for
merge tools especially designed for merging models
has increased. Models are serialized into text
form according to XMI, an XML dialect, which
describes the syntax of the model. Merge tools
that are intended for text-based development can
easily break this syntax, making the �les unable
to be opened in their intended editors. To avoid
this, model merge tools often require the developer
to take care of the con�icts when merging, in an
order decided by the tool, before a merged output
file is created. But when merging, and especially
when merging with models, there is often need for
the developer to look at many changes that are
connected before deciding what to do. Therefore

we would like to o�er a solution where we create
a syntactically correct merged output directly,
without any input from the user, and include
all information about changes and con�icts in
the merged �le. This type of merge is called a
batch merge. The developer can then take care
of the con�icts with the �exibility to do so in
whichever order he wants, whenever he wants and
in whichever editor he wants.

In this thesis we have analyzed, designed, imple-
mented and tested a 3-way batch merge algorithm
for models, which means that the algorithm takes
two versions of the same model file together with
their common ancestor and without any input from
the user creates a merged output. The two versions
are compared with their common ancestor �le to
find changes. These changes are compared to find
con�icts and inconsistencies. Lastly the changes
are applied to a copy of the common ancestor to
create a valid XMI file. The algorithm is based on
the algorithm in Martini [1], but we have designed
a more detailed algorithm than Martini's and tried
to implement the algorithm to see if it's possible
to implement and to �nd the problems that appear
when doing so.

A model consists of nodes connected as a tree
where every node (except the root node) have
exactly one parent node, and every node can have
any number of child nodes and properties. The
properties of a node are identi�ed by their name
and they contain the actual data in the model in
form of strings. Every node has an ID property for
identi�cation.

We have analyzed the XMI model to find every
type of change that can be made on it and every
part that can be changed. The change types are ad-
ditions and deletions of both nodes and properties,
moves of nodes (changing a node's parent node),



updates of values of properties and reorderings of
the child nodes or properties of a node. Reorder-
ings were not discussed in Martini's thesis, but have
been introduced here.
Each change have speci�c attributes that that de-

scribe them. Each change is made in one of the two
versions of the model, it has a speci�c position in
the model (it pertains to a certain node), it is of a
certain change type, and may pertain to a certain
property and in that case have a certain new value
for that property, etc. These attributes describe the
changes, and their values di�erentiate them from
each other.
Using these attributes as basis we have managed

to thoroughly go through and compare every com-
binaiton of two changes that can be made. We have
compared every combination of two changes made
in one version of the �le to make sure that we can
�nd every change made in the models, and we have
compared every combination of two changes made
in two di�erent versions to �nd every inconsistency
that can appear. Inconsistencies are either direct
con�icts, syntax violations, or probable context is-
sues.
How to handle these con�icts and syntax vio-

lations has also been addressed. This is done by
choosing to not apply either one or both of the
changes in question. This can lead to further incon-
sistencies, but these cases have also been covered in
a satisfactory manner. We have also discussed why
any con�ict or syntax violation that appears due
to a combination of three or more changes always
only depends on two of those changes. That is, only
combinations of two changes (one in each version)
lead to inconsistencies, thus we need not look at
combinaitons with more than two changes.
In the merged output we wanted to give the

developer information about the changes made
through annotations, as well as warnings about re-
solved inconsistencies and probable context issues.
Unfortunately, the problem of representing this in-
formation in the models without breaking the XMI
syntax and without interfering with the rest of the
model was not solved. This lead to that the algo-
rithm was not �nished.
The design in this thesis is presented in detail.

The algorithm is naturally split into three parts.
TheModel Comparer part deals with how exactly to
traverse the models and compare the models to �nd
changes, the Change Comparer part deals with how
to compare the changes to �nd inconsistencies and
resolve these, and the Change Applier part deals
with how and in which order to apply the changes,
annotations and warnings so as to get a satisfacory

merged output.
To be able to test the �nal algorithm, a test suite

was implemented, although only partly. The test
suite presented is a black box test suite to make it
suitable for other model merge tools than the one
presented in this thesis. The analysis of the change
combinations made a very good basis for this.
There are also a few restrictions on the tool. The

input files need to have valid XMI, every node in
the models need to have unique IDs and the models
need to be serialized in a pattern that only allows
a certain type of node at a certain depth from the
root node, if you want to make sure that there are
no nested moves.
We hope that the analysis and design in this the-

sis can be of good use as reference for further work
on model merge tools and test suites for model
merge tools of any kind. The type of algorithms
used in model merge tools can di�er greatly, but
the types of changes and change combinations are
still the same on the XMI level.

References

[1] Martini, A., Merge of models: an XMI ap-

proach, Master's thesis, LU-CS-EX: 2010-28,
Dept. of Computer Science, Lund University,
2010.


