
Master’s Thesis

Variability Management with a Feature
Perspective

David Karlsson, D00
Department of Computer Science
Lund Institute of Technology
Lund University, 2004

ISSN 1650-2884
LU-CS-EX: 2004-04

Variability Management with a Feature Perspective
(External version)

by

David Karlsson

Master thesis

Computer Science and Engineering

Department of Computer Science
Lund Institute of Technology

Lund, Sweden

February 2004

 2

Table of contents

1 INTRODUCTION..4

1.1 PROBLEM DESCRIPTION...5

1.1.1 Background ..5

1.1.2 The problem - Configuration dependencies...5

1.1.3 The tasks...6

1.2 REMARKS..6

1.3 APPROACH ..6

2 SOFTWARE VARIABILITY...7

2.1 PRODUCT-LINES..7

2.1.1 Product-line problems ...8

2.2 VARIABILITIES EXPLAINED ...9

3 FEATURE MODELING...10

3.1 MODELING..11

3.1.1 The value of feature modeling..11

3.1.2 Defining a feature ..11

3.2 FEATURE DIAGRAMS ...12

3.2.1 FODA notation...12

3.2.2 UML notation...13

3.3 FEATURE SELECTION...14

3.3.1 Generating Feature diagrams..16

3.4 DOMAIN SPECIFIC LANGUAGES FOR FEATURE MODELING..............................17

3.4.1 Documentation and diagram generation ...18

3.4.2 Creating configurations ...18

3.4.3 Validating configurations ..18

3.4.4 An implementation ...18

3.5 FEATURE CROSSCUTTING ..20

4 A TRADE-OFF-ANALYSIS – DIFFERENT FORMS OF

CONFIGURATION...22

4.1 CONFIGURATION ALTERNATIVES ..22

4.1.1 Alternative A ..22

4.1.2 Advantages...24

4.1.3 Disadvantages..24

4.1.4 Alternative B ..24

4.1.5 Advantages...24

4.1.6 Disadvantages..24

4.2 DISCARDED ALTERNATIVES ..25

4.3 EVALUATION OF CONFIGURATION ALTERNATIVES ..26

4.4 ARCHITECTURAL CHANGES...27

4.4.1 Source tree composition...27

4.5 A NEW MECHANISM FOR CONFIGURATION OF MODULES................................28

4.5.1 Bundles of modules ..29

4.5.2 Breaking down features into functionality...29

 3

4.5.3 The build process ...30

5 TOOL SUPPORT ..31

5.1 TRACING CONFIGURATION DEPENDENCIES..31

5.1.1 Increasing the understanding of configurations in description files ...31

5.1.2 Implementation aspects..32

5.2 FLAG FINDER...33

5.2.1 Build-database-mode ..33

5.1.2 Flag-search-mode..33

6 CONCLUSIONS AND RECOMMENDATIONS...34

6.1 VARIABILITY MANAGEMENT...34

6.2 SUGGESTIONS FOR IMPROVING THE CONFIGURATION PROCESS....................34

7 BIBLIOGRAPHY..36

 4

1 Introduction

Ericsson Mobile Platforms AB is a company that develops platforms for mobile

communication. The customers of these platforms are mobile phone manufacturers,

which use them to create salable consumer products.

To be able to compete on today’s market for mobile platforms it is essential to be able

to create a large variety of products. This has lead to the adoption of the software

product-line approach since it enables developers to maximize reuse by creating (or

instantiating) products from a common code base by means of configuration.

The configuration process is of great significance since it is one of the last steps

before a product is delivered and it influences many areas of the development process

such as build time and software testing.

Creating a multitude of products from a common code base creates difficulties of its

own. There is no standardized way of modeling that captures the software variabilities

and commonalities in a clear, structured fashion. Furthermore, creating a multitude of

products from the same assets usually has effects on the architecture of the system,

which has to be recognized and handled in a satisfactory manner.

The mobile platform customers have very high demands on functionality and

configurability. It is challenging to foresee future customer requirements and how

they may affect the software architecture, by introducing new variabilities. This

makes it a necessity to fully understand and to have a complete process for managing

variabilities.

This thesis addresses both the design and implementation aspects of software

variabilities in the context of the configuration process.

The product-line approach and variability is briefly described in chapter 2.

Feature modeling is introduced in chapter 3, as an approach for handling software

variabilities in the design. It is a modeling approach where a customer perspective on

variability is used and it enables the developers to get and overview of the variabilities

of a software system.

Chapter 4 describes a solution for reducing unnecessary dependencies related to

configuration. A new mechanism for configuration is also discussed.

In chapter 5, tool-support for tracing dependencies is discussed. Areas for further

investigation are also discussed in the conclusions.

 5

1.1 Problem description

The problems, which this thesis addresses, are described here together with necessary

clarifications.

1.1.1 Background

The EMP platform is a source system (product-line) from where a number of

configured platforms can be derived. The source platform is a scaleable and

configurable product. Configurability is very important for the platforms customers

because they need flexibility to create the products they desire.

An important part of the development of the source platform is to identify, analyze

and describe the commonalities and variability among product-line instances. The

variability is explicitly modeled.

A variation point is a concrete point where variants of an entity can be inserted. A

variation point delays design decisions. There are dependencies between variation

points. A more detailed description of this is given in chapter 2.

There are different mechanisms that can be used in order to implement variability at

different binding times (source time, compile time, link time, install time, …, run

time). There is a dependency between variation points and architecture components

(modules). The implementation of variation points can also increase the dependencies

between modules.

Pre-processor directives are one mechanism that is used in the EMP platform in order

to include or exclude functionality.

1.1.2 The problem - Configuration dependencies

When creating a customer specific platform, the software is configured to include or

exclude functionality based on what the customer has purchased.

In many cases it is difficult for the programmer to track the implications of different

configurations. There is a need to model different types of dependencies:

!" Dependencies between variation points

!" Dependencies between variation points and modules

!" Dependencies between modules due to the implementation of variation points

Ways of reducing these types of dependencies should be studied. Tracing and

documenting these dependencies is also important. The difficulty lies in the often-

conflicting goals of minimizing memory use and constantly increasing the

functionality.

 6

1.1.3 The tasks

Through discussions with parts of the Software Architecture group, the scope of this

thesis was defined by four different tasks.

!" Study configuration dependencies in EMP mobile platforms.

!" Perform a trade-off analysis of alternative solutions for minimizing these

configuration dependencies.

!" Give a proposal on how the different types of dependencies can be represented

during the modeling.

!" Develop a tool to visualize configuration dependencies in the software

platform.

1.2 Remarks

The scope (given above) of this thesis was too large for one person, which was

evident fairly quickly. The main reason for that was the proposed tool construction,

which is very complicated, and time consuming even if one just constructs a

prototype.

Important as tool support might be, the other three assigned tasks had to take

precedence since they were meant to increase the understanding and reduce the

difficulties with configuration dependencies. This had to be done before considering

tool support.

1.3 Approach

A major part of the work needed for writing this thesis consisted of analyzing theories

about product-lines and variability. This was partly because of the theoretical nature

of the thesis and partly of the fact that feature modeling and variability management is

a relatively new field in computer science. It was therefore important to have a

fundament of knowledge in this field to be able to conduct analyses and propose

changes and improvements.

There are many different models and theories about how to handle variabilities and

features but since they are relatively new it was important to have solid information

about their use in real development projects. And that proved to be quite difficult

since companies are not inclined to publicize detailed papers publicly. But to be able

to provide at least some information about the state of things in other companies

regarding variability management was a major issue.

Some minor program construction was also done for parsing and analyzing the

platform code base.

In the following chapter product-lines will be described and discussed.

 7

2 Software Variability

This chapter is focused on concepts that are important for describing and handling

software variabilities.

2.1 Product-lines

A software product-line is a set of software–intense systems sharing a common,

managed set of features that satisfy the specific needs of particular market segment or

mission and that are developed from a common set of core assets in a prescribed

way[5].

EMP develops software platforms, which are used by companies for creating salable

mobile phones and other wireless devices. Developing platforms for mobile systems

is very costly and it is unrealistic for most manufacturers to actually create their own

platform from scratch.

The market for mobile phones is very diversified, there are a number of different

customer groups that demand different mobile phones with different functionality and

this is reflected in the software development process of telecommunication

companies.

The usual approach to software development is to develop one product at a time

but that is impossible due to market demands. It is essential to be able to provide

customers with platforms for the entire spectrum of mobile equipment, from the

cheapest low-end to the feature packed high-end products. And that is impossible to

do if all the different products are developed in completely independent projects

because that would create immensely expensive products.

This creates the need for a product-line. Instead of developing the different products

independently one exploits the commonalities in the products, different as they may

be, they are all used for mobile communication and there are great similarities

between them.

A code-base or a source platform is developed and maintained. The platforms are

created or instantiated from this code-base through configuration using various

mechanisms.

Configured

platform 3

Source platform

Configured

platform 2

Configured

platform 1

Figure 1.

 8

The platform is then customized for the specific needs of the customer. The saleable

platform is created by configuration and customization, but the customer also

configures the platform to create a saleable product, e.g. a mobile phone.

The product-line approach promises to enable an organization to create a large variety

of similar products, through a planned form of reuse, but it demands a lot from the

development process.

There is a price to pay for the increased throughout put of different products, that

the product-line approach allows. And this has to be recognized and handled to

maximize the benefits.

2.1.1 Product-line problems

The two main problems with product-lines are modeling and managing variability. It

may seem simple to develop a source platform and then configuring it to create the

different platforms. However, the idea with product-lines is to rely heavily on reuse of

software components. But in many cases it is not enough just to pick and choose

components to instantiate a product. The different components will also need to be

configured. This means that the internal structure of the software components will be

complex.

The goal is to make it possible for product builders to focus on specific platforms and

reuse the common architecture and building blocks that make up the source platform.

However, the complexity of the code-base makes it difficult, in many cases, to

actually understand the implications of different configurations. This complicates

testing.

If the implications of a configuration are difficult to understand, it will be hard to

know what needs to be tested, when instantiating a new platform. And testing all

possible configurations is not always a feasible solution.

Maintenance is also affected by these complexities. By maintaining the code-base you

are maintaining all the products that are created from it. Changes (e.g. bug fixes) to

the code base are done only once, instead of once for every product, which is a big

advantage. But different customers want different things from different platforms. A

change in a platform, if not customer specific, should be integrated into the code-base,

which may affect many other platforms. The initial cost for making a change is less

but understanding its effects might be challenging. The evolution of software

components further complicates this since different versions will have to be

maintained concurrently.

Handling and understanding the complex relations that are a result of the variability in

a highly configurable platform is essential for product-lines. This demands a

structured and well-developed configuration process, which describes the

configurations, the variation points and the constraints and dependencies between

them. Feature modeling (described in Chapter 3) is one approach for managing

variability in the modeling domain, and it creates a view of variation points and their

dependencies.

 9

2.2 Variabilities explained

A variation point is a point in the design domain where a decision is delayed.

Delaying design decision creates a more generic product since each choice taken

limits the set of products that can be created.

There is an important distinction between the variation point and its implementation.

A variation point is a point in the design, where a decision is delayed (like the use-

case below). The implementation of that variation point is in the code. And the

implementation is not a point; it does not need to be localized in one place. There

could be a number of statements like the one below, in different files, but it would still

be the implementation of one variation point if the flags MP3 and WMA are

responsible for the decision on what variant to choose.

E.g. Use-case: “the user should be able to play audio in some format”

Example of an implementation of a variation point at run-time:

if(MP3)
 Variant 1 code
else if(WMA)
 Variant 2 code
end

In this case there is a choice between running either the code from variant 1 or the

code from variant 2, depending on what flags are set or not.

When the decision is made concerning which variant to use, it is said that the

variation point is bound. Variation points can be implemented (and bound) at different

binding times, e.g. pre compile-, compile-, link-, install- and run-time (like above).

 10

3 Feature modeling

“A feature model covers the commonalities and variabilities of software family

members, as well as the dependencies between the variable features”[2].

The main idea with the product-lines is to use core assets to create a variety of

different products. This created a need for ways of modeling the variabilities and

commonalities this approach creates. The most influential approach for doing this is

feature modeling, which was introduced in the Feature Oriented Domain Analysis

(FODA) feasibility study [2]. A recent extension to this model is the Feature-Oriented

Reuse Method (FORM) model [3].

In the following sections feature modeling and its usage will be described. Feature

modeling is interesting because it gives developers a new tool for describing the

variabilities and commonalities in a software system. Use-cases are commonly used

for this but it is in many cases difficult to describe software systems clearly using just

this approach. Especially in feature intense systems, like telecommunications

software, a feature oriented view has proved to be valuable. Examples of

telecommunications companies, that are using concepts influenced by FODA, are

Nokia[4], Telecom Italia[6] and Nortel[12] and Bell Northern Research[13].

 11

3.1 Modeling

This section defines features and motivates the usage of a feature model.

3.1.1 The value of feature modeling

 “The feature model serves as a communication medium between users and

developers”[2].

One of the ideas with the feature model was to capture the variabilities and

requirements that the customer recognizes and to be able to represent them in a way

the customers can understand. It could therefore be used in marketing as a way of

describing and presenting the system’s configurability.

However, the greatest advantage is for the developers. Feature modeling will give

developers a clear overview of the features in the system and how they depend on

each other. Variation points and constraints between features are explicitly modeled

which promotes a more structured handling of variability and configuration.

Feature modeling is a part of many (application) domain-modeling approaches.

Domain modeling is complete approach for identifying and describing the variabilities

and commonalities within a family of applications. If feature modeling is going to be

used an evaluation of these approaches should be done since feature modeling is more

useful in conjunction with a domain modeling approach. Evaluating these approaches

is outside of the scope of this thesis but a good start would be to read about the FODA

inspired model FeatureRSEB[13] which is a simpler and more understandable model

than FODA itself.

3.1.2 Defining a feature

A feature is a characteristic of a system that is relevant to a stakeholder. In other

words, something that someone e.g. a customer recognizes and values. This is one of

the more commonly used definitions; the vagueness of this definition is both its

strength and weakness.

When discussing features in general terms this definition serves its purpose. But,

when designing something specific it would be valuable to further specify what the

word feature means, and define different classes of features. A feature is not just a

chunk of functionality.

In the FODA model a feature is either

!" Mandatory

!" Optional

!" Alternative

Optional means that there is a choice whether the feature is bound or not, as opposed

to mandatory. Alternative means that only one feature can be chosen from a set of

features.

 12

There can also exist constraints between features:

!" Requires

!" Mutual exclusion

A feature can require the existence of a set of features. The existence of a feature may

also be mutually exclusive to the existence of another feature.

3.2 Feature diagrams

An important part of feature modeling is the feature diagram. Two examples of

feature diagrams are given below, with different graphical notations to show the

different constructs present in the feature model. The value of the different notations

is also discussed.

3.2.1 FODA notation

A feature can either be optional, mandatory or alternative. An optional feature is

described with a small circle and an alternative is represented with an arc, all other

features are mandatory (none in Figure 2). Mutual exclusion and requirements are not

modeled graphically in the FODA notation.

WMA

Multimedia

Services

Audio

decoders

Video Support

AMR AAC Streaming

WMA
MPEG4 H263 WMV

Figure 2. An example of configurable multimedia services

The interpretation of this diagram is very straightforward: all features are optional,

which is true, but it is an oversimplification because requirements are not modeled

graphically in FODA.

 13

This example only uses features controlled by compiler flags. The features could be

further broken down to show internal configuration. However, just documenting the

usage of a specific mechanism is not feature modeling. Variability is most easily

captured when pre-processor flags are used but that does not mean that one should

only model variability implemented with that mechanism.

3.2.2 UML notation

Extensions of UML[7] for modeling features has also been proposed, which appeals

to developers that are more familiar with UML notation. They have also given the

notation more expressiveness, compared to the FODA notation. The same example is

given using UML notation in Figure 3 below. The extension in expressiveness

consists of modeling requirements graphically. The feature IPv4 was included

because streaming WMT requires that it exists.

Multimedia Services

<<optional>>Video Support<<Optional>>Audio Decoders

<<optional>>AMR <<optional>>AAC
<<optional>>

3GPP STREAMING

<<optional>>

WMV

<<optional>>

H263

<<optional>>

MPEG4

Data Connection Services <<optional>>IPv4

<<optional>>WMA
*

Requires

*

Figure 3.

This gets complicated very fast, even thou only requirements from “3GPP

STREAMING” are modeled in this example. The complete picture is much more

complex. Dependencies like these are modeled in the feature model but a decision

was made (in the FODA model) not to include them in the graphical notation because

they make the diagrams too complicated to read.

So creating a new graphical representation with more constructs is not something

that necessarily is more useful. This does not mean that these requirements should not

be captured, they should, but they might not need to be modeled graphically, at all

times. Textual descriptions of the features should in all cases accompany the graphical

model.

 14

3.3 Feature selection

Feature modeling is usually done after domain modeling but describing the complete

process is outside of the scope of this thesis. Nonetheless, creating a first feature

model of a system should be possible to do for domain experts, without a formal

domain analysis. Hence, even though FODA is not incorporated in the development

process, feature modeling could still provide an interesting and helpful view in the

design and development process.

To create a feature model the different features in the system have to be identified,

and how they depend on each other. To ease the task of extracting features FODA

specifies four different categories of features.

!" Capabilities, what an application can do, from the users perspective

!" Operating environments, in what environment the application is used, different

hardware, operating system etc.

!" Application domain technology, e.g. domain specific methods

!" Implementation techniques, e.g. mechanisms, protocols, etc.

This should ease the process of finding features and will also give the feature

diagrams a layered structure with Capabilities being the highest layer and

Implementation the lowest.

A good starting point for finding features and building the feature model is the use-

cases, since that is where most variation points exist. An approach similar to the one

given in FODAcom[6] (and extension to FODA) is to create the feature diagram by

creating a root node of the use-case. The feature tree is then created by putting the

root node in a composed-of relationship with the variation-points and then put the

variants under their corresponding variation points.

An example where this approach is applied on a use-case:

(ME: mobile equipment)

Using this use-case and the approach described above will give a diagram similar to

the one in Figure 4.

Play Audio

The ME user listens to audio typically stored on a memory card or in internal flash.

The ME supports internal loudspeaker and accessories for both mono audio as well as high quality

audio (stereo) via a handheld audio accessory.

The ME supports MIDI, MP3 and AAC in high quality. It is also possible to play mono AMR

clips. If a stereo headset is used, the sound is played in both speakers.

 15

Play Audio

Storage

Media type Output

deviceMemory

Card

Internal

Flash

Midi Mp3 ACC AMR Internal

speaker

Audio

Accessory

Quality

Stereo Mono

Dependency

Figure 4. The diagram describes the variability seen from an end-user perspective when all features

have been included. End-user means run-time, so media type, storage and playback device is a run

time decision.

The interpretation of this diagram is when the user plays audio it is played exclusively

on the internal speaker or an audio accessory. The audio is stored exclusively on a

card or flash and the format of the audio is one of the supported media types.

How the quality attributes are incorporated in the model is not trivial because there

are dependencies between the media type, the output quality and the output device.

And it is not entirely clear which dependencies are present just from this use-case, e.g.

is MP3 playable through the internal speaker? Yes of course, but that can not be

deduced from the given use-case alone.

To be able to describe the constraints imposed on features it may be necessary to

look beyond a specific use-case. But that is only natural because the feature model is

not supposed to describe the use-cases but instead the features and their constraints

and dependencies. Dependencies may very well exist between features in different

use-cases. The use-cases can be a starting point for building a feature model, but it

should be further developed by incorporating features extracted from other use-cases

and requirements. And that is the advantage, since it gives you an overview of the

features, which use-cases do not permit.

An issue concerning feature modeling is that there is a need to describe the variability

in different steps. When the platform is instantiated the customer has a choice about

which features to include or exclude. But the end user will also have a choice

concerning which feature to use at runtime. Since the customer and end-user choice

may be the same (but different at binding times) it will prove to be cumbersome to

represent it in the same diagram.

 16

E.g. media support for MP3 or AAC is bound at pre-compile time. If we have decided

to move some of the configuration to runtime, and not to allow the end-user play MP3

(but still include support for it), that would mean that there is no choice concerning

what audio codec to use, for the end-user. But there is still a choice whether to enable

support for it in the platform.

Just because there is a choice concerning a set of variants that will be supported

there is not necessarily an end-user choice regarding which one that should be used.

This was not a realistic example, but scenarios like this could potentially create

problems if different binding times are mixed in the same diagram.

3.3.1 Generating Feature diagrams

Relying on that developers will actually draw these diagrams and maintain them

might be dangerous because they are not a necessity but a complement to use-case

modeling. Motivating developers to maintain it will be difficult. Furthermore, there

is probably not much room for adding additional costs for documentation. It is

therefore important to have an intelligent approach for handling the feature model.

If structured textual feature descriptions are incorporated in the configuration

process (which is described in Section 3.4) they will describe the system variability in

a structured fashion and be used for generating feature diagrams. Feature descriptions

are versatile and creating feature diagrams is just one application, which would be a

motivator for maintaining them; hence the generated feature diagrams are more likely

to be up to date.

One advantage with the FODA feature diagram is that they are easy to generate from

textual descriptions, because of the simple tree structure. In the UML case you will

need more complicated layout algorithms to handle the more complex structure, that

e.g. requirements creates.

An example of using XML for generating UML diagrams is given in [9], where

the problem of layout is addressed in a way which is satisfactory for most situations

but there will definitely be cases where the diagrams must be modified to make them

readable. This has to be taken in account, if a diagram generator is to be constructed

then a diagram editor should accompany it.

You might of course decide to use the UML notation without using the requirement

construct but then the only real difference will be a bigger and less manageable

diagram.

There are cases where either solution is appropriate but what is of importance is not

how features are represented but instead that they are formalized. Structured textual

descriptions of the features, which describe the features themselves and the

constraints, are necessarily.

 17

3.4 Domain specific languages for feature

modeling

One of the more interesting ways of handling feature modeling is to do so using a

domain specific language[1] to specify and describe the features of a software system.

The idea is to create a structured description for each feature in which you describe

the feature itself and constraints and dependencies that affect the feature. In the table

below an example of a possible feature description is given.

Key Description

Feature description A textual description, understandable to

the user or customer and/or a link to

documentation in e.g. HTML

Parent feature The feature that this feature is a sub

feature of

Feature Type Optional, mandatory or alternative

Constraints and dependencies All types of constraints on this feature,

e.g. which other features are required to

exist (or not)

Modules affected Which modules are affected by this

feature in the implementation

Binding Mechanism The type of mechanism used to bind the

feature e.g. Compiler flag, and which

specific binding mechanism used

… …

The “Modules affected” tupple would be the first step on an attempt to create a

mapping from the feature domain to the implementation. This is a challenging task

but it would create means to understand how modular dependencies are affected by

variability, which would be interesting from a developer perspective.

Tool support for the creation and usage of this is a must, the textual descriptions

should therefore be in XML because of the vast array of existing tools for parsing

XML.

<FEATURE>

 <FEATURE_NAME>Feature name</FEATURE_NAME>

 <DESCRIPTION>

 …

 </DESCRIPTION>

 <PARENT>Parent name</PARENT>

 <FEATURE_TYPE>Optional</FEATURE_TYPE>

 <CONSTRAINTS>

 <REQUIRES>…</REQUIRES>

 <REQUIRES>…</REQUIRES>

 </CONSTRAINTS>

< MODULES_AFFECTED>Module id< /MODULES_AFFECTED>

</FEATURE>

 18

If these structured descriptions are created there are at least three interesting uses,

which are connected with each other.

!" Using the descriptions to generate feature diagrams or other types of

documentation, that can be used by developers and end-users.

!" Creating configurations.

!" Validating configurations.

3.4.1 Documentation and diagram generation

The first point is self-explanatory and easy with the descriptions in place, being so

easy to generate there is no reason for drawing them manually. Especially in a large

system it is unrealistic to think that someone will do so. Furthermore, feature

diagrams are not always be the best form of representing the features; just a table with

the feature descriptions might be suitable in some cases, which is just as easily

generated.

3.4.2 Creating configurations

The whole idea with describing the features is to capture all the possible choices that

can be made when a user is configuring (binding features). If it is feasible to capture

all the possible choices then that can be described in the feature domain. If there is a

way of transforming the configuration from the feature domain to the implementation,

an actual configuration could be generated. By choosing a set of features, a set of e.g.

compiler flags could be generated, that will give that specific configuration.

3.4.3 Validating configurations

The idea with validating configurations is to use the feature constraints to validate the

configurations with a mathematical algorithm, in the feature domain. It would be

helpful to do so if configurations are to be done from the feature domain. This way

making sure that the configurations are valid before using them. An implementation

of this is described in [1]. There are some improvements and additions that have to be

made before it can be used in practice but they are addressed in[1].

3.4.4 An implementation

A prerequisite for implementing this is that it is possible to model most features in

practice. It is relatively easy to do with features that are bound at pre-compile and

compile time because of the mechanisms used; meta language and pre-processor

flags, which usually results in distinctly defined features.

However, at later binding times parameterization is used, which creates less

distinctly defined features. But, if capturing the features is too difficult, one could

settle with showing that certain features are configurable and with what mechanisms,

instead further decomposing them into smaller parts.

 19

Given a code base that is already in place someone will have to describe all the

features with feature descriptions. Tool support is needed in order to ease that process,

and the textual descriptions will have to be maintained and synchronized with the use-

cases and requirements. Using more or less abstract features could moderate the cost

for this.

In any case, if structured textual feature descriptions are to be used it is important to

take full advantage of them. Integrating them with a CM tool is a natural idea for

minimizing the synchronization problems between the descriptions of the variability

and the implementation of it. One way of doing this would be to add feature

information into the description files and handle variability in such a way that the

feature descriptions could be generated from the implementation, but this is

something that needs further investigation.

The main interest in this chapter was how a feature model could be maintained.

Creation of configurations from the feature domain and integration with CM tools is

interesting, but something for the future.

 20

3.5 Feature crosscutting

Product-line architectures have many advantages but its goal to maximize reuse also

creates problems. The problem arise from the fact that features in many cases are not

mapped to single components, but instead spread over a set of components which is

commonly referred to as feature cross-cutting.

This may be a result of poor decomposition of the features into components,

which could be a result of the fact that some features are not removable when initially

introduced, but customer requirements make it necessary to sometimes exclude them.

This makes it important to have clear configuration requirements, to avoid quick fixes

as much as possible.

Feature crosscutting degrades the systems architecture but it seems to be unavoidable

in complex systems because it allows developers to introduce new features with

relatively small overall costs.

The cost for introducing a feature which crosscuts may be very low if it exploits

commonalities with other features. In other words if it is reusing existing components

or parts of components. Furthermore, if a feature has large commonalities with

existing features a complete separation will mean that essentially the same thing will

need to be maintained twice.

Nonetheless, feature crosscutting has to be treated with much care. There must be

large amounts of commonalities between features to make it beneficial for them to

crosscut. Even though it seems to be ineffective to maintain separate components

which exhibit large commonalities, merging them might drastically increase the

maintenance cost because of the complexity of the resulting component. Testing,

readability and traceability will suffer to some extent in most cases, even if there were

great commonalities between crosscutting features.

The difficulties lies in understanding when to decompose crosscutting features into

separate components and when not to. It is difficult to quantify the different measures

that determine if feature decomposition is beneficial but two fundamental properties

of a feature is the amount of commonality with other features and localization; how

widely the feature code spread in source files, over source files and over modules.

Localization is important since it determines how easily it is to understand the impacts

of a feature on a software system, which is a major difficulty for crosscutting features.

And this could affect the configuration process, since it may be difficult to fully

understand the consequences of a configuration.

There are no simple solutions but when using compiler flags localizing the usage at all

levels is essential, especially inside single files. Using multiple flags in multiple

places in C-files makes them very difficult to understand. Each compiler flag should

therefore be made to mean as much as possible, not being used as much as possible. If

a feature is to be removable it should, if possible, be done with one reference to one

flag for each file where the feature is defined.

Feature crosscutting is acceptable if it means that distinctly defined code localized

within files and components is spread over a set of components, since that will make

 21

the development and maintenance cost low enough to justify the structural problems it

introduces. Furthermore, complex logical pre-processor statements should preferably

be avoided since it decreases traceability and readability.

 22

4 A Trade-off-analysis – Different forms of

configuration

In this chapter, alternatives for reducing the number of unnecessary complete rebuilds

and increasing the traceability of configuration are evaluated. An alternative

configuration mechanism for SDE is also discussed in Section 4.2.

SDE is a software development environment, which handles the building process,

and interfaces with configuration management tools.

4.1 Configuration alternatives

This chapter describes different approaches for replacing global configuration files.

4.1.1 Alternative A

If global configuration files are to be removed the information they contain has to

reach the modules in a different way, and since global inclusion is removed the

location of modules with interest of specific flags has to be explicitly defined. Further

more, it must still be possible to do the configuration in one location.

For this to be possible it has to be specified who has interest in what flags to avoid

creating unnecessary dependencies. This could be done in a special file (configuration

dependency file), which would contain the flag names and the locations of internal

module configuration files, which reference specific flags.

A generator could then generate internal configuration files for the modules, thereby

giving them the feature knowledge that they need, according to the configuration

dependency file.

Templates of the internal configuration files have to be created, which would

mean creating files with tags where the defines-statements are to be inserted.

Templates are necessary since it enables developers to insert static pre-processor

directives in the configuration files.

 23

internalcfg1.h internalcfg2.hh

Module 1 Module 2 ...

Specify Flag usage

SDE

Figure 6. Conceptual outline for generation of module configuration

After the configuration files are generated they will have to be made available to the

modules. Storing them locally and making the modules include them can do this.

Another approach would be to generate a separate file, only containing the generated

flags, making each internal configuration file include its specific flags. This would

remove the need for tags in the files, but on the other hand, it would create an

additional header-file for each module.

In any case, what is generated has to be compared with what was previously

generated because it cannot just replace the set of generated files with a new set of

generated files, even if they are identical. Otherwise this may lead to a complete

rebuild if the build process is uses dates to recognize changes.

 24

4.1.2 Advantages

!" A flag change will only lead to recompilation of affected modules.

!" Transparent to most end-user.

!" Does not create additional header files (if an internal configuration file exists)

!" Module configuration completely contained in the module.

4.1.3 Disadvantages

!" The configuration dependency file, which describes what modules need what

flags, has to be defined and maintained.

!" Modules that are using the flags must have an internal configuration file.

!" A tool for configuration is necessary. The dependency file gives you a

centralized view of the configuration but changes must be done at module

level.

4.1.4 Alternative B

A seemingly simple way of replacing global configuration files is to rely entirely on

compiler switches. This can be done by creating module specific variables (in the

meta language) that contain all the flags a specific module is allowed to reference.

These flags can then be transformed into compiler switches, which are applied to the

modules internal configuration file.

The compiler switches can then be used to control which internal flags that will be

defined in each module. Hence, the result will be just the same as using global

configuration files.

4.1.5 Advantages

!" A flag change will only lead to recompilation of affected modules.

!" Existing mechanisms are sufficient, modifications of CM-tools are in most

cases not necessary.

!" Does not create additional header-files (if an internal configuration file exists)

4.1.6 Disadvantages

!" Adding a lot of complexity to the products description files.

!" Modules that are using the flags must have an internal configuration file.

!" Configuration is not contained in the module, but instead in the make file.

!" Tool support will be necessary.

!" The description of what modules need what flags has to be defined and

maintained.

 25

4.2 Discarded alternatives

In this section alternative solutions are presented, together with arguments why they

were discarded.

One solution would be to create a single header-file for each flag and let the modules,

which are interested in a set of flags, include the corresponding header-files.

However, adding a large number of header-files is not a very beneficial solution since

it will increase build time. It would also create the need for a tool support to give the

users a centralized view of the configuration.

Another solution would be to create a header-file containing all the flags that are

referenced by each functional stack since in most cases features do not crosscut over

different stacks, thereby limiting their scope. Or putting them in groups, which are

only allowed to reference certain modules. But there are no guaranties that the flags

will not crosscut different stacks or groups in the future.

Maintaining this will be complicated since there are ideal groupings of the flags, in

the sense that unnecessary dependencies are minimal. Adding or removing flags

might make it necessary to change the grouping, to keep the unnecessary

dependencies at a minimum. This will involve adding/removing files, include

statements and pre-processor statements.

Hence, keeping the system buildable will inevitably be more costly than before,

and tool support for configuration will also be needed.

 26

4.3 Evaluation of configuration alternatives

Alternative B adds a lot of complexity to the platforms description files and

maintaining them will require tool support. Furthermore, storing the configuration as

compiler switches in the make file makes it difficult to understand what happens

when the configuration is made, as opposed to in alternative A where the

configuration is generated and stored in the modules internal configuration files.

Alternative A might demand that the CM tools are modified but it does not only

reduce the number of rebuilds but also creates a clearer connection between the

configuration and the implementation. This is valuable for the understanding of

configurations and their implications, and would give more control over the usage of

pre-processor flags.

The downside is that it will demand more work to keep the system buildable. The

configuration dependency file must be maintained so that modules that require

knowledge of certain flags get access to them. This should preferably be done by one

organizational entity as opposed to by all module developers, to make sure that there

are no unused flags in the platform, thereby preventing unnecessary complete

rebuilds.

Whether Alternative A is a solution of practical use depends on a number of things.

The value of the increased traceability and (the possible) reduction of the number of

complete rebuilds should be compared to the implementation- and maintenance-costs.

 27

4.4 Architectural changes

The discussion in the previous sections was focused on the replacement of global

configuration files and even though it could be beneficial, it is a solution with little

concern of the bigger picture. In this section a broader perspective is taken on how

modules are configured in CM tools. However, this chapter is mainly concerned with

ideas and not solutions, since further investigation is needed.

It is common that modules have knowledge of the implemented features since it

enables them to determine how they are to be configured. An advantage with this is

that each component can make sure that it is consistent with the rest of the system.

Still, making software components very much dependant on their environment creates

a number of problems. It is difficult to understand the dependencies between

components, the system becomes less scalable and building separate parts of the

system is complex.

4.4.1 Source tree composition

An approach that could have positive effects on architecture and issues mentioned in

previous chapters (such as build time and traceability) is source tree composition [10].

The idea is to build a source tree of the system where the building blocks are

configurable components. The components are configurable through interfaces which

describe what the component provides, and also specify what it requires, thereby

promoting a weak coupling between the components.

Features, which is a natural choice of

top nodes in this source tree, points

out and configures the components

(or sub features) implementing it,

and the components do likewise with

their sub components.

The big difference between this

approach and more commonly used

approaches is that the requirements

are directed solely downwards. A

module does not require that a

feature is active, but instead the

feature requires a module to be

configured in a certain way.

To be able to build this source tree

there must be a definition of each

component containing its

configuration interface, requirements

and identity. In [10] this is called a

source code package. With this in

place, the idea is to pick the features and then let a tool collect the packages that are

necessary for creating a consistent system with the correct build order.

sub

feature1

sub

feature2

moduleCmoduleBmoduleA

C(k3)B(k2)

Feature1

A(k1)

sub

module1

Sub

module2

m2(x)m1(x)

Figure 7.

 28

When software components are configured by higher-level components partial

configuration is necessary, because features sometimes crosscut over the same

components. Otherwise that may create conflicting configurations, which has to be

discovered and handled by the build process.

In Figure 8, two sub-features

require the same module and

there is no reason to assume that

they require the same

configuration of module C.

A conflict occurs if two

configurations are applied to the

same component if, and only if,

common parameters are bound to

different values.

If two configurations are

conflicting the build will be

inconsistent and this has to be

discovered to abort the build.

Figure 8.

There might of course also exist dependencies between the input-parameters (which

should be avoided) that can cause conflicts, but that has to be handled internally by

the component.

When the packages are collected the source trees of the individual packages can be

collected to create the complete source tree. And since the packages are collected

according to the specification of requirements in the source packages, the correct

build order will be implicitly given. The source tree will be built level-by-level down-

to-top, since a component should only be built after all the components it requires are

built.

4.5 A new mechanism for configuration of

modules

Tools that support global variables as the single mean for configuration of modules

are not ideal in terms of supporting traceability. A more restrictive configuration

mechanism would also simplify the usage of configuration interfaces.

When a module is included, the name and the version are specified in the description

language. It would be natural if the configuration of the module, in terms of a set of

variables, were specified here too. The module would have to specify a configuration

interface, e.g. what types of variables it accepts, where the type could be determined

by the names of the variables since different data types are not supported.

It is very important that configuration descriptions of the modules are easily

accessible for the users to make the configuration straightforward. The configuration

sub

feature1

sub

feature2

moduleCmoduleBmoduleA

C(k3)C(k2)

Feature1

A(k3)

sub

module1

Sub

module2

C(k4)

sub

feature3

sub

feature4

Feature2

m2(x)m1(x)

 29

description should at least contain a short textual description of the module, possible

input values and the explicit requirements that the module imposes on the system.

4.5.1 Bundles of modules

Just changing the configuration mechanism will not remove the modules dependency

on the features. The logic that is concerned with features has to be moved out of the

module.

One could place it in the product description file but the risk is that it will make

the product description file unmanageable, and not just difficult to read. It will also be

much harder to distribute the responsibility of keeping the system consistent. In [10] it

is suggested to create a module for each feature, which will contain the configuration

logic and point out the modules that make up that feature. But it is probably sufficient

to place them in a single description file, thereby making it possible to get an

overview more easily and to avoid creating a large set of new files, that would have to

be versioned and managed.

4.5.2 Breaking down features into functionality

To get a clear separation between the features and the implementation, the modules

should not be allowed to reference feature flags (giving them feature knowledge). The

feature flags must be broken down to implementation flags (one-to-one or one-to-

many). This has to be done outside the module, either in the product or the feature

layer. However, it is not always possible to do a meaningful functionality breakdown.

E.g. a pre-processor flag controls whether a feature is included or not. The feature is

crosscutting over a set of modules, which means that the pre-processor flag is

referenced in a set of modules. If the modules should not have feature knowledge the

feature flags will have to be replaced with module specific flags.

If possible, the feature flag should be replaced with one module specific flag for each

module. But it is not certain that the feature flag excludes/includes distinct

functionality completely contained in single modules, because of crosscutting. This

means that it will be difficult replace the feature flag without disclosing the feature

name. The meaning of the code exclusions in a single module may not make much

sense if it is not clear what feature it is a part of, which forces us to give the module

feature knowledge.

One could also try to break down a feature flag into a number of flags (for each

module) so that each flag would describe what it is actually used for. Even if the

usage of a feature flag does not make sense in the context of that specific module it

could be possible to decompose it to parts, which could be given meaningful names

themselves.

However, this should be done with care since the result might be source files

where a number of flags with different names are used, but the only combination will

be either all are defined or all undefined, since they all replace a single feature flag.

 30

In some cases the best solution will be to create module specific flags, which will

reveal the feature name. This will give them feature knowledge, but it will still be an

improvement because the connection between features and modules will be clearer.

Nonetheless, dividing features and implementation as much as possible would make

the process of product instantiation more structured and therefore more easily

understood.

4.5.3 The build process

Adapting to source tree composition is a major task but one could take a first step in

that direction by decoupling the modules from the system by changing the way they

are configured. That would have positive effects by itself; a more layered structure,

and open the door for source tree composition without making it a necessity to

actually do it.

This form of configuration would also make it much easier to create tools for tracing

the configuration dependencies. Impact analysis on different configurations could

thereafter be performed more easily.

The advantages are that there is a clearer separation of software components;

requirements are modeled explicitly and requirements are always (or mostly) directed

downwards.

 31

5 Tool support

In this Chapter tool support for tracing configuration dependencies is discussed. A

modification of SDE is suggested to increase the readability of description files. A

simple tool which was used while writing this thesis, for simplifying flag searches is

also described.

5.1 Tracing configuration dependencies

In the previous chapters much has been said about the lacking visibility of the

implications of configurations. A solution to this could be to create a tool for

increasing traceability.

The main problem is that most of the configuration is done by meta languages; the

SDE description language, and C-pre-processor statements, which are alike in the

sense that they have basically the same logical constructs.

The ideal would be if it was possible to create a map of the usage of these

constructs in description files and the source files, but this is extremely difficult. This

is mainly because the complex logical statements that these meta languages allow

creates very complex structures. Considering the number of flags, files and references

to these flags, the set of possible paths of execution is huge, and describing this

clearly and informative is very difficult.

There are few commercial tools that handle this in a satisfactory manner and the

research in this field is limited. In [15] an approach for visualizing the usage of pre-

processor statements is described, which probably is the best attempt I have seen.

However, this approach is only applicable for single files. Which is by no means

sufficient.

But [15] gives at least the reader an understanding of how difficult it is to capture

these dependencies clearly. Constructing a usable tool for doing this in an industrial

project will require much more research.

5.1.1 Increasing the understanding of configurations in

description files

Even though it is difficult to clearly describe the implications of a configuration in all

stages, improvements can be made which would drastically increase the readability of

the description files.

The description files are used to generate the make files. When the make files are

generated SDE first pre-processes these files and exclude statements, depending on

the configuration.

It would be very instructive to show which statements are excluded, thereby

showing the implications of a certain configuration. The user would be able to see

which files and modules that are actually included and what variables that are set, in a

build.

 32

5.1.2 Implementation aspects

To create this view it is necessary to pre-process single files and compare them with

the originals, thereby deducing which lines are excluded.

A mechanism for pre-processing single files exists, and is used in a plug-in to Visual

Studio. When this function is used on a description file the given file is pre-processed

and returned with the extension _preproc.

The output format of the SDE pre-processor will have to be slightly changed.

!" All variable assignments (in all description files) are evaluated, removed, and

written to the end of the pre-processed file.

!" Lines with comments are completely removed.

File and module inclusions, on the other hand, are not removed. These are just

examples, a complete evaluation of how the pre-processor handles different

statements should be done.

Pre-processor directives and commented lines should be replaced with empty lines. It

is essential not to remove lines or changing the structure of the file when pre-

processing since it will make a comparison with the original file difficult.

The suggested modification involves either changing the pre-processor output format,

or implementing an alternative output format. If that is done it will be trivial to give

the Visual Studio user a view of description files, since all that has to be done is a

line-by-line comparison between the original and the pre-processed file.

 33

5.2 Flag finder

A very simple tool was constructed, which was valuable when writing this thesis, and

it could possibly be useful for some users. It does not make an attempt to trace the

configuration dependencies, it just simplifies searching for references to different

flags in the platform. The tool has two modes of operation.

5.2.1 Build-database-mode

To speed up searches a database for the references needs to be built. The database is

built for a specific flag prefix. If searches of flags with different prefixes are to be

made the database will have to be rebuilt. (Building a database for CFG_ENABLE_-

flags takes less than a minute).

Input: A flag prefix

The path to a snapshot view

Output: A file, flags.txt containing:

1. A list of all flags with the given prefix, together with the total

number of references.

2. A list of all flags with the given prefix, together with the

names of the modules in which references are made.

3 A list of all modules, together with the set of flags with the

given prefix that are referenced in the specific modules.

A database file which is used for Flag-search-mode.

Syntax: java FlagFinder –build CFG_ENABLE_ “c:\..\snapshot”

5.1.2 Flag-search-mode

Uses the previously built database search for specific flag searches. A search takes

less than a second.

Input: A flag name

Output: A list of all files that refer to the given flag, together with the

number of references per file.

Syntax: java FlagFinder CFG_ENABLE_BUZZER_SUPPORT

The program does not analyze the references syntactically, it just searches for the

occurrences of text strings that match the flag, which are not in a comments. This

means that the references are both pre-processor and runtime references. The tool can

easily be improved to separate these two cases, and also to do simple syntactical

checks. However, relying on the uniqueness of the flag names instead of syntactical

check has the advantage that it is faster and it will be made evident if someone

misuses reserved flag prefixes.

 34

6 Conclusions and recommendations

This chapter will summarize the most important ideas of this thesis and point at future

work.

6.1 Variability management

Managing variability is the key issue of this thesis and feature modeling is presented

as a modeling approach, which could be used as a complement to the more commonly

used software models. This model can be used for at least three different things, if

presented in different forms. Firstly, as a part of the software modeling approach.

Secondly, as supporting documentation for configuration. And thirdly, as a marketing

document for presenting the configurability of the platform to customers.

Independently of whether feature modeling is used or not, describing variability and

variation points is important. There exists a document that does this but it should be

more comprehensive.

Configuration requirements should also be documented and incorporated into the

development process. It seems to be very important to have clearly defined

requirements on configuration to be able to plan the evolution of the platform, and to

e.g. foresee what needs to be configurable or removable.

6.2 Suggestions for improving the configuration

process

Reducing the number of unnecessary dependencies is a central idea in this thesis. The

motivation for doing so is to increase traceability and reduce the number of

unnecessary rebuilds. Global configuration files creates unnecessary dependencies.

This has the effect that the build tools are unable to determine what needs to be rebuilt

after a reconfiguration, which forces costly complete rebuilds of the system.

A set of possible solutions for avoiding this is presented and analyzed. The

recommended solution involves a modification of SDE for generating module specific

configuration files instead of a global configuration file, as it currently does, thereby

reducing the amount of unnecessary complete rebuilds.

Minimizing the build time is also very important and the best way of doing so is to

build separate parts of the system, and link them together according to the

configuration. However, there are many difficulties that one has to overcome before

that is possible, and it did not seem achievable to fit an investigation. But, many of the

presented ideas, which are very feature oriented, could prove to be beneficial since

features are often a driving force behind software development. And increasing the

visibility, in modeling and implementation, of these features, could be advantageous.

An approach for improving readability in description files is suggested. The idea is to

give the developers a view in Visual Studio of the description files where statements

 35

that are excluded by the SDE pre-processor are marked. This would give developers a

way of seeing the results of a configuration on the build process, which would

simplify the task of finding errors and of understanding the implications of

configurations.

It is important to clarify and document the configuration process. A document should

exist, which does not only describe the configuration mechanisms but also the

complete configuration- and build-process in detail. Documenting the configuration

processes is very important since it affects many areas of software development. And

a more common understanding of the build- and configuration-process, and

appreciation of associated difficulties, would make organizations more dynamic.

 36

7 Bibliography

[1] A. Deursen, P. Klint

Domain-Specific Language design requires Feature Descriptions

Journal of Computing and Information Technology,

10(1):1–17, 2002.

[2] K. Kang

Feature-Oriented Domain Analysis (FODA) Feasibility Study,

tech. report CMU/SEI-90-TR-21,

Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, 1990.

[3] Kang, Kyo C. Lee, Jaejoon Donohoe, Patrick

Feature Oriented Product Line Engineering

IEEE Software July/August 2002

[4] Maccari, Alessandro

Industrial Keynote – Feature Modeling in an Industrial Context

PLEES’01: International Workshop on Product Line Engineering – The Early Steps: Planning, Modeling and

Managing, Bilbao 2001

[5] Clements, Paul Nothrop, Linda

Software Product Lines, Practices and Patterns

Adison-Wesley 2002 ISBN 0-201-70332-7

[6] L.Griss, Martin Favaro, John d’Alessandro Massimo

Featuring the Reuse-Driven Software Engineering Business

Object magazine, September 1997

[7] Clauss, Matthias

Modeling variability with UML

Diploma thesis

[8] Lorentsen, Louise Tuovinen Antti-Pekka and Xu, Jianli

Modeling of Features and Feature Interaction in Nokia Mobile Phones using Coloured Petri Nets

Springer, Volume:2360/2002

[9] Elsberry, Justin and Elsberry, Nicholas

Using XML and SVG to Generate Dynamic UML Diagrams

Department of Computer Science Central Washington University

http://www.cwu.edu/~gellenbe/docs/xmltouml/xmltechnicalreport.html, March 2003

[10] de Jonge, Merijn

To reuse or to be reused, Chapter 6-7

PhD thesis, Centre of mathematics and computer science (CWI), Amsterdam, 2003

[11] L. Griss, Martin

Product-Line Architectures, (Chapter 22 in) Component-Based Software Engineering: Putting the Pieces Together,

May 2001, Addison-Wesley

[12] Schnell, K.; Zalman, N.; & Bhatt, Atul.

Transitioning Domain Analysis: An Industry Experience (CMU/SEI-96-TR-009). Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University, 1996.

[13] L.Griss. John Favaro and Massimo d'Alessandro

Integrating Feature Modeling with the RSEB.

International Conference on Software Reuse. Victoria, Canada. June 1998.

[14] Engineering Software Architectures, Processes and Platforms for System-Families

http://www.esi.es/en/Projects/esaps/esaps.html

[15] Snelting, Gregor

Reengineering of Configurations Based on Mathematical Concept Analysis

Informatik-Bericht Nr. 95-02, January 1995

