Master’s Thesis

Modeling Dependencies in Dynamic
Software Configurations

Vladimir Karadzic po3 & Staffan Thorngren koo

Department of Computer Science
Faculty of Engineering LTH
Lund University, 2007

ISSN 1650-2884
LU-CS-EX: 2007-08

Modeling Dependencies in Dynamic
Software Configurations

Vladimir Karadzic & Staffan Thérngren

Department of Computer Science
Lund Institute of Technology
Lund University, 2007

Modeling Dependencies in Dynamic Software
Configurations

Abstract

Software development companies are often forcedet@lop multiple variants of com-
plex software at a high release rate. These cirtamoes put special requirements on
these companies throughout the entire developmenegs, ranging from the design and
architecture stage, to the build of the delivergdcatables. One area that needs special
attention when developing a large number of vasiaarte the dependencies between enti-
ties of the software. These dependencies quickipines complex. Therefore, consider-
able efforts often need to be made on acquiringraey of the dependencies between
software components. This is required for the cw@d development at a constant high
rate.

When the software configuration are specified byfiguration files that select software
components through definition of variables, an v\ of the dependencies can be ac-
quired by analyzing these files. In this thesis@ has been developed to help model and
analyze dependencies specified in the configurdiies. Since the existing build tool
already analyzes the dependencies of the softvateatre built, the tool should be im-
plemented very tightly with it. The tool should nebdhe parse flow of the build tool
which is the starting point of the procedure tocdigring dependencies between differ-
ent parts of the software. This master thesis dsesiwhy such a tool is needed and how
it can simplify the software development processrdof-of-concept prototype was also
developed to verify the proposed design.

Table of Contents

1

2

[a1u oo [8]ex (o] o DO TP TP UUPTPPPPPTUPTRT 5
(O70] 01 =) OO PP PP PP PPP PP 6...
2.1 Architecture of the Mobile Phone SOftWAre. .. .cooveieiiiiiiiiee e 6
201 FAIUIES ...ttt ettt ettt e e e e e e e e e e e e e e et e te e e ee e e b b an b nnn s 6
2200 I = o To [Tox A = o 21 PPRSRURR 7
P T B V£V T= 0| £ S TP PP PP T TP TR UTOROPP 7
2.1 4 MOAUIB....coeiete ettt ekt n e e e e a e e e 7
P I O T [Tr= o) o 1= SRS 7
2.1.6 Feature Based Configurationuceeeeeriuuiimiiiineiies e ee e e e s e eeeeeaeaveeereesrennnn 8
2.1.7 Configuration Variables...........ccoioiii i 8
2.1.8 Configuration INTEIACE.........ceeeeis i eeeemre et ee e s e e e e e s e s e e e e e e e e e e e e snnnnes 9
2.2 WVOTK FIOW ...ttt et e e e e e e e b e e e e e e e e e e e e e e s e abbb bt beaeeeaaaaaeans
2.2.1 Organizationccccceeeeeeeeeenenenn,
2.2.2 Development Process
2.3 (0701 o7=T o £ PP PP 10
2.3.1 Granularity Of DEPENUENCIESuuvueiiiimmmmstetieeeeeeeee e e e s s s s e e eeeeeeananenrereerees 10
A T O] o Vi To [0 > i o o [PP 10
2.3.3 Definition of Static and DYNAMICcuviiieeeeeiiiiee e e e serrrr e e e e e e e eene 10
2.3.4 Summary Of the ProbIEMoiiiiiiiiiii s eeceem e e e e e e 11
N = 1] O SPEEE 12
3.1 COrE PrODIBIMS ...t ettt e sr e e e e e e b e e s 12
3.1.1 Configuration VariablesS.cocoii i 12
3.1.2 INtEOration PrOCESS.....ccciiiiiciitteete e o vt ee e e e e e e e esassnstsn e beeeeeeeeeeeeansnsnnsnnnnaneeaaeaeeseans 13
3.2 L LS =T £ PP PP 13
3.3 USE CBSES .o iiiiiiieiietr et ettt e e e e e s mmmrmmm s ettt et e e e e e a4 e o e e ettt e e e e e e e areetee e e e e e e e 14
3.3.1 Change IMpPact ANAIYSISccciviuiuiiiiiimmmmemre e eiee it ee e e e e aaaaaaeeeaesaeneeeaeanes 14
3.3.2 Trace the Configuration PrOCESS........ccociiiiiiiiii et e e a e e e aaaa e 15
3.3.3 ComPpPariSON Of VANANtS.......cuiiiiiiee i ieeeeee s e e e e e e e e s eeee e e e s s s s nnnnnnnnnneeees 16
3.3.4 Detection of Unused Configuration COUE...... . eeeeeerrerrimiiimiiiiianiieneeeeeaeseesssseeseeennes 16
3.3.5 Visualization of the Configurationcceeeiiiiie e 16
3.3.6 CoNfiguration StALISHICSuueiieiiieeeeiimmemreeierer e e e e e e e ssss e eeeeee s e s sssneerereeeeeesesseannes 17
3.3.7 Reoccurring Configuration PAEINScumeeeerrrrmrmimiiminsiesseeeeaeessesseessesesmemmnn. 17
3.3.8 Detection of LOQICAl EITOISuuuiiiii it iee ettt e e e e e na e e e e e e e e enaaeanaees 17
3.3.9 Configurability of the SOUrCe COUEivvt e 18
3.4 [LT 81T =] 0 1 T=T oL 18
3.4.1 Correct Interpretation of the Configuration DIr@etS..............coooviiiiiiiiiiiieereeeeee s e 18
3.4.2 Model the whole Configurationciceeeceeeeeee s e e e s eerrrrr e e e e e eaes 19
T T O Y= o o 1= o | Y PP 19
3. 4.4 FIeXiDIE DESION. ...ttt errrer e e a e e e e e e aaaaa—. 20
1=] T | o USSP 1.2
4.1 Interpretation of the Configuration Dir€CHVES caaa....ovvvvviviiiiiiiiieie e 21
4.1.1 Configuration FilEScccueiiiiiiiiii e ee e e e e e e e e e e e r e e e e e e e e eaan
4.1.2 Interpretation Process
4.2 Data StruCturecccccevvveevvvreeee e

o R = o 1= o [o =T PSS

o © 1 ¢ o T [0 - 111 Y2 SRS
4.2.3 Creating the Structure
4.2.4 Parsing the SITUCIUI.........cooi ittt o e e e e e e e e e e s ss st ber e eeaeeesaannsnntnnereneeaeeeeesenas
4.3 Usability and FIEXIDIILYcooe i s s e e e e e e e e e e aeaaanes 26
TaaT o] (=70 L= 01 = A o] o ISR 27
51 DeSigN Of the ProtOtYPecuviiiiiii i e e e e e e e e e e e e anaaaees 27
5.2 {TAY Lo S o CoTel=To 11 = P PP PUS S 30
7= Y11 =1 o SRS 32
6.1 Evaluation Of the ProtOtYPe it e e e e e e 32
6.2 =] = LT T o T 4 -SSP 34
6.3 FUMNEE WOTK ..ttt ettt e e e e e e s e e e r e e e e e e s e e e e s nsnbnraneneeeeeeens 35
6.3.1 Configuration File ArChitECIUIE..........uvviiceeeeiieeii e eee e 35
(SRS IZ2 YW o] o o] ¢ o) 2o 4 1 =T o T - RSERRPR 36
6.3.3 ANAlYSiS Of SOUICE FIlESuviieiiiiie e eeeeee et e e e e e nnnes 36
6.3.4 Parse FlIow of the BUild TOOI..........ccuuviimmeeme et e e e e e e e 36
(070} o o] U130 o PR 37
= 1= =] o =1 USRS 38

Table of Figures
Figure 2-1. The relationship between features, gebdonfiguration file, modules and

CONfIQUIAtION VAIADIES.ooiiiiiiiii i e e nenane 6
Figure 2-2. Feature based configuration.cccee..ooeeeiiiiiiiiiiiiiiiiiieiiiiieiieeiieeeeeee e 8
Figure 2-3. BUild PrOCESS.coo i 11
Figure 3-1. One way of showing the impact of a ¢feato the configuration files......... 15
Figure 3-2. Examples of logical errors in configoa files. ... 18
Figure 4-1. The configuration code to the lefransformed to a flowchart shown on the
110 | SR 22

Figure 4-2. The flowchart on the right is referercthe configuration code on the left. 23
Figure 4-3. The modified build tool is invoked &yool to create the model of the parse

11011 SR 24
Figure 4-4. The flowchart is parsed to analyzeddygendencies. When interpreting the
configuration directives the evaluation logic froine current build tool is used............. 25
Figure 5-1. A model of the process where the coméiion files are parsed by the build

L (0o] PSP PP PPOPPPPPPPPPPPPPN 28
Figure 5-2. Content of a process and a decCiSioR NA..........cccoeeeiiiiiiiiiiiineeee e v 29
Figure 5-3. The process where the model of theegidow is build.oo. 30
Figure 5-4. The building of the nodes using a meditomponent of the build tool. 31
Figure 6-1. Parsing of the model............co i e 33
Figure 6-2. An example of configuration which wesed to verify the prototype......... 34
Figure 6-3. CONFIQUIALIONuuuuuiiiiiiiieitmemmeseeiiin s s s e s e senenenene 35

1 Introduction

In the past few years mobile phones have becomesprdad in developing countries.
Not too long ago the mobile phone was an excludesce used primarily by the busi-
ness elite, while today most people own a mobilengh This increase does not depend
only on an increased need to make phone callslbaitogy the fact that the mobile phone
has, to some extent, been replaced by other desim#sas digital cameras and mp3 mu-
sic players. To keep up the high interest for n&anes, the producers have to constantly
offer new features. This leads to high releasesratigere the complexity of the software
increases which makes the software development cwonglicated.

To meet the demands from the market and quickass new products, Sony Ericsson
uses a process which is based on a common dessgd ba product families. This means
that an underlying design is created and it isedusy all products in the same family.

Since the products in the family are based on anityl and commonality, even though
they are different products, it is possible to askeseveral products relatively fast.

Due to the high release rate and the considerableife growth, dependencies between
software entities are introduced and the softwaeines complex. Even though the de-
sign goal of the architecture is to make the sa#w@omponents as less dependent on
each other, it is not possible to make all comptnhérmdependent. Therefore there is a
need for a tool which is able to first spot thespehdencies in order to be able to mini-
mize them. The starting point of this procedur&isnodel dependencies which make it
possible to e.g. trace variables or to do changmananalysis. The tool can be used e.g.
by people working at the CM department at Sony 4500, to model the impact of a
change, or software architects to facilitate thecstire of software entities.

This master thesis will mainly discuss how a toah de created for the main goal of is
modeling dependencies between software entities.dBtailed design of the tool is de-
scribed and a prototype which is outlined in tlejgart has been implemented.

2 Context

This chapter increases the basic understandingoy &ricsson’s work flow and proc-
esses. The first part of this chapter opens widleskription of the architecture of the mo-
bile phone software. This is followed by an ovewief the workflow and processes used
at Sony Ericsson. In the second half of the chaguiere concepts specific to Sony Erics-
son are highlighted.

2.1 Architecture of the Mobile Phone Software

Figure 2-1 displays the relationship between festuproduct configuration file, modules
and configuration variables. They are the buildstgnes of the mobile phone software
and are among the other concepts described isehison.

Product configuration

file
CAMERA = On
MP3 = On

4

A

CAMERA con- MP3 configu-

figuration file ration file

ZOOM = On P_LlST =100
/4 /4

Figure 2-1. The relationship between features, pragtt configuration file, modules and configuration
variables

2.1.1 Features

The mobile phone is not only used for making phoaks, it can also be used to play
music, web-browse and take pictures. All these tians are called features which to-
gether creates complete sets of functionality i@ thobile phone. Before the mobile

phone can be produced a description of featuregegsired. When the description is
complete, implementation of the features can begin.

2.1.2 Product Family

The purpose of the product family is first to ceeah underlying design that can be re-
used on all products in the same family. The prodamily is based on similarity and
commonality which means that different productshia same family contain common or
similar software components. This makes it posdibleelease several different products
relatively quickly as well as decreasing cost anekttaken to develop the software.

2.1.3 Variants

To meet the existing requirements from the mobilen® market, Sony Ericsson needs to
produce a large number of models. Each model mygicst a large number of require-
ments. These requirements result in a situationrevhevery large number of software
variants must be developed for each product family.

In this report a variants is defined as a paralégkion which has different sub versions
created from the common code base.

2.1.4 Module

To avoid the shared data problem, which meansntlaaty people simultaneously modify
the same code], the software functionality is divided into moedsl This would enable

modules to be separately compiled but also makegplex programs easier to under-
stand.

At Sony Ericsson a group of developers are respt$dr one module. The group im-
plements the source code and defines through atesfwhich item that are available to
other modules. Each module also contains one amatfiign file that specifies which
functionality in the module should be used, forrapée a certain feature can be enabled
or disabled.

2.1.5 Configuration Files

To facilitate the process of integrating the sofey&ony Ericsson, uses a process where
software parts are selected and configured, frocoramon code base, according to in-
structions in text files. These files are calledftguration files. Each product family has
its own productonfiguration file where the selection and charnasties of the features
that should be included in the final product, aeéreed. All variants of the mobile phone
are also specified in this file.

The product configuration file determines which mied those have to be included in the
product. In other words the software parts are gsdated in modules and configured by
a module configuration file referenced in the prcidionfiguration file.

The module configuration file specifies what soucoele is needed for the specific fea-
ture. The configuration files are hierarchicallganized in several levels of modules and
sub modules with the product configuration filete top.

2.1.6 Feature Based Configuration

Feature based configuration means that featureaairdependent on each other which
means that they are independent components. Thepeaombined in different ways

and the result will always be a software that méagsrequirements. Sony Ericsson sup-
ports of this method of setting up the configunatemd therefore constantly works with

modularization of the software components.

RADIO = On

A 4
HANDSFREE = On

A 4 A 4
SW_TUNER =0On SW_ANTENNA = On

\ 4 v
HW_TUNER =0On HW_ANTENNA = On

Figure 2-2.Feature based configuration.

Figure 2-2 shows the umbrella model where the feaRadio is enabled in a product
configuration file. To enable the Radio featurésienough to trigger all needed compo-
nents and functionality which the Radio needs tokwamrrectly. In other words Radio

components are encapsulated and completely indepemnd the other components that
build the mobile phone. This leads to simple camfigion of products where the devel-
oper can easily choose features from a containeetaip and form the software in the
mobile phone.

2.1.7 Configuration Variables

The purpose with the configuration variables idédine functionality in the software.
They can take the form of number, string or arfaghould be noted that they have to be
declared first. Depending on how the variable islated there are rules that decide in
which scope the variable is readable or writeable.

In other words the variable can be readable bynallule configuration files including
the product configuration file or only the modulbere it has been declared. The variable
can be assigned the value either in the moduleenibdras been declared or in the prod-
uct configuration file.

2.1.8 Configuration Interface

The definition of configuration interface is an abstion of the module to the outside
through the configuration file and configuratiorriahles which are declared in the con-
figuration file. This makes it possible to commuate both among modules but also be-
tween product configuration file and modules. Thieppse is to see, for example which
module settings are active or which variables Havee set by the product configuration
file.

2.2 Work Flow

This section describes the organization and wanw fht Sony Ericsson from a software
development perspective.

2.2.1 Organization

The software development is a complicated procesghwcomprises definition and
analysis of the problem, implementation and finalgrification that confirms that the
solution meets the demands. All these charactesistve to be functional, maintainable,
testable, easy to use etc, if the software shadtélsle and accepted. The time constraints,
resources and human error are factors which nedptinfluence the software develop-
ment. Therefore the organization both at small Emge companies needs to be well
structured and defined. The work tasks have tddrly defined so the employees know
what they have to do and who is responsible focifipgarts in the company.

Sony Ericsson have geographically distributed dgwekent which means that team
members are not located in the same geographiomregistead they are in different
countries around the world. These cultural diffeesncan be a subtle hindrance to devel-
opment due to different development styles.

Therefore it is very important that infrastructaed communication between the differ-
ent sites work. The sites have to be synchronizédeach other in turn leads to the effi-
cient work.

2.2.2 Development Process

The first phase of development process at Sonys&sit is when then function group
made the change in the software. When the changeade and developer is satisfied
with the modification, the software is deliveredie function test group to be verified. If
all tests pass CM integrates the software with rothection group’s deliveries. If the

integration process succeeds successful the seftwilrbe tested again to verify that all
functions in the mobile phone work.

Each function group is responsible for its modubafiguration file and configuration
variables which are declared there. The configonathanagement group’s responsibility
is to first set up the product configuration filedaconstantly updates it with new deliver-

ies from the function groups. The integration psscstarts when CM has implemented
the delivery.

2.3 Concepts

This chapter defines concepts such as dependestis;, dynamic and configuration.
Then these concepts are put into the context aéiveonment at Sony Ericsson.

2.3.1 Granularity of Dependencies

The dependencies between entities in the softwamebe regarded at different levels of
granularity. At the lowest level a dependency caistebetween two configuration vari-
ables. At a higher level modules can be dependeetoh other, and at even higher level
the dependency can exist between features andidoality areas. Between variants,
from the same product family, there exist indirdependencies since the products share
the same code base.

2.3.2 Configuration

The definition of the configuration in the conteftthis report is the arrangement which
decides how the software has to be set up sotthaets the requirements. For instance,
a very basic configuration of features for a molpt®ne consists of ring tones, phone
book, SMS etc.

To build a specific variant, first of all it has be configured. This means that various
configuration variables have to be set and configon variables values defined. When
the configuration is made the integration proceéagsby parsing configuration files to

finally create the executable file.

2.3.3 Definition of Static and Dynamic

In general, the definition of the word dynamic remgetic, capable of action or change,
while static means fixed or stationary. In computentext dynamic usually means
changeable while static means fixed.

The configuration has to be dynamic to the higipessible degree. This allows changes
which mean if initial values of configuration vasias are changed the output should be
different. If the output is static after each charigat means that configuration is incor-
rect.

10

Configuration Files

T

Make file

Compiler

<:I<:|j

Executable file

J

Figure 2-3. Build process

Figure 2-3 illustrates the build process and dsfwbat part of the configuration is static
and which is dynamic. Configuration files are dymamecause they are accessible for
changes. In other words, depending on which festilna are chosen in the configuration
files, the specific variant with these featured v built.

The generated executable file is defined as statimntains the static defined configura-
tion which is only characteristic for the built ieant.

2.3.4 Summary of the Problem

As we have seen the software development is a coagdl process. Sony Ericsson has
to quickly produce new phones to satisfy demanads fthe customers. This leads to the
fact that functionality in mobile phones increasesstantly and consequently the soft-
ware becomes more complex. The result is that digremes between software entities
increase and therefore there is a need for a thahais able to first spot dependencies in
order to be able to minimize them.

11

3 Analysis

The previous chapter described the problem domadnsame key concepts important to
the remaining discussions in this report. This ¢bafocuses on the analysis of the prob-
lem domain. A set of core problems will be definfedlowed by a set of possible users of
a tool. Then, a set of use cases will be put tegetht the end of the chapter the use cases
will be transformed to a set of tool requirements.

3.1 Core Problems

The core of the problem domain and its origins Wwélanalyzed in this section. This will
be the starting point when the use cases are ditter on.

3.1.1 Configuration Variables

When a software manufacturer is forced to produeayrvariants of the software at a

high release rate, a common solution is to reusgooents from a common code base. It
is also the approach Sony Ericsson uses. A sairdiguration files are used to configure

the various variants of a product family. But whie number of variants grows large,

while the complexity of the software is steadilgn@asing, the number of configuration

variables gets very large.

To make the source code reusable and to faciltatellel development, the software at
Sony Ericsson is modularized. This is a convenigay to build the architecture to
smooth the progress of software development inrgendowever, during the process of
setting up a product, where a set of featuresfiset® it is not intuitive to make the se-
lection from software modules. During product getitis more intuitive to use a feature-
based configuration process. But the feature-begefiguration requires an interface that
translates the desired feature to a set of moduiles.task is performed by the configura-
tion files in combination with the integration pess. Sony Ericsson is aiming to make
the product set up feature-based.

Because the act as an interface between the $eatofes and the software architecture,
the configuration files often holds complex deperuies between their configuration
variables. And even though not all parts of thefigomation are strictly feature-based, the
task of translating a feature to the correct seanotlules must still be performed by the
configuration files. l.e., if a configuration vable representing a certain feature doesn’t
exist, a set of configuration variables, togetlemresenting the same feature, must be set.
In the latter case the features are configureddmfiguration code segments rather than
by configuration variables. This scenario resufttdengthy configuration files that are
hard to read, and even harder to maintain andtite shoot.

Another factor that adds to the difficulty to maimt an overview of the configuration

files is that module interfaces are too fine-grdink the set of configuration variables

exported by a module controls the characteristidche module at a too high level of de-
tail, it is often hard to configure this module mout detailed knowledge about it. Conse-
quently, configuration variables like these arening the risk of being used improperly,

if the software developer does not fully understidr@purpose of the variables.

12

To summarize, the properties of the configuratianables they are:

» large in number,
* dependent on each other in a complex manner, and
* not always easy to comprehend the meaning of.

Consequently it is often hard to maintain an ovamdf the configuration files, and es-
pecially to be able to foresee the impacts of gurfition variables changes. This moti-
vates the development of a tool that facilitatesking of dependencies that can be used
when creating configuration files as well as allogvichanges to be made in the configu-
ration files.

The properties listed above are closely relatethécarchitecture of the software as well
as the module design. Even though these areasranergly important to the origins of
the dependencies in the configuration, it is ousa@dpe of this project to further analyze
them. However a basic understanding of where tpertencies originate was needed to
be able to design a tool for tracking the depeni@sria the configuration.

3.1.2 Integration Process

The software integration process at Sony Ericssoa complex process utilizing both

commercial and in-house developed tools, that asamlined to meet the special re-

quirements of the software. The environment is @il being updated as changes are
made to the process. Since several product famaliesconcurrently being developed,

new versions of the development and build toolstralvgays be backward compatible.

Although the tools are constantly being updatead difficult to update the changes with
the rapid software evolution. Some support for gaging the use of configuration vari-
ables are implemented in the current tools, bubeerextended support for tracking con-
figuration variables and dependencies would bespabte.

It would probably be possible, in theory, to use #xisting tools to retrieve most of the
information needed for an analysis of the dependenio the configuration; since the
tools must ultimately be aware of the dependenailesn the build process is initiated.
But since the current tools

* have limited support for dependency tracking, and
« are taking care of a large amount of tasks;

they would be a very blunt tool to use. Every stnghalysis would be very time consum-
ing, and would not be as swift and flexible to Iseful in practice.

3.2 Users

The previous section in this chapter analyzed tioblpm domain. Before the use cases
are discussed in the next section, some ideas oftid users of a dependency tracing
tool will be outlined.

13

Possibly the most obvious user group who would fieftem nearly all of the use cases
described above, are the software developers.riicpiar those working with entities of
the software that have dependencies to other phtlte software. As these users spend a
majority of their daily work working directly witlthe configuration files, the use cases
have been designed with the software integratonsital.

Other potential users are software architects asigders that could use much of the
information provided by the tool to evaluate theended design of the different parts of
the software. Project managers would also benefinhfhaving an overview of the de-
pendencies when crucial decisions need to be middeinformation could help to im-
prove prioritizations.

Also people involved in the process of planning degelopment projects, i.e. in the dia-
log with the customers, would be better off if thgacts of different changes and modi-
fications were known.

3.3 Use Cases

The core problems described in the previous secortributes to the difficulty of main-
taining an overview of the software configuratiordaf tracking dependencies. The fol-
lowing section focuses on a set of use cases, wdrellesigned to emphasize tasks that
are difficult or even impossible to perform in tberrent environment, as well as other
tasks we thought would be useful in general. Treeaases will form the foundation for
the requirements defined in the next section.

3.3.1 Change Impact Analysis

For software developers the day-to-day work wowdimplified if change impact analy-

sis could be done in a swift and flexible way. Makichanges to the configuration files
would be less erroneous if it would be possiblengtantly get an analysis of the impact
of the change. This would also speed up the trehloleting of problems such as faulty
configurations. Also software architectures wouthéfit from having easy access to a
change impact analysis.

This use case has many variations. The user §tamsaking an arbitrary change in the
configuration file. Examples of types of changes ar

e turning a feature on or off,
* changing a conditional statement, and
e updating a module’s version.

A change could also be a set of different modiftoeg in one or multiple configuration
files.

When the change is done the impact analysis caelldrésented to the user in different

ways, at different levels of granularity. Examptéshow an impact could be presented
are:

14

» which variants are affected by the change, i.e.twhaants use the variable or is
otherwise affected by the side and ripple effe€th® change;

» at alower level the impact could be shown as afseffected modules;

e at an even lower level the impact can be repreddmyea set of affected source

code files;

» at another level the parts of the configurationdithat are affected could form

the impact;

» the impact could also be presented as a set ofgtwafion variables that are af-
fected by the change, either directly or indirettyyside or ripple effects.

The type of change as well as how the impact isesgmted differs according to who the
user is, and what the purpose of the change impaalysis is. Nevertheless the tool
should implement the variations of this use case.

% product.cfg - Microsoft Visual Studio E]@ W% product.cfg* - Microsoft Visual Studio E]@
File Edt Vew Debug Tools Window Community Help Fle Edit Wew Debug Tools Window Community Help
T PREEn T N- B WV A PR e = = - eI = - NI T NI e e —
; boan | =i N} SREwsReNey : o |3 i3 415
product.cfg - X product.cfg* - X
1{ # This is a test description file (product) f 1 # This is a test description file (product) j‘
z i ai il
3 3!
4 lget CFG_L = dn 4i lget CFG_A = On
5 lset CFG B = On 5i lset CFG B = Off
[6
7 1if CFG_& == ON £& CFG_E == ON i Vif CFG_ A == ON && CFG B == ON
& lset CFG_C = On Iser CFG_C = On
9 'set CFG D = Off !set CFG D = Off
10i lendif endif
11
12
13 [Modules] Modules]
14 14
15; !'if CFG_4 == On i 1if CFG 4 == On
18! LDS_SUModulesPrivate_001%cnh00001_a LDS_SWHModulesPrivate_0014enh00001_a
17 lendif endif
18
19; !'if CFG E == On if CFG B == On
z0 LDS_SUModulesPrivate_001%cnh00002_b LDS_SWHodulesPrivate_0014cnh00002_b
21 lendif endif
z2
23 'if CFG C == On if CFG € == On
za LDS_SUModulesPrivate_001%cnh00003_c LDS_SWHodulesPrivate_001)enh00003 s
25 lendif endif
26
27 !if CFG_D == Off if CFG D == Off
28 LDS_SUModulesPrivate_001%cnh00004_d LDS_SWHodulesPrivate 0014cnh00004_d
297 lendif i lendif
30 e el
Ready Lni Cal 1 chi NS Ln&s Col 17 chi? NS

Figure 3-1. One way of showing the impact of a chge to the configuration files.

An example of how the impact of changing the vaitia configuration variable could be
presented to the user is shown in Figure 3-1.

3.3.2 Trace the Configuration Process

The tool should be able to trace the configuragimotess to increase the understanding of
how a certain feature is configured, or what congmis are dependent on a certain con-
figuration variable. If the execution path of threegration process could be traced and
presented to the user preferably in a graphical wayould be a lot easier to comprehend

the relations between the entities of the configona

15

3.3.3 Comparison of Variants

From architecture’s perspective an analysis ofdifferences in configurations between
variants in a product family might be of interéis use case can be regarded as another
variation of the previous use case; change impaalysis, where the change is repre-
sented by changing the input to the integratiorc@ss, as opposed to changing the con-
figuration files. This being so, the result presento the user can be on any of the afore-
mentioned levels; module, source code, or configuravariables.

3.3.4 Detection of Unused Configuration Code

Unused configuration code is configuration codé thaot used by any configuration of
any variant in a product family. It could be remtsafrom previous configurations, or
simply be part of a larger code segment that isecbfsom another configuration. When
the transparency of the configuration decreasesiskethat unused configuration code
segments are used increases.

Therefore the tool should be able to detect thessed code segments. The user should
be able to analyze a product family and get bali&t @f the segments of the configura-
tion code that is not used be any configuratiorthéise code segments are removed the
configuration files can be kept as simple as thiwswe permits, thus increasing the
transparency of the configuration.

This use case can be regarded as a variation girévéous use case, where all the inputs
to the integration process are given all its pdesialues, and the result is given as a set
of configuration code segments. Each set of inpuitsgive a set of affected configura-
tion code segments. The union of all the configaratode segments represents the used
configuration code segments, whereas the inverghisounion, or complement, repre-
sents the unused configuration code segments.

3.3.5 Visualization of the Configuration

The purpose of visualizing the configuration isiiorease the overview of it. The tool
should be able to produce an image illustratingdéygendencies to make it easier for the
user to gain an understanding of the configurathmmother view would illustrate a flow
chart of how the configuration files are parsedthy build tool, to further simplify the
understanding of the configuration. The time tofgetiliarized with a certain configura-
tion would be reduced if the user is able to skthaldependencies in an image.

The level of granularity should be selectable fo visualization as well as for all the
previous use cases.

Even though a static image illustrating the depans in a configuration is an excellent
help when working with the configuration files, @nen better aid would be an interactive
image. If the user is able to interact with the gem@and make configuration changes di-
rectly in the image, that would be a very intuiteued agile way of working with the con-
figuration.

16

3.3.6 Configuration Statistics

Statistics is also an important means of acquivilgable information about a configura-
tion. For instance, a software developer would befrem knowing how many other
modules are using a certain module’s interfaceet@lile to make a well-founded deci-
sion about a particular change. The information laldoe possible to gather through us-
ing the previous use cases, but a better way toeg#ihe statistics would be to continu-
ously run the tool in batch mode to collect thisad®y doing so the users would have
instant access to information valuable when dolmgnge impact analysis.

Another great benefit earned by having accessdtissts, is the ability to evaluate the
module’s interfaces, and the utilization of theée=.g. a decision is made to simplify a
module’s interface, in an effort to increase tlasparency, through decreasing the num-
ber of exported configuration variables, havings timformation at hand would make it
possible to come to good conclusions regardinguessiring.

Therefore the tool should be able to gather stegistbout the configuration, at different
levels. The data should be outputted in a way figlitates collecting it in e.g. a data-
base.

3.3.7 Recurring Configuration Patterns

A consequence of not having the entire configuratioly feature-based is that similar
configuration code segments often occur at diffeptaces in the configuration. Since a
certain feature almost always needs a set of gettims phenomenon is inevitable with-
out an interface translating the feature to sofénettities.

There can be different types reoccurring pattedre type is a set of configuration code
lines that is reoccurring. Even though the linesudth not be in the same order the tool
should be able to detect the pattern. Another patbecurs in conditional statements
where the condition is actually a combination ofesal conditions. In this case the tool
should be able to detect these patterns as wellcHrtain set of configuration variables
are often evaluated in combination, but seldomviddially, it would indicate that the set
of variables could be replaced by a single confgan variable.

In order to simplify and tidy up the configuratififes the detection of reoccurring con-
figuration patterns plays an important role.

3.3.8 Detection of Logical Errors

Another field of application for a tool is the detien of logical errors in the configura-
tion. By logical errors we mean combinations of @itions that cannot be fulfilled. The
output from this use case will be a subset of tigpwt form the use case where unused
configuration code is detected. But in this useeaasother approach is taken to identify
the unused code.

Two examples of logical errors are given in FigB+2. The left example shows a simple

case where the error can be detected by just anglylze variable names. If the first con-
dition has been fulfilled the tool knows that tteeend condition can never be fulfilled

17

just by comparing the current condition with theepous. Accordingly, the second
statement can never be fulfilled and the assignroarthe third line will never be exe-
cuted.

oL if I'A 01 if MP3_PLAYER == Of

02 if A 02 i f PLAYLIST ==

03 B=2 03 PLAYLI ST | TEMS = 20
04 endi f 04 endi f

05 endi f 05 endi f

Figure 3-2. Examples of logical errors in configuréion files.

The example on the right in Figure 3-2 needs soac&dround information. Suppose that
the playlist functionality is turned on if and onfythe MP3 player feature is turned on.
Then the second condition would never be evaluagdrue and the statement on the
third line would be unused for all configurationkthe tool had access to this context
information even this type of logical error could teetected.

3.3.9 Configurability of the Source Code

If the tool could analyze, not only the configuoatifiles but also the source code, it
would be possible to show the valid values for dniti@ry configuration variable, the

configurability of the source code. Accordinglyghonly applies to those configuration
variables that are transferred to the source code.use case will be explained by an
example.

Suppose the source code provides the ability ttheescreen width to 240 or 128 pixels.
The screen width is configurable through settingpafiguration variable to an arbitrary
integer. But if the variable should be set to aajug other than 240 or 128 the build
would most likely fail, since the source code watidecognize this value.

If the tool is able to search for this configurapifor an arbitrary configuration variable,
defined by the user, it would be less erroneoweitbsuch variables.

3.4 Requirements

In the previous section the use cases was presdntéus section the use cases will be
narrowed down to a set of requirements on a tool.

3.4.1 Correct Interpretation of the Configuration Directives

For most of the use cases the tool needs to pacsénterpret the configuration in con-
formity with the current build process. Otherwike tool's analysis wouldn’t be of much
use. This being so, the tool should be able toepansl interpret the same set of configu-
ration files, with the same result as the curreridoprocess.

This requirement can actually be divided in sevetdd requirements. The tool must re-
flect the current build process regarding;

18

» the set of configuration files,
* the evaluation logic, and
» the parsing algorithm.

If all these requirements are fulfilled the tookisle to perform an accurate interpretation
of the configuration directives. This is very imtaont since a faulty interpretation, i.e. an
interpretation that does not match the currentgsss interpretation, will not help a user
in the quest of e.g. foreseeing impacts of a chaodghe configuration files. This is the
most fundamental requirement.

3.4.2 Model the whole Configuration

The corner stone of the majority of the use casekea ability to trace dependencies be-
tween entities of the configuration. This is theecof the tool’s functionality. But the tool
should not only be able to trace the dependenniessingle variant of a product family,
but also dependencies through different variaritss flequires that the tool needs a model
of the whole configuration, as described by thefigonation files, as opposed to a certain
variant.

To be able to trace the control flow of the inteigma process the model also has to hold
information about the current build tool's parsipgttern. The tool needs not only know
what the final values of the configuration variabbkre, but also how the variables are
accessed during the complete integration process.

Accordingly, to meet the requirements implied bg tlse cases the tool has to model:

» the whole configuration, as well as
* the complete integration process.

3.4.3 User Friendly

The user needs to have easy access to the tabbutd not take more than a few button
clicks or a simple command line to start any of tdeks that the tool is designed to per-
form. For the tool to be used in practice the ogarthof learning to use it should be as
small as possible. The response time of the tds#sld also be as small as possible. The
faster the result could be presented to the usebetier it is, and the more likely it is that

the tool will actually simplify the daily work ofs users.

As discussed previously in section 3.1.2, mosheftasks are probably atainable by us-
ing the current tools, but they would then nevefléeible and easy to perform, and thus
never done.
For the tool to be user friendly it has to:

* be integrated in the current work flow,

* present the result as quickly as possible, and
* be interactive.

19

The second bullet puts special requirements ortdbedue to the number of files that
needs to be processed, and also the fact thatdbedside on network shares.

3.4.4 Flexible Design

As partly indicated by the use cases above, tltenmtion the tool has to collect can be
used in many different circumstances. Thereforedidgign of the tool should provide
means for other utilities to use the gathered mgtion.

A few of the tasks described by the use cases woaigkfit from being scriptable. As
already mentioned the gathering of statistics ftbenconfiguration files is an example of
a task that could be scriptable. If this informatis collected repeatedly over a time span
a measurement of the evolution of the softwareasiged.

We regard the design of the tool as flexible if tihel;

» provides means for other utilities to use the gatthénformation, and
* is scriptable.

20

4 Design

In this chapter the focus will be put on the desiga tool; dealing primarily with analyz-

ing the dependencies between entities in the soétwanfiguration. The discussion will

be derived from the use cases and requirementsiliesdan the previous chapter. At

first, the process of interpreting the configuratides will be addressed. The design of
the data structure used by a tool will also betde#h. Finally, some considerations re-
garding the flexibility of a tool will be discussed

4.1 Interpretation of the Configuration Directives

To be able to analyze the impact of a configuratianable change, a tool must possess
the ability to interpret the configuration direc#sdefined by the configuration files. The
process of interpreting the configuration fileslwi discussed in this section.

In the process of building the executables, thénso€ configuration is basically deter-
mined by the configuration files, and the interptemn of these. l.e., the set of configura-
tion files serves as a recipe of what to includéhm build, while the set of tools used in
the process interprets the recipe to generatenteaeded artifact. Thus, to make the dif-
ferent kinds of analyzes of the configuration asuaate as possible, a tool must use a set
of configuration files and an interpretation praxdisat resemble the original files and
process as much as possible.

4.1.1 Configuration Files

Regarding the set of configuration files, no reasarre found not to use the original
configuration files as input to a tool. Since tlenftguration files serve as the definition
of the software configuration, and are ultimatelgim text files, using anything else but
the configuration files themselves seemed pointlésen though it would be possible to
create an altered representation of the configumdtles, which perhaps would be easier
to interpret, the original set of files would stiave to be parsed each time a change was
made to them. This would render the extra stepreditng a different representation of
the configuration files unnecessary.

4.1.2 Interpretation Process

When it comes to the interpretation process, a meedodel this procedure was found.

As mentioned earlier, the current build tool periera lot of different tasks and is not

streamlined to make this kind of dependency amglyaeaning that it is not the optimal

tool to use in this purpose. Accordingly, an aleneterpretation process is needed to
make a tool perform as desired. However, altermgginterpretation process will almost

always lower the accuracy of the tool. A small antoof discrepancy might be accept-

able but if it grows too large the tool would beusable. Further reasons to alter the in-
terpretation process are accounted for in sectidri delow.

The discrepancy between the outcome of the interfooa by a tool and the interpreta-

tion by the actual integration process is affedtgdeveral factors. If the parse flow, i.e.
the order in which the configuration files are mpteted as well as how each file is inter-

21

preted, is altered the result of the interpretatidght also change. Therefore, care must
be taken when modeling the parse flow not to rettteediscrepancy too large.

Part of the parse process used when evaluatingtomradfound in the configuration files

is the evaluation logic. The evaluation logic ubgda tool should be the same as the one
used by the current integration process. Sincestaduation logic is actually defined by
the implementation of the build tool the best al&give would be to reuse the same im-
plementation. This would also make the maintenasfcthe software easier since the
double maintenance problem would be avoided.

Accordingly, to meet the requirements defined i@ pnevious chapter, a tool should re-
use the already implemented functionality of: adggithe set of configuration files, and
evaluating conditional statements; while the pélag needs to be modeled in a slightly
altered manner to suite the objectives of the tool.

4.2 Data Structure

This section will discuss the data structure a tw@ds to be able to perform the previ-
ously defined set of tasks.

4.2.1 Dependencies

The main objective of the design is to model thpethelencies between entities in the
software configuration. With the information abdbe dependencies at hand the use
cases described earlier would be possible to imghenThe only possible way to model
the process, that satisfies the requirements destrearlier, was found to be through a
flowchart. Hellstrom and Pileryd arrived at the gaconclusion in [2].

If the conditions used in the configuration filee aepresented as decision nodes, and the
statements in between the conditions are encapslilatprocess nodes, a flowchart like
the one in Figure 4-1 could be created.

A=0n
01 A = On
02 if B==OFf True _
03 C=0On c=on
04 endi f
05 D= 0On False

D =0n |¢

Figure 4-1. The configuration code to the left isransformed to a flowchart shown on the right.

22

When the complete set of configuration files aemsformed into a flowchart, the foun-
dation of the dependency analysis is created. iathe flowchart, evaluating the condi-
tions in the decision nodes, will make it possifolgyather information needed to analyze
the dependencies. Hence, a tool needs to parseottiiguration files according to the
flowchart instead of imitating the normal parsenflof the build tool.

4.2.2 Orthogonality

In the example above, the contents of the configandiles are combined with the in-
formation about the parse flow of the files. Thidl wake it harder to update the flow-
chart after a change has been made to one of tifegemtion files. But if the contents
and the parse flow of the configuration files cob&lseparated, the same flowchart could
be used even after a change of the configuratisymade, and the tool would be more
flexible to use.

To make the contents and the parse flow of theigordtion files orthogonal; instead of
embedding the configuration code in the flowchaaferences could be used, as in
Figure 4-2. However, referencing the configuratdirectives by line number doesn’t
make the contents and the parse flow orthogonalesihanging the configuration files in
a manner that the lines are moved, would requiegganeration of the flowchart. As long
as plain text files are used to hold the configoratlirectives, it is hard to eliminate the
correlation without using some sort of tags markiiggere the nodes are.

01
01 = n
02 if B==Of True
03 = On 03
04 endif
05 = On False
05 <

Figure 4-2. The flowchart on the right is referenang the configuration code on the left.

Since changing the way the configuration directiass represented was out of scope of
this project, line numbers were chosen to constitie references in the flowchart. When
the configuration consists of more than one file tie name also needs to be a part of
the reference.

While simple changes like changing the value ofadable assignment never require a

rebuild of the flowchart; making the contents o ttonfiguration files and the model of
the parse flow totally orthogonal is not possil@ece the flowchart is modeling the pars-

23

ing of the configuration files, changing the codesuch a way that a new node should be
created in the flowchart, always require a rebaflthe flowchart. But, on the other hand,
if code segments are removed from the configurdiles, the same flowchart could be
used if the nodes that should be removed are redaas empty nodes. Accordingly, dif-
ferent types of changes require different typeaations in order to keep the flowchart
up-to-date.

4.2.3 Creating the Structure

To build the flowchart the complete set of confafuon files must be parsed. One way to
do this is by building a parser, which goes throtigh files. But since the current build
tool already possesses the ability to acquire ardepall the configuration files, it ap-
peared to be a better solution to integrate thetiomnality to build the flowchart in the
current tool.

Product
family

\ 4
Interface

invokes Configuration files

A 4

Modified read:
build tool [I

creates

A 4
Model of
the parse
flow

Figure 4-3. The modified build tool is invoked bya tool to create the model of the parse flow.

Hence, the build tool should include a featureutdothe flowchart. This would facilitate
the creation of the required data structure by kim@ the current build tool with the pur-
pose of building the flowchart. The process is smomw Figure 4-3. The creation of the
flowchart should create a representation of thepteta product family. This is done by
invoking the current build tool in a manner thgpdirses the complete set of configuration
files.

24

4.2.4 Parsing the Structure

When the data structure has been created the depsed can be analyzed by parsing
the flowchart. Again, the best way to do this wagnid to be by reusing as much of the
current build tool as possible. Accordingly, if ded, the modified build tool should be
invoked when the flowchart is parsed. For a toddeable to perform the use cases it has
to gather information about what parts of the agunfation files are being parsed, which
configuration variables are accessed and what ediles are to be included.

During the process of parsing the configuratiordtves pointed out by the nodes in the
flowchart have to be interpreted. This is optimallghieved by invoking the evaluation

logic from the current build tool. The process afgng the structure and gathering in-
formation about the configuration is shown in Feydr4.

Product
family and
variant

A 4
Interface

invokes

A 4
Model of
the parse
flow

invokes Configuration files

A
Modified read:
build tool [* .

Figure 4-4. The flowchart is parsed to analyze thdependencies. When interpreting the configuration
directives the evaluation logic from the current buld tool is used.

While going through the flowchart, a tool shouldjaice the required information such as
the parse flow, the accessed configuration vargabled the included source files. The
data gathered by a tool should be presented tagéeat the end of the flowchart analy-
Sis.

25

4.3 Usability and Flexibility

For a tool to be easily integrated in an existingrikwvflow the design has to be user
friendly and flexible. This section will accountrfthese considerations.

If the behavior of the other tools used in the gnéion process is imitated, it would be
easy for a user accustomed to the current prooesset the tool. Since most of the tools
used in the current integration process can bekewdy either a command line or by a
command button from within another tool, the samecation methods should be im-
plemented by this tool.

Providing a non-graphical user interface facilisatee tool to be scriptable. If a tool is
giving its output in plain text, in an easy-to-paf®rmat, other tools could be used to
further analyze the result.

How the information acquired by a tool could bedubg other tools of the integration
process is illustrated by a change impact analssnple. When the user has loaded a
set of configuration files in the text editor theol is invoked, by pushing a button, to
show what lines in the files are really used asslt of evaluating the conditions. The
tool outputs the file names and line numbers thatikl be highlighted in the text editor.
After the user makes changes to the configuraiies ¬her button is pushed to high-
light the impact of the change. The tool is thevoked to output the difference in what
directives of the configuration are used after thange. The tool outputs information
about the new set of directives based on the irg&fion. Now the text editor is able to
highlight the directives that are no longer parasdwvell as the directives that have be-
come active due to the modification of the confegion.

Providing the user such a means of visualizationldvanake it much easier and more
intuitive to work with the configuration files. the tool is providing interfaces that can be
used by other tools in the integration processwhek of architectures and integrators
could be simplified.

26

5 Implementation

In this chapter the implementation of the prototype! will be discussed. What is im-
plemented as well as how it is implemented is lyidéscribed. To increase understand-
ing the architecture will be illustrated.

5.1 Design of the Prototype

The prototype can be regarded as a proof of congbpte functionality such as impact
analysis partly works. All use cases, discussdtiisireport are not implemented but are
described in detail for possible future development

The core of the prototype’s functionality is todeadependencies between entities of the
configuration. The first step of discovering depemcles is to build a model of the parse

flow which is described in the configuration fileBhis makes it possible to parse the

complete configuration relatively quickly since ithés no need to parse all configuration

files for each tracing.

To build the model that contains all variants, @llthe configuration files have to be
parsed once in order to get a complete configuratédlected in the model. Then the
model is created and ready to be reused for eaglese In other words when the user for
example changes some value on configuration variebhnalyze impact of the change,
the model will be parsed instead of configuratidasf This method saves time since
parsing the model takes less time compared torgaesi configuration files.

Figure 5-1 describes how the model of configuraparnse flow is created from the con-
figuration files.

27

CAMERA = Or
MP3 = On

True

2)

Example of content in a con-
figuration file

True

o |PICTURE_sIZE =
L

DISPLAY_SIZE = 10

CAMERA =0n
MP3 = On

if DISPLAY_SIZE = 10
PICTURE_SIZE =5 |::>
else if DISPLAY_SIZE = 20
PICTURE_SIZE = 10
else

PICTURE_SIZE = 15

dif
@ end i)

True
PICTURE_SIZE =1

DISPLAY_SIZE = 2Q

True

lTrue True

PICTURE_SIZE =1

True

d
)
ENDIF) g
-

Figure 5-1. A model of the process where the configation files are parsed by the build tool.

The model contains all information from the configtion and forms a flow chart with
logical statements and configuration variablesrijure 5-1 the flowchart starts with the
node which contains only one statement. The armom fthe node has always the true
value which means there is only one possible waydve forward from the node in the
flow chart. These nodes are called process nodesnéxt node is a decision node that
contains thef condition and unlike the previous node, it has ammws, true and false
arrows. Depending on if thié statement is fulfilled the corresponding arronwussed to
refer to the next node. The node with #ige ifstatement is also a decision node and has
also two arrows similar to the node with thetatement. Nodes containiagdif or else
condition have only one arrow similar to the finstde in the flow chart described above.
There is no need to have two arrows due to thetlfedttheelseor end if conditions are
always true.

The implementation of the model is integrated ia turrent build tool for several rea-

sons. The parsing algorithm has already been ingaésd so it would be completely
unnecessary to implement our own algorithm. Anotkason is the double maintenance

28

problem. Each time the syntax in the configurafites is changed it would be necessary
to update both parsing algorithms.

The nodes in the model contain all the informatibat is needed for the tracing. All
nodes contain a configuration filename and line pers which represent the content in
the nodes. They also contain the reference to ¢lé mode. Decision nodes also contain
if, else ifandelsecondition, which are evaluated with functionalitythe build tool.

Reference to the file (filename). Reference to the file (filename).

Reference to file lines. Reference to file lines

Reference to the next node Reference to the next node

Condtion {f DISPLAY_SIZE = 10)

7

A process node A decision node

Figure 5-2. Content of a process and a decision ned

For example, to see the impact of the change obrdiguration variable’s value the
model will be traversed. Each visited node givédarmation of which file and which line
numbers should be read. With the help of this miation the correct reading will be
made under condition that modification has not geanline numbers. In cases where a
line number has been changed the model has tdbhétre

The model does not cover the entire configuratitscty means that the results from im-
plemented use cases do not give totally completiedmation due to special cases, but it
is still useful as a proof of concept.

Two use cases have been implemented, trace variabtetrace path. The first one gives
information about the variables that are affected @ne second gives information about
which path is traversed when the configurationhianged. In both cases the list contain-
ing information about which variables that are uaed which original value they have or
which path has been traversed, has to be stosgddibe able to compare with the gener-
ated list. The comparison can be made with a twdlis able to compare text files.

To handle the prototype an interface is implemenié@ user gives an instruction to the

prototype through the command window. The instarcis read by the interface which
starts the desired process. Figure 5-3 below ifites$ the build process of the model.

29

Product
family

A\ 4
Interface

invokes Configuration files

A 4

Modified read:
Build —
Tool

creates

A 4

Model of
parse flow

Figure 5-3. The process where the model of the padlow is build.

5.2 Work Procedure

The first step of the thesis was to gather all sgagy information about the integration
and build environment at Sony Ericsson. On thesbatithe gathered information, the
decision on how and where the prototype shouldnifdemented was made. Since the
parsing algorithm was already implemented in thidbiool, the simplest way to start
with implementation was to modify the build tooldamake use of the parsing algorithm
instead of implementing a new one. This means tti@tinterpretation of configuration
files in the prototype is always the same as inbiliél tool.

The next step was to implement a model of the emtimfiguration that is described in
the configuration files. Since the build tool deseall events which the model has to
make use of, for example to build a decision notlemmbuild tool detects ahstatement,
the nodes of the model are built in the sectiothefsource file where the detection oc-
curs. In other words, the model is implementechalduild tool and the following Exam-
ple 1 describes in which sections of the parsiggrihm source file the building of the
model’s nodes takes place.

30

Parsing Algorithm File

end if
...... END OF FILE
< / /

Figure 5-4. The building of the nodes using a modéd component of the build tool.

Due to size and complexity of the original configiion files test configuration files are
used. In the start these files were constructey sienply, only containing a couple of
statements, but in parallel with solving these $engases the complexity of test files was
increased. Each time the case was solved the madehlso built on the original con-
figuration files to verify that the implementatiaras correct.

When the model was finished the implementatiorhefuse cases begun. Due to the fact
that the structure of the model took more time thas estimated only two use cases
were implemented. The detailed design of use caassnade in the beginning which led
to a relatively simple implementation.

To execute a use case it takes the same time ddouid tool to parse all configuration
files. This is not strange since the model is im@ated in the build tool and all configu-
ration files have to be parsed to gather the coraglmformation. The information repre-
sents content in the nodes of the model.

31

6 Evaluation

Along the course of this project many ideas of ¢gesnand improvements emerged,
which were outside the scope of this project. Tdhiapter will summarize these ideas.
The first section evaluates the prototype whilesbeond section discusses amongst other
topics the structure of configuration files.

6.1 Evaluation of the Prototype

The main objective of the prototype is to traceatefencies between entities of the con-
figuration. This leads to detection of system peaild which makes it possible to isolate
problems and finally determine them.

The prototype does not implement all use case# muable to partly discover dependen-
cies between configuration variables. It does ¢ g complete overview but it is useful
like proof of concept.

The strength with the prototype is modelling of gase flow. The model describes all
possible paths through the configuration and whénibformation is available all analy-
sis of discovering dependencies are possible tfogmer Therefore, most of the imple-
mentation time in this master thesis was spentnguiementing this model. Instead of
implementing an independent program, implementasodone in the build tool, which
complicates the implementation of the model. Toausthnd how the current build tool is
implemented and how it works took more time thas wstimated from the beginning. It
appeared that the implementation part was more @xrthan planned; due to all the
special cases that occur when a build tool parseBguration files. Since the prototype
follows the build tool's parsing flow to build theodel, it was necessary to understand
exactly where in the build tool the interpretatafrthe configuration files occurs and how
it is implemented. It was a strenuous way to godiuhe same time the most efficient
since in the future it will be easy to implemerg tomplete product.

Building the model takes time which is necessarittie build tool to parse all configura-
tion files. But when the model is built there is need to parse the configuration files
again since the model holds all information abautfiguration files. Therefore, when the
user wants to execute a use case, for examplegtthe impact of the change, the model
will be parsed. This is more efficient than to gaadl configuration files again.

The desired situation is that the configuratiowfland configuration files should be to-
tally independent from each other after the budd js complete. In the prototype the
model is built while build tool parses configuratifiles and the parser simultaneously
stores logical statements and line numbers fronfiguration files in the model. When
the model is built and the user performs some ase the logical statements which are
stored in the model are evaluated by the build tath node contains file and line num-
bers which should be read when the model is parsed.

To get an independent product the dependenciessbatithe parse flow and configura-
tion files should be determined.

32

Figure 6-1 describes how the parsing of the ma&lplirsued in the prototype.

Product
Family and

variant

A 4
Generats
OUTPUT«——— Interface Reacs Model
Evaluats Configuration files

A 4

Build Reacs
tool D I

Figure 6-1. Parsing of the model

The graphical user interface is not a part of theqtype. Instructions to the prototype
are given through the command window, but it wdagddnuch more user friendly to have
a graphical interface. But otherwise the targethdf prototype is people with good com-
puter knowledge.

6.1.1 Example

To verify that the prototype is modelling dependescorrect the example in Figure 6-2
was used.

33

Product configuration file

A=0n

B=0n

if A==0n && B==0n
C=0n
D = Off

end if

if A==0n
Module 1

end if

if B==0n
Module 2

end if

if C==0n
Module 3

end if

if D==0n
Module 4

end if 7

A 4 A 4 A 4

Module 1 Module 2 Module 3 Module 4

Al=0n B2 =0n C3=0n D4 =0On

Figure 6-2. An example of configuration which weraised to verify the prototype

The product configuration file contains four configtion variables: A, B, C and D. It
also references four module configuration filescliEaf the module configuration files
contains one configuration variable. If the vabdfeconfiguration variable A changes to
Off then the product configuration file will notfezence Module 1 or Module 3 and vari-
ables Al and C1 will never be set. Another caseisat the value of D is changed. Then
the reference from the product configuration fildl e created and D4 will be set. This
example has been used to verify that the protobgbaves correctly.

6.1.2 Risks

The method of how and where the prototype shouldnpéemented was well chosen but
the miscalculation was time estimation. The sclaowl industry tasks are very different.
The industry tasks are often complicated where edfiptable cases can occur. It is very
important to be aware of this factor when estintatime. Otherwise, if we did it all over
again the same strategy would be used except stimaaion would be different.

6.2 Related Work

The previous master thegd, at the CM department at Sony Ericsson was aliatit s
dependencies between configuration variables. Thigoes defined as dependencies like
dependencies which do not take the values of cordtgn variables into account unlike

34

the dynamic dependencies. In this report the defmiof dynamic and static dependen-
cies are different.

if DISPLAY_SIZE =10
PICTURE_SIZE =5

Figure 6-3. Configuration

In Figure 6-3 two configuration variables are givéna previous master thesis waggk

the authors defined that the dependency betweisPLAY_SIZE and PICTURE_SIZEIS
static if the value orDISPLAY_SIZEis not taken into account and dynamic if the vatue
taken into account. In this master thesis we chomgdo define dependencies between
configuration variables as dynamic and static.dadtthe configuration is defined as dy-
namic and executable files as static (see als@)2I8. other words the meaning of static
and dynamic is used different in this report wheéependencies between configuration
variables are defined neither as static or dynamic.

But these two master theses are very similar sinegyoal is the same;

1. to first investigate the environment at Sony Eesand
2. to implement a tool which traces dependencies eriveatities.

Therefore the previous master thesis was the rsggpivint to make decisions in this pro-
ject. For example in the previous project the tabich traces dependencies was com-
pletely independent from the build tool. This me#dmst a new parsing algorithm was
implemented which means when configuration files @ranged the program stopped to
work. Therefore in this master thesis another datisvas made, to implement the pro-
gram very closely with the build tool. This methogtans that the double maintenance
problem is avoided but it also has some disadvastdgtook a lot of time to understand
the parsing algorithm which was not the case imptie®ious thesis.

How to model dynamic dependencies is also a govt@drom the previous master the-
sis. Authors proposed that the model which contaordiguration should be considered
like a flow chart instead of a graph. This ledhe todel being created like a flow chart
where the nodes contain the logical statementscanfiguration variables. These obser-
vations were very helpful to ensure that the cardscisions were made in this master
thesis work.

6.3 Further Work

This section gives suggestions to work that shbelgerformed to further investigate the
dependencies between entities in the software garaiion at Sony Ericsson.

6.3.1 Configuration File Architecture

It is recommended that the structure of the com&gan files is reviewed. The number of
configuration variables exported by the moduletifaces might be too large. It would

35

be simpler to set up and maintain product confifjoina if the number of configuration
variables were reduced. The configuration procaghinalso benefit from a more struc-
tured design of the configuration files, e.g. ajeoboriented architecture.

6.3.2 Support by other Tools

If a decision is made to implement a tool like three proposed in this report at Sony
Ericsson, then we recommend that support for inéginpy the result outputted by the tool
should be implemented in other tools used in thiegrmation process. An example was
given in section 4.3 illustrating how a text editmuld be used to facilitate the analysis of
dependencies.

6.3.3 Analysis of Source Files

This report primarily deals with the analysis oiniguration files; but to get a more
complete picture of the dependencies an analysibeokource files should also be per-
formed. To be able to implement the configurabilise case described in section 3.3.9,
source files also have to be parsed. The informatimuld then be added to the informa-
tion gathered by this tool to provide a more cortgtiescription of the dependencies.

The tool described in this project is integratedha current integration process. Maybe
the same approach could be taken to make a simibaification of the build tools to
perform a corresponding analysis of the sourcs.file

6.3.4 Parse Flow of the Build Tool

Since a tool used to analyze the configuration ncestainly needs to imitate the parse
flow of the original build tool used, the mannervitnich the build tool parses the con-
figuration files has a great impact on the desifjthe tool. During this project we were
not able to make an accurate model of the parse floe to the complexity of the build
tool. The result is that the tool is not able teega completely accurate analysis under all
conditions.

If the parse flow of the build tool was more sttafgrward and uncomplicated, for ex-
ample, if the different configuration files werergad only once and in an intuitive order,
add on tools like the one suggested in this reporld easier to develop and probably
also lead to more accurate results.

36

7 Conclusion

Due to the demands and requirements from the mas&ftvare manufacturers might be
forced to develop a large number of variants ofrtheftware, with a high release rate.
This puts special demands on the processes arglused! in the development process, as
well as on the software itself.

To be able to keep up the rapid software developmemultiple variants, it is an abso-

lutely necessary for software manufacturers to rheeability to obtain and maintain a

survey of the dependencies between the entitidseisoftware. The knowledge about the
dependencies gives valuable information about \whet of the software are affected by
a specific change. This type of information couddused to make well-founded decisions
regarding the development process by people ardiit levels of the company, ranging
from developers and architectures to project mamsagrategists and other decision
makers.

The configuration of the software, which controleaty components are included in the
executable, is determined by the configuratiorsfdescribing the components, as well as
the process of interpreting these files carriedoyuthe build tool. Since the dependencies
between entities of the software are ultimatelyraef by the build tool in use, a tool ca-

pable of analyzing the dependencies must imitate dehavior as closely as possible.
Accordingly, the best way to implement such a eympeared to be by reusing parts of the
current build tool, e.g. the evaluation logic. Hoee since the build tool used at Sony
Ericsson has reached a very high level of comptexiertain parts of the build process

had to be modeled in a simpler manner to be usafulependency analysis.

The prototype developed during this project shdves it is possible to implement a tool
in the proposed manner: reusing components fronbiid tool, as well as modeling the
parse flow of the build tool. This approach of iemlentation makes it possible to: make
an accurate model of the dependencies; integratéotli more closely with the current
development environment; it also makes the tooleeds maintain whenever the build
tool is updated. Only basic functionality is implemted in the prototype but the founda-
tion of modeling the dependency is included whilhie basis of all other use cases de-
scribed in the report. Successful tests were chaig; where test configuration files were
used to verify that the prototype modeled the ddpraies correctly.

Since the ability to model the dependencies isetyoselated to the build process, it ap-
peared that the design and architecture of thelbodl has a considerable impact on the
ability to model the dependencies. E.g., if the s@monfiguration files are parsed multiple
times the parse flow is harder to model than ifheflle is parsed only once. Therefore,
considerations regarding the possibilities of mdethe dependencies should be made
during process of designing the build tool.

We strongly feel that the software development wWdgnefit considerably by having a

tool that is able to model the dependencies inngoét configurations, described by this
report.

37

8 References

[1] Wayne A. BabichSoftware Configuration Management: Coordination feam
Productivity, 1986, ISBN 0-201-10161-0.

[2] Hellstrom & Pileryd,Controlling the Variant Explosiqr2005, ISSN 1650-2884.

38

	Framsida 2007-08.pdf
	Blank.pdf
	modeling_dependencies-rev2.pdf

