INSTITUTIONEN FOR DATAVETENSKAP | LUNDS TEKNISKA HOGSKOLA | PRESENTERAD 2022-04-12

EXAMENSARBETE Using DevOps to Improve Feedback and Traceability for Performance

in Software Development

STUDENTER Hanna Héjbert, Elias Vernersson
HANDLEDARE Lars Bendix (LTH)
EXAMINATOR Emelie Engstrom (LTH)

How to find performance issues before

production?

POPULAR SCIENCE PAPER Hanna Héjbert, Elias Vernersson

The change of software performance can sometimes go unnoticed if proper feedback
system are not implemented. This research therefore intends to investigate the means
of using an automated tool to increase feedback of performance issues.

In today’s rapidly changing environment timely
feedback is of the essence, not only for functional-
ity but also for performance. Testing performance
early, before releasing systems to the customer,
could therefore provide great value for companies,
in terms of feedback. But if there is no defined
practice in the development process for how to
test performance, it is easy for performance issues
to end up in production. If performance issues end
up in production, it can ultimately have a negative
impact on the user experience and revenue can be
lost. Then a tool that senses and informs about
performance issues may be appropriate.

In our research, we have examined what require-
ments developers place on a tool and how a proto-
type, based on these requirements, affected the de-
velopment process in terms of feedback and trace-
ability. Our results were a requirements specifica-
tion, a proof of concept and problem validation.
Through the prototype, developers were able to
get faster feedback and issue identification. Fur-
thermore, traceability increased in the develop-
ment process and in the code base.

The requirements were developed through an it-
erative process where the first iteration involved
interviews with developers and inspiration from
literature to produce an initial requirements spec-
ification. The second iteration involved develop-
ing different designs based on the requirements

and eliciting additional requirements with the help
of evaluation with developers. In the last itera-
tion, a prototype was implemented to validate the
requirements and elicit additional requirements.
The prototype was then evaluated by developers
and can be seen in figure 1.

Docker network

y, N Dockercontainer_
/ N A
Application C >
=| =] |
Java Agent T
) \ J ’ ~ -
= F// |
= < /
‘APM Server | C > ‘Elasticsearch | C > ‘Kibana |
\ J J
Docker container Docker contaier Docker container

Figure 1: Architecture of prototype when running
on build server

Overall, our research shows that our prototype
could increase the traceability between perfor-
mance issues and the code base and allow for the
developers to receive more timely feedback about
performance issues. This while also providing a
stronger sense of closure, along with a require-
ments specification of the prototype that is able
to be implemented in a general software develop-
ment environment.

