Summary: Managing product variants in a component-based system

Jacob Gradén, Anna Stahl
Lund University, Sweden

{graden, aannastahl}@gmail.com

Abstract

Today’s markets are fast-paced, with many different
customers and requirements on products. Component-
based systems are becoming a popular way of managing
product variants and promoting code reuse. The many
different requirements and product variants introduce
complexity which needs to be managed while retaining
flexibility, so that creating product variants is facili-
tated. This means that not only components and prod-
ucts must be managed, but also information pertaining
to them, such as technical relationships between com-
ponents and business requirements on products.

This master thesis suggests a support tool to help
in creating and managing the different components and
products, and outlines the capabilities such a tool should
have and the opportunities it would present.

Keywords: Component-based system, Composi-
tion, Configuration, Configurator, Dependency, Rules,
Variants

1. Problem area

At its core, the central problem is simply this: How
can the wvariants of a component-based system, and
their constituent components, be managed efficiently?
This is however a large field, with many facets.

A component-based system can be very flexible.
Components are meant to be mainly independent,
which means they can be combined freely to create
any number of variants. There may however be rela-
tionships between components — for example when one
component needs another to function properly, or when
two components are mutually exclusive.

The resulting combination of components (the con-
figuration) may also impose restrictions on possible
combinations. For example, components may belong
to different layers of the system — such as operating
systems and applications — and one restriction might

be that at least one component from each system layer
is present. Components also have properties, and an-
other restriction might be that all components in a con-
figuration have the same value for a specific property.

There is a lot of complexity involved as well. The
sheer number of components in a large CBS makes it
difficult to manage manually, and when components
are developed and exist in different versions over time,
the amount of components becomes staggering. Add
to that the possibility to create configurations, and
variants thereof, by combining components in differ-
ent ways, and it is clear that complexity will become a
major hurdle.

Using CBSs allows for great flexibility in creating
variants of a product, facilitates parallel development
and can reduce compilation times. Using a support
tool for managing CBSs keeps the time and costs down,
simplifies communication between departments, allows
for statistical analysis of components and product vari-
ants, and greatly reduces the risk of creating broken or
nonsensical product variants. Such a tool could also
mitigate the risk of manual errors, provide statistics
of component usage, and enable the tracking of license
costs, among other things.

Figure 1 illustrates an overview of the composition
process.

User interaction

e
Components

>
Technical
dependencies

Configurator

>
el =

~ requirements
- r
e

{ Legal
requirements

Figure 1. The composition process

mailto:graden@gmail.com
mailto:aannastahl@gmail.com

2. Findings

Using component-based systems allows for great
flexibility, but at the cost of complexity. That com-
plexity needs to be handled, and a semi-automated tool
for helping to do so would be very valuable.

Components Components generally need to be in-
dependent of each other, and when they are not, the
relationships need to be explicitly documented. Compo-
nents have many properties, notably market, customer
and test status. The test status may for instance take
the values untested or approved, but many more can
be envisioned.

Relationships Components may have many differ-
ent types of relationships; among them requires, con-
flicts and replaces. Components may also have indirect
relationships in the form of feature dependencies, which
allow a loose coupling between service-providing and
service-using components, or component suites, which
is a method to group components into suites. Relation-
ships are purely technical.

Rules Rules correspond to a higher level of abstrac-
tion than relationships and can be used to define re-
quirements between components, component relation-
ships, component properties, etcetera. They allow for
managing more advanced associations between these
items, thereby lessening the manual labor, and can be
limited in time or space. Rules can be explicit or im-
plicit, and different types of rules may be necessary,
such as business rules or legal rules.

Configurations A configuration is created by spec-
ifying which components and their versions that are
needed. Configurations have properties of their own,
such as production stage, but also receive property val-
ues from their constituent components — an untested
component, for example, means the entire configura-
tion can receive a test status no higher than untested.
Configurations may wvary greatly in size, from single
components sold as separate applications, to complete
software systems.

Repository The repository stores all configuration
items and their metadata, such as relationships, test
status, etcetera. Changes and deletions are generally
not allowed, only additions; but for some metadata,
other considerations apply. To keep the repository
clean, commit checks and controls for modifying items
are needed.

3. Support tool sketch

Figure 2 and Figure 3 exemplify what a support tool
could look like. All components are visible at all times,
and selected, required and unselectable components are
clearly marked. Test status and version information is
also available to support the user. Every time the selec-
tion of components is changed, the list of components
is updated. This real-time update allows the user to
easily see the impact of changes.

Global Customer Markets Languages
- None selected, Scandinavia Swedish
settings Generic used Norwegian
Danish

Applications

Appl | App2 I App3 App4 App5 ’ App6 I

Application suites

Figure 2. Support tool, example 1

Available choices Selected choices

| opemirsoten || serveetow ||

Applications

Customer Market Language

3

=
=] Applications
1001 (00 ¥ | © .
Carera et |25 4o W | @ | catender | |_musicplayer |
E | Aam aesti32) ¥ | @ >
Menu Default [¥ @
O | pumke 30000y ¥ | Q)
0 | sims 42140y W | O Operating system not selected!
O | Rockband 6431(aesy) W
00| myspace Ty ¥ | @
Flicks latest0K(1.2.3.4) W
O | rwier 43210ates) ¥ | O A .
Phoncbook Speech ¥ |sesolaesy W | QO St.atl‘JS information
O | sms Default ¥ 3333000 ¥ | @ Missing OS.

Figure 3. Support tool, example 2

Complete details are available in the full report,
Managing product variants in a component-based sys-
tem.

