
Benchmarking and comparison of a
relational and a graph database in a CMDB

context

Rasmus Berggren
dat15rb1@student.lu.se

Dennis Londögård
dat15dlo@student.lu.se

June ��, ����

Master’s thesis work carried out at Axis Communications

Supervisors: Guido Gudios, guido.guidos@axis.com

Lars Bendix, lars.bendix@cs.lth.se

Examiner: Per Andersson, per.andersson@cs.lth.se

mailto:dat15rb1@student.lu.se
mailto:dat15dlo@student.lu.se
mailto:guido.guidos@axis.com
mailto:lars.bendix@cs.lth.se
mailto:per.andersson@cs.lth.se

Abstract

The IT companyAxis has grown a lot in the past decade and they are now having
trouble keeping track of everything e�ciently and hypothesize that they are in
need of a CMDB, while also wondering what type of database it would be best
implemented as. The goal of this thesis was to investigate what requirements
Axis has for a CMDB, and use their requirements to analyse if it would be best
implemented as a graph database or relational database.

The work was done in two parts. The �rst part consisted of making a re-
quirement speci�cation for Axis context, this was done with a combination of
literature study, interviews aswell as examining an old database used forCMpur-
poses. A minimum viable product was created from the requirements to serve
as a proof-of-work as well as a basis for the second part. The second part was
a benchmarking based on the parameters of performance, writability, as well as
readability. A combination of these three parameters was used to answer which
type of database would be best for a CMDB.

By conducting the interviews we were able to create a CMDB requirement
speci�cation for Axis. The resulting speci�cation suggests that Axis would ben-
e�t from an interconnected CMDB between the departments with a need for
traceability. The results from the benchmarking showed that relational databases
perform better than graph databases, while graph databases were better in re-
gards to writability and readability.

We conclude that Axis would bene�t from a CMDB within the company.
Our research shows that both of the database types could be used for a CMDB,
however we suggest that it should be implemented as a graph database since it
would be easier to maintain.

Keywords: CMDB, Benchmarking, Neo�j, Graph database, MariaDB

�

Acknowledgements

We would like to thank Lars Bendix, our supervisor from LTH that guided us and gave us
valuable feedback every step along the way.

We would also like to thank Axis for giving us the opportunity for doing this thesis,
speci�cally all the people that participated in the interviews. A special thanks to the depart-
ment of Axis tools and our supervisor Guido Guidos. Lastly we would like to thank Torbjörn
Söderberg who went out of his way to help us with our thesis.

�

�

Foreword

This report is primarily written for Axis employees for further development, therefore some
prior knowledge is assumed. The work uses languages where we presume that the reader
has the knowledge of a master in computer science, with basic knowledge within the �eld
of databases and is familiar to the concept of con�guration management, but no advanced
knowledge in these �elds are required.

The work for this thesis was completed in full collaboration. Where Rasmus Berggren
took a larger part in conducting the interviews, and Dennis Londögård took a larger part in
writing the queries. However we were both heavily involved in every step in the process of
the thesis.

�

�

Contents

� Introduction �
�.� Background . �
�.� Problem formulation . ��
�.� Outline . ��

� Theory ��
�.� Con�guration Management concepts . ��

�.�.� Con�guration Management introduction ��
�.�.� Con�guration Identi�cation . ��
�.�.� Con�guration Status Accounting ��
�.�.� Con�guration Management Database ��

�.� Database concepts . ��
�.�.� Database background . ��
�.�.� Relational database . ��
�.�.� Graph database . ��

� Method ��
�.� Context . ��
�.� Methods for phase � . ��
�.� Methods for phase � . ��

� Results and analysis ��
�.� Analysis and results of CMDB requirement speci�cation ��

�.�.� Analysis of literature study . ��
�.�.� Analysis of interviews . ��
�.�.� Analysis of the old database . ��
�.�.� Resulting Axis CMDB requirement speci�cation ��

�.� Analysis and resulting MVP . ��
�.�.� Analysis of MVP . ��
�.�.� Resulting MVP . ��

�

CONTENTS

�.� Analysis and results of benchmarking . ��
�.�.� Benchmarking parameters . ��
�.�.� Benchmark UML and Dataset . ��
�.�.� Queries . ��
�.�.� Analysis of performance . ��
�.�.� Analysis of maintainability . ��
�.�.� Results of benchmarking . ��

� Discussion and related work ��
�.� Discussion and re�ection . ��
�.� Threats to validity . ��
�.� Related work . ��

�.�.� Requirements and Recommendations for the Realization of a Con-
�guration Management Database [��] ��

�.�.� Graph-Datenbanken alsGrundlage desCon�gurationManagements
– Eine Untersuchung am Beispiel von Neo�J [��] ��

�.�.� Performance of Graph Query Languages Comparison of Cypher,
Gremlin and Native Access in Neo�j [�] ��

�.�.� A Comparison of Relational and Graph Databases for CRM Sys-
tems [��] . ��

�.� Future work . ��

� Conclusions ��

References ��

Appendix A Queries ��

Appendix B UML ��

Appendix C Interview guide (in swedish) ��

�

Chapter �

Introduction

1.1 Background
Axis Communications (Axis) is an IT company widely regarded for their commercial surveil-
lance camera that has grown a lot in the past decade. They are now having trouble keeping
track of everything e�ciently and hypothesize that they are in need of an interconnected
database between the departments. Their hope is that it would improve their productivity
by having data that is important for multiple departments stored in one place. It would also
bene�t new employees by making it easier to search for information from one centralized
location. This is because information currently is stored locally within each department by
their own means.

Axis is composed of a lot of di�erent departments that vary from everything between
development and sales. Each department is as important as the other for Axis to thrive and
grow as much as they have the past decades. This report was done with the help from the
department of Axis tools who develop and maintain software.

As mentioned Axis has grown a lot the last decades and with this di�culties has arised
with keeping knowledge accessible for new and old employees. They currently have trou-
ble fetching important information about certain artefacts such as who is the owner of
which system and which system depends on another. This creates dependencies on peo-
ple that Axis wants to reduce. To do this they want to create a Con�guration Management
Database(CMDB) which is an essential part in software development to manage artefacts
within the company between all relevant parties. Its main focus is to keep track of relevant
Con�guration Items(CI), which are the important artefacts, and their corresponding rela-
tionships to other CIs. The goal is to make it easier to fetch information and have a platform
that includes every department at Axis. However as the work is carried out for Axis tools
the main focus of the project will be on the needs of the developers.

To implement a CMDB a type of database needs to be chosen. Axis has a hypothesis
that it would be best implemented as a graph database using Neo�j, instead of as a relational

�

�. I�����������

database using MariaDB. The hypothesis is based on the fact that a CMDB tends to have a
structure that resembles a graph and therefore should bene�t from being implemented as a
graph database. A benchmarking of three aspects, performance, writability, and readability,
will be made. The benchmarking will be done to determine if the CMDB is best suited as a
relational database or graph database.

A CMDB is not something that is made in one day, instead it should grow organically
with the needs of the company. Therefore it will not be possible to implement the perfect
CMDB in this master’s thesis. Instead the focus will be on creating a CMDB requirement
speci�cation for Axis and implementing a minimum viable product (MVP) of it. This will
be done to provide a proof-of-work and as a basis for the benchmarking. The proof-of-work
should then be further examined and developed to create a more complete CMDB for Axis.

1.2 Problem formulation
The goal of this project is to create aMVP for Axis as a proof-of-work for a CMDB. To do this
CIs had to be determined and use-cases will be created based on interviews, literature and
older databases they currently use for CM purposes. The MVP will be designed and speci�c
queries will be implemented based on use-cases. These queries will be evaluated based on
performance, readability and writability. By comparing these aspects the intent is to make
an informed suggestion whether the CMDB should be implemented with Neo�j or MariaDB.
To do this the following research questions will be examined:

�. What are the necessary con�guration items for Axis CMDB?

�. What would the CMDB requirement speci�cation be for Axis?

�. Should a CMDB be implemented with a graph database or relational database?

(a) What can/can not be implemented with a graph database?

(b) What bene�ts can graph databases contribute that relational databases can not,
and vice versa?

1.3 Outline
This report begins with introducing relevant theory, divided in two parts explaining CM
concepts as well as database concepts, which are needed to understand the language used later
on in the report. Then themethods that are used to tackle the research questions are discussed
and motivated. The following chapter is where the results are presented and analyzed which
is followed by a discussion of threats of validity, related works, and future work. At last, the
conclusions to the research questions stated in the problem formulation are presented.

��

Chapter �

Theory

This chapter contains the theoretical background that is necessary to get a basic understand-
ing of all concepts and terms mentioned within the report. This would be bene�cial to read
if no prior knowledge is held within either the subject of Con�guration Management (CM)
or databases, to fully understand the language used within the report. CM and database con-
cepts are two widely di�erent subjects and their theoretical description will therefore be split
into individual subchapters. Where one could choose to read the section which is foreign and
skim the other one.

2.1 Configuration Management concepts
Research question one and two, mentioned in the problem formulation, requires some knowl-
edge about CM to be answered since they involve CM concepts. The �rst research question
involves Con�guration Items which in themselves are identi�ed by Con�guration Identi-
�cation, while the second research question needs knowledge of CM databases(CMDB). A
CMDB is based on both Con�guration Identi�cation and Con�guration Status Accounting.
To be able to fully understand these concepts an introduction to CM will be made.

2.1.1 Configuration Management introduction
CM is an old concept that has been around and has not changed a lot for the past few decades.
Even though it is an old concept the de�nition of what it really is can vary a lot depending on
who is asked. This creates problems when discussing CM as a concept, since people can have
varying opinions of the concepts as well as the name of CM terms. Therefore a generalized
de�nition of CM and who uses it will be presented.

The purpose of CM is to provide consistency to a project throughout its lifecycle where
the goal is to maximize productivity and minimize coordination mistakes. To accomplish

��

�. T�����

this CM helps the team to stay on track. It does this by identifying, organizing and con-
trolling modi�cations to the project[�]. By keeping track of the history it is possible to as-
sure consistency and provide the ability to retrieve an older version of the project. CM is
divided into four main disciplines, Con�guration Identi�cation(CI), Con�guration Con-
trol(CC), Con�guration Status Accounting(CSA), Con�guration Audit(CA)[�]. From these
four principals only CI and CSA is relevant for this thesis, and will thus have one subchapter
each explaining the concepts.

CM is a principle that is in widespread use by many companies. Software companies
speci�cally, have two sub groups that take advantage of Software Con�gurationManagement
(SCM), managers and developers. Developers may recognize SCM when using a version con-
trol tool, such as git. SCM helps the developers coordinate their work by having access to
the components of the product and history of these components. Providing a stable working
context for changing the product and coordinates for concurrent changes[�]. While the man-
agers use it in a broader perspective where the goal is to identify product components and
changes, to control changes, and to record and report the history and status of the product[�].

2.1.2 Configuration Identification
Within the �eld of CM, artefacts are the components and items that constitute the product
and all relevant assets within the company. This could essentially be anything depending on
the context or the given company, it could be anything from source code to an informal email
within the company. Con�guration Identi�cation is the process of identifying which of these
artefacts that in some way are important for the company and should be protected with CM
principles[�]. Protecting these artefacts means that they are safely stored, version controlled
as well as preventing unwanted changes to them. A good guideline for establishing whether
an artefacts is important or not is to ask “Would our ability to deliver the right system, on
time and within budget, be impacted in any way if a particular document, drawing, piece
of software or hardware kit were lost or corrupted, or were used incorrectly or at the wrong
version?”[��]. These would then be classi�ed as Con�guration Items(CI). Both Con�guration
Identi�cation and Con�guration Items are denoted as CI, from here on in this thesis CI will
therefore stand for Con�guration Item. The CIs needs to be granulated to an appropriate
extent and the appropriatemetadata for the items needs to be saved for proper Con�guration
Identi�cation[�]. This granularity and metadata di�er between company and context. One
company may for example consider a license or server to be a CI while another company
would not.

2.1.3 Configuration Status Accounting
CSA is the ability to record and report the status of a project and its con�guration items
at any given time. Therefore CSA depends on that the information is of good quality, both
in regards to Con�guration Identi�cation and that it is safely stored in a CMDB[�][�]. The
right CIs have to be identi�ed with their corresponding metadata and relations, and should
only be modi�ed within the CMDB if there is a reason for it. The goal of CSA is to provide
visibility of the project and does this by providing a way to fetch metadata information about
CI and what relationships they have to each other. The relationship between these items is a

��

�.� D������� ��������

central component of CSA and is what is called traceability, which can help when for example
wanting to calculate the impact a speci�c change has on the project[�].

2.1.4 Configuration Management Database
A CMDB is a tool used in CM to safely store CIs, their attributes as well as relationships
between the items[��]. This database has the ability to provide CSA and should therefore
support all relevant queries so that the data can be fetched in multiple ways[��]. To trust the
CSA the data has to be consistent within the CMDB. This means that not everyone should
have the ability to modify the database, but only authorized personnel, and that the data is
consistent even if something were to happen to the database, such as a system failure. Figure
�.� shows the process of an authorized personnel inserting a CI into the CMDB as well as a
user performing CSA on the same database.

It is di�cult to create the perfect CMDB in one go, as it is something that dynamically
grows with the needs of the company. There is no universal CMDB that �ts everyone since
every company has their own needs and therefore identi�es their Con�guration Items dif-
ferently. Instead it has to be a �exible database that can be dynamically changed throughout
the project’s lifecycle to �t the new needs that might be discovered[��]. This would mean
that the database would potentially grow to be very large and would therefore need to be
able to handle a large amount of data. A CMDB could be used by many di�erent employees
and would potentially be under quite a lot of pressure[��][�]. In return it should be able to
handle multiple simultaneous requests.

Figure �.�: Graphical depiction of how the terms of CI, CSA, and
CMDB relate to eachother

2.2 Database concepts
The third research question askswhether aCMDB should be implemented as a graph database
or a relational database. To answer that question a general description of terms and concepts
of what a database is and what bene�ts they may provide is given. A deeper explanation and
theoretical comparison will be made between relational databases as well as graph databases.
Which will serve as a base for arguments made later in the thesis.

��

�. T�����

2.2.1 Database background
Databases is an old concept that started gaining popularity in the ����s when navigational
databases and the network databases were the most common[��]. However these early sys-
tems were in�exible therefore in the ����s the relational databases grew in popularity. More
recently with the growth of the internet NoSQL databases have gained a lot of popularity for
its ability to perform queries on unstructured data and for its performance[��]. This would
potentially be bene�cial for a CMDB since its data should be �exible and therefore resembles
unstructured data.

The similarities between databases is that they all strive towards storing data in an or-
ganized way. The di�erence between databases comes in how the data is stored and how
one accesses it, most databases make use of queries for the user to manipulate the database.
Queries are a way to access, manage, modify or update data[��], and could be seen as the
means by which a user exercises their use-cases of the database. A speci�c use-case might
be “fetch all people that are less than a certain age” and with the right query, that could be
achieved.

There are two important factors to consider for any database, especially for aCMdatabase,
to be able to handle a large amount of data without su�ering drastically in performance as
well as ensuring a high quality of the data. A set of common properties to evaluate data qual-
ity of databases is the acronym of ACID, which stands for atomicity, consistency, isolation,
and durability[��]. Atomicity guarantees that all transactions that are made in one request
is done or that none of them are done. Consistency ensures that all data is consistent with
the corresponding constraints such as data type restriction, that a date is in fact a date for
example. Isolation ensures that all queries are not a�ected by other queries, meaning that
two people should not be able to update the database at the same time and override each
other. Durability means that if a query has been successfully committed to the database it
will stay within the database even if a system failure occurs. All databases do not support
ACID because of di�erent reasons such as ensuring a high availability[��]. Therefore a devel-
oper has to make a choice when choosing a database to pick one that �ts the needs of their
context.

2.2.2 Relational database
As mentioned, relational databases became popular in the ����s and have been popular ever
since. Relational databases’ biggest strength in the ����s were its standardization of how the
database was represented and the way that queries were made. Relational databases store
their data in tables which consist of rows and columns where each column is an attribute
and each row is a new data point stored in the database, as could be seen in �gure �.�. These
tables make it clear what the data point is, which is a strength for relational databases[��].

MariaDB is one relational database that is popular, open source and guaranteed to stay
open source. It is a fork of the hugely popularMySQL, a non open source database; both share
similar features and both use the ISO standard, Structured Query Language(SQL)[��]. Most
relational databases use SQL which makes it easy for the user to switch between di�erent
types of relational databases and a large community of developers are familiar with it.

��

�.� D������� ��������

2.2.3 Graph database
As a response to the growing complexity of data and technological advancement came the
non-relational databases, also known as NoSQL. Non-relational databases is a relatively new
technology that has gained popularity in the last decade[��]. The selling point of these
databases is that they, as opposed to relational databases, do not need to be pre-de�ned to the
same extent and can instead be dynamically adapted to the scenario where a static table needs
to be de�ned beforehand. While relational databases are table-based that is not the case for
all non-relational databases. These databases vary from document based, key-value pairs or
graph databases, among others[��]. These databases are tailor made for speci�c scenarios and
are therefore good at one speci�c thing but not necessarily useful in all situations.

Graph databases are, as the name suggests, made speci�cally to e�ciently handle data
structures that resemble graphs[��]. In other words a structure with a large set of relation-
ships, potentially bene�ting the traceability of a CMDB. Instead of tables, representing the
data with nodes and edges, as can be seen in �gure �.�. One of the currently leading andmain-
stream graph databases is Neo�j[��]. Neo�j is a commercial graph database consisting of both
a paid enterprise edition as well as a free community edition. As opposed to SQL databases
that use similar query languages between the databases, that is not always the case with
NoSQL databases where almost every database technology has their own query language.
Neo�j has developed their own query language called Cypher which is optimised for graph
traversal while keeping to the familiarity of SQL by being a declarative query language[��].

Figure �.�: Depictions of a relational database to the left and a graph
database to the right

��

�. T�����

��

Chapter �

Method

This chapter starts by establishing the context of the thesis, which would be useful to un-
derstand why certain choices were made. The chapter continues by discussing the possible
methods that could be used to answer the previously mentioned research questions, and a
motivation for why we decided to do as we did. The thesis was divided in two parts, the
�rst one focusing on forming a requirement speci�cation for a CMDB, while in the second
part consisting of a benchmark comparison of two di�erent types of databases. This chapter
will re�ect this by being separated in two subchapters representing the two di�erent phases.
A description of how each method was carried out will be given, providing the reader with
enough knowledge so that they may reproduce the project.

3.1 Context
Axis Communication started out in ���� with the intent of creating new innovative net-
work solutions for digital devices, initially starting out by providing network printing ser-
vices. They have kept this aim over the years but have expanded and transferred their focus to
new products, today mainly producing and developing network surveillance cameras. Today
they develop and manufacture their own cameras that are sold to multiple distributors. In
return this means that Axis has grown quickly to a large company with many departments,
consisting of project managers, sales team, marketing teams, hardware developers, software
developers and more to be able to provide the service they have. All these teams have to co-
exist and work together towards a common goal for Axis to continue to succeed and prosper.
Axis has grown consistently, which in part is thanks to that every department has the pos-
sibility to adapt their work�ow to what is most e�cient for them, not having to follow any
strict standards.

Since its beginning in ����, and especially the last decade, Axis has grown to become a big
company with over ���� employees[�], but with growth comes complications. The company
has become quite dependent on their employees’ knowledge of where certain information is

��

�. M�����

stored and how certain systems work. This is a problem when new employees start at Axis
since the work is an uphill battle from the start. It is especially problematic if someone leaves
the company that holds a lot of information.

This thesis is carried out at Axis tools which is a software department that develops new
software as well as maintains old software. Axis tools are divided into minor teams that
are owners of their own systems. These teams work in close relation with project managers
when maintaining and creating new applications. Therefore developing a CMDB would �t
this department. An important factor for a CMDB is that it should be suitable for the whole
company to provide some kind of coordination between departments, and therefore multiple
departments have to team up to create a suitable and sustainable database. However since
this is a thesis and is done at Axis tools, a decision was made to focus primarily on software
developers and their needs for a CMDB and have other departments as a secondary goal.

3.2 Methods for phase 1
To answer research question one and two, which are “What are the necessary con�guration
items for Axis CMDB?” and “What would the CMDB requirement speci�cation be for Axis?”,
there was a need to combine di�erent methods to reach a conclusion. Both questions have a
need of understanding best practices when performing con�guration identi�cation as well as
forming a requirement speci�cation, and it was therefore essential to explore best theoretical
practices as a basis, followed by consulting the employees at Axis to verify our �ndings and
determine what speci�c needs Axis has.

A complete overview of the process of phase � can be seen in �gure �.�. The process
starts with a literature study to get a deeper understanding of what a CMDB is and what
requirements there should be on a CMDB in general. With background knowledge from a
CM course we had learnt the general principles of CM but lacked speci�c knowledge about
CM databases, therefore our literature study was focused on the concept of CMDB. To create
a CMDB requirement speci�cation for Axis we had to understand which problems they have.
This was done by interviews and an analysis of an old database used for CM purposes. The
interviews were conducted to investigate current problems that need to be addressed. To
analyse old problems that Axis has faced and how they addressed them, we examined their
current database.

Figure �.�: The process for phase �

Other solutions that were considered to reach more people was to interview other com-
panies or use surveys instead of interviews. By interviewing other companies the focus would

��

�.�M������ ��� ����� �

shift frombeing speci�c forAxis and therefore not generate a fair result for the thesis. Surveys
would reach a wider group of people however we wanted to have an open ended discussion
with the interviewees which would not be possible with questionnaires. By not having direct
contact with the participant it would be di�cult to assure that everyone had a common un-
derstanding of the concepts of CM and CMDB. Therefore we believed that we would receive
more useful information from interviews. The interviews were also held with key people
from each department, except software where there were more varied personnel, which were
speci�cally chosen to get as broad a perspective as possible with a limited number of people.
Since it was possible to interview key people we reckoned that it would give the best result
in the time frame we had. Another reason for doing interviews only at Axis was that it was
accessible because the work was carried out on location at Axis.

The literature was mainly found by using di�erent online search engines, namely google,
google scholar, and LUBsearch. Using speci�c keywords to �nd articles, papers and white
papers, trying to mainly base our knowledge on peer reviewed papers. Letting ourselves be
inspired by any relevant information we could �nd, while being more critical of non peer
reviewed sources. The �ltering of relevant literature was made in three steps where we �rst
search with our keywords and read the titles. If the titles seemed relevant we read the abstract
of the paper to get a more thorough understanding of it. If it was still relevant we read the
whole paper and discussed it together and decided if it was a paper that could bene�t our
thesis in any way.

The goal with the literature study was to search for similar works that could provide
inspiration of howwe could carry out the work andwhat results other companies suggest that
�t their context. It was also made to see what literature suggests that a CMDB should consist
of, what their examples of Con�guration Items are and what a requirement speci�cation
should be. By evaluating the literature some preliminary ideas of requirements and CIs were
determined to be essential, and needed to be veri�ed before the interviews began. Therefore
we see no way of not including a phase for literature study in this thesis, as it was an essential
part of the process.

As mentioned earlier, a CMDB should coordinate a company by storing important data
in a central database that is used by multiple departments. To ensure that this would be
the case, it was required to talk to di�erent departments within Axis to get a wider view of
Axis speci�c requirements. This was achieved by interviewing di�erent people in multiple
contrasting departments, formulating their needs as the users’ use-cases for a CMDB, repre-
senting the requirements of Axis. Since the work was carried out from the perspective of axis
tools, a software department, this was our outset and main point of focus. The departments
that were interviewed were; IT, Governance, Project Management and Software Develop-
ment, to achieve as varied a view of the requirements as possible. In total nine interviews
were conducted where four people worked as software developers. These four interviewees
had quite di�erent backgrounds from working one year to over twenty years, and worked in
di�erent teams. This was done to get a wider perspective of the needs of software developers.
While the remaining interviews were one too two key people at their respective departments,
representing the whole department.

Before conducting the interviews we needed to decide how they were supposed to be
carried out. The goal was to create a dialog when interviewing, but with some speci�c topics
to discuss. Therefore we decided to go with semi-structured interviews which means that we
had some prede�ned open questions, meaning a question that can not be answered with a

��

�. M�����

static yes or no response[��]. The questions changed throughout the interviews based on how
the interviewees answered and if some questions were hard to understand we would then try
to formulate it in another way. Important to consider is that the topics for each interview
were never changed, just reformulated. Sometimes it is recommended to initially have test
interviews to try out the questions before the real interviews start, to ensure the validity and
quality of the questions[��]. This was not done since we believed that it would require a
larger time investment than we had decided to allocate for this part of the process. Since we
wanted to create an open-ended dialog we would be able to formulate the questions during
the interviews, adapting to the conversation and still get a viable result.

A problem with the interviews is that they took longer than expected, taking approx-
imately four weeks to carry out in total. This was because the people that we wanted to
interview had other more important matters to attend to and that people had to reschedule
because of sickness or for other reasons, which is something to always consider when con-
ducting interviews. Another problem that became apparent was that some interviewees had
not heard of the term CMDB or CM, and there were others that were not completely sure
what a CMDB should do. To deal with this we introduced CM and CMDB for the inter-
viewees at the beginning of the interviews to have a common understanding of the concepts.
However there were still some requirements and use-cases that might not be within the scope
of a CMDB that were proposed, that needed to be �ltered out.

In the down-time between each interview we decided to spend our time as e�ciently
as possible, deciding to examine one of Axis’ current CMDB solutions. A database called
“CMDB” which is owned by Axis tools. This was examined to see which use-cases it tried to
solve and how useful it was for the company at this point. However early on in the examina-
tion it was noticed that no one at Axis currently uses the database, and there was only one
person that had, at one point, used it. No one had maintained the database for some time,
making it obsolete, which is the main contributing factor to why it is not in use. It also be-
came clear that the database had one speci�c use-case, to solve a single person’s requirement,
and would, according to the de�nition of a CMDB, barely be classi�ed as such. Therefore
there was not much focus on this database, just a short informal conversation with the person
that had used it and consulting the documentation as well as source code.

A requirement speci�cation for Axis was formed from a collection of the gathered in-
formation from literature, interviews as well as the examination of the old database. The
literature provided a base of knowledge from which we could examine if common CMDB re-
quirements would be relevant for Axis during the interviews. The interviews were the main
source of requirements, being the only source revealing Axis current needs from across the
company. Comparing the interview requirements to the theoretical ones together with the
examination of the old database gave the CMDB requirement speci�cation for Axis.

By narrowing this speci�cation down to the essentials, a MinimumViable Product(MVP)
was formed with an accompanying UML diagram. TheMVPwas made to give the best repre-
sentation of theCMDB andwhere it was possible to showcase asmany use-cases as possible. A
lot of use-cases were quite similar in functionality, such as selecting di�erent CIs by the same
data type. Then one use-case would be su�cient to cover many, limiting duplicate work. The
goal with the MVP is to implement it as a database in phase two for benchmarking, used as
a basis for research question three.

It would be possible to implement all use-cases with all requirements. However it was
believed to be another waste of time since the goal was simply to create a proof-of-work of

��

�.�M������ ��� ����� �

a CMDB for benchmarking purposes more so than a complete product. Creating a complete
and functioning CMDB that would be useful for the company would require much e�ort and
would be a waste of time for our thesis if it were not desirable. Instead the goal was to create
aMVP that could showcase all important bene�ts of a CMDB that were gathered throughout
phase one and that could be benchmarked. Another reason was that Axis own employees are
better than us at implementing databases and therefore would most likely have done a better
job than we would when implementing the database. Therefore it would be a waste of time
from our part to implement something that could be better made.

3.3 Methods for phase 2
To make a systematic exploration of our third research question, “Should a CMDB be imple-
mented with a graph database or relational database?“, a comparison had to be made. As can
be seen in �gure �.� theMVP requirement speci�cation were both implemented inNeo�j free
community edition, a graph database, andMariaDBwhich is a free and open source relational
database. To accomplish this we had to learn Neo�j since we held no prior knowledge about
the subject, however prior knowledge about MariaDB had been learnt from a prior database
course. These two database types were then benchmarked and compared on three parame-
ters, writability, readability, and performance. The parameters were chosen by similar works
and the goal is to combine these parameters to answer the research question.

Figure �.�: The process for phase �

Other parameters to consider could be how e�ciently the database handles the data

��

�. M�����

storage or how much data the database can manage. The e�ciency indicates how much
actual memory any given data would occupy on a hard drive, this would not be relevant in
many modern contexts where memory is cheap and no longer an issue but could be worth
considering how it scales for large amount of data. How much data the database actually
can manage before it becomes unusable or unstable is also worth considering when handling
large amounts of data, like big data, this is however not the case for this context and was
therefore not considered either.

To be able to test and benchmark these two databases and see how they would scale
we decided to go with two di�erently sized datasets. The datasets consisted of randomly
generated, but realistic, data points as can be seen in �gure �.�. The small dataset was a
realistic size to how large Axis currently is and the other dataset would resemble a larger
organisation, to what Axis could grow into in the future. The sizes of these two were made
by an approximation of our supervisor. These two sizes would make it clear how the two
databases would scale with more data and a comparison would be able to be made. It would
be possible to test with a third dataset that would be even bigger. However that would not
currently be relevant for Axis to examine, and is therefore not part of this thesis. Another
reason to not use a third dataset is the time it would take to prepare data, benchmark it and
analyze the results which we did not deem necessary.

Figure �.�: Generating random data for a server

The data insertion into MariaDB was easy since the UML of the MVP was converted into
a UML that �ts MariaDB and then the tables could easily be made. The only di�culty was
that the data had to be inserted in a speci�c order since a relation could not be created before
the parent was created. E.g every system has an owner and therefore the employees had to be
inserted before systems. Neo�j on the other hand does not have any prede�ned tables since
we use the community edition. This edition does not allow you to create prede�ned labels.
Another issue with Neo�j is that it was incredibly slow to insert data. The big dataset took
about � hours to insert. There is an admin tool that could be used for inserting data into
an empty Neo�j database, but that was not something we deemed worth our time examin-
ing how it works and instead used a simple but time consuming insert query, since it was
not part of any test. Another problem that arose with Neo�j was that it quickly �lled the
cache memory with log �les, which Linux allowed but it created complications. To �x this
modi�cations were needed in the con�g �le to not save as many log �les and instead remove
old �les more frequently. However this was noticed too late and the computer’s cache was
�lled two times which took one day to solve. Another situation arose when we decided to
update to the latest versions of both Neo�j and MariaDB. We did not have the latest version
of our operating system, resulting in us not having the latest version of MariaDB. This re-

��

�.�M������ ��� ����� �

sulted in us spending one day on letting our computer update. Neo�j released a new update
during our thesis, which we decided to update to. However during the updating of Neo�j
something went wrong resulting in the visual interface of our operating system disappearing,
which made it necessary for us to consult IT.

The benchmarking measured three di�erent aspects, writability, readability and perfor-
mance. As can be seen in �gure �.� together they form the result of the benchmarking.
Writability is the di�culty of initially writing a query. Readability determines how hard
a query is to read and understand, this resembles how it would be to maintain the code. Per-
formance is the execution time of each query. These three parameters ful�ll the lifecycle of
a system from developing, using and maintaining it. Writability and readability were eval-
uated by subjectively analyzing what we thought about these two aspects. It was evaluated
by our impression of complexity and the lines of code. Therefore the results of these two
parameters will not be perfectly objective in an academic scenario, solely being based on our
experiences when working with the languages for an extended period of time. However we
believed that it was the best we could do within the time frame and our expertise. Another
solution to analyze writability and readability would be to use token analysis[��]. This is not
something that we know how to do, and would take a considerable amount of time to carry
out and was therefore not done.

Figure �.�: The parameters that were measured during the bench-
marking

The benchmark was measured on eight queries which were derived from the use-cases
discovered in the �rst phase. Creating the queries in such a way to cover all use-cases with as
few queries as possible, covering similar use-cases with a single query. E.g fetching the name
of one CI would be identical for all CIs. The same query was implemented in both cypher
and SQL to be tested in both databases. The experiment consisted of �lling the database
with a small amount of data, running the queries ��� times each and saving the time for

��

�. M�����

each query. Then doing the same for the big data set, each query being executed �� times,
this because the execution times ran remarkably longer. This was implemented using python
where we used a library simply called Neo�j for Neo�j, which is o�cially supported by Neo�j
themselves, and used a library called pymysql for MariaDB.

The time was evaluated by calculating the average of both types of databases and by
comparing how they scale from the small to the big dataset. The average is calculated by �rst
removing the top ��% and least ��% of the values, this to remove divergent numbers caused
by external processes that could negatively a�ect our results.

��

Chapter �

Results and analysis

This chapter evaluates the results and conclusions reached in this thesis. This is done by
analyzing the data obtained from applying the previously described methods, and then pre-
senting the results. Split in three parts where the �rst part answers the �rst two research
questions, “What are the necessary con�guration items for Axis CMDB?” and “What would
the CMDB requirement speci�cation be for Axis”?. The second part is an intermediate step
taking the system requirement from the �rst part, turning it into a minimum viable prod-
uct(MVP) used for benchmarking in the following phase. The last part benchmarks the MVP
to answer research question three, “Should a CMDB be implemented with a graph database
or relational database?”.

4.1 Analysis and results of CMDB require-
ment specification

To create a CMDB requirement speci�cation with suitable CIs for Axis we have to analyze
the results of the three methods used in phase one. First we analyze and present the results
from the literature to �nd general requirements for a CMDB. The interviews are analyzed,
presenting a short description of the interview process followed by the resulting requirements
found during the interviews. Lastly the old database is examined, �nding what use-cases the
database was made to ful�ll. After analysing these three methods individually a compiled
result is presented, showcasing the complete requirement speci�cation.

4.1.1 Analysis of literature study
No universally good CMDB exists that is optimal for any given context[�][�]. This, because
no two given companies are identically alike, having di�erent requirements. But there are
however some general design principles and concepts that are worth considering regardless

��

�. R������ ��� ��������

of the context. This is why a literature study was a good base for this project, creating a base
from which subjective input from the potential users would then be needed to form it into
something that would best �t the context.

An initial step when designing a CMDB would be to de�ne the con�guration identi�ca-
tion. To de�ne what counts as CIs and what we want to save in our CMDB. As mentioned
in the theoretical portion of the text, there are many de�nitions, that vary slightly, of what
constitutes a CI. Kelly describes it as something that would impact our ability to deliver
the right system on time within budget, which could essentially include a huge variety of
items[��]. According to Daniels, a CI is part of the product or is the product itself[�]. His
de�nition focuses more on the product instead of everything that a�ects the product. There-
fore we chose to follow Kellys de�nition during this work, because the de�nition is broad
and easy to implement in the interviews. The goal was to have an easy to understand and
broad de�nition for the interviewees for them to keep an open mind.

With such a broad de�nition of CI it is easy for the CMDB to quickly grow in unmanage-
able complexity. It is important to focus on the CIs that a�ects the �nal product the most
and then continue expand if needed. By doing this the risk of letting the CMDB become
too complex is reduced since it will not be perfect from the beginning and instead be good
enough. About half of all CMDB projects fail and the reason is almost always the complexity
and unreasonably high expectations of a CMDB[�]. Therefore it is important to reduce the
complexity wherever possible. One way to do this is to analyze the granularity that is needed
for each CI[�]. Depending on the context a single laptop could be a CI, however in another
context it could be important to keep track of the individual parts in the computer. Having
an appropriate granularity may reduce the complexity in the CMDB which in turn could
improve the success rate[�].

Another reason for CMDB failure is to not have a clear view of what a CMDB should,
and should not do[��]. The goal of the CMDB is to store centralised data and provide the
relationships between these, essentially providing CSA[�]. For the database to provide CSA
it needs to be able to report and manipulate the current version and the complete version
history of all CIs[�].

Sometimes it is unavoidable that some departments, such as governance, have a need for
a homegrown database that is relevant for only them[��]. By identifying these databases and
understanding that they may not have to be centralised in a CMDB the complexity will be
reduced. In the long run it will help produce a better quality reporting of the traceability.

To ensure that the CMDB is easy to search within and is useful for di�erent departments
within the whole company the naming of CI is important to consider[�]. Signi�cant naming
of CImaking it easier to identify what they are and do, speci�cally should naming of software
be descriptive of their functionality. It would be important to be able to change every aspect
of a CI if the need for a change arises, being able to change its name or any attribute associated
with the CI[��]. This is important for �exibility, if it is revealed that an item needs to change
with the evolution of the database and the company. Within this thesis no real attention
will be made regarding the names of CIs, since it will not a�ect the benchmarking or the
proof-of-work. However the �exibility will be important to consider to show that it could
be a complete CMDB for Axis.

When choosing the type of database to use when implementing a CMDB there are some
important aspects to consider, such as performance and that the database supports CSA
which requires di�erent kinds of relations[��]. Since the CMDB is supposed to be a cen-

��

�.� A������� ��� ������� �� CMDB ����������� �������������

tral database within the company, there will potentially be a lot of requests to the database.
Therefore it needs to have good performance for a variety of queries. The kind of queries may
vary from simple get requests to mass insert of data points. Axis has no need of good perfor-
mance regarding mass inserts since these can be executed during the night time and would
not occur often. However the performance of other queries, such as updates, get and simple
inserts are important since these would continually be run throughout the day by multiple
people at the same time. Especially the get requests would be important since fetching data
will be done by all users, while not that many will insert or update the data. There is an up-
per limit to how good performance that is required. As long as the queries take a reasonable
amount of time it does not matter how long they take. What counts as “reasonable” would
di�er from one’s perspective, but a query taking �.��� sec or �.�� sec would not generally be
noticed by someone even though the di�erence is � times. For the CMDB to support CSA
it has to be able to support di�erent kinds of relations which are one-to-one, one-to-many,
and many-to-many[��]. This to support the �exibility that is required of a CMDB so that it
is possible to symbolize di�erent scenarios.

To be able to trust the data in the CMDB we have to assure that the data is inserted
correctly and that it is up to date. If we can not assume that the data is up to date, no one
will use the database since they can not trust it. As mentioned above the CMDB is supposed
to provide CSA, which is the status of the project at any given time, and therefore the data has
to be up to date. Other than that the data is the latest version available, it is also important
that the data is correct. One way to assure this is to avoid any unwarranted changes to the
database by restricting the writing access to only authorized people[�]. This would make the
database less accessible since not everyone can use it when they see a need for it, and it would
provide a delay of when the data is updated. This would make the database more reliable and
would bene�t the database in the long run keeping it from growing in an undesirable way.
Therefore there would most likely be more bene�ts than drawbacks by having authorized
personnel managing the database and just letting all users fetch the data.

Information may be stored in external databases where they are managed. To assure that
the CMDB is up to date with these external databases the CMDB has to support integration
with other databases[��]. Since Axis has multiple smaller databases it would be bene�cial for
them to support an easy integration into the new CMDB. This would also allow for future
maintenance in these smaller databases instead of letting everyone work with the CMDB
directly. However we do not know how these smaller databases look like and would have to
examine how this requirement could be accomplished for Axis. Therefore we decided to not
put any e�ort towards integration with other databases, to save time and resources.

Since the database stores important data it is required that the database can handle sys-
tem errors. The database has to be able to go down and still keep the data intact in storage.
Otherwise it would be useless, e.g if the power went out we still want all information to be
there when the power comes back. Therefore it is important to consider this when choosing
the type of database, since some databases provide this kind of security, by having the prop-
erties of ACID, while others do not. Since the data is important someone might want to try
to attack the database to receive this data. However this is not something that is relevant for
this thesis since it is not solved within the database, instead being solved externally.

These were the resulting requirements that the literature study concluded in. They are
separated into three parts, namely CI, CSA, and database requirements to de�ne what is CM
related and what is a requirement on the chosen database.

��

�. R������ ��� ��������

CI

• De�nition of CI

• Appropriate granularity

• Store centralised data

CSA

• Provide relationships

• Store version history of all CI

• E�ective CI naming

Database requirements

• Access control

• Data is correct

• Data is up to date

• Performance

• Be able to change every aspect of a CI

• Synchronize with external sources

• Possibility of di�erent kinds of relationships

4.1.2 Analysis of interviews
The knowledge from the literature review served as a base of general needs of a CMDB. The
interviews however were used to�nd speci�c requirements fromAxis. Verifying if the knowl-
edge found during our literature study was relevant for the context and what speci�c CIs and
other use-cases Axis has. This was done to create a less general requirement speci�cation that
would be tailored for Axis needs.

The interviews were carried out in a semi-structured fashion, meaning that there was an
initial guide used during the interview assuring us that we covered all the subjects that we
deemed important. The interview guide was designed to cover the important subjects for
a CMDB, namely con�guration identi�cation and CSA. Creating a general interview guide
that would have relevant questions that would be applicable for all departments was not
really possible, because of how di�erent the departments operate. There are therefore some
questions that had to be speci�cally asked for speci�c departments. There are also some
questions and topics that came up without being part of the interview guide as a result of
the interviews being semi-structured. To see the complete interview guide refer to appendix
C. It is worth noting that this interview guide is writen in swedish and was made for us, and
could therefore be hard to understand from an outside perspective.

��

�.� A������� ��� ������� �� CMDB ����������� �������������

The interviews were divided between four di�erent departments and eight employees
having quite varying views of what a CMDB should do and what needs they have from it.
These departments being, Software developers, IT, Governance and Project managers. The
resulting requirements from the individual departments will therefore be analysed and dis-
cussed individually making a combined requirement in conjunction with the analysis of the
old database later, in subchapter �.�.�.

People had di�erent opinions regarding if an e�ort should be made creating a uni�ed
CMDB for the whole company or in what breadth the database should reach. Some wanted
a limited scope only covering their own department while others considered it essential to
cover more of the whole company. The reason could be because everyone had varying views of
what a CMDB is. However, as mentioned earlier, according to the literature study, the CMDB
should be a centralized database and not only for a single department. It is possible that some
departments require a speci�c database that �ts one speci�c requirement, but then it is not a
CMDB. These opinions would probably di�er evenmore greatly if more departments were to
be interviewed. However because of the timeframe of the thesis and our focus on the software
department we deemed this to be an appropriate scope for the project. In some way being a
study if there is a wider interest or need of a central CMDB within the company, which from
our research would appear to be the case.

A total of four software developers were interviewed, this department being our main
focus. The background between each developer varied to a great extent, involving a veteran
developer having worked at the company for over �� years as well as a junior developer having
worked little over half a year at the company. As well as consulting developers from di�erent
departments, getting as wide a perspective of the needs as possible. As one could imagine
most of the needs from the developers were regarding the source code and CIs related to the
code, like tests. A need to know what code exists avoiding creating the same product within
the company and how this code depended upon each other, as a form of traceability, was
apparent. Axis currently has a lot of di�erent databases and three git platforms making it
hard to �nd certain systems or to even know that they exist. There was a need to have an
easy way of �nding what services that exist based on a description of the system or keywords,
which would be achieved by having appropriate CI names and attributes. This was a problem
that was apparent speci�cally with junior developers, being hard to get acquainted with the
systems. The time spent by junior developers getting familiar with the available resources
would be minimized by getting a better overview of the systems and their dependencies,
making the developermore e�cient. Tracking and updating all these dependencies and assets
would be a huge e�ort, the general consensus was that this process would need to be done
with automation in some way. Doing this manually would take a lot of time since a single CI
might be updated multiple times a day.

Two people were consulted within the department of IT. Their needs varied quite a bit
from the ones from software. IT cared less for code and more for a variety of assets. Assets
vary from licences to individual computers but with somewhat of a focus on server tracking
and management. An asset manager was needed to map the servers and to track attributes
regarding the servers. IT had a similar problem to software where there were a lot of di�erent
locations where information was stored but not collected in one location. Some asset man-
agers simply being excel documents or some relying on information someone knows and has
not written down. A central database to collect all information was seen as the highest pri-
ority for a CMDB, and was something the department was currently investigating. Another

��

�. R������ ��� ��������

important factor was role based access management, limiting who can access and edit the
assets and attributes within the database. Some needs were brought up during the interviews
that IT deemed essential but could be argued to be outside the scope of what a CMDB could
or should provide to not get too complex. These features were speci�c to IT and as such were
outside our scope of knowledge with no background in IT. With such speci�c requirements
they did not �t within the scope of a centralized CMDB and should instead be an IT speci�c
tool.

We interviewed one person from governance, workingwithmanaging risks and laws, such
as GDPR. Keeping track of these risks and to trace where these might occur appeared to be
the main advantage of a CMDB. Then needing to track assets from all over the company to
know how or when something might be compromised, and to know who is the owner over
what system. To rely on that this database is always up to date and that the information
within it is trustworthy is important and it would therefore be di�cult to ensure this with
an automated discovery system which could be a safety risk if not done correctly.

One project manager was interviewed. The points brought up within this interview were
similar in many ways to the one from the software developers and in some ways similar to
governance. There was a need for a database tracking what projects exist, if and how they
depend on each other. Knowing that if a certain function is completed in one project, that
another project depending on it could proceed. There was also a need to knowwhen personal
information was used, to then tag that project that it contains personal information making
it easier to comply with GDPR.

The resulting requirements found during the interviews are divided by the four depart-
ments, displaying what use-cases each department has from a CMDB and what they need to
track.

Software Developers:
CI

• Systems

• External packages

• Servers

• Clouds

• Tests

CSA

• Dependencies between a system and an imported package

• If the packages are trustworthy or have been compromised

• If the packages are locally stored within Axis

• Dependencies between systems

• If the system contain any known bugs

• Which tests are related to which systems

��

�.� A������� ��� ������� �� CMDB ����������� �������������

• Description of the deploy process

• On which server the system is deployed

• What con�guration does a server have

• Be able to �nd a System based on keywords

Governance:
CI

• Employees

CSA

• Be able to track risks and laws that are related to CIs

• Track hardware to software

• Who owns a certain CI

IT:
CI

• Licences

• Contracts

• Computers

• Servers

• Virtual servers

• Employees

CSA

• Who owns a certain CI

• Noti�cation when a licence/contract or contract is about to expire

• What the server con�gurations are

Database

• Role based access control to assure data quality

• Central database throughout Axis

Project Managers:
CI

• Projects

CSA

• Be able to track risks and laws that are related to CIs

• Dependencies between projects

��

�. R������ ��� ��������

4.1.3 Analysis of the old database
Axis has an old database called “CMDB” where the original plan was to compare the old re-
quirements that this CMDB tried to solve with the new requirements that appeared through-
out the interviews. The old requirements would then support the new requirement speci�-
cation by either being in both speci�cations or by providing new requirements.

While examining the database, we looked at the log �le to see which queries that were
most commonly used. We noticed that the database only received posting queries, which
inserted data into the database multiple times automatically every morning. No queries were
used to retrieve data from the database, meaning that no one actually used the database. This
made it apparent that the database did not ful�ll the purpose it was made for. Therefore we
had to examine the source code and documentation to understand which requirements and
use-cases it tried to solve. It became clear that it only tried to solve one use-case which was to
track licences and contracts that were connected to di�erent servers and or other hardware
to notify when they were to expire. The database was not a centralised database within Axis,
which was one of the requirements discovered from IT during the interviews.

However the database did ful�ll one use-case that is important for Axis and had mul-
tiple requirements to ensure data quality. The �rst requirement is that it should have the
complete history of all licences and not delete them from the database. This requirement is
important for the new CMDB also to assure CSA, since then we have to keep track of the
history. Another requirement was that it supported all kinds of relationships between the
CIs and that is something that the new CMDB also needs to support. It kept track of who
and when someone updated a CI which helped to assure that the data quality were kept high.

By talking to the person that had used the database it became apparent that the use-
case was still important and should de�nitely be considered in the new CMDB. The reason
that no one used the database is that no one maintained it and that it needed further work.
Even though this is a problem, they had not implemented a �exible structure to the database.
A CMDB should be able to �exibly change and adapt according to what is needed and not
require a developer to manually change the structure of a CI. Therefore if the database would
have a more �exible structure, maybe the database would be more useful and in return easier
for the developers to maintain.

The requirements found during the examination of the old database were the following.

Database requirements

• Ensure data quality

CI

• Licences/Contracts

• Servers

CSA

• Noti�cation when a licence/contract or contract is about to expire

• Version history

��

�.� A������� ��� ������� �� CMDB ����������� �������������

4.1.4 Resulting Axis CMDB requirement specifica-
tion

The �nal CMDB requirement speci�cation is a combination of a literature study, interviews
and examination of the old database. General requirements on the database are taken from
the literature where some of the requirements are also established through the interviews or
examination of the old database. The general requirements on the database are:

• Access control

• Data is correct

• Data is up to date

• Performance

• Be able to change every aspect of a CI

• Synchronize with external sources

• Possibility of di�erent kinds of relationships

• Central database throughout Axis

The CMDB stores CIs and their metadata and it is important to store them with an
appropriate granularity. The resulting CIs for Axis were derived from the interviews and
the old database to ensure that all CIs within the requirement speci�cation were speci�c for
Axis. These CIs are:

• Systems

• Clouds

• Packages

• Tests

• Licenses

• Contracts

• Servers

• Virtual servers

• Computers

• Projects

• Employees

��

�. R������ ��� ��������

Apart from storing CIs a CMDB should also provide CSA. To provide CSA that is ap-
propriate for Axis it should ful�ll the following requirements to satisfy all interviewed de-
partments.

• Provide relationships

• Store version history of all CI

• E�ective CI naming

• Dependencies between a system and an imported package

• If the packages are trustworthy or have been compromised

• If the packages are locally stored within Axis

• Dependencies between systems

• If the system contain any known bugs

• Which tests are related to which systems

• Description of the deploy process

• On which server the system is deployed

• What the server con�gurations are

• Be able to �nd a System based on keywords

• Be able to track risks and laws that are related to CIs

• Track hardware to software

• Who owns a certain CI

• Noti�cation when a licence/contract or contract is about to expire

• Which project depends on another project

4.2 Analysis and resulting MVP
The result from phase one is a complete CMDB requirement speci�cation that will be con-
verted into a database in phase two which is benchmarked. However, to perform the bench-
marking there is no need for a complete CMDB requirement speci�cation and therefore a
minimum viable product was made. The MVP was made to save time and complexity in
the second phase, implementing as little as possible while still being able to benchmark in a
CMDB context. This was achieved by removing unnecessary redundancy while keeping the
coverage of as many requirements as possible. The benchmarking results in su�cient data
for answering “Should a CMDB be implemented as a graph database or relational database?”.

��

�.� A������� ��� ���������MVP

4.2.1 Analysis of MVP
As can be seen in the CMDB requirement speci�cation there is a need to store CIs with
a suitable granularity. It would be redundant to store multiple similar CIs for a MVP and
therefore it was decided to remove any redundant CIs. E.g IT wanted to have a complete asset
management database that keeps track of all relevant hardware such as servers and computers
among others. However this is excessive since it is su�cient to just keep track of servers since
there is not much di�erence between a server and other hardware for our purposes. The goal
is to show that the database can keep track of hardware and store its metadata. The server
CI also covers similar needs as a virtual server and clouds, it was then also deemed su�cient
to cover these with a server CI. The servers will also be connected to licences to be able to
supply the requirement of notifying users when something is about to expire. Licences may
be excessive, but we believe that it is good for showing that this database could be a complete
CMDB. We also believe that this requirement was the most important requirement in the
old database and therefore we kept it in this MVP.

Project managers and software developers requirements are quite similar in regards to
their CIs structure and what they want to accomplish with their CIs. Both require some
kind of impact analysis, tracking the impact of dependencies. Other than that they require
di�erent CIs with di�erent meta data which would be redundant to showcase, not contribut-
ing anything original. Since our focus in this thesis is on software developers we decided to
remove the project managers requirements to reduce the redundancy in the MVP.

The requirement of synchronizing with external sources is not in the MVP since it is not
part of the benchmarking. The reason is that we want to benchmark two types of databases
and synchronizing with an external database would not be handled by the database language.
Instead it would most likely be handled by an external tool, and that is not part of any of the
three research questions and was therefore avoided.

Potentially we could store a lot of attributes for each CI, however we saw that as redun-
dant and decided to keep the most important ones that could resemble a real scenario, so that
it would still be a proof-of-work. It was important to have enough attributes to accurately
resemble each CI but not more to make it unnecessarily complex.

It was important for us to supply all kinds of relationships to show that the databases
support one-to-one, one-to-many, and many-to-many relationships. Therefore we had to
keep relevant CIs and relationships that could showcase each kind of relationship at least
once.

One requirement is to restrict or track system access to showcase data quality. We decided
to not accomplish this since we saw multiple ways of doing this and it would not bene�t the
benchmarking in any way except showcasing a more real-life CMDB. And since we are not
the best developers and did not know the way that Axis would want it implemented, we
would need to research how it should be implemented. Instead we decided to skip this part
and spend time on other more important parts that would a�ect our benchmarking.

4.2.2 Resulting MVP
The �nal MVP requirement speci�cation that cover all aspects to be benchmarked while
keeping it simple is displayed in bullet points below:

��

�. R������ ��� ��������

CI

• Systems

• External Systems (Packages)

• Employees

• Servers

• Licences

CSA

• Noti�cation when a licence is about to expire

• Dependencies between systems

• Dependencies between a system and an imported package

• On which server the system is deployed

• What the server con�gurations are

• Who owns a certain CI

• Be able to �nd a System based on keywords

Database

• A central point in Axis

• Dynamic/Adaptable structure

• Possibility of di�erent kinds of relationships

These requirements will be used in the next phase when deciding which queries to bench-
mark and the structure of the database. An UML of the MVP can be found in appendix B.

4.3 Analysis and results of benchmarking
To reach a conclusion regarding research question three, “Should a CMDB be implemented
as a graph database or relational database?”. The results from the benchmarking needs to
be analyzed and discussed. The chapter starts with establishing the parameters from which
the benchmark will be compared on and which were not used but could be considered. The
two datasets used will be described and their size will be motivated. The queries used for the
benchmarking are discussed andmotivated. The queries have to match the requirements that
Axis has on its CMDB and they should resemble as much of a real life scenario as possible.
This to be a realistic proof-of-work that can be further developed by Axis. Then each query
is analysed based on the decided parameters from which a conclusion will be drawn.

��

�.� A������� ��� ������� �� ������������

4.3.1 Benchmarking parameters
There are many parameters that could be considered while benchmarking the database de-
pending on what aspects are important for the context. The performance of a database is
a common parameter to examine, being used in similar works[��][�]. The parameter was
also requested by Axis, considering it to be an interesting factor to compare for both this
context, but also in similar future projects. It could however be argued to what extent it is
important when choosing a database type in a CMDB context. The time di�erence might
be large in comparative di�erence, one query taking one millisecond and another taking ��
milliseconds. While this is a large percentage di�erence it is essential to take in consideration
how important this time di�erence is as well. According to Axis, a query is only slow if you
noticeable. However if a query is run by hundreds of employees at Axis the smaller numbers
would become more relevant than if a query is run once. The performance could also be seen
as a measure of how heavy loads the database can handle, by processing many queries at the
same time or in fast succession. How the performance scales with the size of the database
is also important to consider. When a company grows and more relevant CIs are discovered
the CMDB will inevitably grow as well, it is therefore important to consider which impact
this change will have on the database.

When choosing a database type for a project there is more than performance that is worth
considering. A developer also has to think about the maintainability of the system, meaning
how easy it is to learn and write the code and how easy it is to read the code[�]. This is also
something Axis considers important, since they want their systems to be maintained for a
long time. Writability, meaning how easy and intuitive it is to write speci�c queries for the
respective languages. Readability, how easy it is for someone with appropriate background
knowledge to read and understand what a query does. These parameters are important to
consider before dedicating oneself to a database partly to know how big an e�ort it would
be to implement the database but mainly how easy it would be to maintain. One database
could be slightly faster than another but perhaps that does not count for much if it is a
major e�ort to maintain and update it, which is important for longevity of a database. Both
of these parameters could potentially be measured with token analysis[��], but within our
limited time and limited knowledge in code analysis we determined this to be too complex.
Therefore we chose to base these parameters on our subjective opinion of the two languages
after working with them during this thesis, deeming this to be our best option.

Since a CMDB grows day by day it could become quite large in regards to data storage
space. It could therefore be bene�cial to look at how much data the database type can store
or manage. However storage is cheap today and it is not a priority for Axis that the database
takes up little memory. To �ll up the database enough for it to be unable to perform queries
could potentially be a problem. In this context it is not considered a problem since the data
does not reach the size where it starts to become a problem, which would be larger data sets,
like big data.

The resulting benchmarking parameters are the following:

• Performance

• Writability

• Readability

��

�. R������ ��� ��������

4.3.2 Benchmark UML and Dataset
To represent the MVP in the databases a structure was designed with the de�ned CIs and
relations, that could ful�ll the use-cases of the MVP. An UML of the decided structure can
be seen in appendix B. This UMLwas then converted into a more speci�c UML that matched
MariaDB where intermediate tables were inserted to support many-to-many relationships.
Neo�j did not need any modi�cation to the UML, since its structure is not prede�ned. Each
node is its own datapoint with direct relation to other nodes with edges.

An exact size of the dataset used for �lling the databases would also be useful for knowing
the context for further exploring with di�erent sizes. The small and large dataset used in the
benchmarking are presented in table �.�. Where the small dataset symbolizes the size of Axis
and the big dataset symbolizes a larger company that Axis might grow into in the future.
The datasets consist of a single version of each CI. However if multiple versions of each CI
would be considered, even the large dataset might not be that large. E.g a system might have
multiple updates a day, and could easily grow to be far bigger than ����. These two datasets
do show how the databases would scale with the growth of data points and will be su�cient
to do a benchmarking on. An even bigger data set would become time consuming to perform
benchmarking on since it took up to � hours to �ll up the database with the large dataset.
Below the Licences in the table are the relations that exists within the MVP CMDB. Most of
these numbers are odd which is a result of them being generated based on random amount
of relationships between CIs.

Small dataset Large dataset Di�erence (%)

Employees ���� ������ ����
External systems ���� ����� ����

Systems ��� ���� ����
Servers ���� ����� ����
Licences ���� ����� ����

Dependencies ��� ���� ����
Hosts ���� ����� ����

IS Owners ��� ���� ����
Server Owners ���� ����� ����
Server Licences ���� ����� ����

Packages ���� ����� ����

Table �.�: Amount of CIs for the two datasets

4.3.3 Queries
Eight di�erent queries were chosen covering all the use-case derived from the requirements
of the MVP. The queries were designed in such a way to cover all use-cases of the MVP.

Most use-cases could be reformulated into covering more requirements from the com-
plete requirement speci�cation from chapter �.�.�. The code for each query in their respec-
tive language can be found in appendix A, a short description for each query will instead be

��

�.� A������� ��� ������� �� ������������

given in this chapter.
The �rst query is to add an attribute to an existing CI. E.g a server does have a name, but

now you also want to store a server ID. This symbolizes dynamic/adaptable structure in the
database, which is a requirement from the MVP, by showcasing how di�cult it is to insert
new attributes to a CI. This query could be made in two di�erent ways, either we make it
possible for all new data points to have the new attribute, but the old ones are not updated
or we give all old data points a default value to the attribute. We chose to give all data points
a default value, since Neo�j would not require any update to be made if we do not update
all nodes with a default value. With the community edition used for Neo�j there is no way
to constraint each node of the same type to have the same attributes, instead having to go
through each node individually. It is worth noting that this query could potentially be very
di�erent with the enterprise edition. Looking back it could be argued that this query do
not say a lot in regards of performance since a default value on all CIs do not say anything
speci�c. However it does showcase the �exibility of the databases.

The second query is to modify existing relationships. This query symbolizes a dynamic
and adaptable structure in the database to showcase that it is possible to redirect relation-
ships. The use-case that we decided to showcase was if an employee quit their job and is
owner of a system, how can we �nd their ownerships and give the ownerships to someone
else. This query could be easily reformulated to a package that is updated and all systems
that depend on this package should point to the new version.

The third query is to fetch all CIs that are a�ected by a certain CI. This use-case symbol-
izes a relevant query for developers where they can see if one package has a security threat
which systems might be a�ected by this. This query both showcases a relation between one
package and systems, but also between systems and systems to support traceability. It could
easily be reformulated to project managers that want to do the same thing, but for their
projects.

The fourth query is to fetch something by a string instead of by id. This query showcases
usability by fetching data by a substring in a longer description text. This was done to test
both languages string matching. The query could be made for any CI that has a description
or string of any type.

The �fth query is to fetch everything that is directly connected to a certain CI. This
symbolizes CSA where you can get the complete status of a certain system, which server it is
on, which licence the server has, who is the owner etc. This query could include as many CIs
as would be reasonable, however we decided to include everything that is directly connected.

The sixth query is to fetch by date, which symbolizes the requirement on notifying the
users when something is about to expire. Fetch data by date could be relevant in other sce-
narios, but this query is a bit harder to reformulate into a di�erent scenario. It was chosen
because it was the speci�c use-case that the old CMDB tried to solve.

The seventh query was to insert a new CI with the possibility of relationships. This query
symbolizes a dynamic/adaptable structure by having the ability to create a newCI on demand
instead of having a developer inserting it manually into the database. The use-case that we
decided to solve was to create a project with relations to a system, however it could be any
CI that was created and inserted with relations.

The eighth query is to insert a CI of an already existing CI type with multiple relations.
This query symbolizes that the databases should be able to handle inserts of new data, and
it is important that it is easy to insert into the database. The use-case that is showcased is to

��

�. R������ ��� ��������

insert a system, with dependencies and owners.
Other queries that were initially considered but not selected were queries testing the

possibility of mass insertion and �nding the shortest path between two data points. Mass
insert could be seen as when the company acquired a large number of new resources simul-
taneously, like if they merge with another company. This query was ultimately chosen to be
avoided since this would likely be a very rare occurrence, and because of it being so rare it
would not make a large di�erence how long it would take, or how hard it would be to im-
plement as long as it would be possible. Instead we decided to insert single items, since we
believed it was a more relevant query. We initially wanted to try creating a query for �nding
the shortest path between two data points since this was a feature we knew that Neo�j was
good at, however we did not �nd any speci�c use for this query and therefore decided against
using it.

We believe that these eight selected queries represent all important queries that could be
made to a CMDB. Query �, �, �, and � symbolizes a dynamic structure of the CMDB where
� and � updates an existing CI and � and � inserts new CIs. These queries are required for
the CMDB to be able to adapt when new requirements or needs occur. The two updates
add attributes and redirects relationships to be able to provide an adaptable CSA that might
change with the growth of the CMDB. The two insert queries either insert an existing CI
type or create a new CI type and insert it. These two shows that it is possible for the CMDB
to grow in two ways. Both in adding more of the same CI types and adding new CIs when
needed. These four queries symbolizes the possibility to adapt the database with the needs,
however to ensure that the database is usable we have to fetch data and provide CSA. There-
fore query �-� illustrates di�erent fetch methods that symbolizes di�erent use-cases from the
interviews. These queries are more important than the other queries since they are the ma-
jority of the requests since most people will want to fetch data and not insert new data. The
four queries vary from a simple fetch, that fetches data by date or string, to a recursive call
that illustrates impact analysis. CSA requires the CMDB to provide the status which means
to show relationships and attributes and therefore we provide four di�erent kinds.

4.3.4 Analysis of performance
De�ning the setup used when performing the benchmarking would be useful for recreating
the tests or could be used as a base of comparison if future work would be done with a
di�erent setup. The hardware and software speci�cations used heavily impact the execution
times from the benchmarks. The used setup is a laptop, that might not provide accurate
execution times when compared to a real server. The speci�cation used for all tests was the
following:

• CPU: Intel(R) Core(TM) i�-����U CPU @ �.��GHz x �

• Memory: � GiB

• GPU: Intel® HD Graphics ��� (Skylake GT�)

• OS: Debian GNU/Linux �� (Buster) �� bit

• Computer name: HP elitebook ��� G�

��

�.� A������� ��� ������� �� ������������

The eighth queries were analysed in performance by executing them on a small dataset
as well as a large dataset. After the queries were run and post processed as described in the
method chapter, the average execution time as well as the diverging longest and shortest times
were calculated and saved. A table comparing the execution time of every aspect was com-
piled as can be seen in table �.�. The di�erence in execution time, displayed in percentage,
between the small and large dataset are also displayed to compare how the database scales
for each query.

Query Language Small time(ms) Large time(ms) Di�erence (%)

� MariaDB �.� �.� ���
Neo�j ���.� ����.� ����

� MariaDB �.� �.� ���
Neo�j �.� ��.� ���

� MariaDB �.� ��.� ���
Neo�j �.� ��.� ���

� MariaDB �.� �.� ���
Neo�j �.� �.� ���

� MariaDB ��.� ��.� ���
Neo�j ��.� ���.� ���

� MariaDB �.� ���.� ����
Neo�j ��.� ����.� ����

� MariaDB ��.� ��.� ��
Neo�j �.� �.� ���

� MariaDB �.� �.� ���
Neo�j ��.� ��.� ���

Table �.�: Execution times for all queries

These values are also presented in the form of bar graphs comparing the execution time
di�erence between the databases for each query, the bar displaying the average time and the
error bars indicating maximum and minimum times.

��

�. R������ ��� ��������

Small Large
0

2,000

4,000

6,000

Query �

T
im

e
(m

s)
MariaDB
Neo�j

Small Large
0

10

20

30

40

Query �

T
im

e
(m

s)

MariaDB
Neo�j

Table �.�: Execution times with error bars for query � and �

Query � and � both update attributes in existing data points, not creating new ones.
Query � adds a new attribute to all existing CIs of a speci�c CI type and Query � updates all
systems from one owner to another. A more detailed description can be found in subchapter
�.�.�. As can be seen in table �.�Neo�j is far slower for both queries for both data sizes where
Query � takes over � sec for the big data set which is �� times more than for the small dataset.
This would mean that this query would become impractical with the growth of the database,
but with Axis current size it is still usable. However, as argued before, this query might
not be that useful when choosing database type for a CMDB context. With the growth of the
databaseMariaDBwould be themore safe choice for these queries, in regards to performance,
since it has a lower execution time and better scaling.

��

�.� A������� ��� ������� �� ������������

Small Large
0

20

40

60

Query �

T
im

e
(m

s)
MariaDB
Neo�j

Small Large
0

2

4

6

8

Query �

T
im

e
(m

s)

MariaDB
Neo�j

Small Large
0

100

200

300

Query �

T
im

e
(m

s)

MariaDB
Neo�j

Small Large
0

500

1,000

1,500

2,000

2,500

Query �

T
im

e
(m

s)

MariaDB
Neo�j

Table �.�: Execution times with error bars for query �, �, �, and �

Query �, �, � and � are all queries that fetch information about CIs not changing any
existing attributes. Query � and � are simple queries that fetch data by a string and date
respectively. Both of these queries almost scale the same, however the execution time is higher
for Neo�j as can be seen in table �.�. Query � could even be argued for being too slow with
the big data set. It is worth noting that there is a huge diverging max andmin for the large set
of query �, as can be seen in table �.�, for both languages where Neo�js fastest execution time
is close to MariaDBs fastest execution time. This can also be seen in query � where Neo�js
fastest execution time is faster than MariaDBs slowest execution time. We have not found
out why this inconsistency occurs, but it could be because Neo�j requires more memory. This
would mean that if Neo�j could run with its fastest execution times, the di�erences would
be reduced signi�cantly.

Query � is a recursive function that fetches all systems that have a relationwith each other.
As can be seen in table �.�, MariaDB is faster with the small dataset but slower with the large
dataset. This is because Neo�j scales twice as good, which means that this di�erence would
diverge even more with the growth of the database. However both databases do perform this
query within reasonable time and therefore it should not make a di�erence when choosing
database type. Query � joins multiple tables to get an overview of the CIs. Both databases
scale similarly, but Neo�j is quite a bit slower as can be seen in table �.�. ��� ms for the big

��

�. R������ ��� ��������

dataset could become troublesome when multiple requests are made at the same time, and if
the database grew a bit more it could become impractical.

In the choice of database type, it does not matter when looking at the small datasets.
However if the database grows, Neo�j would become impractical �rst since both query � and
� is slow with the big dataset, where only MariaDB is slow for query �. Therefore MariaDB
seems to be the superior choice when fetching data.

Small Large
0

10

20

30

40

50

Query �

T
im

e
(m

s)

MariaDB
Neo�j

Small Large
0

10

20

30

40

50

Query �

T
im

e
(m

s)

MariaDB
Neo�j

Table �.�: Execution times with error bars for query � and �

Query � and � are both queries that post new CI to the database. Query � creates a whole
new CI type, essentially creating two new tables in SQL for the CI and relationships towards
another CI, but only creating a node with relationships in Neo�j. Both languages take almost
as long executing for the small dataset as they do for the large, which is expected for this
query since it is not a�ected by the existing data points. Neo�j is faster than MariaDB for
this query as can be seen in table �.�. The reason being that Neo�j only has to create a node
as it would for any existing CI type. This is one of the advantages of Neo�j, showcasing its
�exibility. Query � creates a new CI of an already existing CI type with many relationships.
In table �.� it can be seen that MariaDB outperforms Neo�j in time as well as scaling in this
aspect. When choosing database type for a CMDB, the performance of insert queries should
not be the main concern since both queries are quick and do not scale signi�cantly.

4.3.5 Analysis of maintainability
We divided maintainability into two parts, the �rst part is to be able to write or modify
code while the second is to be able to read and understand old code. Each part is important
while developing and maintaining code. This analysis is made subjectively by us where our
perception of how it was to write and read the code. Our subjective results can be seen in
table �.�. The more di�cult queries will also be looked at from how hard it was to �nd
information online and how many lines of code it took to write the queries.

First of all, query �, �, and � were simple queries, as can be seen in table �.�, since they
only consisted of basic syntax and took a few lines to write. These queries were easy to
implement in both Cypher and SQL and there were a lot of similar examples of these in

��

�.� A������� ��� ������� �� ������������

online documentation. The reason these queries were easy were because they only involved
one data point.

The �rst query had to alter the table in SQL to have one more attribute and give every
existing data point a default value. In Cypher it is not required to alter any tables, however
we have to set an individual value on every node. These two queries are quite similar and take
three and two lines respectively to write and consist of quite basic syntax. Both had easy to
access documentation and were both easy in regards to readability.

The second query actually required two separate queries in both SQL and Cypher where
we �rst update all relationships and secondly remove any duplicate relationships. To do this
SQL uses a simple update and a delete while Cypher requires the use an external package
called APOC. This is the reason that Cypher got a lower score in table �.� in regards to both
writability and readability. APOC is o�cially supported byNeo�j, however it has to installed
separately into Neo�j. This created di�culties and made it harder to use and understand.

The third query also requires the external package APOC, and it was not clear to us why
this was the case. The reason was that if the same query were made without APOC it resulted
in an in�nity loop because the calls are made recursively and our data has circular recursion.
Because this was not immediately apparent why Neo�j acted like this and instead needed
APOC to complete the query it was quite di�cult to write. However the readability was
understandable since the query took four lines of code and there were not any abnormalities
except APOC. On the other hand, SQL was tricky to write since we had to use a method
called “With Recursive” that was not easy to understand how it worked even with documen-
tation. After writing the query it would be hard to understand what it does since it is a single
query in �� lines that combines a lot of di�erent SQL concepts. This query in SQL was the
most di�cult query to both write and read out of all the queries.

The �fth query was quite easy in both languages where the major di�erence is that SQL
has to de�ne which tables it wants to combine, and it has to combine all intermediate tables
that are between two CI tables. However while Cypher could perform the query in just four
lines it took MariaDB �� lines of code. Important to note is that SQL only requires join
statements, just a lot of them. Therefore, writing the query was approximately as easy in
both languages, however reading the query was a bit easier in Cypher.

The seventh query was more di�cult to write in SQL than Cypher. The main reason
being that there aremore steps that needs to be done. Neo�j does not use tables likeMariaDB,
which means that they can insert a new CI however they want, while MariaDB does have to
create a new table with corresponding attributes. It is also required to create a table between
the new CI and to the other CIs, since it has to be able to have many-to-many relationships.
It is not a requirement to have an intermediate table, like we decided to implement, however
to increase the �exibility we thought it would be the best to have the ability to have many-to-
many relationships from the beginning even if that is not required. Cypher does this query
in three lines, while MariaDB requires four independent queries where two creates the tables
and two inserts the data. However, reading the queries afterwards both queries are easy
to read and understand since they only use simple statements within both languages. The
reading is a bit easier in Cypher only because the code is shorter and therefore there is less
to understand.

Another factor to consider is the size of the community and available documentation for
the query languages. SQL being an older and more mature language currently has a larger
community than Cypher. We noticed this when searching for documentation, it was often

��

�. R������ ��� ��������

easier to �nd documentation from di�erent sources with di�erent examples for SQL. For
Neo�j we had to depend on Neo�js o�cial documentation.

Important to know is that while evaluating the readability and writability we did not
have any previous experience with Cypher and Neo�j before this thesis. And therefore since
we do believe that almost all queries are as easy or easier to write it would probably indicate
that Cypher might be slightly easier than SQL when implementing a database for a CMDB
context.

Query Language Writability Readability

� MariaDB �/� �/�
Neo�j �/� �/�

� MariaDB �/� �/�
Neo�j �/� �/�

� MariaDB �/� �/�
Neo�j �/� �/�

� MariaDB �/� �/�
Neo�j �/� �/�

� MariaDB �/� �/�
Neo�j �/� �/�

� MariaDB �/� �/�
Neo�j �/� �/�

� MariaDB �/� �/�
Neo�j �/� �/�

� MariaDB �/� �/�
Neo�j �/� �/�

Table �.�: Subjective result of writability andmaintainability, where
a higher value indicating that the query is easier for the given param-
eter

4.3.6 Results of benchmarking
The benchmarking is based on the three aspects performance, writability, and readability
where the two latter is more important than the performance. The performance is only
important if it is noticeable when querying the database while writability and readability
explains how the maintainability of the database would be. By having a database that is easy
to maintain, we ensure that the database will be useful for a long time.

From a performance perspective MariaDB is the better choice in all queries except for
query � and �. In both those cases the two languages still have a reasonable execution time
that would not be noticed when querying the database. However from a CMDB perspective
query �-� will be used the most since all those fetch data and everyone is able to fetch data,
but not modify it like query �,�,�, and � does. Neo�j also had two queries, � and �, which took
over � sec to execute. These execution times are barely acceptable and could potentially grow

��

�.� A������� ��� ������� �� ������������

to be a problem if the database grew larger. However for the current size of Axis it would
take a long time for this to become a noticeable problem.

Writing the queries was easier in Neo�j than in MariaDB even though we did not have
any prior knowledge within Cypher. It can be seen in table �.� that Cypher got a better
writability score than every SQL query except for query �. This is a clear indication that we
believed that it was easier. Another indication was that query � was reformulated to ensure
that code had to be written in both SQL and Cypher. The reason being that Neo�j is more
�exible in its structure and does not have to modify tables since each node can have any
attributes or relationships even though the node is of the same type.

The readability was based on our subjective opinion reading the queries while also con-
sidering the amount of lines required, where a query with remarkably fewer lines more often
was easier to read. As can be seen in table �.� the readability is easier in Cypher for each
query except for query �. This clearly indicates that Cypher is easier to read in most cases.

Since the performance was not the most important aspect when choosing a database type
we have come to the conclusion that Neo�j is the better choice over MariaDB when imple-
menting a CMDB. It would be easier to maintain while having an acceptable performance.

��

�. R������ ��� ��������

��

Chapter �

Discussion and related work

A �nal discussion is held in this chapter to re�ect on the choices made during this thesis and
the conclusions reached. The purpose of the chapter is to bring up and discuss factors that
would impact further research within this �eld. Discussing and re�ecting on each part of the
thesis of what went well and what could have been done di�erently, bringing up pitfalls that
could have been avoided or circumvented. Threats to validity will be discussed. How they
could have a�ected our outcome and to what extent. Four related works are summarized
and discussed. Creating a more complete picture of the subject by discussing how our works
build upon each other for a greater understanding of the subject. Lastly some ideas for future
work are presented which could further solidify the results.

5.1 Discussion and reflection
The two �rst research questions, “what are the necessary con�guration items for Axis” and
“what would the CMDB requirement speci�cation look like for Axis”, were answered in the
�rst phase which consisted of a literature study, interviews, and analyzing the old database.
The most important part was that the results would be unique and �t Axis speci�c context.
This was achieved by �rst doing a literature study that gave us some general knowledge of
CMDB requirements, then the CMDB requirement speci�cation was formed by the more
speci�c knowledge from the interviews. The interviews gave us a lot of information about the
needs Axis has from a CM perspective and we then tried to implement these requirements
into the CMDB requirement speci�cation. Without the interviews the CMDB would not
have been speci�c to Axis and therefore would not have answered the research questions that
were asked. However our results would be relevant for other companies to base their research
on, where our requirement speci�cation could serve as an example and inspiration. While
Axis has a unique context it is not completely unlike others, and would have requirements in
common with other contexts.

A problemwe faced in the beginning was that the interviews took longer to perform than

��

�. D��������� ��� ������� ����

expected. We conducted eight interviews within four di�erent departments where most of
the interviewees werewith key peoples in their respective department. This was done to try to
get as good answers as possible while reducing the time spent on interviews. The interviews
took about four weeks, because of peoples busy schedules. In the end we believe that we
received good and relevant answers, however we noticed through the interviews with system
developers where we interviewed a junior developer that they had another perspective than
the senior developers had. This leads us to believe that it would have a�ected the end results
if we were to interview junior personnel within every department that we interviewed, but
it was not something we had time for within our limited time frame.

The old database called “CMDB” was not as relevant as we �rst believed that it would
be. Our initial goal was to form a CMDB requirement speci�cation for Axis and compare
this to the old database. However when we examined the database we noticed that this was
not possible since it was not an central database within Axis. Therefore it di�ered too much
and we instead tried to see if the database would �t as a part of our CMDB requirement
speci�cation. In the end we believe that we focused too much on this database and that it
did not provide as much new insight as the time spent on examining it.

There were two purposes for creating the MVP, where the most important was to save
time and resources, not needing a complete CMDB for the benchmarking. This was assured
by creating a MVP where all requirements were covered, removing redundancies. The other
purpose of the MVP was to create a proof-of-work for Axis. We believe that our MVP sym-
bolizes the complete CMDB requirement speci�cation. It contained relevant CIs and cover-
ing all use-cases either directly or by similar use-cases and CIs. The MVP showcases a small
CMDB, and it would be easy to build upon it if wanted. The MVP saved us a lot of time, by
not having to implement and insert more data than needed while still providing good results
for our benchmarking.

The parameters on which the benchmarking was judged were decided from the sugges-
tions made by Axis as well as related works. The performance parameters were frequently
seen in the related works and Axis also deemed it to be important. Axis also had a need
of judging the maintainability of the languages. This was not a clearly de�ned parameter
but from reading related works who base their benchmarking on terms such as complexity,
readability andmaintainability. We combined the knowledge and decided to base our de�ni-
tion of maintainability as a combination of readability and writability. As mentioned earlier,
there were other parameters that were discussed if they should be used. These are related to
the data size, which Axis did not consider a priority.

Regarding the third research question, “Should a CMDB be implemented with a graph
database or relational database?”, we did not reach as clear a conclusion as we had initially
hoped. Determining that there are certain pros and cons for both languages not making any
of the languages clearly superior. Regarding their performance Neo�j was generally slightly
slower in most scenarios, but not to an extent that we considered making it unusable or
ine�cient for implementing a CMDB, except for query � and �. However like we argued
earlier query � might have been a redundant query looking back and it could be argued how
relevant it is. Query � however displayed that Neo�j might have problems regarding scaling,
where it in the larger dataset reached a time of over � seconds. The actual impact of having a
response time of two seconds would depend on what kind of database it is. A database which
experiences heavy tra�c, getting requests multiple times a second, and where it is critical
to retrieve the information fast, � seconds would make such a database unusable. A CMDB

��

�.� T������ �� ��������

which is used by a limited number of users within a company would not experience as heavy
loads to the same extent. Therefore the impact of a slower query would not a�ect a CMDB
in the same way as other databases. Regarding maintainability the languages were also quite
similar, slightly preferring Neo�j for most queries.

We had some unexpected issues with Neo�j that we did not consider when starting out,
none of which a�ected our results but were hindrances. One problem was the exceptionally
long time it took to �ll the large database, to prepare the database for the benchmarks. This
took around � hours for our large dataset, and would take exceptionally longer for an even
larger dataset. As mentioned earlier it is possible that there are more e�cient methods for
�lling the database that we decided to not examine that could have made the benchmarking
process faster. We did however not care about this since �lling the database is something that
would only happen once. Neo�j was also harder to con�gure than expected. Having prob-
lems with the memory getting full with temporary �les and log �les causing the computer
to behave strangely and Neo�j to stop functioning properly. This was resolved by changing
parameters in the con�guration �le, limiting how large these �les were allowed to grow. It
could however be argued that this would not be a noteworthy problem if Neo�j would be
run on a real server with more memory. Having to download and install the o�cial package
APOC from a github repository for using certain functionality in Neo�j was slightly confus-
ing. Where it was unclear why it was not directly included in Neo�j.

5.2 Threats to validity
The goal was to create a CMDB requirement speci�cation for Axis, and we did this by inter-
viewing eight people. These eight people have to symbolize all of Axis which is impossible to
completely do with this few people. If more people were to be interviewed the foundation
would remain the same however there would possibly be some more speci�c CIs and require-
ments added, that would most likely be similar to the current ones. This would especially be
the case if we interviewed people with a wider variety of work experience or included more
departments. Because of the time frame we decided to focus on software developers, because
of our background and since our supervisor at Axis is a software developer, deciding to in-
terview four people from this department. Therefore we are more certain that the software
developers requirements are covered by the requirement speci�cation than the other depart-
ments. We also believe that since we interviewed key people within the other departments,
we did get the most important requirements that symbolizes most of each department’s need
for a CMDB.

By creating a MVP we reduced the requirement speci�cation to a minimum while still
illustrating as many requirements as possible. By doing this it is inevitable that we removed
parts of the CMDB that could potentially provide a di�erent result. E.g we are �lling it with
less data than it otherwise would have, which could a�ect the results. However the queries
that are made would not have been very di�erent than they are in the MVP since we would
still want to perform the same kind of queries. Maybe they would include di�erent types of
data to illustrate the same query, or just fetch data from di�erent data points. Therefore the
results would still be similar since it is important to look at the scaling to understand how
the databases perform with a rising amount of data.

When implementing the CMDB in both MariaDB and Neo�j we had no prior experi-

��

�. D��������� ��� ������� ����

ence with Neo�j and had some experience with MariaDB, having read a course about SQL
databases. This could mean that we have not implemented the Neo�j queries in the most
e�cient way. However we consulted our supervisor when needed, reading documentation
and examples online to �nd the best andmost e�cient way to write the queries. This reduces
the risk that the queries are ine�cient and instead is implemented in the best way.

Benchmarking of the two parameters readability and writability was done by giving them
a rating of our subjective opinion when working with the languages. This could most likely
be done in a better and less subjective way if there were an exact science when comparing
syntax for di�erent programming languages. We did not �nd any reliable way of doing this
and opted to simply look at the lines of code and rate our experiences. While this method was
solely subjective it was not completely unreliable since it was made by two master students
in computer science having worked with both languages for a longer period of time during
this thesis.

The benchmarking was performed on a laptop instead of a real server, where the database
would be placed in a realistic scenario. This is not something that we considered before the
end of the tests and it is possible that the results would have been di�erent. We believe
that the resulting di�erences between the two languages and the scaling between the small
and large dataset would be similar. This, because a server with better hardware than our
laptop would most likely decrease all execution times with a constant factor. However if
the execution times were reduced, it would result in the two database type being capable of
handling more data before becoming unreasonably slow. These are just our theories however
and it is something that would need to be examined further.

No one could know that the COVID-�� pandemic would occur which meant that we had
to work from home during half of the thesis and most of the benchmarking. This resulted in
some setbacks in regards to updating our software, since we had to be on Axis local network
to be able to update. However this was a setback in regards to time, and does not a�ect our
results. Another problem it provided was that we did not have the same possibility to contact
our supervisor or other Axis employees. We could still contact them by means online, it was
not however as natural as it would have been otherwise.

5.3 Related work
To look at related work is important to confront and compare our work. The conclusions
of these works may strengthen our results, by showcasing that our results are not completely
unique. However if our conclusions are di�erent, it is discussed why this could be the case
and if it a�ects our results in a negative way. Their workmay provide amore complete picture
of the subject by combining our results and conclusions. The works were also used as a basis
for inspiration in the beginning of the thesis. Speci�cally have four papers been selected,
their results and conclusions are analysed to relate to our own. The papers are selected to
be relevant while covering di�erent aspects of the thesis, focusing on our di�erent research
questions.

It is worth noting that the second paper “Graph-Datenbanken als Grundlage des Con-
�guration Managements – Eine Untersuchung am Beispiel von Neo�J” was a paper written
completely in german which we have very limited knowledge in. We deemed this paper to be
very relevant to our thesis while reading the english abtract. We therefore decided to trans-

��

�.� R������ ����

late the paper with the help of Google translate as well as our limited knowledge in german,
reading it from a critical perspective. We are quite certain that this gave an accurate result
since the resulting text was completely readable and understandable. Making sense when put
in perspective to prior knowledge within the �eld.

5.3.1 Requirements and Recommendations for the Re-
alization of a Configuration Management Database
[22]

The IT infrastructure Library (ITIL) is a collection of best practices in IT. They provide �ve
management processes, Incident Management, ProblemManagement, Change Management,
Release Management, and Con�guration Management. This paper has its focus on Con�g-
uration Management which goal is to provide information to the other processes. There-
fore it keeps information in a database called Con�guration management database (CMDB)
which stores Con�guration Items (CI), which is something that contributes to the deliver-
able, and the relations between di�erent CIs. Currently the industry is far away from having
a standardized one size �t all version of a CMDB since many companies have di�erent needs.
However this paper is a start to standardize requirements to either implement or look for a
CMDB. To do this they divide the CMDB into two steps where the �rst step consists of what
the requirements on a CMDB tool is and its underlying information model and the second
step is how these requirements can be accomplished.

This paper provides both requirements on the informationmodel and functional require-
ments on a CMDB tool. These requirements were obtained by analyzing literature from dif-
ferent sources to come up with unique general requirements. Examples of these are that the
CMDB should be adaptable and the system has to have visualisation support. Thereafter
they suggest realizations solutions such as the CMDB has to support relationship cardinali-
ties. A more comprehensive catalog of recommendations are under development and more
requirements will be provided.

This paper provides a general CMDB requirement speci�cation that is not speci�cally
made for any speci�c context. It is troublesome to create a generic CMDB requirement spec-
i�cation since each company has their speci�c needs that are based on how the company is
built and what kinds of products they create. Our thesis builds on this literature where our
literature study is similar to their CMDB requirement speci�cation. In our study we try to
gather as many general requirements as possible that we later can specify to �t Axis context.
Therefore this related work was a useful part of our literature study, where most require-
ments were adapted to our thesis, to then be able to provide a more in depth and speci�c
requirement speci�cation. The biggest di�erence is that our examples of CIs and CSA has
concrete examples instead of discussing everything in a more abstract context.

��

�. D��������� ��� ������� ����

5.3.2 Graph-Datenbanken als Grundlage des Config-
uration Managements – Eine Untersuchung am
Beispiel von Neo4J [21]

The paper is an examination of which database technology would be best suited for a CMDB
by comparing Neo�j to Oracle ��c, speci�cally which performs more e�ciently. These are
two di�erent database technologies, graph database and relational database respectively.
They motivate this research by claiming that no prior research has tested the validity of a
graph database for the purposes of CMDB. With their results they would contribute to fu-
ture research for practitioners when implementing a CMDB by knowing the validity of this
technology for such a database. Their results are based on literature study as well as bench-
marking. Their research provides them with �ve general requirements for a CMDB, which
are:

�. Support for CI identi�cation

�. Visualization of parts of the CMDB

�. Component Failure Impact Analysis (CFIA)

�. Plausibility checks and support for audits

�. Integration with external databases and system management data stores

From these �ve requirements they chose to exclude three, only focusing on � and � claiming
that the other three would have similar implications in both of the databases. From these
requirements they form use cases which they use to derive database queries used for exper-
imentation. This experimentation is done by creating two separate databases in Oracle ��c
as well as Neo�j which would have a similar structure to a real CMDB, as well as creating
three queries for both the technologies with the same purpose but with di�erent complex-
ity. By performing these experiments they reached the conclusion that relational databases
are faster and more e�cient than graph databases. They state that graph databases are an
adequate start for implementation of a CMDB but would ultimately recommend relational
databases.

This paper is quite similar to ours except that it does not de�ne any speci�c context. The
results reached from this paper would then be a good comparison for how the results would
di�er in a CMDB context. They however only based their work on three separate queries
that were quite similar to each other. Our work can be seen as a future work of theirs. Tak-
ing their general requirements in consideration before forming more speci�c ones from our
interviews, for a unique speci�cation to our context. Where we ran our benchmarks on more
varied queries that were speci�cally made for our CMDB context. Our results are similar in
regards to performance, however our conclusion di�ers since we also take maintainability in
consideration as well as performance.

��

�.� R������ ����

5.3.3 Performance of Graph Query Languages Com-
parison of Cypher, Gremlin and Native Access
in Neo4j [9]

The requirements on a database have become far more complex in recent years where a
database has to contain signi�cantly more data than ten or twenty years ago, but still has
to provide a good performance on each query. The “go to” database has been the relational
databases(SQL) because of their high performance together with their ACID capabilities.
However they do start to lack performance and the authors want to look atNoSQL databases,
especially graph databases, as a substitute for the relational database.

The authors looked at three aspects of the database. The �rst is the readability of the
queries. The second is the maintainability of the database. The third is the performance
of the queries. With these three aspects the authors will then conclude if Neo�j is a good
substitute for a relational database.

These benchmarks will be done for a speci�c context, a web application. Each query
that is tested is speci�cally made to match this context, e.g friend of a friend will be tested
since it is a normal query for a web application. They implement the opensocial which has a
highly interconnected structure and then �ll the database with relevant data. This database
is implemented using both MySQL and Neo�j, where Neo�j was implemented using Cypher,
Neo�js own native java api as well as Gremlin. Each test is then run multiple times to get an
average and the readability of the query languages are evaluated by the authors themselves.

The authors’ conclusions are that Neo�j has a lot of potential and even outperforms sql in
some cases. Cypher was the language that seemed to have the best readability and therefore
was the easiest to maintain. However in some queries it was too surpassed by gremlin and
Neo�js native java api and it could not be motivated to use cypher instead of the other two
options in those cases.

This related work benchmarks Neo�j in a di�erent scenario than us, but a similarity is
that both contexts require a lot of relationships between the data points. However we do the
benchmarking based on the same three parameters, readability, writability, and performance.
A big di�erence is that they compare Cypher to SQL and other implementations of Neo�j
while we only compare Cypher with SQL.

The authors believe that Neo�j has big potential in the future, and even outperforms SQL
in some cases, just like we concluded in our research where the queries that focus heavily on
relationships were faster. They do also believe that Cypher was quite easy to implement and
read for someone with none or little prior knowledge. Therefore they suggest that Cypher
would be easy to maintain in the long run. This paper strengthened our results, especially
in regards to the maintainability because we both did a subjective analysis and came to the
same conclusion.

Another conclusion they reach is that Cypher is too slow and could not be motivated to
use even though it is easier to maintain. This paper was done seven years ago when Neo�j and
Cypher were very young, however Cypher have received multiple updates since then. We are
not sure which language wasmost popular back in ����, but nowCypher is the recommended
language according to all modern sources and Neo�j themselves. Which is why we solely
focused on Cypher and did not consider the other languages mentioned in this paper.

��

�. D��������� ��� ������� ����

5.3.4 A Comparison of Relational and Graph Databases
for CRM Systems [23]

The paper is a master thesis comparing relational and graph databases for a CRM (Customer
RelationshipManagement) system, more speci�callyMS SQL compared toNeo�j. Regarding
these technologies they speci�cally want to evaluate them by two merits, their e�ciency in
performance and the complexity of writing queries for the database. They hypothesize that
a CRM system would bene�t from being represented as a graph database since its structure
is comparative to the advantages of a graph database, namely; representing a lot of many-to-
many relations and having frequently changing data, which is similar to a CMDB.

The authors want to reach a conclusion whether a graph database would have advantages
over a relational database for representing a CRM system. But they would also like to make a
more general comparison between the technologies as a wider scienti�c contribution, basing
these comparisons on performance as well as complexity.

The authors analyse the current, in use CRM which is stored in a MS SQL database for
the purposes of determining which sort of query transactions are most frequent and would be
most relevant to test when comparing the databases. A database was then created in Neo�j
which resembled the original one, which was created to simulate a practical example as well
as a ground to perform the performance tests. A set of thirteen queries were designed for SQL
as well as Neo�j that were then executed and timed for both technologies for benchmarking
purposes. It was originally intended for the authors to determine the complexity of these
queries by performing a lexical analysis. Though they found out during their work that they
did not know how to do this analysis, and found no literature regarding the subject, therefore
they decided to solely focus on the performance aspect.

They reach the conclusion that MS SQL is far superior for their CRM database, having
better performance for the tested queries. That it is not enough for the data to be highly
interconnected for it to bene�t from a graph database but that very speci�c queries would
be needed to give graph databases an edge over relational databases. Meaning that graph
databases could be more suitable for other purposes than a CRM.

The authors intended to base their conclusions of a comparison based on performance
as well as the complexity of the queries. However they noticed partway through that they do
not know how to do the complexity comparison, originally planning to do a lexical analy-
sis. We had a similar premise to compare the languages in writability as well as readability,
which could be comparable to their complexity parameter. Similarly we also did not �nd any
good source of information about how to do a syntax comparison, instead deciding to do a
subjective comparison.

This paper is quite similar to ours, making a comparison of relational databases and graph
databases. However their context was for a CRM System while ours was for a CMDB. They
reach the conclusion that MS SQL was superior to Neo�j in regards to performance, which
our results also indicate. Since we take maintainability into consideration, we have come to a
di�erent conclusion than this paper. Therefore it is hard to directly compare the conclusions
of these papers, but in regards to performance the paper strengthens our results.

��

�.� F����� ����

5.4 Future work
There are some future works that could be done within this �eld to further solidify our
results or build upon them. The �rst two that do not introduce new concepts are testing
the database with a bigger dataset and to conduct more interviews to provide an even better
CMDB requirement speci�cation for Axis. Testing with a bigger dataset would improve the
benchmarking of performance by making sure that the scalability that our results shows are
correct. It would also make it possible to test the parameter that we did not try, “how much
data the databases can manage”. However this is not relevant for Axis at this time, but could
be relevant within another context. If a more complete CMDB requirement speci�cation
would be desired by Axis they would need to have wider conversations within the company.
This could be in the form of more interviews or workshops, involving more people.

It could be worth conducting the performance benchmarking on a server to resemble
how the databases would perform in a realistic scenario which would strengthen our result.
Another future work that we see is to examine why there is a big di�erence between the min
andmax values of execution times for some queries, where the most prominent being query �.
The min and max varies a lot even though we remove top ��% and least ��% of the execution
times. This could simply be because the resulting times are quite fast and just some slight
interference from some external process could a�ect the results. We do however not know if
this is the case, and it could be worth looking into this further.

Future research could be made by slightly altering the parameters of research question
three, “Should a CMDB be implemented with a graph database or relational database?”, by
changing the context or the type of database. Instead of a CMDB context it could be worth
benchmarking the capabilities of graph databases for other contexts, to further compare
graph databases to relational databases. There are a lot of di�erent types of NoSQL databases
which are made to be good at their respective focus, where Neo�j is good with interconnected
data. Therefore in another context, or this context, there could be another type of database
that could be better.

��

�. D��������� ��� ������� ����

��

Chapter �

Conclusions

During the interviews a lot of di�erent CI’s were brought up where the most common were
internal systems, packages, servers, employees, and licences. Each of which are tracked today,
but in di�erent ways. Some might be tracked in an excel document while others are tracked
in git, and some CI’s are even tracked in multiple locations. This way of tracking makes it
di�cult to easily obtain certain information or update speci�c data. It could be solved by
having a CMDB that stores all information in one location.

Creating a complete CMDB requirement speci�cation within a limited timeframe is not
an easy task, neither is it a realistic task. A requirement speci�cation that could be built upon
if Axis so chooses was created. From our research we reached the conclusion that Axis would
bene�t from some sort of interconnected CMDB between the departments. Throughout the
interviews a need of con�guration status accounting and traceability was often brought up
as the main issue.

From our research everything that mattered within this project could, in one way or
another, be implemented in MariaDB as well as Neo�j. However in regards to performance
MariaDB was generally quicker, however the speed was not a sole deciding factor because
both of them were acceptable within the context. The writability was quite similar for both
languages where most queries received the same score, but Neo�j was easier for some queries
especially those that changed the structure of the database. The readability was generally
easier in Neo�j for the more di�cult queries. Since both the writability and readability was
easier in Neo�j, it suggests that Neo�j is easier to maintain and would be better for longevity.

Axis’ initial problemwas that they were having problems keeping track of everything e�-
ciently within the company, hypothesizing that there is a need for an interconnected database
between the departments. From our interviews within the company we found this to be a
recurring problem that employees mentioned, where each department had a their own way
of keeping track of their artefacts. This led to the conclusion that their hypothesis was cor-
rect and that a central CMDB within the company is desired. With our resulting CMDB
requirement speci�cation Axis has a base, which should be further explored, to ensure that
all departments requirements are ful�lled. Axis could implement this database either as a

��

�. C����������

relational database or graph database. Both database types are viable with no clear disad-
vantages from using Neo�j. We would however recommend using Neo�j, even with no prior
knowledge. This is because we believe that Neo�j would bene�t them in the long run with
better maintainability and �exibility.

��

References

[�] Axis. About axis. https://www.axis.com/about-axis, Accessed on ����-��-��.

[�] Wayne Babich. Software Configuration Management - Coordination for Team Productivity.
Addison-Wesley Publishing Company, ����.

[�] Michael Brenner, Markus Garschhammer, Martin Sailer, and Thomas Schaaf. Cmdb -
yet another mib? on reusing management model concepts in itil con�guration manage-
ment. In Radu State, Sven van der Meer, Declan O’Sullivan, and Tom Pfeifer, editors,
DSOM, volume ���� of Lecture Notes in Computer Science, pages ���–���. Springer, ����.

[�] Michael Brenner andMarkusGillmeister. Designing cmdb datamodels with good utility
and limited complexity. pages �–��, �� ����.

[�] DAVID CONLEY. Con�guration status accounting made a�ordable. Naval Engineers
Journal, ���:�� – ��, �� ����.

[�] M. A. Daniels. Principles of Configuration Management. Advanced Applications Consul-
tants, Inc, ����. (Chapter �, �, �, and �).

[�] Susan Dart. Concepts in con�guration management systems. In Proceedings of the �rd
International Workshop on Software Configuration Management, SCM ’��, page �–��, New
York, NY, USA, ����. Association for Computing Machinery.

[�] Peter H. Feiler. Configuration Management Models in Commercial Environments. Technical
Report SEI-��-TR-�, Software Engineering Institute, ����. (Chapter �, �, �, and �).

[�] Florian Holzschuher and René Peinl. Performance of graph query languages: Compari-
son of cypher, gremlin and native access in neo�j. In Proceedings of the Joint EDBT/ICDT
���� Workshops, EDBT ’��, page ���–���, New York, NY, USA, ����. Association for
Computing Machinery.

[��] Ian. What does acid mean in database systems?, ����. https://database.guide/

what-is-acid-in-databases/, Accessed on ����-��-��.

��

https://www.axis.com/about-axis
https://database.guide/what-is-acid-in-databases/
https://database.guide/what-is-acid-in-databases/

REFERENCES

[��] Information technology — Database languages — SQL — Part �: Framework
(SQL/Framework). Standard, International Organization for Standardization, Decem-
ber ����.

[��] Marion Kelly. Configuration Management - The Changing Image. McGraw-Hill Book Com-
pany, ����. (Chapter � and �).

[��] Brian Kerr. Mend the divide by creating and maintaining a healthy cmdb. https:

//info.axiossystems.com/cmdb-improvement-whitepaper.

[��] MongoDB. Nosql vs relational databases. https://www.mongodb.com/scale/

nosql-vs-relational-databases, Accessed on ����-��-��.

[��] Neo�j. Cypher, the graph query language. https://neo4j.com/

cypher-graph-query-language/, Accessed on ����-��-��.

[��] Neo�j. Neo�j – the leader in graph databases. https://neo4j.com/company/?ref=

footer, Accessed on ����-��-��.

[��] Neo�j. What is a graph database? https://neo4j.com/developer/

graph-database/, Accessed on ����-��-��.

[��] Oracle. Database. https://www.oracle.com/database/what-is-database.

html, Accessed on ����-��-��.

[��] Oracle. What a relational database is. https://www.oracle.com/database/

what-is-a-relational-database/, Accessed on ����-��-��.

[��] Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction Design: Beyond Human-
Computer Interaction. Wiley, Hoboken, NJ, � edition, ����.

[��] Möstl C. Bär F. et al. Stiefel, S. Graph-datenbanken als grundlage des con�guration
managements – eine untersuchung am beispiel von neo� j. HMD ��, pages ���–���,
����. https://doi.org/��.����/s�����-���-����-x.

[��] Boran Gögetap Thomas Schaaf. Requirements and recommendations for the realization
of a con�guration management database.

[��] VictorWinberg and Jan Zubac. A comparison of relational and graph databases for crm
systems, ����. Student Paper.

[��] Mathias Salle Yassine Faih, Abdel Boulmakoul. Con�guration management database
and system. US�������B�, United States Patent, ����. Apr. ��, ����.

��

https://info.axiossystems.com/cmdb-improvement-whitepaper
https://info.axiossystems.com/cmdb-improvement-whitepaper
https://www.mongodb.com/scale/nosql-vs-relational-databases
https://www.mongodb.com/scale/nosql-vs-relational-databases
https://neo4j.com/cypher-graph-query-language/
https://neo4j.com/cypher-graph-query-language/
https://neo4j.com/company/?ref=footer
https://neo4j.com/company/?ref=footer
https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/graph-database/
https://www.oracle.com/database/what-is-database.html
https://www.oracle.com/database/what-is-database.html
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/

Appendices

��

Appendix A

Queries

Query �

##MariaDB

ALTER TABLE employees

ADD COLUMN IF NOT EXISTS (age int NOT NULL DEFAULT 0);

##Neo4j

MATCH (e:employees)

SET e.age = 0

RETURN e

Query �

##MariaDB

UPDATE IGNORE �internal_system_owners�

SET parent_employee_id = str(randomIds[0])

WHERE parent_employee_id = str(randomIds[1]);

DELETE FROM �internal_system_owners�

WHERE parent_employee_id = str(randomIds[1]);

##Neo4j

MATCH (i:employees {internalId: str(randomIds[0])})-

[rel:internal_system_owners]- (x:internal_systems)

MATCH (p:employees {internalId: str(randomIds[1])})

CALL apoc.refactor.from(rel, p)

YIELD output, input
RETURN output, input

��

A. Q������

MATCH (a:employees)-[r:internal_system_owners]-(b:internal_systems)

WITH a, type(r) as type, collect(r) as rels, b

WHERE size(rels) > 1

UNWIND tail(rels) as rel

DELETE rel

Query �

##MariaDB

WITH RECURSIVE �rec� AS (

SELECT *

FROM �dependencies�

WHERE parent_system_id IN (

SELECT (child_internal_system_id)

FROM �package_systems�

WHERE parent_package_id = internalId

)

UNION
SELECT f.*

FROM �dependencies� AS f, �rec� AS c
WHERE f.parent_system_id = c.child_system_id

)

SELECT * FROM (SELECT parent_system_id as id

FROM �rec�

UNION
SELECT child_system_id as id

FROM �rec�) as T

JOIN �internal_systems�

On (T.id=internal_systems.id);

##Neo4j

MATCH (e:external_systems {internalId:internalId})-[]->(i:internal_systems)

CALL apoc.path.subgraphNodes(i, {relationshipFilter:�dependencies>�})

YIELD node

RETURN count(distinct node)

Query �

##MariaDB

SELECT *

FROM internal_systems

WHERE description LIKE \% + word + \%;

##Neo4j

MATCH (i:internal_systems)

WHERE i.description CONTAINS word

RETURN i

Query �

��

##MariaDB

SELECT *

FROM internal_systems

JOIN package_systems

ON internal_systems.id=package_systems.child_internal_system_id

JOIN external_systems

ON external_systems.id=package_systems.parent_package_id

JOIN internal_system_owners

ON internal_system_owners.child_system_id=internal_systems.id

JOIN employees

ON employees.id=internal_system_owners.parent_employee_id

JOIN hosts

ON hosts.child_internal_system_id=internal_systems.id

JOIN servers

ON servers.id= hosts.parent_server_id

WHERE internal_systems.id=internalId;

##Neo4j

MATCH (i:internal_systems {internalId: internalId})-[:hosts]-(s:servers),

(i:internal_systems {internalId: internalId })-[:internal_system_owners]

-(e:employees),

(i:internal_systems {internalId: internalId})-[:package_systems]

-(es:external_systems)

RETURN i, s, e, es

Query �

##MariaDB

SELECT *

FROM licences

WHERE expiration_date < date;

##Neo4j

MATCH (l: licences)

WHERE l.expiration_date < date(‘date�)

RETURN l

Query �

##MariaDB

CREATE TABLE �projects� (

�id� int NOT NULL AUTO_INCREMENT,

�name� varchar(50) NOT NULL,

PRIMARY KEY (�id�));

CREATE TABLE �project_internal_systems�(

�parent_project_id� int NOT NULL,

�child_internal_systems_id� int NOT NULL,

��

A. Q������

PRIMARY KEY (�parent_project_id�, �child_internal_systems_id�),

FOREIGN KEY (parent_project_id) REFERENCES projects(id),

FOREIGN KEY (child_internal_systems_id) REFERENCES internal_systems(id));

INSERT INTO �projects� (name)

VALUES(�project1�);

INSERT INTO �project_internal_systems� (parent_project_id, child_internal_systems_id)

VALUES(�1�, �1�);

##Neo4j

MATCH (i:internal_systems {internalId:1})

MERGE (p:projects {internalId: 1, name: �project1�})-

[:project_internal_systems]->(i)

RETURN p

Query �

##MariaDB

INSERT INTO �internal_systems� (name, version, git_repository, description, status)

VALUES(�internal_systemX�, 5, �itis�, �this is a description�, �maintain�);

SELECT MAX(id) FROM �internal_systems�;

INSERT INTO �dependencies� (parent_system_id, child_system_id)

VALUES (val, val)

##Neo4j

MATCH (i:internal_systems)

RETURN max(i.internalId)

CREATE (i:internal_systems {name: �internalSystemsX�, internalId: currentId,

description: �this is a description�, git_repository: �itis�, version: 8,

status: �notInUse�})

RETURN i

MATCH (a:internal_systems {internalId: currentId}),

(b:internal_systems {internalId:str(randomId)})

CREATE (a)-[:dependencies]->(b)

��

Appendix B

UML

Figure B.�: UML of MVP

��

B. UML

��

Appendix C

Interview guide (in swedish)

�. Vad är din arbetsttitel?

�. Vet du vad CSA(Con�guration status accounting) är? Annars bestiver vi konceptet.

�. Utifrån vår beskrivning av CSA, ser du en användning av det, och i så fall hur? Hur
löser du detta idag?

�. Speci�ka områden vi vill fråga om hur de löser i dagsläget och hur de önskar att det
eventuellt kunnat lösas bättre:

• Kommunikation mellan avdelningar

– Finns där någon kommunikation som hade kunnat förmedlats på ett enklare
sätt utan att behöva söka upp någon? Exempelvis
* Systemägare
* Statusen på ett system
* Vem är det som utvecklar på detta systemet just nu?
* Vem är det som har denna laptop?

• Audits

– Har ni något sätt att se ifall alla krav för en release är uppfyllda? Exempelvis
att systemet blivit testat innan release?

• Impact analysis

– Hur ser ni vilka dependencies ett system har, samt vilken impakt en viss
ändring har?

• Con�guration Identi�cation

– Finns där något du skulle vilja hamer koll på som du inte har idag? Antingen
någon information om ett system som är svår att hitta eller någon koppling.

��

C. I�������� ����� (�� �������)

– Har ni problemet att ni inte vet vad som �nns?
– Tycker du detta borde hanteras manuellt eller automatiskt?

�. Något annat du vill tillägga?

��

	Introduction
	Background
	Problem formulation
	Outline

	Theory
	Configuration Management concepts
	Configuration Management introduction
	Configuration Identification
	Configuration Status Accounting
	Configuration Management Database

	Database concepts
	Database background
	Relational database
	Graph database

	Method
	Context
	Methods for phase 1
	Methods for phase 2

	Results and analysis
	Analysis and results of CMDB requirement specification
	Analysis of literature study
	Analysis of interviews
	Analysis of the old database
	Resulting Axis CMDB requirement specification

	Analysis and resulting MVP
	Analysis of MVP
	Resulting MVP

	Analysis and results of benchmarking
	Benchmarking parameters
	Benchmark UML and Dataset
	Queries
	Analysis of performance
	Analysis of maintainability
	Results of benchmarking

	Discussion and related work
	Discussion and reflection
	Threats to validity
	Related work
	Requirements and Recommendations for the Realization of a Configuration Management Database RecRecom
	Graph-Datenbanken als Grundlage des Configuration Managements – Eine Untersuchung am Beispiel von Neo4J tyska
	Performance of Graph Query Languages Comparison of Cypher, Gremlin and Native Access in Neo4j PerformanceofGraphQueryLang
	A Comparison of Relational and Graph Databases for CRM Systems AComparisonThesis

	Future work

	Conclusions
	References
	Appendix Queries
	Appendix UML
	Appendix Interview guide (in swedish)

