
Master’s Thesis

Collaboration Patterns
for Software Development

David Arve DT05
Department of Computer Science
Faculty of Engineering LTH
Lund University, 2010

ISSN 1650-2884
LU-CS-EX: 2010-32

 

Collaboration
Patterns
for
Software
Development

Keywords: Collaboration, Parallel Development, Patterns, Distributed Version
Control, Branching, Software Configuration Management.

Master’s thesis, Lunds University, Faculty of Engineering Department of Computer
Science

Author: David Arve, davidarve@me.com
Supervisor: Christian Pendleton, Softhouse
Examiner: Lars Bendix, Lund University

Abstract
Software development is a collaborative effort, as such effective communication and
coordination is essential. All the time that is spent on unnecessary communication and
coordination, leaves less time for the core activities of developing and testing
software.

There are two important aspects of software development. Software development
produces software products. Products that have versions, variants, milestones and
release schedules etc. This is all part of the high level product tactics. Software
development is also about collaborative problem solving. Developers and testers
work together to solve problems, this is a creative, social and dynamic activity. These
two aspects of software development needs to work efficiently on their own and
together.

The technical solution for coordinating the collaborative software development effort
is mainly branches in version control tools. The technical nature of branches includes
more or less advanced concepts from Software Configuration Management. Neither
developers or management can be expected to be SCM experts. Developers and
management need to translate their desired tactics and collaboration into SCM
concepts they are not familiar with.

This thesis presents Collaboration Patterns that can be used to efficiently streamline
high level product tactics with low level collaborative development. Collaboration
Patterns provides high level concepts that are familiar to both management and
developers, providing conceptual tools that does not require SCM knowledge. This
thesis also presents methods for implementing Collaboration Patterns with version
control tools, both traditional branching and with distributed version control. The
common mental model of Collaboration Patterns bridges the gap between
management, developers and SCM experts.

__1 Introduction! 1

__2 Background! 3

...2.1 Problem! 3

...2.2 Requirements for a solution! 4

..2.3 Outline of possible solutions! 5

_____________________________________3 Collaboration Patterns! 7

...3.1 High Level Patterns! 8

..3.2 Low Level Patterns! 13

____________________4 Example of Using Collaboration Patterns! 21

..4.1 Project Scenario! 22

..4.2 Discussion! 26

______5 Implementing Collaboration Patterns with Version Control! 28

...............................5.1 Implementing Promotion-Gatekeeper Pattern! 28

..5.2 Split and Regroup! 31

_6 Differences between centralized and distributed version control! 33

................................6.1 Difference in approach to high level patterns! 33

..................................6.2 Difference in approach to low level patterns! 35

___7 Future Work! 37

__8 Conclusion! 39

__9 References! 40

1 Introduction
Software development is a collaborative effort. The more people that are involved in
the process the more time is spent on communication and coordination. Instead of
spending time coding and testing, adding real customer value to the products, time is
spent in meetings and waiting for other team members to finish etc. Some of this
communication and coordination is necessary and moves the project forward. Some
of it is not necessary which slows down the project and adds to team frustration. It is
not, however, easy to identify where the inefficiencies lay and even if this is known it
is not easy to know how to solve it.

Collaborative software development means that we need parallel development. This is
a well known fact. Appleton et al. writes that

”The question is not "should we conduct a parallel development
effort", but "how should a parallel development effort best be
conducted?"”

Appleton et. al.

Appleton’s question about how we should conduct a parallel effort leads him to
branches. Branches is the technical solution most version controls use to support
parallel development. Tools have more or less extensive support for advanced
branching strategies. Appleton describes what advantages and disadvantages there are
with different strategies in different situations.

Given that we need parallel development, this thesis does not ask how we should do
parallel development. This thesis asks “What kind of parallel development should we
do?”, or “How should we collaborate for effective software development?”. This
thesis will argue that Collaboration Patterns is a way of structuring what kind of
collaborative development we need to solve recurring problems given a specific
context. This will give us high level concepts to create mental models of how the
parallel development effort is being undertaken. This thesis argues that Collaboration
Patterns presents concepts that are of a high enough level to span the entire software
development organization. They are therefor applicable both for a tactical product
strategy and for dynamic creative development.

This thesis presents Collaboration Patterns as a way to analyze and enhance the way
in with team members collaborate when developing software. Collaboration Patterns
gives a clear structure to communication and coordination within a team. We will
describe both high level patterns and low level patterns. High level patterns involve
control over product tactics and strategy while low level patterns involve the
collaborative problem solving of day-to-day development.

A product strategy can be as simple as a release date but also incredibly complex and
involve different product version and variants with release schedules. A product

1

strategy is a tactic much like war or sport tactics requiring planning and execution.
Development on the other hand is a creative problem solving process. It combines
experience with creativity. The developers are much more like soldiers than generals
or soccer players than coaches adapting and collaborating around a changing
environment.

With a product strategy a manager can give the project a direction. Developers on the
other hand give the project speed. When these work together we have a project that is
going fast in the right direction. If they are not, we can have the project go downhill –
fast.

The two activities of product strategy and creative development are very different in
nature. The manager needs to speculate, or plan, for what he or she thinks will happen
to the project and other factors affecting it. Development needs to adapt to each new
problem, tailoring a specific solution to fit. It is not only what developers do that is
highly dynamic, but also how you work. Do you work alone? The whole team
together? Pairs? It all depends on the problem at hand. Development is a highly
dynamic activity.

The patterns and concepts of this thesis have been researched through interviews with
developers, managers and SCM experts. The author has had some experience testing
the patterns on other students during the courses “Software Development in Teams”
and “Configuration Management”. It has not been possible for the author to test these
patterns and concepts more extensively in this thesis.

In chapter two of this thesis the background to the problems outlined above will be
described. The chapter will discuss possible requirements for solutions to this
problem and relate Collaboration Patterns to other related solutions. In chapter three a
set of high and low level patterns are presented and analyzed. In chapter four provides
a contrived example of how one can apply these patterns to a project. In chapter five
some of the patterns put forth are implemented with centralized and distributed
version control. In chapter six we discuss the differences with centralized and
distributed version control from a Collaboration Patterns point of view. Chapter seven
presents possible related and future work and chapter eight presents the solutions that
have been proposed by this thesis.

2

2 Background
This section will first dive a little bit deeper into the problem domain and more
closely examine our problem. We will then specify requirements for any potential
solution to this problem. In the third subsection we will look closer at different types
of potential solutions motivating the choice of Collaborations Patterns. Finally we
will give a overview of the driving forces of Collaboration and Parallel Development.

2.1 Problem

Software development is a group activity. All group activities needs communication
and coordination to be successful. This is why the amount of work needed to
complete a software project can’t be
measured in “man months”. There will be
productivity fall-off because the team needs
to communicate and coordinate their efforts.
(Brooks, 1975) The larger a team is the more
acute the coordination problem is .
Communication channels grow faster then
the team, three channels with three
developers but six with four developers, see
fig. 2.1. (Babich)

“We need to find ways to
decrease the amount of time spent
[coordinating] and increase the
time available for designing,
coding and testing.” – Babich

This is the main problem. Increase
productivity, increase the amount of time that
is spent on adding costumer value to the
software and decrease the amount of time
spent on coordination. The point here is not
that we shouldn’t coordinate, this is an
absolute must, but we need to do the right
coordination and the right communication. This is subject for this thesis.

In software development we produce changes to software. This can be changes to
code, but also to documentation, tests and other documents. The changes are made
independently by different individuals or groups of individuals. The activity of
coordinating, controlling and enabling these changes to take place is Configuration

3

Figure 2.1. The possible connections between
team members grow faster then the team.

Management (CM). CM can be divided into identifying, controlling, auditing and
reporting. This is nothing more than to make controlled changes.

“Understand what you want changed and why; make a decision to
change or not; control the change; verify that the change was
made; and communicate the change.” – Moreira

One purpose of CM is to structure the collaboration between team members,
including not only developers but testers, QA, management etc. There are two
important factors in this coordination: speed and direction. Speed is about focusing on
producing costumer value, direction is about having enough control to adapt to
changes, keeping the project on track.

To be able to get the speed we are looking for we need effective parallel development.
Parallel development is mainly about two things. It’s about having a parallel product
strategy e.g. simultaneously developing version 1.1 and 1.2 as well as doing
maintenance on version 1.0. It’s also about utilizing all team members as efficiently
as possible, e.g. if feature A and B can implemented independently two groups of
developers can work on them in parallel.

This thesis tries to answer the question what kind of organization, methodologies and
technical support do we need to support a flexible and dynamic way of doing parallel
development that satisfies both our need for speed and our need for control. What we
try to do is to go past the technical problems and focus on the people problems
behind.

2.2 Requirements for a solution

This section describes what kind of requirements that should be put on a solution for
the above stated problem. There are a few key concepts that are important.

1. Team Collaboration
2. Speed and Control
3. Repeatable and Reusable
4. Teachable and Trainable
5. High level and Low level
6. Minimal coordination
7. Implementable (tool support)

These seven “requirements” should be met by a solution to the problem of organizing
parallel development. Each requirement is motivated below.

1. The solution should be a solution to the problem of team collaboration. The
solution should provide answers to what roles and responsibilities can be used and
how information flows between these.

4

2. We’ve discussed why speed and control are important for parallel development in
the section above, concluding that these are highly valuable requirements for a
solution.

3. Repeatability is important for any solution to this problem. Repeatability means
that we can reuse the same solution over and over. This will let us achieve experience
through repetition.

4. A good solution is one where we can distribute the experience we have to others in
the team. This means that we should have solutions that team members can teach each
other and that can be trained and exercised.

5. We need a solution that will be high level enough for management etc. to make
tactical decisions. This means that the solution should give management the
possibility to structure features, deadlines, people and responsibilities. It should also
be low level enough for developers to be able to have a self-organizing dynamic
problem solving organization.

6. The problem description states that the more communication and coordination we
do we get less time for adding customer value. Therefor we should have as simple
coordination and communication as possible – but not simpler. We need structure, co-
ordination and control but a good solution will keep the lines of communication and
the flow of changes as straight as possible, avoiding bottlenecks but not
responsibilities.

7. Any solution that we give to the high level problem of collaborative software
development needs to be implementable, if not in practice at least in theory. The
typical way would be to use some kind of version control software and/or other tools.

2.3 Outline of possible solutions

If we accept the problem and requirements outlined above, what would possible
solutions to this be?

One very common way of coordinating a parallel development effort, especially from
CM professionals, is branching strategies. A branching strategy will use branching
patterns to describe how the parallel development effort can be solved using version
control.

There is nothing wrong with branching patterns, but they do not solve the problem
that we’re facing. Branching is a technical solution we can use once we’ve solved
what kind of collaboration we are going to use. Branching patterns does not solve the
collaboration problem, but the technical problem of implementing a specific way of
collaborating and organizing the flow of changes in an development effort.

5

Another possible solution would be software methodologies like Agile or Waterfall
supported by version control and
branching strategies. Agile and
Waterfall can be described as
development strategies, where
Waterfall have big static phases of
development, e.g. requirements
phase, implementation phase, test
phase Agile will have a small iterative
workflow where where this is
happening more or less at the same
time. These development strategies
does however not solve our problem,
but give a framework for where they
take place. They give a framework for
where the collaboration will take
place, but not how it’s done.

This thesis will present Collaboration Patterns as a way to solve our collaborative
problem, satisfying our given requirements. Collaborations Patterns will be shown to
be both fast and flexible without sacrificing structure and control. This solution fits in
between high level development strategies such as Agile or Waterfall and low level
technical solutions such as branching strategies. It will also be shown that
Collaboration Patterns give us a new possibility to use distributed version control to
implement Collaborations Patterns instead of traditional centralized version control
with branching strategies.

6

Distributed
Version
Control

Agile Waterfall

Collaboration
Patterns

Branching
Patterns

Figure 2.2 Collaboration Patterns fit in between
methodologies and SCM implementations.

3 Collaboration Patterns
The problem, as defined above, is that the possible connections between team
members grow faster then the team. Communication between team members takes
more and more time away from core activities as designing, coding and testing. The
other aspect is that the team members needs to coordinate their changes to the
software. If this coordination is ineffective we can see problems like waiting for
changes, independently solving the same problems, waiting for changes to be
approved and other activities that waste time.

This chapter will show how Collaboration Patterns can solve different problems that
arise in software development. Collaboration Patterns is way to look at software
development from a high level. It’s about analyzing the core problems regarding how
communication and changes flow through the organization.

Why patterns? A pattern is a well proven solution to a reoccurring problem in a
context. Collaboration Patterns provide a common vocabulary and mental model that
can be used through the entire organization. Collaboration Patterns give building
blocks that can be used to tailor a specific solution to a specific team and a specific
context. Patterns also makes it easier to improve. When a problem or inefficiency is
noticed we can track it back to a pattern and if appropriate change the pattern.

The patterns will be analyzed in the following way. A context will be analyzed for
communication and coordination problems. Problem contexts will be related to
patterns and will be analyzed with respect to how communication and changes flow
through the organization. They will also be analyzed with respect to how developers
are coordinated and how changes are coordinated.

This thesis argues that Collaboration Patterns is an abstraction from branching
patterns or distributed version control. The choice of implementation is discussed in
later chapters.

Collaboration Patterns are implementation independent, but patterns can also be too
complex to implement efficiently in a given tool. Therefor tool choice can affect the
efficiency of the patterns, see chapter 5 and 6.

This chapter differs between high level patterns and low level patterns. The
distinction is made as high level patterns map better to product strategy and larger
coordination efforts. High level patterns can be seen as static. By static we mean that
when described they are not changed over time. Even if a pattern doesn’t change over
time this does not mean that the higher level organization does not change. Higher
level organization can be extremely adaptive to change and that corresponds to the
organization changing patterns, not that the patterns change.

7

On the other hand we have low level patterns. These are patterns that have a time
component, the patterns them self include different phases that correspond to the
dynamic nature of creative development.

3.1 High Level Patterns

The problem context of high level collaboration patterns is the problem of product
strategy and tactics. An example of a product strategy could be an organization that
have just released their version 1.0 of their product and are now in a maintenance
phase of that project. They will soon start to ramp up feature work on the next 1.1
release in parallel to maintaining 1.0. When they have made some progress on 1.1
they will have some people start on a new exiting feature that won’t make it until the
1.2 release. When 1.1 is released is will move to a maintenance phase and after a
while the maintenance of 1.0 will stop.

One way of describing this would be with a traditional GANTT diagram or some
other event chain diagram. A simplified example can be seen in figure 3.1.

This is a very good way of describing a product strategy, but it lacks some crucial
information for the purpose of this thesis. The diagram doesn’t show how changes
flow inside the organization. Sure, we could add meta information such as change
flow, e.g. from maintenance of 1.0 to feature development of 1.1, but this would
always be a hypothetical illustration as we would not know when this flow will take
place. Even more importantly it does not show how changes flow through the people
in the organization. We can not, from this diagram, analyze if communication and
changes propagate through the organization in a inefficient manner. The GANTT
diagram, and others alike, depict the result – not how the team will get there and not
what organization, roles and responsibilities should be used to get there.

The purpose of high level Collaboration Patterns is to present a method that we can
use to plan our product strategy and depict this in a way that will clearly show the
organization, the people, the roles and their responsibilities. High level Collaboration

8

Maintenance 1.0

Feature development 1.2

Maintenance 1.1

Figure 3.1. Simplified event chain diagram of product strategy.

Feature development 1.1

Patterns shows the people problem – and the people solution – behind the product
strategy.

3.1.2 Promotion Pattern

The Promotion Pattern is used to promote changes through an organization. The point
is to elevate the status of changes. Each level holds a subset of the changes present in
the lower level.

Problem
Product, and the features in them, goes through different phases; development,
testing, beta testing, release, deployed. Every feature can be mapped to a given status
at a specific level. If a feature is in a given level it must be present in every level
below.

Related Patterns & Other solutions
Related patterns are the Gatekeeper and the Promotion Gatekeeper pattern. The
Gatekeeper pattern is similar as it provides a coordination point similar to the
different levels in the Promotion Pattern. Low level patterns that are related are the
pull pattern and the push anti-pattern, as these can be used for the way changes flow

between the levels. Other solutions, or supporting solutions, could be to keep
documents or databases that contain information about builds and their status, this is
beyond the scope of this thesis.

Solution
In this pattern changes are received at the bottom level and gathered until the set of
changes fulfill some requirement. This requirement can be a specific list of feature, a
deadline or other types of requirements.

9

Figure 3.2. In the Promotion Pattern each level accept
changes only from the level below.

Development

Test

Release

A B C

B C

C

The different levels will have a specific meaning, such as the bottom level might hold
untested development changes, the second level might hold changes that should be
more extensively tested. The top level might hold changes that have been released or
deployed. Other team members or customers can thereby “subscribe” to source code
or binary builds that come from a specific level. These levels can be defined as
baselines, but are not required to. This means that the information flows out from the
different levels – if one is only interested in the released changes one can get only that
information and filter out changes and communication that is going on on lower
levels.

Each level can be associated with a individual, but this is not required.

Discussion
How many levels and their specific function is dependent on the specific project. One
has to choose how many levels to have. If one chooses to decrease the number of
levels, so that there are fewer levels natural for the organization this needs to be
accepted across the organization. This will mean that we don’t make a difference of
changes that are in testing and QA for example, even if the organization has both a
testing and a QA group. If this level of detail is not necessary then it is good to
remove the granularity, but then the organization should be made clear that there is no
distinction, for example if there’s only one test team it might be superfluous to have
more then one test level.

There are both advantages and disadvantages in having one individual responsible for
each level. This can be hard to implement in smaller teams. In small teams one might
have fewer levels or have one person playing several roles. Having one person
playing several roles increases the risk that communication can be confusing – am I
talking to the test level responsible or the release level responsible? The more one has
to distinguish between the person and the role he or she is playing the greater risk
there is for unclear communication and confusing coordination. The more an
individual is connected to the role and responsibilities of that role the more
transparent the organization is.

3.1.3 Gatekeeper Pattern

The gatekeeper pattern is used to filter changes, only letting changes that fulfill a
specific requirement pass through.

Problem
To keep product deadlines or other milestones, features that have been developed
needs to be held off until a later point for some reason. Features that have been
developed may be deemed as security risks, or other reasons why accepting the
change would have too big of an impact on the project. The person responsible for
this deadline needs to be able to keep changes from coming in and control this.

10

Related Patterns and Other Solutions
Related high level patterns are the Promotion Pattern (see 3.1.2) and the Promotion
Gatekeeper Pattern (see 3.1.4). These patterns are related because they describe
central points of coordination. The Promotion Pattern could typically use a
Gatekeeper Pattern for the lowest promotion level. The low level Helper Pattern is
also related as the ‘gatekeeper’ can view all contributing developers as ‘helpers’ (see
3.2.4).

Solution
The ‘gatekeeper’ shelters others from changes that are not approved. Changes flow
into the ‘gatekeeper’ which decides if the changes should be accepted or not. If one
listens to the gatekeeper one will only get the information that is approved by the
‘gatekeeper’. The gatekeeper can serve as a coordination point, where the
‘gatekeeper’ decides what changes comes in and what information comes out.

One can choose to use the ‘gatekeeper’ in different ways with this pattern. The
‘gatekeeper’ might be a physical person that will decide what to accept or reject, this
could be called an “active gatekeeper strategy”. It can also be used as an ‘advisory
gatekeeper’ which one would ask if the changes can be accepted, but the ‘gatekeeper’
does not enforce it’s decision, this could be called a “passive gatekeeper strategy”.
The ‘gatekeeper’ can also be a set of requirements that the developer’s changes needs
to meet, a “definition of done”, this could be called an “empty gatekeeper strategy”.

Discussion
Having a single coordination point using a Gatekeeper Pattern makes the organization
very simple. It is easy to know where the latest-and-greatest changes can be found –
from the ‘gatekeeper’. All coordination goes through the ‘gatekeeper’. This makes
this solution powerful for immature teams where there is a lot of confusion and a
need for structure.

11

Take my
changes!

No! Yes!

Take my
changes!

Figure 3.3. The Gatekeeper Pattern acts as a coordinating point for a group of developers. The
‘gatekeeper’ either accepts or rejects changes.

On the other hand the single coordination point tends to give an authoritarian
organization, where everything is decided by the ‘gatekeeper’. There is also a risk
that the ‘gatekeeper’ can become a bottleneck and thus stalls development as the team
has to wait for changes to propagate through the ‘gatekeeper’.

These shortcomings can be mended with the use of low level patterns where changes
can flow more dynamically between developers. Combining the gatekeeper pattern
with other patterns, such as the Promotion Gatekeeper Pattern (see 3.1.4) adds some
value but also creates a more complex organization which looses some of the
advantages with the Gatekeeper Pattern.

When choosing what type of ‘gatekeeper’ to use, the following should be considered.
If the ‘gatekeeper’ always needs to accept or reject changes, simple changes can seem
more cumbersome and bureaucratic. It might also lead to changes being accepted fast,
without enough impact analysis or code review which can lead to a false sense of
security. If we use a softer approach and only ask the ‘gatekeeper’ when there are
significant changes, the changes might get more attention but we also risk that small
changes have a big negative impact on the product and are caught later. A ‘empty
gatekeeper’ can be used if there is no need for dynamic high level control. The
product and the team should be mature enough for a system to be used that is based
on trust.

3.1.4 Promotion Gatekeeper Pattern

This pattern is a combination of the Promotion Pattern and the Gatekeeper Pattern.
This shows how to combine the two patterns and thereby also illustrates the
difference between them.

Problem
For strategic control over the product we need a level organization that where changes
can propagate up through the levels. Each level needs to be able to accept or reject
proposed changes. Changes does not need to propagate from the lowest level but can
be submitted to a higher level. A typical example would be where maintenance
changes to a version 1.0 would be submitted at a lower level and feature changes to
1.1 would be submitted to a higher level.

Related Patterns and Other Solutions
Obviously the Gatekeeper Pattern (see 3.1.3) and the Promotion Pattern (see 3.1.2)
are related to this pattern. The pull and push low level patterns (see 3.2.2 and 3.2.3)
relates to what kind of pattern should be used to move changes through the
organization.

Solution
This pattern builds a hierarchy from a Gatekeeper pattern using some concepts from
the Promotion Pattern. Each ‘gatekeeper’ will have a set of individuals that submit
changes. These individuals could either be developers and the like that submit

12

original changes, other gatekeepers that forward changes from other developers or
promotion levels. This creates a pattern with several different coordination points.

From the point of view of a developer connected to a ‘gatekeeper’ there will be no
difference if the other individuals connected to the same ‘gatekeeper’ are them selfs
‘gatekeeper’ or original submitters.

Discussion
With this pattern there is a risk that the created organization becomes very
complicated and hard to have a good overview of. This can have the risk of adding
extra information and communication to keep everyone up to date of what is
happening. There is however a possibility to keep the actual organization quite
complex without that complexity affecting each team member too much. From a high
level management point of view the ‘gatekeepers’ are probably the main interest in
this pattern. From a low level point of view, a single developer needs only to be
concerned with its own ‘gatekeeper’ or promotion level and in some degree the other
developers connected to the same ‘gatekeeper’ or promotion level.

3.2 Low Level Patterns

The problem context of low level collaboration patterns is the problem of having a
dynamic and creative organization that can support developers and be flexible enough
to fuel the development process. A typical example would be a group of developers
presented with a set of features that should be implemented. The different features
depend on each other as shown in the dependency graph in figure 3.5.

13

Dev

Test

Dev

Figure 3.4. Using the Promotion-Gatekeeper Pattern for parallel development of version 1.0
and 1.1. The 1.0 release needs more testing than the 1.1 release hence the extra promotion

level.

1.1

1.0

Other
contributor, e.g.
technical writer

or legal

Feature A seems quite difficult so two developers pair up to tackle this. Feature B and
C seem easy so only one developer per feature on this. After a while the pair
developing feature A realizes that this was not as hard as they though and one of the
developers starts working on feature D. Feature D depends on the A, B and C feature,
but some work can be done while waiting for the others. The developers on feature B
and C realize that their changes aren’t really as independent as they thought and need
to work together on some changes for a while. When the feature C is done that
developer joins on developing feature D, and so on...

When developers work in a team like this, it will be a highly dynamic and flexible
environment. Groups will change in a fluid manner, developers will hop from
problem to problem, helping out where it’s needed. This environment is different
from the much more static world of high level product strategy, and therefor it needs
its own set of patterns and procedures.

3.2.1 Split and Regroup

The Split and Regroup Pattern is used for development teams to split into smaller
groups where communication and coordination can be more effective. The small
groups can then come together and integrate their different solutions.

Problem
When working in the whole team, there might be situations where the problem
solving communication and coordination is slowing down the development. The
given tasks that the team is solving might be naturally split into two groups. That is,
the communication between team members and the coordination of their changes
seem to be divided into two groups. The problem being that when the team is together
everyone will be affected by all the communication and coordination.

A B C

D

E F

14

Figure 3.5. Example of a typical requirement dependency
graph.

Related Patterns and Other Solutions
Within the new smaller groups all low level patterns can be used, including the Split
and Regroup pattern itself.

Solution
Splitting the team into smaller groups. The flow of changes and communication will
be limited to the smaller group. When the groups are ready they will regroup into
bigger groups and finally into the entire team. The changes inside a small group will
flow according to some pattern, e.g. the pull/push patterns (see 3.2.2 and 3.2.3), the
helper pattern (see 3.2.4) or the pair collaboration pattern (see 3.2.5).

Discussion
By splitting the team into smaller groups the total number of communication paths
will decrease. For example, in the example in figure 3.6 above, the total number of
communication paths are decreased from six to two. It get’s even better if we look at
each individual as it will go from a group with six potential communication paths to a
group with only one.

All problems related to the fact that the code in the different groups diverge grow
with the amount of time the groups stay separate. This is an inherent problem with
minimizing the collaboration between the groups. Being independent of the changes
that are done by the other groups also make you vulnerable to their changes. If the
problems were not as independent as first thought there can be serious problems when
the groups try to merge. There is also obvious risks of the different groups solving the
same problems independently hence doing extra work.

The risk of these problems arising can be decreased by doing high level design
together as a team before the team splits into groups. With the high level design the

Figure 3.6. Showing a team splitting into smaller groups
and then merging back together.

15

entire team knows where work will be done, if there are areas of the code that several
groups need to touch, maybe they shouldn’t split into groups until that code has been
finished. If a group needs to do changes in other parts of the system than they first
thought, they can coordinate with the entire team to communicate the changes they
need to do. This lets the different groups have a clear strategy for when they need to
collaborate and when they don’t.

3.2.2 Pull Pattern

With this pattern the receiver of changes is the one that initiates the flow from the
originator of the changes.

Problem
When changes are made they need to propagate to other team members. The problem
is who should initiate the flow of changes and who should communicate what.

Related Patterns and Other Solutions
The Push anti-pattern is the counterpart of this pattern (see 3.2.3).

Solution
The pull pattern solves this by letting the originator of the changes communicate that
the changes are done (according to some definition of done). This could be by formal
or informal lines of communication. It can be direct communication or indirect
“broadcasted” communication. The receivers of this information can then choose to
accept these changes depending on their status and the status of the receivers current
work. A developer might broadcast the some untested high risk changes are done.
Some developers want these changes because they are in an early phase of their own
development and want their changes to work with this. Other developers, that are just
finishing their tasks might not want these changes as it would bring too much
uncertainty into their code.

Discussion
This pattern let’s the individual that receives the changes make the decision if they
should be accepted. The receiver is exposed for the risk of receiving the other

Done!

I want
your changes!

pull!

Figure 3.7. In the pull pattern the receiver initiates the flow of changes.

16

developers changes. The receiver is the one that needs to do the work of merging the
code is the one that will decide when, or if, that work should be done.

When there are conflicting interests, that is when the originator wants the changes to
propagate to the receiver but the receiver is not happy with them, the solution is for
the two parts to negotiate a solution that both can accept. An example could be that a
developer has finished a feature and wants that to propagate to the individual
responsible for the project. The project responsible however is not happy with the
testing that the developer has done and asks if more tests can be run. The developer
and the project responsible will have to negotiate which tests are necessary for the
changes to be accepted.

3.2.3 Push Anti-Pattern

With this pattern the originator of the changes initiates the flow from the originator to
the receiver. This is described as an anti-pattern even if it might be a appropriate in
some situations.

Problem
When changes are made they need to propagate to other team members. The problem
is who should initiate the flow of changes and who should communicate what.

Related Patterns and Other Solutions
This is the counter part to the Pull Pattern (see 3.2.2).

Solution
This push pattern solves the problem by letting the originator of the changes push the
changes to the receiver, whether the receiver wants them or not.

Discussion
This is called an anti-pattern because it does not show respect for the other team
members. It makes it very hard to take responsibility for the given code as it is not
voluntarily accepted by the receiver. Even so, there are some advantages with this
pattern, in some situations.

17

Done!
Everyone wants
my changes!

No, I
didn’t!

Figure 3.8. Showing how changes can flow from originator to receiver in the push anti-
pattern.

push!

The originator of the changes has the most information about the changes and can
therefor judge that these changes are very important and that the receiver needs these
changes.

If the team is not able to resolve conflicting interests about what changes should
propagate this pattern can solve the issues with force.

As the originator pushes the changes to whomever he or she likes, it is easy for the
originator to know how far the changes, at least, have propagated.

This pattern can propagate changes through a team faster than the Pull Pattern (see
3.2.2) as only one action is needed to broadcast the changes.

3.2.4 Helper Pattern

Pattern for asking for help, e.g. from an expert, and how this supports collaboration.

Problem
When working on a set of tasks a developer (or a group of developers) might need
help with one or more of these. This could be because they do not have the special
competence for some aspects of the task, it could be that they are not allowed to do
some changes. The tasks could also be repetitive or simple enough for the developer
to want to delegate these tasks to other staff.

Related Patterns and Solutions
The Pair Collaboration Pattern (see 3.2.5) is related as it also includes the
collaboration between two developers. The Pull and Push Patterns are relates to how
the changes and communication flows between the main developer and the helper.

Solution
The developer will delegate some tasks to a helper whom returns the finished task
when done.

18

Helper

Figure 3.9. A developer can outsource work to a helper.

Discussion
This pattern enables experts to take care of difficult tasks. This might be
advantageous if knowledge is unevenly distributed within the team and the tasks are
two difficult for the expert to explain. There is an inherent problem that the different
team members gets more and more specialized which can make the team less robust.
There is also a problem with the delegating team member does not fully understand
the code that he or she will deliver.

It can also be used to delegate tedious tasks to other team members, or even
individuals outside of the team. This can speed up efficiency and keep tedious
repetitive tasks from taking time from active development.

3.2.5 Pair Collaboration Pattern

Giving a more general account to pair programming and when to use pair
collaboration.

Problem
When working on complex tasks a single developer can digress from the given task.
When a single developer gets stuck on a problem frustration can build up and it is
hard to find new initiative. A single developer is more likely to not follow team
practices. (Beck)

Related Patterns and Solutions
This pattern is related to pair programming as it solves the same problem but in a
more general way. It is also related to the Helper Pattern (see 3.2.4) as it handles
collaboration between two individuals.

Solution
This pattern proposes that two developers sit side-by-side at the same screen. An
alternative is that the developers each have their own computer and they sit in a way
where both developers can see the other developers screen. If the later solution is

19

Figure 3.10. Pair Collaboration can be done either as pair programming or more
flexible with individual computers.

used, the changes made needs to be coordinated between the developers. A pattern
like pull or push should be used for this.

Discussion
This might at first be counter productive as we are actually increasing the number of
communication paths from zero to one in this pattern. The point with this is that while
too many communication paths can hinder development, too few can have the same
affect.

Studies have shown that pair programmings can work almost as fast as individual
developers but the quality of the code is a lot better. (Canfora et. al.) It has also been
shown that novice-novice pairs gain a lot more than expert-expert pairs. (Lui)

One problem with expert pairs is that one of the developers gets bored as he or she
does not have anything creative to do. In this case we have unnecessary
communication between the developers that slows down development. This is why
there are advantages in using two computers as the bored coworker can do other
productive work, instead of being bored and looking at what the other developer is
doing. When needed the extra computer is put away and both developers focus on a
single screen.

When using one screen there is a risk that the incremental code review the co-
developer is doing might miss bigger code mistakes and temporary solutions that are
not removed. If the developers are allowed to work more independently when needed
there is a chance that these mistakes will be noticed. On the other hand there is a risk
that small mistakes give larger repercussions as they are not noticed as fast.

The dynamic flow between pair programming and pair collaboration and also using
the Helper Pattern can be an effective way of keeping developers active and creative
and minimizing unnecessary communication and coordination and focus on the core
tasks of problem solving development.

20

4 Example of Using Collaboration Patterns
This chapter will describe how the patterns that were outlined in the previous chapter
can be used in a real world situation.

The example project that will be used through out this chapter is a client-server
project. The client application will be used by customers where as the backend server

will be hosted by the company. The example includes special considerations that
needs to be addressed as the client and server are independent in certain respects, but
dependent in others. The problem will be analyzed from a high level product strategy
point of view and a low level development point of view.

The high level strategy will try to capture the static, forward planning, organization
for the project. It will try to give a organizational structure so that questions about
project status and project planning can be answered. It will try to give a structure so
that management can control the release, is there need for tighter control near the
release deadline?

The low level strategy will try to capture and enable the dynamic, creative
development process. Letting developers and testers, both within the team and
between the teams, communicate and collaborate in a efficient way.

21

1.0 Gatekeeper

Test

Development

Test

Development

Server Team

Figure 4.1. Illustration of the patterns used while developing the first 1.0 version of a client-server
application.

Client Team

This is an example of how to use Collaboration Patterns, as such it will show one
possible way of using the patterns but this is in no way the only way one could use
Collaboration Patterns in the given context.

4.1 Project Scenario

This section will apply Collaboration Patterns to the situation where a project is
working towards a 1.0 release. In this example we have two groups of developers
with 5-10 developers in each. One group will work on the server application and one
on the client application. In each group there will be 1-2 system test engineers.

The requirements for the organization and coordination is that every feature that’s
developed needs to go through testing before it is integrated to the release candidate.
The teams will test their part independently of each other, but will also test with
different versions of the other teams application. A more detailed analysis of how
testing works is beyond the scope of this thesis.

As the different teams will develop both independent features as well as dependent
features it is required that the solution can coordinate changes in a way where
dependent features are included in the release in a orderly fashion.

4.1.1 High level product strategy

When analyzing the given situation we see that we need to have coordinated control
over what server and client features are accepted into the 1.0 release. We do not want
to release a version with incompatible server and client applications. To get this level
of control we will use the Gatekeeper Pattern (3.1.3). When choosing what kind of
‘gatekeeper’ we should use (active, passive or empty) we need to look at who will be
responsible for rejecting or accepting changes. This is important as the ‘gatekeeper’
needs to have the authorization to do it’s job.

In this example we have a project manager that has the responsibility and the
authorization to hold of on changes from either team so that the released versions
have a compatible feature set. It is important to note here that the project manager
does not have to have the responsibility of deciding which features should be
implemented or anything like that, this can all be left to the customer or customer
representative. It can be the customers role to decide which features are dependent on
each other. It is the project manager’s role as ‘gatekeeper’ to make sure that all – or
none – of the dependent features are included in the released versions. To be able to
take full responsibility for this the ‘gatekeeper’ will use the Pull Pattern (see 3.2.2) to
accept changes. This makes sure that the ‘gatekeeper’ is the only one that will add
features to the release. This is to be considered as a “active” gatekeeper.

The ‘gatekeeper’, in this example, does not want to be responsible for the quality of
each individual feature, this is the responsibility of the testers. The ‘gatekeeper’ only
wants to choose from features that have been tested thoroughly and have a high

22

quality. Therefor a test level will be used for both teams such that the testers will test
features and when they are happy with the quality they will tell the ‘gatekeeper’ that
the given features are available.

The testers, however, are not responsible for coordinating which features are ready to
test. For this we will use a development level where features that are ready to be
tested can be coordinated. This level will be the responsibility of a team leader. This
is used to create a single coordination point for changes within the development team.
Every feature that is accepted into the development level has reached the teams
“Definition of Done”.

The test and development levels follow the Promotion Pattern (see 3.1.2). The entire
project organization is illustrated in figure 4.1. This outlines the high level strategy
that will be used at this phase of the project. This will give management a high level
overview of what features and bugs are located at what promotion level;
development, test or release. It will also give management a optional level of control
in how restrictive the Gatekeeper should be, high risk changes might be allowed in
early development but not closer to the release deadline.

There are several ambiguities in the above example. There are of course details that
are beyond the abstract patterns, like what should be done with a promotion level
build and in what form we communicate the status of features. There are also details
that are relevant to the implementation of the patterns. What requirements do we have
for changes to be promoted through the different levels, i.e. what do we know of a
feature if it is at the test promotion level? We need to decide if we should have formal
requirements that every feature needs to pass before it can be promoted or if we
should let it depend on the given feature. The first alternative may give greater
certainty about the project status but might also increase overhead and bureaucracy. If
we choose the latter, it might be more uncertain what it actually means for a feature to
be at a given level but features might propagate more easily between the levels. We
also need to decide if it should be the lower level that promotes the changes, or if it is
the higher level, or if they need to agree. Is it the developer promotion level that
decides to push changes to the test level, or is it the test level that pulls changes from
the development level? These are all questions that needs answers, but they need to be
tailored to the specific project, teams and contexts.

We shall see that although this gives a good high level structure for the project, it does
not enable efficient problems solving for developers and testers. High level structure
needs to be complemented with low level collaboration.

4.1.2 Low level development

The high level pattern described above gives a perfect structure and boundaries for
the low level patterns that developers and testers can use in their day to day
development.

23

In our example we will closer examine the development of a feature that lets the user
enter some information into a User Interface (UI) in the client and then submit this
information to the server. The server should process the information that the client
application sends and return an appropriate response, which the client in turn should
display. From a high level point of view this will be tracked as “Server feature A” and
“Client feature A” and they will propagate through the high level pattern and only
pass through the ‘gatekeeper’ when both are done.

From a low level point of view the different parts, or tasks, of this feature is outlined
in figure 4.2. The relationships between the different tasks are what we will use to
model our collaboration strategy.

In this example the developers will use a Pull Pattern (see 3.2.2) to exchange changes
between one another. This is used during active development when there is no clear
and static coordination point which lets the developers work across teams and tasks in
a looser ad-hoc style. The Helper Pattern (see 3.2.4) as well as the Pair Collaboration
Pattern (see 3.2.5) will be used between, and across, the teams. The Split and
Regroup Pattern (see 3.2.1) will also be used. These patterns are chosen during
development as a response to the given problems, see below.

The developers working on the four tasks related to sending and receiving
information between the server and client (2, 3, 5 and 6) will sit down together. They
realize that there is some common code that could be written that would be used by
both the server and the client. In this group they decide on a common network
protocol for sending and receiving the information. Then they split up, with one client
developer and one server developer working on sending information (2, 5) and one
client developer and one server developer working on receiving information (3, 6).
When both groups are done they regroup and merge their code. How this code is then
shared by the two groups, a code library or two different copies of the same code and

24

Server

Receive
Request

Process
Request

Send
Response

Client

Request UI

Send
Request

Receive
Response

Response
UI

Figure 4.2. Illustrating how the different tasks of a feature are related.

1

2 3

4

567

whether or not this is version controlled is beyond this example. The point is how
they use the patterns to collaborate, not the architecture of the code produced.

This group has in affect used the Split and Regroup Pattern. They have also used the
Pair Collaboration Pattern when working two and two on the specific tasks.

They use the Split and Regroup Pattern because they realize that they have a task that
during one phase needs a lot of communication and coordination within the group.
Then there is a phase where they do not need to communicate and coordinate within
the entire group, but only in subgroups and then a last phase where they need to
coordinate, communicate and maybe merge the changes they’ve done separately.

They use the Pair Collaboration Pattern because they need communication and
coordination between the server and client teams when developing the parts, making
sure both the server and the clients needs are met.

The two UI tasks, (1, 7) in this example, are handled by one developer that is familiar
with those APIs. The developers working on the tasks 2 and 6 will in affect use the UI
developer as a expert helper, using the Helper Pattern. In this example they will use
the helper in two phases, they will first ask for a rough UI that will let them easily test
the functionality and will then receive a polished UI that has been approved by
management, customer et. al.

On the server side two developers, using the Pair Collaboration Pattern, will be
working on the task of processing the information that has been received from the
client, task 4. The code here seems to be really difficult so they will use Pair
Programming as a part of their Pair Collaboration. In addition to this the task includes
some database changes, neither of the developers are very familiar with this so they
will delegate this to a database expert using the Helper Pattern.

The two teams both choose a Helper Pattern because some part of their task, or a task
connected to their task, is beyond their level of expertise. They could choose to use a
Pair Collaboration Pattern if they felt the need to propagate this knowledge within the
team. A disadvantage with the pairing could be that the expert might need to wait for
a team member to be available. If however, other team members need to wait on
experts one solution could be to pair more often with the expert to distribute that
knowledge.

In each group there will be a developer that will pull code from the other developers
to create an aggregated set of changes that will correspond to the entire feature. This
developer will do this from time to time during the development creating incremental
progress of the entire feature. This developer will act as the Development promotion
level. This is done because of the need to have a starting point for the Promotion
Pattern. The developers need a coordination point for changes where they agree on
the functionality, we could call this a form of baseline. The development level also
solves a communication and coordination problem. If this developer notices

25

inconsistencies or merge conflicts a coordination problem has been noticed and the
affected developers can be made aware of this. The responsible coordinator for the
development level can focus communication and coordination efforts on the affected
developers alone, without the need to disturb other developers that will not help in
solving the problem.

4.2 Discussion

When choosing Collaboration Patterns for a given project there are some interesting
points of discussion. How do we analyze our project / company structure so that we
get enough information to choose patterns, what information do we need? How
dependent are the high and low level pattern?

In this thesis we have focused the problem of collaboration into communication and
collaboration. The high level focus is to make this as efficient as possible to allow for
more time to code, design and test – the core activities in Software Development.
When choosing patterns we should analyze the given situation in respect to
communication and collaboration. Communication can be seen as answering “what
are we doing?” and coordination answers “what should we be doing?”. When
analyzing a situation in respect to communication we should look at who produces
the information and who consumes it, and then look for patterns that let these, and
only these, communicate. When analyzing a situation in respect to coordination we
should look at what decisions different individuals can make and what individuals
that will affect, then look for patterns that will let these decision to only impact these
people.

We also need to relate our abstract patterns to the practical situation at hand, do
everyone work full time? Is the team distributed and work at different locations or
time zones? Do we have other people problems in the organization that will interfere
with our patterns? These are all important questions, but beyond the scope of this
thesis.

It is obvious, from the somewhat contrived example in this chapter, that the high level
patterns and the low level patterns need to work together. When we choose a high
level pattern as the Gatekeeper Pattern, the Gatekeeper should be able to pick and
choose changes that should be accepted or rejected. This means that the low level
patterns need to accommodate for the level of granularity that the Gatekeeper requires
to make these decisions. For example, a Helper Pattern might be a bad choice if the
Gatekeeper wants to be able to accept or reject the different tasks individually. It
therefor seems like the low level patterns are not completely independent of the high
level patterns and it is therefor important that this information is available when low
level patterns are chosen.

The low level patterns cut right across the high level patterns. In our example we see
this when the two groups collaborate on the network protocol with the Split and
Regroup Pattern even though no such connection is apparent in the high level pattern.

26

They do not circumvent the high level patterns but allows for a dynamic flow of
changes and information within the high level patterns. They allow for changes and
information to flow directly to the developers that can help solve the problems, and
also keeps that information from distracting developers that can not. It keeps
coordination to a minimum, and when coordination is needed it only brings
developers together that need that coordination.

High level patterns give a structure that help not only management but also give
developers a structure to which the low level patterns relate. While the low level
patterns give solutions to problems, the high level pattern make solutions into
features. In the low level pattern we see a problem of network communication while
in the high level patterns we see the client feature A and client feature B propagate
through the pattern. The high level coordination is kept to a minimum and does not
interfere with how the problems are solved. Yet the high level patterns let
management control the product, on a feature level, as much as needed.

27

5 Implementing Collaboration Patterns with
Version Control
We’ve been discussing Collaboration Patterns as a way to solve the coordination and
information inefficiency problem. We have looked at different patterns and also how
they can be applied in a real world situation. We shall now take a closer look at how
these patterns can be implemented using standard version control tools and
techniques. The main techniques that will be proposed are branching strategies for
centralized version control and distributed version control. We will not discuss
specific tools like CVS, Subversion, AccuRev, Git, Mercurial etc. but instead we will
look at general features that are needed for efficient implementation of these patterns.

We will first take a look at how to implement a high level pattern and a low level
pattern. We will then look at how combination and changes ...

In 5.1 we will analyze how to implement the high level Promotion-Gatekeeper
Pattern (see 3.1.4) and in 5.2 we will look at the low level Split and Regroup Pattern
(see 3.2.1).

5.1 Implementing Promotion-Gatekeeper Pattern

The Promotion-Gatekeeper Pattern is one of the most useful high level patterns and it
is therefor important that this scenario can be efficiently implemented with available
version control tools.

5.1.1 Branching strategy

In central version control tools the main technique for coordinating parallel
development is branching.1 Branching patterns are well known, mature solutions to
common problems. There are several things that we need to take into account when
we use this branching strategy to implement the Promotion-Gatekeeper Pattern.
According to the Gatekeeper pattern one point is to have a decision maker that can
accept or reject changes. This will be handled by a branch that will merge changes
from other development branches.

There are two aspects that need to be addressed. We need a branching strategy for the
development branches and we need a policy for how the developed changes are
merged in to the Gatekeeper branch.

The development branching strategy is mainly an implementation of the low level
patterns used, but there are requirements imposed by the high level pattern. The
development branching strategy needs to accommodate the level of granularity that
the Gatekeeper requires when accepting or rejecting changes. If the Gatekeeper needs

28

1 Branching a.k.a Code lines, Streams etc.

to be able to accept or reject each developed feature, a feature branch strategy could
be necessary.

When implementing the Promotion-Gatekeeper Pattern with a branching strategy the
way in which changes from development branches are merged into the Gatekeeper
branch needs to be addressed. There are basically three alternatives; an empty, passive
or active Gatekeeper strategy. With an empty Gatekeeper strategy the merge decision
is made by a “Definition of Done” or some set of predefined requirements that needs
to be fulfilled before the changes are merged by the developer. With a passive
Gatekeeper the changes are verified by the Gatekeeper but merged by the developer.
With a active Gatekeeper the changes are verified and merged by the Gatekeeper.

A illustration of the implementation can be seen in figure 5.1.

5.1.2 Distributed Version Control

Branching plays an intrinsic part in distributed version control (DVC), just as in
centralized version control, but it’s the distributed nature that makes it especially
interesting as an alternative way of implementing Collaboration Patterns.

29

Figure 5.1. Illustration of branching strategy to implement the Promotion-Gatekeeper Pattern

Team A Development branches

Team B Development branches

Team A test branch

1.0 Gatekeeper branch

With typical DVC setup each individual in a team, wether a developer, tester or
Gatekeeper, has a private and public repository. The private repository is where active
development is being done, much like a private workspace in central version control.
The public repository is where changes that developer wishes to share to others are

30

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Figure 5.2. An illustration of the Promotion-Gatekeeper Pattern implemented with Distributed Version
Control.

put, often called publishing changes. Other team members will get the published
changes from a developer to his or her private repository.

An illustration of an implementation of the Promotion-Gatekeeper Pattern can be seen
in figure 5.2. This shows how the changes propagate according to the pattern. The
illustration has left out the fact that changes will also propagate down from the
Gatekeepers to the developers.

5.2 Split and Regroup

The split and regroup low level pattern is a basic Collaboration Pattern. When
implementing this pattern there are many specific problems to take care of, as how
long should the groups diverge?

5.2.1 Branching strategy

This Collaboration Pattern fits really well with the traditional branching techniques.
The two groups will work on separate branches and will then regroup by merging the
two branches, see figure 5.3.

When implementing this a decision needs to be taken when the branches should be
created. There also needs to be a decision when and who will merge the two branches.

5.2.2 Distributed version control

With distributed version control the Split and Regroup Pattern tightly maps onto the
pattern. The two groups will exchange changes using one of the other low level
pattern. In figure 5.4 this is done using the Pair Collaboration Pattern together with
the Pull Pattern.

When implementing this pattern with DVC there is nothing to create, no branches or
other setup that needs to be done. The grouping is made by changes not being shared
between the groups, but only within the group. See figure 5.4.

31

Figure 5.3. Illustration of branching implementation of the Split and Regroup Collaboration Pattern.

32

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Private

Public

Figure 5.4. Illustration of the Split and Regroup Pattern implemented with Distributed Version Control.

6 Differences between centralized and
distributed version control
This section discusses the differences between centralized branching and distributed
version control in respect to implementing the Collaboration Patterns put forth in this
thesis.

It is important to understand that any Collaboration Pattern can be implemented both
with centralized and distributed version control. The Collaboration Patterns are on a
higher conceptual level than the technical version control implementation of these
patterns. In the same way as any algorithm or programming problem can be solved in
both object oriented programming languages and procedural programming languages,
every Collaboration Pattern can be implemented using any version control tool.

The difference between a good solution and a bad is how efficient the communication
and coordination is in the implementation.

6.1 Difference in approach to high level patterns

The nature of centralized branching is indirect, planned and static. The central
repository can be seen as a indirect broadcast system, it’s a one-to-many
communication system. A branch needs to be created before we commit to it.
Therefor we need to speculate how we are going to use the branch as there are
problems in creating a branch too soon or too late (Appleton). Branching strategies
needs to be planned before they are executed. A centralized branch is static as it is a
conscious decision to create it and delete it, it is either present or not.

High level patterns span the entire organization. High level patterns are based on
business or tactical decisions and are static and long lived. A change in the high level
patterns needs to come from management.

Centralized branching can be seen as very effective for high level patterns. The public
nature of centralized branches means that we can communicate the project structure
to the entire team. Management can broadcast project structure and organization from
a single point – the single central repository. The branches that are decided by
management communicates the product tactics to the testers and developers.

It is not a problem for centralized version control that the branches needs to be
created before they are used, as the high level pattern give a forward looking plan for
how they will be used.

Branches does however not include all the information that is needed to describe the
tactics and organization of a software project. Branches, properly named, can show
the current project structure and the history of how they have been used – but they
can’t show how they will be used in the future. Some central version control can

33

show who is working on a given branch, but it can not show who will (or should)
work on a given branch.

Branches need more metadata to describe the high level tactics and organization. The
high level patterns, as described in this Thesis, is one such piece of information that
can be added to complement the branch structure. Other information such as release
deadlines and requirements tracking are also useful.

Distributed version control, on the other hand, is characterized by being direct, ad-hoc
and dynamic.2 It is direct because each communication is done between individual
repositories. This follows a one-to-one communication model, as the change
propagation needs to be accepted by both the sender and the receiver. Distributed
version control can be seen as ad-hoc as the relation between different repositories is
not set or specified in the tools, but is made to fit a mental model, i.e. Collaboration
Patterns. It is ad-hoc because different team members can have different mental
models for the same repositories. Management could see a coherent group of
developers, while the members of this group might have more complex relationships
with individuals both inside and outside that group. Distributed version control is
dynamic because there is no creation or deletion of the relations between individual
repositories.

The central point of control that is inherent in centralized version control is not
present by default in distributed version control. It might therefor seem harder to
enforce management control, but as we’ve seen, branching needs extra information to
communicate and coordinate it’s strategy. This thesis argues that high level
Collaboration Patterns should be the main focus for management when organizing
coordination and communication in a software development project. This moves
management focus from the technical implementations (branching etc.) of version
control to organizational and tactical decisions. As this moves the focus of control
from version control to higher level concepts, the need for a technical central point of
control is diminished. The perception that distributed version control lacks methods
for management to control the project is mainly solved by Collaboration Patterns.

Collaboration Patterns can be non-trivial to implement in central version control, the
patterns needs to be translated to a branching strategy. Depending on the complexity
of the patterns used a CM expert may be needed. This will add extra communication
and coordination between the expert and management and between the expert and
testers and developers. All extra communication and coordination takes time and risks
becoming a bottleneck.

The fact that distributed version control closely maps onto the Collaboration Patterns
even complex patterns can be relatively easy to implement. Roles and responsibilities
can be communicated directly between management and the affected individuals. The

34

2 One should note that distributed version control tools can be used as centralized version control
with a single centralized server model. In this Thesis this would be considered centralized version
control, even if the tools supports a distributed workflow.

CM expert’s role changes from enforcing management decisions to supporting the
individual team members in their roles and how they can take advantage of the tools
being used. With immature teams, with little or no CM experience, this might create
substantial overhead. However, as the knowledge of the CM tools and techniques is
distributed to team members these in turn have a potential to serve as (lightweight)
CM experts.

The separation between the technical implementation and the high level patterns give
managers, that are not CM experts, a method to control the project that more closely
fits their area of expertise.

6.2 Difference in approach to low level patterns

Low level patterns are characterized by being fast and short-lived. They focus on
collaborative problem solving and as such are hard to plan for. The point is to bring
together the right people to solve the problem, and to keep communication and
coordination between these, and only these, team members.

Centralized version control uses branches to isolate parallel changes. This means that
when implementing low level patterns in centralized version control, the low level
branches needs to live side-by-side with the high level branches. With a strict CM
strategy this does not need to be a problem as there will be rules for when to create a
branch, what to name it and when to delete it. On the other hand, this runs a high risk
of slowing down the low level patterns, or even worse, discouraging team members to
use them. Without a strict CM strategy there is a risk of branch clutter, where the
amount of branches and their status or purpose is unclear.

Distributed version control uses groups of team members where changes are only
shared within those groups to isolate parallel changes. This can be done without
interfering with high level patterns. There is no need to have strict rules for how these
groups should form as they do not affect other developers. As these groups are not
controlled within a specific tool there is no need, or possibility, to name these groups
(within the version control tool). This does also mean that there is no way to get the
overview of what current collaborative groups are in place, without some other form
of communication. If this is deemed necessary whiteboards, wikis etc. needs to be
kept up to date with this information. Manually updating this type of information
always runs the risk of being outdates and inaccurate.

With centralized version control every branch needs to be created before it is used.
Every branch creation includes a certain amount of overhead. There is also always a
risk that the branch will live longer then expected and merging it back might become
very difficult. Unsuccessful branching experiences can easily discourage team
members from the practice. This means that the usage of the branch needs to be
assessed before it is created. With problem solving collaborations the low level
patterns are meant to be fast and short-lived, focusing only on problem solving and it

35

is, and should be, hard to plan how the solution will evolve. This means that it can be
hard to effectively use the low level patterns.

In distributed version control most low level patterns are implemented by grouping
team members together in different ways. This becomes even more powerful when
groups emerge naturally without consciously taking the decision. If the code diverges
into two groups this can be noticed and handled appropriately. Either we can decide
that these groups are needed because of the current problems being worked on, or this
can be identified as a architectural (or other) problem which can be fixed so the
groups aren’t needed. This let’s us take the decision as late as possible whether or not
the diverging code is desirable. Distributed version control does not escape problems
of merging incompatible code. Because of the tough requirements put on a distributed
tool many have extremely powerful merge engines. Even so, true merge conflicts
needs to be resolved manually.

With centralized version control two branches are merged. This is a binary operation,
either the branches are merged or they are not. With distributed version control when
two groups merge their code this will happen in stages. Different changes will be
merged by different team members in the different groups. Finally the two groups will
have a common code base. This is of course possible to do with centralized version
control, different integration branches can be created where changes are merged. This
can however be a very complex procedure in centralized version control. The point
with this is to have the merge to be a collaborative effort. With every manual merge
there is a risk that the person merging the code does the wrong thing. Therefor the
merge conflict should be resolved by everyone that was involved in writing the code.

36

7 Future Work
The main goal with Collaboration Patterns is to increase productivity by efficient
collaboration. Communication and coordination is seen as two essential parts in
collaboration that should be in focus.

This thesis has only presented some high and low level Collaboration Patterns and
does not present any case studies. This is a weak point that hopefully can be mended
with future work in the area. Such work would hopefully be able to identify more
patterns and give more information about context requirements and how they should
be implemented with different tools.

For these, and other, patterns to be evaluated methods of measuring communication
and coordination should be expanded. It would be interesting to measure both the
formal communication, such as documents and meetings and how they are used, as
well as informal communication, such as conversations. However, the main focus
should be on productivity in the form of producing costumer value.

Other techniques related to Collaboration Patterns should also be tested. How should
a team communicate the use of collaboration patterns? This author could see many
ways of visually representing high level patterns on whiteboards using story cards and
pictures to show the status of features. How can high level design and architecture aid
the decision on what Collaboration Patterns should be used? These are all interesting
and important questions that relate to this thesis.

Collaboration Patterns needs to be evaluated in real life situations, with a combination
of either centralized or distributed version control together with agile or traditional
methodologies.

When using these patterns with centralized version control the most interesting aspect
would be how to solve and communicate the translation of the patterns into branching
strategies. There is a risk that if this process becomes to complex the Collaboration
Patterns might not be useful. It might also increase the workload on CM experts.

When using these patterns with distributed version control it is unclear to the author
how much the workload would initially increase for CM experts as the tools and
patterns are taught to team members. It is also unclear how well the team members
can take over the responsibilities of being a (lightweight) CM expert. How do new
team members get adopted in a mature team with respect to pattern usages, roles and
responsibilities?

Does using these patterns with Agile methodologies, like XP or Scrum, pose any
specific difficulties? It would be interesting to see if teams that have a hard time
accepting pair programming will be able to use the more flexible Pair Collaboration
Pattern (see 3.2.5). It would also be interesting to relate this to how teams that use a
lot of pair programming adopts this pattern.

37

Implementing these patterns in a more traditional context such as a bigger waterfall
project would be a great opportunity to study how well the flexibility of these patterns
interact with the more rigid structure of a waterfall project. All collaborative problem
solving, which is typical for software development, needs to be dynamic and flexible
but should also be able to fit into high level structure.

One advantage in using patterns for collaboration is the fact that they can be isolated
and trained. There are many ways in which these patterns could be trained and taught
which is in need of more research. Answering questions about this can help in
assessing how much work it will take to get a team to efficiently use these patterns.

Collaboration Patterns provide high level concepts to collaborative problems and are
implemented using a specific version control tool. An interesting question would be if
using these Collaboration Patterns makes it easier to change the underlying version
control tools. If so, this would be a strong argument for using Collaboration Patterns
as tool dependance can make a team vulnerable.

38

8 Conclusion
Collaborative software development deals with problems of communication and
coordination. When not dealt with correctly the development effort is slow because
more time is spent on communicating and coordinating then adding real customer.
Effective collaborative development is important both for high level tactical support
and the creative social collaboration of development.

This thesis has shown that Collaboration Patterns can provide high level concepts
useful for a parallel development strategy. The concepts shown in this thesis give a
common mental model for the entire organization showing roles and responsibilities
instead of a technical code-centric branching strategy.

Collaborative development is both high level product tactics and low level creative
problem solving. The patterns described in this thesis can be divided into two groups,
high level and low level patterns. The thesis shows that high level patterns closely
resemble management tactics, but can also be used for creative agile development.
Low level patterns match closer to development but parts are woven in to higher level
tactics.

The following patterns have been proposed by this theses:

High level:
• Promotion Pattern
• Gatekeeper Pattern
• Promotion-Gatekeeper Pattern

Low level:
• Split and Regroup
• Pull Pattern
• Push Anti-Pattern
• Helper Pattern
• Pair Collaboration Pattern

The thesis has shown how one could apply these patterns to a concrete example.
Using a combination of high and low level patterns.

These patterns can be closely modeled with a distributed version control. This thesis
shows how the flexibility of distributed version control can be used to support
dynamic collaboration with the support from collaboration patterns.

This thesis also shows that it is possible to adapt branching strategies to these
collaboration patterns. Even though it can be awkward and more complex it can be a
good alternative when distributed version control is not an option.

39

9 References
Appleton, Brad; Stephen P. Berczuk, Ralph Cabrera, Robert Orenstein “Streamed
 Lines: Branching Patterns for Parallel Software Development”. Proceedings of the
 1998 Pattern Languages of Programs Conference, PLoP (1998).

Babich, Wayne “Software Configuration Management: Coordination for team
 productivity”. Addison-Wesley Reading (Ma) et al. (1986)

Beck, Kent “Extreme Programming Explained – Embracing Change”, 2nd edition.
 Addison-Wesley Professional (2004)

Brooks, Frederik “The mythical man-month (anniversary ed.)”. Addison-Wesley
 Longman Publishing Co., Inc. Boston, MA, USA (1975)

Canfora, Gerardo; Aniello Cimitile, Felix Garcia, Mario Piattini, Corrado Aaron
 Visaggio. "Evaluating performances of pair designing in industry". The
 Journal of Systems and Software 80 (80): 1317–1327. (2007)

Lui, Kim Man; Keith C. C. Chan. "Pair programming productivity: Novice-novice
 vs. expert-expert". International Journal of Human-Computer Studies 64 (9):
 915–925. (2006)

Moreira, Mario E., “Adapting Configuration Management for Agile Teams – Balancing
 Sustainability and Speed”. John Wiley & Sons Ltd. (2010).

40

	Arve.pdf
	blank.pdf
	ArveReport.pdf

