
Collaboration Patterns for
Software Development
Introduction
Software development is a collaborative effort, as such effective communication and
coordination is essential. All the time that is spent on unnecessary communication and
coordination, leaves less time for the core activities of developing and testing software. The
larger a team gets the bigger the problem of collaboration gets. The number of ways a team
can collaborate and the ways they can communicate grows exponentially to the number of
team members. The team needs a common strategy for how the collaboration should be done.
The point with this strategy should be to minimize the overhead of coordination and
communication between team members and focus it on what’s important.

There are two important aspects of software development. Software development produces
software products. Products that have versions, variants, milestones and release schedules
etc. This is all part of the high level product tactics. Software development is also about
collaborative problem solving. Developers and testers work together to solve problems, this
is a creative, social and dynamic activity. These two aspects of software development needs
to work efficiently on their own and together.

The technical solution for coordinating the collaborative software development effort is
mainly branches in version control tools. The technical nature of branches includes more or
less advanced concepts from Software Configuration Management. Neither developers or
management can be expected to be SCM experts. Developers and management need to
translate their desired tactics and collaboration into SCM concepts they are not familiar with.

Collaboration Patterns
My thesis presents Collaboration Patterns that can be used to efficiently streamline high level
product tactics with low level collaborative development. Collaboration Patterns provides
high level concepts that are familiar to both management and developers, providing
conceptual tools that does not require SCM knowledge.

Split and Regroup Pattern
One of the patterns presented in the thesis is the split and regroup pattern (Fig. 1). The point with
this pattern is to create a collaborative concept of a traditional method of working within
software teams.

By splitting the team into smaller groups the subgroups will be smaller and development
inside them can be more efficient. When the different groups have solved their respective
tasks they can come together into the bigger team.

How do we implement it?
Within each organization these patterns need to be implemented in the SCM tools that are
available. Each implementation will be unique to each tool, but the thesis outlines how the
different patterns can be implemented in traditional centralized version control tools and
distributed version control tools.

Future Work
Future work that can be done is to adapt version control tools, e.g. by writing wrapper scripts
around them, that will map the underlying technical concepts of branches etc. to the high level
concepts of Collaboration Patterns presented in the thesis.

Figure 1. Showing a team splitting into smaller groups
and then merging back together.

