
Master Thesis

Managing and utilizing

dependencies between components

in component-based systems

Authors:

Tobias Landelius, tlandelius@gmail.com

Viktor Attoff, viktor.attoff@gmail.com

Supervisor: Lars Bendix

Lund Institute of Technology

Lund, Sweden

August 2017

Abstract

When developing software systems the advantages in using a modular ar-

chitecture are many, e.g. scale-ability, re-usability and the ease of making

changes. However, this type of architecture creates problems regarding how

modules depend on each other when doing change impact analysis, commu-

nicating about the system and creating awareness of how a system works to

name a few. Today many kinds of dependencies are not documented and left

out of the development process. With no generalized structure or definition

of dependencies, developers might overlook problems that could be found

proactively.

By literature research and qualitative interviews of industry people in var-

ious roles, this thesis elicits the core problems around dependencies. Manag-

ing dependencies is seen as complex, and dependency related problems can

have a severe impact on development if caught late. The thesis presents that

an overview-oriented dependency management process can benefit software

development regarding estimating change-impacts and cost-of-change, aid-

ing communication during development and optimizing the amounts of tests

that have to be run after a change. The results present the core problems

of dependency management, use-case around them and theoretical require-

ments of how dependency management can be conducted to deal with the

problems.

Keywords: Dependency management, Dependency utilization, Change

control, System awareness, Impact analysis, Communicating changes, Test-

optimization

ii

Acknowledgments

First of all, we would like to offer our grateful thanks to all those who gave

their time and expertise to help us during this thesis.

A special thanks to our supervisor and mentor, Lars Bendix who has

shown a great interest in this thesis from the start. He has been a valuable

source of inspiration and feedback when writing the report.

We would also thank Softhouse Consulting and our company supervisor

Fredrik St̊al with colleague Christian Pendleton for bringing us this Master’s

Thesis and being a great sounding board on topics from finding people to

interview to help us understand the field of dependencies.

Finally, we would like to thank the SNESCM community and interviewees

that took their time helping us to reach the results of this thesis. It would

not have been possible without you.

iv

Contents

Abstract ii

Acknowledgments iv

Contents v

List of figures vii

List of tables viii

1 Introduction 1

1.1 Problem Description . 2

1.2 Research Questions . 2

2 Background 5

2.1 Problem motivation . 5

2.2 Component-based Structure 8

2.3 Configuration Management 8

2.4 Target Audience . 10

3 Methodology 11

3.1 Thesis work methodology . 11

3.2 Information gathering . 12

3.2.1 Literary Research . 13

3.2.2 The interview process 15

3.3 Analysis . 16

3.3.1 Problem Statements 17

3.3.2 Creation of Use-cases 18

3.3.3 Requirement extraction 18

3.4 Validation . 19

v

Contents

4 Analysis 21

4.1 Problem Statements . 21

4.2 Analysis of Use-cases . 26

4.2.1 P1: Change impact and P3: Communicating Changes 27

4.2.2 P2: Awareness and P7: Corner case study 29

4.2.3 P4: Build Requirement 32

4.2.4 P5: Test Optimization 33

4.2.5 P6: Alternative targets 34

4.3 Requirements Extraction . 35

5 Requirements Design 39

5.1 Documentation & Process Requirements 39

5.2 Dependency Structure . 43

5.2.1 Version Control consideration 48

5.3 Functionality Requirement . 50

6 Discussion and Related work 55

6.1 Evaluating methodology . 56

6.2 Validation of results . 59

6.3 Related work . 64

6.4 Future work . 66

7 Conclusion 69

Bibliography 71

Appendices 74

A Interview Questions 75

vi

List of Figures

3.1 The iterative cycle of the steps in literature search. 13

3.2 This is the process for high-level requirement extraction which

purpose is to make sure that every category is considered. . . 19

4.1 Modules required to build module B 33

5.1 How a dependency model could be linked to system versions. 42

5.2 The lifecycle of a dependency 43

5.3 Presented examples as dependency graphs. 51

vii

List of Tables

4.1 Problem and Use-case relations 27

5.1 Attributes of a dependency 44

5.2 Dependency types with description (REQ15) 48

viii

1
Introduction

As software systems grow larger, the need for an efficient development pro-

cess becomes crucial for keeping the progress from stagnating. Changes

and improvements are regularly made on many different levels to stream-

line the process and minimize obstacles. One such area of change is the

change from a monolithic system into one with a modular architecture. By

building systems with as much modularity as possible, it’s possible to avoid

tightly coupled code and leads to several development advantages, for ex-

ample, better scalability, reusability and ease of making changes. Although

a system with modular architecture is divided into separate modules, they

have to coordinate with each other for the entire system to work. Therefore

we want to make it possible to create a set of inter-modular dependencies

within our system.

This master thesis was done in collaboration with Softhouse Consulting

Öresund AB. They brought the suggestion of a master thesis that would

investigate and explore the subject of inter-modular dependencies. Which

was based on that during their consultancy at different companies they

recognized different reoccurring dependency-related issues.

1

Chapter 1. Introduction

1.1 Problem Description

As modular systems are becoming more frequently used and larger, depen-

dencies between modules are becoming a more significant factor in devel-

opment. As dependencies describe how modules communicate, they occur

in many different types throughout a project. Some already documented,

some indirectly documented and some never even considered as a depen-

dency. By leaving out the dependencies from being a direct factor taken

into consideration in the development process, developers might miss out

on opportunities. Using the dependencies could help teams work proac-

tively against inconsistencies and problems between modules rather than

only reacting to problems as they occur later in the development process, or

even after deployment to a customer. One additional problem that follows

with dependency management, as well as most documents that belong to a

project, is how to keep the documentation up-to-date with the system.

The aspect of missing documentation of dependencies may not lead to a

broken system, but as important it limits the communication in the devel-

opment process. The lack of management of dependencies has revolved in

no standardized way of referring to a particular relation between two com-

ponents as the code that creates the dependency may change continuously

with the system.

1.2 Research Questions

Problems like the ones mentioned above ignited the idea that they might

be a possibility to solve by generalizing dependencies and define a process

of how to utilize them. After some initial research and discussion of how

to approach the subject of dependency management, two research questions

were extracted.

First is to find the core dependency related problems that could be solved

2

Chapter 1. Introduction

with the help of dependency management. Also giving a complete view

of Which problems occur most frequently? and Which problems cause the

biggest issues to the developing project?. Finding these problems is impor-

tant to get a sense of prioritization and what to include in the reasonable

scope for this thesis.

Research Question 1: What problems do we want to solve by doc-

umenting and managing dependencies between components?

Once the core issues were elicited, the next step is to find a way to deal

with them. To be able to find a good way of doing this there is need of knowl-

edge of the structure of a dependency and what characterizes it. Questions

like What specifies different dependencies? How can dependencies be identi-

fied? Once identified, how can they be updated along with the project? came

forth and these were some of the questions that needed to be considered to

start moving towards a solution to the problems that were the outcome of

research question 1.

Research Question 2: To solve the problems of risen in RQ1, how

can dependencies be documented and utilized?

Research question 2 will result in requirements for a suggested general

process for managing dependencies. Therefore there is a need to return to

the to a practical setting to validate the results. Validation will mainly

revolve around if companies believe that a full or partial solution based on

our suggestion could be useful in a practical setting.

To answer these questions, we will start with information gathering by

both literature search and interviews with multiple companies that use

component-based structures in different ways. By analyzing the informa-

tion we’ll be able to extract requirement of how dependency management

can be performed.

3

2
Background

The goal of this chapter is to create a wider understanding of the context for

this thesis. To fully proclaim why this area is important, this chapter will

start out with a further motivation of the research questions by describing

initial problems that can be related to dependencies. Since the definition of

what a component is and what’s included into a Component-based Struc-

ture varies a great deal, a formal definition will be presented as this thesis

firsthand researches the area of dependencies between components. A ba-

sic understanding of Configuration Management (CM) is profitable for the

reader to fully understand the area to be explored. Therefore a short intro-

duction will be made to some of the main principles that will be adopted in

this thesis and the context of the processes for targeted projects. In the final

section of this chapter, it will be presented to whom this thesis is written

and what projects are targeted.

2.1 Problem motivation

This thesis approach to the problem originated from some specifically en-

countered real life problem that was brought forwards as a master thesis

idea by Softhouse Consulting. These problems combined with a vague idea

that there is much potential in the area of dependency management in mod-

ular architectures where the only starting point. Softhouse also initiated the

5

Chapter 2. Background

idea that the types of problems that they encounter were by nature mostly

dealt with ad hoc. If there were a way to incorporate dependencies into the

development process and manage them, it might be possible to do proac-

tively and become aware of a potential upcoming problem much earlier in

the process. The vague starting point motivated the need to elicit further

what kind of problems are the most costly, appear most frequently and the

some of the consequences they bring, which lead to research question 11.2.

There was seven interview in 4 companies involved in this elicitation process.

But making sure the interviewees have different roles within the companies

combined with thorough literature search hopefully motivates the suggested

solutions to be either generalized or at least inspirational for any software

development project.

Dependencies is something that has always been a part of software devel-

opment. Early definitions were presented in the early 70s, a popular and

well-cited one being from Stevens et al (1974)[24]:

”A dependency is the degree to which each component relies on

each one of the other components in the software system. The

fewer and simpler the connections between components, the eas-

ier it is to understand each component without reference to other

components.”

Since then, further work has been done involving dependencies but not

enough to keep up with the evolution of software development. There are

currently several different methods for to handle dependencies at specific

areas [7], but research also shows that there is much potential to develop

new methods[19] [14]. The subject of this thesis was suggested by Softhouse

Consulting that encountered problems in software development projects that

in different ways were related to dependencies. This thesis aims to further

look into that potential of managing dependencies and specifically in the

context of modular architectures.

6

Chapter 2. Background

The increase in popularity and scale of using modular architecture is one mo-

tivation to further research the possibilities of managing dependencies. As a

modular design means breaking up a system into sub-parts, this makes the

dependencies between them more visible and specific than in a monolithic

system. The same dependencies would exist if the system were monolithic.

But they would be in an embedded in the monolith, and their existence and

purpose would be less visible. One of the main reasons to choose a modular

architecture is to have a system design that is more scalable. With the abil-

ity to more easily create larger systems the task of maintaining an overview

of the entire system becomes more complex. To keep an overview not only

components are important, but also their dependencies. Furthermore, in

larger modular systems, responsibility for modules are often divided among

teams. Which means that a team responsible for some modules doesn’t nec-

essarily need to have great knowledge about other modules. For the team

to develop the intended system, there is a need to be aware of how their

modules communicate, interacts and fits into the greater system.

Another initial motivation for this thesis was the fact that there are de-

pendencies related to modules at different levels in development and perhaps

there are missed opportunities by not using this information in the develop-

ment. These different dependencies also vary in complexity. Simple depen-

dencies like those listed in a Gradle-file show dependencies to third-party

modules and libraries we need to build our system. A module that fetches

data from a database has a dependency between them, which could be indi-

rectly documented through requirements. Another more complex possibility

is that dependencies might be documented on an architectural level with the

help of UML-diagrams or design sketches. These are all examples that some-

how involve dependencies at different levels in a system. Looking at different

dependencies like these and bringing them into the working process could

increase the ability to work proactively against problems instead of having

to react when they occur late in the process. An initial view for this the-

sis was that only reacting to problems around dependencies is a common

occurrence and brings uncertainty to the process, which motivates further

7

Chapter 2. Background

research.

2.2 Component-based Structure

There are various definitions of the term, Component-based Structure (CBS)

as well as different scopes of what is meant by a component [25]. The paper

by Wu, Pan and Chen provides a definition that is often used, that ”a

component is an independently deliverable piece of functionality providing

access to a service through interfaces”. This definition is most often thought

of from a software perspective and that the functionality is provided as a

piece of code that is here defined as a module. For this thesis, it’s not only

the software aspect that is thought of when easing the problems that arise

when developing with a CBS. When software is executed, it might depend

on components in the surrounding environment.

In a lot of the projects that utilize CBS’s, the dependencies do not have to

be between two software components; they might be directed to the presence

or limitation of a hardware component. This might take place as a feature

is in need of a Bluetooth-device or a specific amount of memory to work

properly. Because of these dependencies, the aspect of hardware devices is

included in the definition of components and might be a part of a CBS.

2.3 Configuration Management

Configuration Management is the domain in software development which

this thesis is present. According to an investigation of configuration man-

agement usage by Perera et al., benefits that can come with the integration

of the CM process include minimizing the cost of calculating impacts of

change, coordinate, track and manage change activities as well as an im-

proved breakdown prevention due to a more controlled development envi-

8

Chapter 2. Background

ronment [20]. An observation is that there is a large amount of research that

supports that these areas correspond to the ones that managing dependen-

cies can benefit [21] [8] [17]. A large majority of all companies that evolve

software use configuration management to some extent, Perera discovered

that 95% of the investigated companies used CM for the development of

software..

There are two major sub-process in CM that can benefit from the find-

ings that will be explored. Pre-change analysis and testing. In many agile

development processes, especially the pre-change analysis can be small in

comparison to the more traditional waterfall methodology [2]. As the com-

plexity of the dependencies scales with the project, even agile companies

might benefit by introducing a more substantial pre-change analysis if these

problems exist, as Lopez-Martinez et al. present the risen difficulty in keep-

ing a fully agile methodology in large-scale projects [18].

To be able to fully profit from the outcome of this thesis a project need

version control to store and handle code and dependencies. Version con-

trol can be achieved with the help of several different available tools. The

activities in CM that this thesis contributes to is configuration identifica-

tion which derives from version control. Configuration identification, in this

case, includes the subject of identifying new configuration items that are

introduced to the project in the form of dependencies, naming and creat-

ing versions of these that can be connected to existing baselined versions of

the system. These dependencies can then be utilized to aid in many of the

subjects revolving configuration control and the planning process, including

change documentation, impact analysis, to calculate the cost-of-change and

lowering the risk of introducing faults into the system.

9

Chapter 2. Background

2.4 Target Audience

The target audience for this thesis can be divided into three groups. Firstly

it would be interesting to people in any role related to software development

that is interested in managing dependencies. It should be in any developers

interest to want to further improve their working process. It is especially

interested to people working in medium to large size projects was depen-

dencies should play a larger role than in small projects. The second target

audience is people who in some way are interested to continue the work in

dependency management. This could be other student or researchers look-

ing for material for future research. It could also be one or several people

looking to make a practical tool implementation in this area. Lastly, since

this thesis is aimed to tackle dependency management from a software con-

figuration management perspective part of the target audience is also people

with a general interest in SCM

Common for all target audience groups is that they have some knowledge

of software development and its different processes, either from university

courses or work experience. This means some processes and expression that

are referred to in this thesis will not be explained and is up to the reader to

further study if necessary.

10

3
Methodology

As the research questions are quite general, there were several different ap-

proaches to take on these questions. This chapter will present the methodol-

ogy that will be carried out for this thesis. The methodology is chosen with

consideration to what is the most optimal, practical and possible in the con-

text of a master’s thesis. Therefore this chapter starts with a methodology

overview of the taken steps, followed by each step where it also discusses

alternative methodologies that wasn’t chosen and why this was the case.

3.1 Thesis work methodology

As the thesis begins, the expectations is to gain knowledge on dependency

management can be useful in a company context. To reach this outcome it’s

first off recognized a need for a deeper understanding of the actual problems

and context of processes around dependencies within a CBS. Therefore the

methodology will start out with a information gathering process. The infor-

mation gathering starts with the purpose of widening the scope to explore

what’s included into the area of dependency analysis and management. As

the scope is widen and a lot of information is gathered there is a need for an

analysis. During the analysis, data is structured and evaluated. This analy-

sis will then work as a basis during for the results of this thesis. Exactly how

the results will be presented is dependent on the findings and evaluations

11

Chapter 3. Methodology

from the previous steps. When an result has been produced the question

remains how well this could fit into the companies that utilize CBS’s in their

development. The thesis is finalized with a validation where the explored

results is taken back to the context of the companies to see to what degree

it could be useful as a process or as a foundation for future work.

There is an uncertainty in how large and complex the existing problems

are. As the context and the scope of the problems becomes clear, it will

decided if a tool will be possible to carry out in the given time frame. If the

scope becomes to large it might not be able to create a tool that satisfies

the existing problems in the companies. If this is the case, the priority will

be transferred to a analytic standpoint and work with the given information

and focus the research into selected parts of the scope. The theoretical

approach would focus on creating knowledge and insight of the problems,

why they exist and how they could be managed and used. Leaving the tool

as future work.

3.2 Information gathering

As the thesis progress, there’s a lot of needed information to create a suitable

ground of research to continue working on. To acquire a knowledge of where

to begin there is a need of related work and a status on what research has

been done before this thesis. Due to the difficulty of finding a broad amount

of information on a relatively unexplored subject, this is done with the help

of literary research.

Secondly, there’s a need for some information regarding the usage and

processes related to projects built upon a CBS. To acquire this information,

there are three main methodology methods risen that can be used, inter-

views, questionnaires, and observation. Due to the limited amount of time

and uncertainty of finding valuable information, observation of development

in companies was quickly removed as an alternative. The advantage of us-

12

Chapter 3. Methodology

ing interviews over questioners is the ability to explore more thoroughly into

interesting findings with the help of follow-up questions and if an answer is

not understood, the possibility of asking for an explanation. This results in

multiple interviews with people from different size companies that all have

a different relation to developing software systems.

3.2.1 Literary Research

The literature research was performed on several occasions during the cre-

ation of this thesis. For each of these occasions the research was performed

in an iterative cycle of three steps that can be seen in figure 3.1. There is

four phases during this thesis where there’s a need for extracting informa-

tion, these phases are pre-analysis, primary literature search, paper review

and extensive paper review. To make sure that each phase add new infor-

mation, they have a specific objective of what it will provide in terms of

material and what search engine that will be the main source.

Figure 3.1: The iterative cycle of the steps in literature search.

The process starts by finding interesting literature. To find a wide amount

of different literature, this is done with the help of a search engine and

13

Chapter 3. Methodology

a combination of m. The set of keywords that are used will be created

by saving keywords that provide relevant literature that concur with the

objective of the phase. When the information gathering process starts off

with a wide scope, the keywords will follow the same pattern. As the scope

is directed into relevant areas, so will the keywords as they will be prioritized

and refined.

The research started with a pre-analysis of the area as an introduction

to the existing utilization and problems regarding dependencies. Google’s

search engine was the primary source to find a large amount of literature

from, e.g., blogs, articles, and YouTube-videos. If the information was rel-

evant to the thesis, the source was documented as a possible reference for

further research. The purpose of the pre-analysis is to find a large amount

of easily digestible information in the field of CBS’s and dependencies along

with some of the more well-known problems in these areas. This is needed

for two reasons. First, it’s possible to narrow a large scope down to the

areas related to the research questions and by being aware of the areas

makes it possible to create a set of interview questions to investigate where

a company’s potential problems lie.

When the pre-analysis is done, and an initial knowledge in the subject has

been acquired, a primary literature search is done. For the primary literature

search, the source is transferred over to Google Scholar and LUBsearch to

find a more reliable range of articles, journals and conference papers. A

preliminary evaluation of the relevancy of paper will be done by reading the

abstract and graded from 1 (not so relevant) to 3 (very relevant). Except

only using keywords to search for new literature, Google Scholar has a built-

in functionality called ’cited-by’ that may be used when a good reference

is found [15]. The purpose of doing this iteration was to create a suitable

amount of literature to perform the first paper review on.

The first paper review is performed on the papers that are graded 2 and

three from the primary literature search. The papers are read, and all rele-

vant information, citations, and claims are marked and documented. After

14

Chapter 3. Methodology

the information extraction from each paper, a short bullet list of findings is

created as the grade of relevancy is updated. The purpose of doing this is to

create a set of papers that all are relevant to the research area of this thesis

and the summary is created so the correct paper easily can be found.

The last process of the literary research is an extensive paper review. Due

to time limitations, four relevant research areas are chosen, dependency

utilization areas, dependency structure, presentation of dependencies and

the communicative challenges arising from disregarding dependencies. The

most relevant paper within each area is chosen for an extensive paper review

according to Philip Fong’s structure [12]. The purpose of doing this review

is to correlate the fundamental parts of this thesis to the most related work

that was found during the literary search.

3.2.2 The interview process

To acquire a first hand understanding of the problems and countermeasures

revolving dependencies that arise in a company context, interviews will be

performed. To collect a wide amount of different perspectives, three different

companies will be selected for the interview process that all have different de-

velopment strategies to CBS systems. The first company is a large software

distributor with an agile approach and relatively short time between de-

ployment, second is a large company that develops a safety-critical software

that deploys annually. Due to the safety-critical software, the development

methodology is strict, and change is highly processed before implemented.

The third company is a consultant company that has been in various devel-

opment surroundings that include CBS. There were nine interviewees with

different roles in companies; three project managers, one configuration man-

agers, two architects, and three developers. All having various focus but all

interested in configuration management and the subject of this thesis. This

is once again to widen some perspectives to CBS’s.

To make sure that all interviews add qualitative data, the interview is

15

Chapter 3. Methodology

conducted in a semi-structured manner. Some questions are pre-chosen that

touches different areas of development processes, dependencies and configu-

ration management. These questions are considered important as they give

an overlying structure of the interview and to make sure that some central

questions are answered by every interviewee. These questions with the mo-

tivation of the wanted outcome can be found in Appendix A. By doing a

semi-structured interview, it opens the possibility of further investigating

findings or following up on answers that are considered interesting.

3.3 Analysis

The overall goal of the analysis in this thesis is to analyze the information

gathered through literature and interviews and finally arrive at the results.

Which was initially meant to be a proof-of-concept tool but later changed

to requirements for a tool. The pre-analysis showed that the subject of han-

dling of dependencies seems rather unexplored which is why the interview

and information gathering was done with an exploratory approach. This

lead to the varied type of answers and focus area depending on what com-

pany the interview took place and the title and expertise of the interviewee.

This lead to interesting, in-depth answers but difficult to make some statis-

tical analysis on or compare to each other. Therefore a qualitative analysis

method was done to extract common core factors that needed to be taken

into account to answer the research questions. The steps of this analysis

consists of problem statement, use-cases and requirement is described and

motivated in detail in section 3.3.1 to 3.3.3 below. The overall goal and pur-

pose of this analysis setup are to focus the information gathered into its core

values and then work towards a suggested solution. Problem statements are

then created to narrow down the information gathered from interviews to

a set of representative problems. Then to further explore and understand

these problems use-cases were created. Finally to combine this knowledge

with previous research from literature and new ideas to form the results in

16

Chapter 3. Methodology

the form of requirements.

As mentioned in section 3.1, halfway through analysis of previous research

and interview results the real scope and complexity of the problem became

apparent. Early on the intention was to produce a result in the form of a

simple tool or a proof-of-concept that could demonstrate the problems in

this domain and how to facilitate with them. But because of the complexity

and time constraints, this proof-of-concept would turn out very basic, and

making it would take time away from a complete theoretical understanding

and information processing. Therefore the target for final result was changed

to a requirements specification for a possible future tool. This was a more

appropriate scope and lead to maximum possible contribution for this thesis.

3.3.1 Problem Statements

The first step in the analysis of material is to narrow down the information

from the interviews to problems statements that were representative of the

most common and are the most common. The alternative would be to use

every problem found in the interviews and brought them into the consider-

ation for the requirements design. This would be too complex to begin to

design requirements around and difficult to satisfy every problem. Since this

thesis is an initial examination of the problem of dependency management,

it is better to only the most worthwhile problems. Also in this stage of the

analysis problems are also analyzed regarding if there is a realistic chance

to address them. Some problems gathered from the interviews were directly

at the interviews or shortly after disregarded and agreed upon as unreal-

istic and too complex. In this step, no information of possible problems

is matched with existing literature. This step is done with the purpose of

focus on the problems faced at the interviewed that should be continued to

further analysis.

17

Chapter 3. Methodology

3.3.2 Creation of Use-cases

Once these problem statements are listed there is still a need to further

explore the problems. This is necessary to get more understanding of how

these problems occur in a practical setting. Use-cases help discover in what

context the problems will arise, what types of projects, in which stage of

the development process they occur, what roles are involved and what the

implications are. The main reasons for the use-cases are to build this under-

standing before extracting requirements in the next step of the analysis. But

the use-cases could still be seen as secondary results of this thesis because

they are a product of the research and provide value to anyone that wants

further insight into this way of managing dependencies.

3.3.3 Requirement extraction

The final step of the analysis is to combine above mentioned intermediate

results into a presentable suggested solution. As mentioned and motivated

previously it was decided to disregard making a proof-of-concept tool and

instead present the result as requirements for a tool. Mainly because of the

scope and unexplored nature of the problem presenting requirements will

allow for a more in-depth exploration of the problem. The requirements are

forward as a combination of all previous work. A lot of ideas developed

continuously throughout the research, many of which were disregarded as

the understanding of the area grew. The good ideas were then combined

with the problem statement, use-cases, and the most related literature to

form the requirements.

It was pointed even before the thesis work started by all parties that this is a

complex, unexplored problem and it will probably be unrealistic to create a

fully complete requirement specification. Therefore focus lies on putting in

the most effort and focus on those areas of which feasible ideas and solution

are produced. Leaving out some areas for future work rather than present-

18

Chapter 3. Methodology

ing incomplete ideas in the requirements. To make sure that every problem

is taken into consideration when creating the requirements the process of

extracting requirements is described by the flow chart in figure 3.2.

Figure 3.2: This is the process for high-level requirement extraction which
purpose is to make sure that every category is considered.

3.4 Validation

Once the results are in place there is need to validate them with a practical

setting in mind. This is important because theoretical work often assumes

simple, ideal conditions as their context but that is seldom how projects in

19

Chapter 3. Methodology

the industry look like. Two different methods of validation are considered.

Either a quantitative method with a questionnaire about the requirement

design sent out to relevant people in the industry. This will allow for a

large sample of answers and the possibility of statistical analysis. The other

method is the qualitative method to return to the interview setting. This

will result in more in-depth back and forth discussion about the requirement

design which means more ideas and input.

Out of these options validation interviews seems like the most suitable for

validating the requirements design. The nature of the requirements makes it

hard to collect enough in-depth validation with a questionnaire. Before peo-

ple can answer a questionnaire a lot of material would need to be presented

in text. This would bring the risk of lowering the number of people willing

to complete the questionnaire. A major factor that speaks for validation by

interviews is the possibility to ask appropriate follow-up questions of why

the interviewee have the opinions that they do.

Apart from qualitative interviews, there is also an opportunity to hold

an open-space session/workshop at a configuration management conference

held by the SNESCM-organization. This will be done about two thirds

through the thesis is complete and will give an opportunity to get input on

ideas and initial findings and results. Hopefully, it is possible to critique on

what people in the industry think about the findings and if they deem them

to be reasonable to work in a practical setting.

20

4
Analysis

This chapter will present the analysis done on the information gathered

from literature and interviews. It will describe the outcome of problem

statements and use-cases with some alternative considerations. This will

be presented as the three step process, create problem statements, use-cases

and requirement extraction described in section 3.3. The primary purpose of

the creations of problem statements and the use-cases is to create a ground

that leads up to requirements. These can still be seen as a contribution

to the understanding the overall problems of dependency management and

especially to the first research question. Therefore the secondary purpose of

this chapter is to present secondary results.

4.1 Problem Statements

The information gathered from the interviews include a wide spectrum of

problems both in and outside of the scope of managing dependencies. From

the problems extracted from the interviews, after being discussed and com-

pared, some problem statements are selected as potential items to Research

Question 1 (What problems do we want to solve by documenting and man-

aging dependencies between components?) stated in the introduction. This

section will present the selected problem statements that were extracted

from the interview data. There are some problems that multiple interviews

21

Chapter 4. Analysis

brought forward that was selected as out of scope for this thesis, discussion

around these can be found at the end of this section. The statements are

listed in order of first, how the interviewees look at the problems regarding

severeness and a final judgment by the authors in how relevant the problem

is to the scope, giving the most relevant problems first. This is to provide a

priority of dealing with the problems.

Problem 1: Change impact analysis

- Hard to see an impact of a change and find the root-cause of a problem.

Working with a CBS helps to isolate functionality and purpose into specific

modules. A difficulty that arises is that if something breaks after a change,

the root-cause of the error may be located in another dependent module

rather than the changed module itself. Tracing the root-cause and calculat-

ing the impact of a change is a hard task and is often done manually by the

companies as the relationships between components are overlooked.

Problem 2: Awareness

- It is hard to gain insight and overview of a system.

Several companies described it as a difficulty to get an overview of the entire

system or a part of it. This was especially expressed in interviews with

architects, who claimed it’s common that new developers that get assigned

to work on one module often have a hard time to understand the modules

purpose on a larger scale and the modules that it related to.

22

Chapter 4. Analysis

Problem 3: Communicate change

- After a change is made it’s hard to know what and to whom informa-

tion needs to be communicated.

When a behavioral change is made is a system, two companies used the

process of communicating the change through email. Either the email went

out to the entire company to make sure that everyone was up-to-date of

the change or to a grouping of members that was somehow related to the

change. Either way, a number of emails and the information in them became

too large in these two large companies and it was rarely worthwhile taking

the time to read every message.

Problem 4: Build requirement

- Not being aware of what is needed to build and use a certain module.

This problem arose in one of the interviews as the projects consisted of mod-

ules that were worked on or tested by different teams. When only interested

in the functionality of a certain module a team still had to collect the mod-

ules for the entire system as there was no way of knowing the minimum

set of required modules needed for the desired module to run. This lead to

substantial time spent on sending components that might be unnecessary

for or already present in the receiving team.

Problem 5: Test optimization

- Not knowing what components need testing after a change is made.

After a change is made to a module it might affect other modules. Two of

the companies had problems with long testing times due to having to test the

23

Chapter 4. Analysis

entire system as a whole after each change. This becomes an optimization

problem as it does not break anything but the process that is used, is not

optimal.

Problem 6: Alternative targets

- The same system might utilize different modules depending on its en-

vironment.

Two of the companies had examples of problems regarding a system that

is developed to fit for multiple hardware targets. In this system, it exists

multiple software components where each one is dependent on a specific

characteristic of the target where it’s installed e.g. the amount of memory in

the device. This is often handled in the code but this alternative dependency

of components is often lost in the overview of how the system works.

Problem 7: Corner case study

- Finding and being more aware of corner cases of the program.

All companies had experienced some errors that occur in a later stage of

development or even after deployment. These errors are not caught during

testing and there is no knowledge of the error’s existence. The definition

of the term case can be found in the IEEE glossary [3] as corner refers to

a situation outside of the normal circumstances which make them hard to

find and produce. This is a big problem in most projects but due to the

difficulty of finding all circumstances that are out of the ordinary, this is

given a low priority.

The primary purpose of creating problem statement was to do an ini-

tial screening of all problems discovered during the interviews and filter out

24

Chapter 4. Analysis

problems that are too context specific, not strongly enough related to depen-

dencies or for other reasons that are considered as out of scope for this thesis.

The following two paragraphs will shortly mention the most interesting out

of the left out problems and why they are left out of consideration.

An issue that was suggested during interviews is that companies that

maintain multiple large projects spend too much time on creating mod-

ules with duplicated or overlapping functionality as modules in a different

project. The thought being that if two completely different projects had a

better awareness of what other teams are developing, it would be possible to

develop the intended functionality as a shared module instead. This prob-

lem was deemed closer related to functionality and requirement management

than dependency management and therefore left out of scope. In the scope

of requirement management it was also elicited that one or multiple com-

ponents could have a dependency to the presence of a functionality, e.g.

a module where a zoom functionality (for a camera) is implemented, is de-

pended on the presence of the functionality of a camera to work as intended.

This problem is related a functionality and requirement management as well

and is therefore acknowledged as out of scope for this thesis.

All companies and most of the interviewees had problems with the identi-

fication of dependencies, in other words, finding the dependencies especially

within an existing system. During the literature research, it was found

plenty of research made in the area of automatic dependency identification

(more on this area in the related work section, 6.3). From both the literary

findings and information extracted from the interviews it is found that this

area is a hard and time-consuming task. With the risk of taking too much

time trying to solve this problem and leave too little time for other problems,

this was removed from the scope of this thesis.

25

Chapter 4. Analysis

4.2 Analysis of Use-cases

The way the problems above are stated it’s not yet clear how or why the

problems arise, only that they exist. To put the problem in a context and

to help to figure out some of the main properties to what kind of projects

and environments it might occur in, use-cases are created [9]. As the last

step of the analysis is to extract requirements from the use-cases, it’s not

only a need of a better insight of the context of the problems but also an

idea of how the problems may be dealt with. This idea will be used in

the next step as a base to extract the requirements. This following section

will provide analysis on how dependency management is integrated into the

problem statements and a use-case to put each problem into a context as

it might present itself. This use-case is then further analyzed to create a

general concept to how dependency management could be utilized to solve

the problem. A more detailed version will be created later in the form of

requirements.

Each of the following subsections will present the analysis and use-cases

relating to one or two problems (P) from the previous section. To create a

context to the problem statements the sections will start with a motivation

of why the problems are categorized as they are, followed by a further anal-

ysis of the actual problems and some of the difficulties that may arise when

dealing with them. For each problem, a use-case (UC) will be created and

presented to create a better understanding of how the problems might occur

in the context of a company. If a problem presented itself in two very dif-

ferent contexts during the interviews, an additional use-case will be created

to obtain a complete view of the problem. Each use-case consists of a short

description of an event that is based on the analysis of the problem and

how it could present itself in a company. To broaden the understanding of

the context, a scope is presented in each use-case to explicate to whom and

where in the development process this occurs. As the use-cases are created

from the problem statement, an overview of this relationship can be found

26

Chapter 4. Analysis

P1 P2 P3 P4 P5 P6 P7

UC1 x

UC2 x

UC3 x

UC4 x

UC5 x

UC6 x

UC7 x

UC8 x

UC9 x

Table 4.1: Problem and Use-case relations

in table 4.1 as a cell with a marking ’x’.

4.2.1 P1: Change impact and P3: Communicating Changes

The first category of problem statements includes some of the most highly

prioritized problems extracted from the interviews, change impact and com-

municating changes. By analyzing these two problems it’s found a shared

way of how they can be dealt with. Since root-causes of both problems

include lack of knowledge in which and how modules affect each other by

changes.

Problem 1 is about the difficulty of doing a correct change impact analysis

of a system. This analysis is something that either can be done beforehand

to take care of errors proactively or in the process of finding root-causes

to errors that already occurred. The process that is done before a change,

including i.e., change impact analysis and calculating the cost-of-change is

often performed in the presence of a change request. These processes take

a substantial amount of time and if they’re done incorrectly, it can lead to

expensive errors discovered much later in the development process. If an

error already exists in a system it can be a tedious and time-consuming

task to find the root-cause to the problem. This problem becomes harder to

27

Chapter 4. Analysis

manage and more complex as the system is divided into components without

good knowledge of how they relate to each other. These two contexts of the

same problem result in two use-cases.

UC 1: Pre-change analysis of a system

Event: New requirements lead to major changes in a system which creates

multiple change requests that need to be processed correctly.

Scope: Before a change is to be made to the system that requires pre-change

analysis. Specialists, project leaders, architects and configuration managers

are some of the roles that are involved in these processes.

UC 2: Analyzing the impact of a change

Event: A change has been made to several components of a system. When

running the system, the execution fails in a component that wasn’t changed.

Scope: During development and maintenance a lot of time is spent by ar-

chitects, developers and testers trying to achieve a correct change impact

analysis.

Problem statement 3 relates to the hard task of communication. This

problem was also highly prioritized among the interviewees as it is very

challenging to provide the correct information about a change to a correct

set of people. Many companies use the good conduct of communicating their

changes throughout the project, in large projects these notifications aren’t

always read as the amount becomes overwhelming due to a lot of changes.

The problem shows itself in two questions that are hard to answer, first being

the question of who’s the involved parties that need to be notified? and the

second being what information needs to be notified?. The first question is

related to dependencies and finding modules that relate to the one being

changed. The answer to the second questions differs slightly depending on if

the related module is from an internal or external party. An internal party

often need short and informative information about the change and why it’s

28

Chapter 4. Analysis

made while an external party often need more extensive information about

how the new change can be used as they normally aren’t as familiar with

the system as internal parties. The problem statement of communicating

changes results in the next use-case.

UC 3: Notify parties of a behavioral change

Event:, A company with different teams, is working on the same product.

Teams are divided so they have responsibility for different parts of the sys-

tem. One team makes a change to their modules and needs to inform in-

volved parties of the changes.

Scope: During development and maintenance there is a need to communicate

changes to all appropriate parties.

The idea to solve the problems of P1 and P3 requires system level structure

of dependencies. With accurate knowledge about the structure of dependen-

cies in a system, it is possible to retrieve every component that depends on

and consequently could be affected by a change to a particular module.

With this information you can acquire more detailed knowledge about each

of these components, including who’s responsible for it.

4.2.2 P2: Awareness and P7: Corner case study

Having better awareness and overview of a system will help most problems

involving several components and their dependencies. This kind of problems

was something that frequently occurred during the interviews. Awareness

is a very general problem that can apply to many problems and provide

benefit in different ways. Another more specific issue that was encountered

is the problem that corner cases involving dependencies that cause problems

are difficult to find. Since corner cases are by definition something outside

of the normal circumstances, it was difficult to tackle directly. However,

better awareness and understanding of how the system works should help

29

Chapter 4. Analysis

in detecting corner cases more easily.

Problem statement 2, Awareness, is about the fact that it is hard to

gain insight and overview of a system. This issue is especially true when

the system is modular, and the person wanting overview works on a set of

modules that are a small part of a larger system. During interviews, it was

found that it is not easy to acquire this awareness, especially for new and

junior developers as design documents that have been created are rarely up-

to-date. Junior developers are often assigned smaller tasks in some specific

part of a module. If there were a way to gain a better understanding of

the structure of the overall system, problems regarding misunderstandings

of functionality would decrease, and it would be easier to start taking on

larger assignments faster. Another frequent use-case that was elicited about

system awareness was in the case of a major upcoming change. In this event,

the problem is that development teams would like a quick way to get up-to-

date on the current system’s structure to be able to, as smoothly as possible

conduct the change. Both these cases were identified as crucial and turned

into use-cases:

UC 4: Introduction to a system

Event: A team has just brought on a new junior developer that gets assigned

work on a small part of a module. The developer needs to gain insight of

the entire system, how his/her module fits into the complete system and the

dependencies between its modules.

Scope: During development when a team takes on a new developer or a

junior developer is introduced to a system.

UC 5: System overview

Event: A system being prepared for a large change or refactoring process

involving one or several teams.

Scope: Lack of awareness may lead to costly problems both during and after

30

Chapter 4. Analysis

a change is made.

Problem statement 7, corner case study, is closely related to overall aware-

ness. However, since it what brought up in several interviews it was deemed

eligible for being a separate problem. The difference between corner case

study and general awareness is that general awareness should be easier to

improve directly and proactively with the help of an updated overview of

the system. Corner cases will always be difficult to detect and be aware of

before they cause problems. With this in mind, by managing dependencies

the goal is to make it easier to detect and be aware of possible corner cases.

A use-case of P7 is described below:

UC 6: Corner Case study

Event: A system has the functionality of keeping track and logging data

from a sensor. It keeps track of the time and date, when a measurement

from the sensor is caught, all of this is logged. The system has been up and

running for a long time; it was once discovered that the date was not updated

as the time went passed midnight. The system is tested and deployed in a

test environment without finding the bug. The bug was, in fact, a fault

where if the system needed to achieve data from the sensor in the same

moment as the time turned from 11.59p.m. to 00.00a.m. the date was not

updated.

Scope: Corner cases can be introduced into a system in any part of devel-

opment. Corner cases will be dealt with primarily by architects, developers,

and testers. This is related to both change-impact analysis and awareness

as the corner cases might be easier to imagine with good awareness of how

the system works.

The crucial factor to facilitate the problem of general awareness and corner

cases is to provide an overview model of the system that is always up-to-

date. There should be a focus on providing information on a high level at

first, but with the possibility to view details for any parts of the system

31

Chapter 4. Analysis

that is deemed interesting at the time. If the dependencies are continuously

updated, it would be possible to use the history of dependencies to show

their progress.

4.2.3 P4: Build Requirement

Problem statement 4 is the problem of not knowing what components are

required to build a certain module and therefore having to build the entire

system every time. UC7, below, was created to further describe the scenario.

This use-care were brought up in an interview and described sending over a

module to another team for review and the trouble of having to send over

the entire system each time.

UC 7: Sending over a module for review

Event: A team is done with the implementation of a module that is one part

of a larger system. The module has to be transferred to another team for

review. To be sure that the system can run, the entire system is transferred.

Scope: When maintaining a system or during development, developers have

to spend much time for transferring software components between teams.

The problem could be reduced as much as possible by knowing exactly

which modules are required to try out a certain module. To be able to

know what is required to build a certain module based on its dependencies

you only need the module in question and every mandatory module that it

is dependent on, directly or indirectly. Figure 4.1 shows an example of a

dependency model. When B should be built only modules B, C, D, and E

are required.

32

Chapter 4. Analysis

Figure 4.1: Modules required to build module B

4.2.4 P5: Test Optimization

Problem statement 5 involves optimizing testing after a change has been

made. From the interviews, it is elicited that there could be improvements in

the process of knowing what entities need testing after a component has been

made. This information would allow minimizing test times by only testing

the necessary parts instead of the entire system. UC8 shows a possible

representation of this scenario.

UC 8: Testing after a change

Event: A small change is made in one of the components of a larger system.

The developers then need to go through the entire test process, including

testing the entire system to make sure that the change works.

33

Chapter 4. Analysis

Scope: During development, maintenance and testing even a small change

has to go through a long process of testing in large systems.

When a module is changed, it needs to be tested with some other parts of

the system as well. By using the dependency model, a possible minimal set

of components that need to be tested becomes modules that depend on the

changed module, modules that are depended by the changed module and the

actual dependencies [17]. I can be seen here that not only the components

need to be tested, but there is a need to make sure that dependencies work

as specified.

4.2.5 P6: Alternative targets

Problem statement 6 about alternative targets were extracted from the in-

terviews in cases where the activity of an alternative of modules is dependent

on some other criteria. UC9 shows this in a case where a system has two

different modules and which is used is dependent on the screen size. This

use-case does not exist in all types or projects as the structure becomes more

complex with this type of dependencies.

UC 9: Optimizing performance for different targets

Event: The system is a media player on a smartphone and can be used for

both small and large devices. To optimize the quality when rendering an

image, two different modules can be used for this purpose, one for large

screens and one for small. When the application is installed, only one of

these modules can be used.

Scope: There are many contexts where there is an alternative between dif-

ferent modules, e.g. different graphics or settings where the alternative is

dependent on hardware or usage of another module. Awareness of this com-

plex structure needs to exist for all concerned.

The dependency model should be able to represent modules that are used

34

Chapter 4. Analysis

depending on some alternative criteria. It should be clear what dependencies

are included as alternatives and a prioritization of how they should be used.

Otherwise, it is an increased risk of confusion of which one was used during

execution.

4.3 Requirements Extraction

As the problem statements and use-cases have been analyzed, ideas that

could facilitate the problem statements are acquired in this section by re-

quirement extraction. The analyzing part of the requirement extraction is

to analyze the use-cases and extract common and protruding details that

characterize the category and can further be used to create definitive require-

ments. To make sure requirements will exist to cover all of the problems, the

problem statements are covered one by one, and the process can be found

in the methodology section and figure 3.2. This section will bring forth the

high-level requirements that were extracted from the problem. The next

chapter, Requirements Design, 5 will show these requirements in more de-

tail as low-level requirements.

It can be seen in all of the use-cases, for every problem statement that

they have one major characteristic in common, they refer to a system model

of dependencies. Some place where all of the dependencies in the system are

gathered. Two items have been identified that are included in the structure,

components, and dependencies between them. To represent and visualize

this model, components will be visualized as boxes while arrows will repre-

sent dependencies, in a dependency graph that resembles the one found in

figure 4.1.

One high-level requirement that was extracted was the addition of an

”Operational” component to the description of CBS. This is related to PS2:

Awareness as it provides a larger understanding and attention to depen-

dencies to another kind of component than software and hardware. This

35

Chapter 4. Analysis

was brought forth as the interviewees wanted the possibility of a component

to be dependent on a component that represented an operational part of

the development process. One case was a dependency to a legal document

e.g. a contract that needed to be signed by a customer or permission ac-

cess from the user. Another being a module that is dependent on a certain

development process aspect, this could be used as a notification saying ”if

this component is used there’s a need for a different development process”,

could be useful in safety-critical systems where the processes are reviewed

and are of large importance. The final reason for an operational component

is to connect different customers or external parties that depend on the us-

age of a specific component. For example, a system can have a different

set of components activated for different customers. After a component has

been updated, a dependency to an operational component that consists of

a list of customers could help in answering the question who is in need of

this update?. By doing this, a clear dependency between components and

customers have been created. To summarize the Operational component, it

is meant to be used for operational procedures that could be depended by

other components in the system. Above it has been listed three potential

uses of this component but the possibilities could reach out from these.

Looking at the analysis in the previous steps it is obvious that at this level

there are many different types and traits of dependencies. This is dealt with

in different ways in literature which suggest some ideas for categorizing [14]

[16] [19]. From the analysis of every problem statement above it is obvious

that they would benefit from having continuously updated dependencies.

Having a ’version control’-like tool for dependencies requires a defined way

of what makes a dependency unique, which means a name and version for

each dependency. It is also important to define exactly what a dependency

is. Specifically to make a clear distinction between when a dependency

should be updated and when a new dependency should be created. From

interviews and by analyzing use-cases a suggestion for what should make a

dependency uniquely identified is the purpose of the communication between

two components. As long as the dependency exists with the same purpose,

36

Chapter 4. Analysis

it should be updated along with the system. If one of two components that

have a dependency is changed such that a dependency remains, but exists

with a somewhat different purpose, a new dependency should be created and

the previous retired. From analysis of the use-cases of awareness and corner

cases, there is also a need for tracking progress of a dependency. Each

change should have a expressed change-purpose which could work similar

to a commit message. It should be noted that a change to a component

does not implicate that any of its dependencies must have been changed, an

example when the dependencies do not change is when refactoring a code

fragment to optimize the lines of code but keeping its original functionality.

Since every dependency is represented in the structure mentioned above,

it is possible to give each dependency attributes to represent its traits. The

P4: Build requirements and P2: Awareness suggests there is a need to know

if a dependency is mandatory for building or not. To respond to the use-case

of P3: Communicating Changes to either internal or external parties, this

could be a suitable attribute as well.

A special attribute that would greatly improve the categorization and

the ability to involve different dependency is to give each attribute a type.

This was considered early on in this thesis work as well because one goal

was to be able to generalize the handling of different kinds of dependencies.

Categorizing dependencies in types have also been done in previous literature

[19]. The types that will be suggested in the requirements should represent

an appropriate set of types to facilitate with the problem statements and

use-cases. To facilitate with P1-3 and 7, a better understanding of the

system is required. To acquire this understanding dependency types will be

used in this thesis as well. Common dependencies of data and control should

be included [5] and to accommodate P6: Alternative Targets an alternative

type of dependency could be included.

The following is a summary of above-mentioned requirement extrac-

tion and reasoning behind them for managing dependencies to attempt to

solve the acquired problem statements.

37

Chapter 4. Analysis

• A dependency model is required to represent the components and de-

pendencies that make a system. The model should be able to represent

both components and dependencies.

• A component called ”Operational” should be added to the model in

addition to regular software and hardware components. The purpose

of such a components is to represent an operational part of the de-

velopment process. Examples of what could constitute an operational

component is a legal document, a certain development process or a

subset of the customer base.

• The dependency model should be continuously updated. It should also

be possible to track and view the historical changes of dependencies

in a simple way. The trade-off between effort and value for a devel-

oper using dependency management tool suggested should be highly

prioritized, i.e., many interviewees do not mind the tool being basic if

it means it is easier incorporated in their daily work. Many tools are

being used as it is already.

• The model needs a precise definition of what constitutes a dependency

helping to acknowledge when a dependency should be either updated

or replaced.

• It should be possible to categorize dependencies based on its type and

an appropriate number of types should be used considering complexity

vs. value towards solving problem statements. It should also be possi-

ble to easily ascertain whether a dependency is mandatory or not, as

well as connected to an internal or external component.

38

5
Requirements Design

Based on the analysis of chapter 4 this chapter will present the detailed

requirements ideas that are the result of the work for this thesis. The chapter

consists of three sections that together describe how our research suggests

dependency management will be done to solve the stated problems. The first

section will contain requirements of documentation and processes required

to conduct the intended dependency management. How the information

about dependencies and the related components should be stored, updated

and their life cycle. The second section will present the dependency model

and dependency structure. What is considered in the scope of dependency

management and the attributes required for a dependency. The third and

final section will present requirements for functionality for a tool that would

be based on the dependency management ideas suggested in this thesis.

Presenting the functionality as requirements will provide a clear and concise

presentation of the results derived from interviews and previous research

and analysis.

5.1 Documentation & Process Requirements

As the definition of a dependency that is found in section 2.1 is quite wide

and imprecise a dependency can exist in many different variations, some

of which have been described throughout the report. One of the things

39

Chapter 5. Requirements Design

that were extracted in section 4.3 is that every dependency should have a

purpose of why it exists, because if no one knows the purpose of why a

dependency exists it probably isn’t necessary or there’s a need for better

understanding of the system. If two components depend on each other with

multiple purposes, these shall be divided into different dependencies. This

brings out the first requirement.

REQ1: Every dependency shall have a purpose.

Research Question 2 (How can these dependencies be documented and

handled from a configuration management perspective?) Together with the

possibility of following the evolution of dependencies within a system that

arises in UC 4-6 and the problem of awareness creates a motivation to keep

track of dependencies and being able to trace dependencies to a specific ver-

sion of a system. An already existing practice at the companies that were

interviewed was version control and by including dependencies as configu-

ration items (CI)(see [3] for definition) it provides the possibility of storing

and keeping track of dependencies. By including these into version control,

they are given a version which is increased after every update that makes the

evolution easy to track. There are two different aspects that is interesting

of following the evolution of, each individual dependency and which of the

dependencies that are included for a specific version of a system (a system’s

dependency model).

REQ2: Each dependency shall be included as a CI of the project.

By including dependencies as CI’s one of the aspects are taken care of. To

be able to connect a version of the system to a specific set of dependencies

a dependency model is created. The alternative is to connect a dependency

to a specific version of the system when committing a change to a system

a majority of the dependencies often keeps unchanged (unless some major

refactoring has been made). This is the reason why inspiration taken from

the CM-model, composition model [11] was used for creating the dependency

model. This model contains a connection to what version of the system it

40

Chapter 5. Requirements Design

belongs to and a list (with name and version) of all of the dependencies

that are a part of this system. This is to make it possible to find the set of

dependencies that belong to a specific version of a system.

REQ3: A system’s dependency model shall be included as a CI of the

project.

The system dependency model can be used differently for different projects,

but its purpose is always to describe what dependencies that are included

in a specific version of a system. Because of the difference in how different

projects use version control to perform configuration identification (shortly

described in section 2.3), it is decided to leave naming and how versions

shall be defined to the project owners and left out of scope to this thesis. In

some large projects might not be feasible to create one dependency model for

each new version of the system as this amount would become too many to

comprehend. To create a reasonable amount of different versions of the de-

pendency model a new version is only created when the set of dependencies

change. If there is no dependency model to a specific version of a system,

the dependency model to the most reason version is used. An example of

how the dependency model can be linked to different system versions can be

found in figure 5.1. In step 1 in the illustration, a dependency model (ver-

sion 1.0) is created that includes all dependencies that exist in the system

(version 2.0.1). In step 2 the system is updated to version 2.0.2, but there is

no change in dependencies, therefore the same dependency model (version

1.0) is used. After updating the system to version 2.0.3 there is a change to

a dependency and the dependency model is therefore updated to version 1.1

and now includes all dependencies that are included in the system (version

2.0.3).

Because dependency identification is left out of the scope of this thesis,

there is still no automatic way of finding a complete set of dependencies

within a system. To still keep an updated collection of dependencies re-

quirement four is created that is related to handling dependencies directly

41

Chapter 5. Requirements Design

Figure 5.1: How a dependency model could be linked to system versions.

as they are identified.

REQ4: If a dependency is identified in the system that does not corre-

spond to the documentation, the documentation shall be updated, so the

dependencies resembles how the system works.

Requirement 4 works as a notification to start the process of creating or

updating a dependency. To create a standardized and controlled process

around dependency management, a lifecycle of a dependency is created that

can be seen in figure 5.2. When creating a dependency the identification in

figure 5.2 is realizing the need for a new dependency (REQ4), and the next

step is to define the purpose of why the dependency is needed (REQ1). The

purpose will be one of the attributes of a dependency, which are defined

as requirements in more detail in the next section, 5.2. After documenting

these attributes, it’s run through a quality assurance (QA) process including

all related parties to make sure that everyone that has a connection to this

dependency agrees of the purpose and the attributes that have been set.

Who’s included in all related parties’ is decided by the administration of the

42

Chapter 5. Requirements Design

project but it could preferably include e.g. project manager, the responsible

for the related components and experts from the different teams to make

sure that the dependency is correctly documented. If this is not the case, it

will go through the process again. Otherwise, it will notify every party that

is in need of the notification and the dependency is ready for utilization.

REQ5: The lifecycle of the dependency CI shall follow figure 5.2.

Figure 5.2: The lifecycle of a dependency

5.2 Dependency Structure

From the interviews, it is clear that there are many different kinds of de-

pendencies to be managed. A dependency between two components does

not have to exist only for one specific reason, but they can depend on each

other in multiple ways. Instead of creating many different kinds of depen-

43

Chapter 5. Requirements Design

dencies between two components in a dependency model where each one

provide a specific quality of the relationship it is more convenient to make

a dependency consist of several attributes that define the qualities of all

dependencies between the two components in question. This also makes it

easier to oversee as there is only one dependency that describes the relation-

ship between two components instead of several independent ones. These

qualities are hereby defined as attributes and are essential to utilize depen-

dencies to deal with the stated problems for this thesis 4.1. Table 5.1 gives

an overview of the attributes of a dependency. Attributes marked with *

are the ones that should be considered for version control, further explained

in subsection 5.2.1. Further below each attribute is described more in depth

to form a dependency structure.

Dependency Name Connected Components*

Responsible Purpose

Utilization* Reason of Change

Version Mandatory

External Type

Table 5.1: Attributes of a dependency

At the beginning of the analysis shows that it shall be possible to identify

a dependency. Like any other file or item involved in software development,

a dependency needs a name for identification. There are several different

naming-conventions in regards to software development, but the important

things is that a dependency is easily identified, both by a tool but also

by developers. The latter to contribute to better communication around

dependencies as it becomes easier to communicate around dependencies.

The specific process revolving configuration identification, including naming-

conventions, are out of scope for this thesis as motivated in the previous

section (5.1).

REQ6: Dependency name. A dependency shall have a uniquely identifi-

able name.

44

Chapter 5. Requirements Design

Since a dependency is a connection between two components, a start node,

and an end node, where the start node depends on the end node, e.g. if a

module, Component A, depends on functionality in a library, Component B,

Component A will be referred to as start node. An attribute stating both

these components must be available in a dependency.

REQ7: Connecting components. A dependency shall have information

about the two components it is connected to. Referred to as start and end

node.

Requirements extraction 3.3.3 shows that there is a need for knowing

who should be notified when a component is changed. Meaning that if

Component A is dependent on by Components B, C and D, it should be

possible to easily notify the appropriate party for each of those components

that a change will be happening. The appropriate party could for example be

the team leader, architect or the responsible for each component. This was

extracted primarily to assist UC3: Notify parties of a behavioural change

but with the knowledge about whom is responsible for a dependency may

aid in more of the communication related problems e.g. knowing whom to

go to if a question about a dependency arises.

REQ8: Responsible. A dependency shall state a responsible. The re-

sponsible shall preferably be someone who is responsible for the start node

component and can therefore be notified if changes are made to the end

node, which by definition will effect the start node.

As described in the previous section and REQ1. Every dependency needs

a purpose, and it is appropriate to store as one of the attributes. This is

because the purpose is always connected to one dependency.

REQ9: Purpose. A dependency shall have an attribute describing the

purpose of the dependency. It should describe at a high level why the

dependency exists.

A major benefit with dependency management for all use-cases is the fact

45

Chapter 5. Requirements Design

that dependencies are continuously updated. The following three require-

ments describes attributes that will be continuously updated, helping to

create awareness and assisting with all use-cases but primarily use-case 4:

Introduction to a system and 5: System Overview.

REQ10: Utilization. A dependency shall an attribute describing the cur-

rent functionality of the dependency. How it works at a more detailed level

than REQ9: Purpose, for example, API-calls. The utilization is updated

along with the dependency.

REQ11: Reason for change. For each update of the dependency, a reason

of change shall be entered along with the new dependency.

REQ12: Version. A dependency shall have a version number which is

increased for each update

Analysis and requirements extraction describes that there is a need for

knowing whether a dependency describes communication between compo-

nents that is mandatory for building the system or not. This was elicited

from interviews that described a need for trying out a module in a system;

this module might depend on 5 or 6 other components to build and run.

But without a dependency model, it was hard to keep track of which com-

ponents and therefore the entire system with over 100 components had to

be fetched, built and run. This is further explained in Problem Statement

4: Build requirements and UC 7: Sending over a module for review.

REQ13: Mandatory. A dependency shall have yes/no attribute whether

the functionality of the dependent module from this dependency is manda-

tory for the system to build.

During analysis it also became clear that it would be beneficial to in-

clude not only dependencies to components developed internally but also

externally. Knowing that a dependency is connected to an external com-

ponent will especially benefit UC3: Notify parties of and update and UC 4

and 5 involving awareness. The reason for separating external and internal

46

Chapter 5. Requirements Design

came from interviews and the desire to be able to adapt the work process

depending on the situation. For example, if a dependency is to an inter-

nal component there might be an informal and quick communication about

changes but if it is external a more formal process might be favorable.

REQ14: External. A dependency shall have yes/no attribute that de-

scribe whether the dependency is connected a component where the respon-

sible is within the company or external.

Analysis of both interview material and previous research show that to

provide a flexible dependency structure that can deal with the multiple prob-

lem statements in section 4.1 there is a great benefit being able to categorize

dependencies. Therefore a dependency shall have an attribute called type

that specifies what types that a dependency belongs to (this can in some

cases be more than one). To clarify, a component can be of for example

both data and control dependency, specifying the relationship of how one

component depends on another. Types are described in table 5.2. Data

and Control type are the classical software dependencies and are therefore

obvious choices to include [19]. Sequence of flow was inspired by R.L. Nord

et al. and its purpose verified in the interviews for this thesis. The Al-

ternative-type is introduced for this thesis to solve PS6 and UC4 where a

component is dependent on one out of a group of components dependent

on some criteria. Together with the type alternative information should be

stored in the dependency what other dependencies are in the same group.

As well as what prioritization this dependency has in the group. This will

give a tool the ability to visualize and in other ways use information about

the alternative. Hardware is included to be able to include some crucial

hardware components into managing dependencies. Finally, the Configura-

tion type is introduced to give some flexibility to the dependency model and

categorize dependencies between components that depend on each other for

various reasons (Further described in 5.2. Common for these various reasons

is that they are all things where the dependency describes something that

must be in a certain state or have a certain status or value for the system

47

Chapter 5. Requirements Design

to work.

Type Description:

Data[19] A data dependency describes one module being dependent
on the data produced by another module.

Control [19] A control dependency describes one module being dependent
on the existence of another module. To for example make
calls to its API.

Sequence of flow [19] A module is dependent on another module having executed
something before it can execute itself.

Alternative A module is dependent on one out of a group of several other
modules. Information about the prioritization of this
dependency in the group as well as what other dependencies
are in the group shall be listed as well. A dependency of type
alternative will also have at least one other type to specify
what kind of dependency it is.

Hardware A hardware dependency describes a module being dependent
on a hardware component

Configuration A configuration dependency describes a module being
dependent on the setup configuration of another component.
This could be a module being dependent on that another
cannot execute in the same memory or processing core and
therefore depends on how the other module is configured.
Another example of a configuration dependency is a module
being dependent on an operational component representing
a development process or a legal document.

Table 5.2: Dependency types with description (REQ15)

REQ15: Types. A dependency shall have a type attribute that describes

its type which can be one or several out of the types described in table 5.2.

5.2.1 Version Control consideration

Out of the ten attributes found appropriate for a dependency, two of them

should be considered to be under version control. Meaning when these

two attributes are changed, a new version of the dependency should be

48

Chapter 5. Requirements Design

created. The first one being Utilization (the more detailed description of

how a dependency is utilized). Every time the utilization of a dependency

is changed, but the overall purpose remains the same, a new version of

the dependency should be created. The second attribute considered for

version control is Connected Components. If for example, Module A has a

dependency to a library with a certain purpose. Developers can choose to

change the library but Module A communicates with the new library with

the same purpose as before. Then a new version of the dependency should

be created but with the end component set to the new library.

Dependency Name and Purpose should not be changed and are therefore

not considered for version control. The Responsible attribute is more like

metadata to help with communication and should not be considered either.

The attributes Mandatory, External and Type all describe some aspects of

the dependency but from the interviews has risen that these should not

change without changing Utilization or Connected Components. Therefore

Dependency name, purpose, responsible, mandatory, external and type will

not trigger a new version of a dependency.

Finally, attributes Reason of Change and Version can be considered as

effects of version control, Version being updated for each new version and

Reason of Change similar to a commit message explaining the reason for an

update.

This setup of version control and what attributes shall trigger a new ver-

sion of a dependency is a model set by the authors of this thesis without

larger research nor validation. This is a reason why this subject needs con-

tinued analysis and work. This will be further discussed in chapter 6.

49

Chapter 5. Requirements Design

5.3 Functionality Requirement

Some functionality requirements have been extracted that can work as a

basis for a possible tool implementation but because of the scope priori-

tization of solving the problem statements in section 4.1 above creating a

requirement specification for a tool, only functionality requirements that are

connected to solving the problems will be presented.

The visualization will be a big part of especially PS2: Awareness and to

gain an understanding of the system. There are many visualization tech-

niques for dependencies, matrices [17], tables [19] and graphs [14][22] [4].

Graphs were chosen because of providing understanding of overall relation-

ships between components and it’s a good way of finding root-causes to a

problem [4]. It’s hard to get an overview of the relations in a table while

it’s hard to store and visualize attributes in a dependency matrix.

REQ16: Components and dependencies shall be able to be visualized

with a dependency graph. Similar structure to the one shown in figure

5.3(a).

To be able to get an overview of what components and dependencies that

are included in the system, the graph will present the name and versions.

This basic overview that could help in UC5: System overview and UC6:

Corner case study due to the lack of system understanding mentioned in the

analysis.

REQ16.1: The dependency graph shall show the name and version of

components and dependencies.

In UC4: Introduction to a system there the goal of not only getting the

overview of a system but also creating a good understanding of the relation-

ship between components. By visualizing the components and the purpose

of why each dependency exist it will provide a better understanding of the

50

Chapter 5. Requirements Design

Figure 5.3: Presented examples as dependency graphs.

dependencies within a system. The purpose and type of a dependency can

aid in UC 2: Analyzing the impact of a change by creating a context around

why they are related and what kind of problem it might cause in affected

components. These attributes are not a part of the basic view of the graph

as they are not always needed to the same extent as name and version.

REQ16.2: The dependency graph shall be able to show name and version

of components and the purpose and type of the dependencies.

If more information about one specific entity (component or dependency)

of the graph is needed, it shall be possible to obtain the related data. E.g.

when looking into the use-cases of PS2: Awareness there are situations

where it’s needed a complete set of attributes to understand why an error

has occurred, or calculating the change-impact of an upcoming change.

REQ16.3: When a component or dependency is selected in the graph it

shall present detailed information of that entity in form of its attributes.

51

Chapter 5. Requirements Design

Some problems, still regarding PS2:Awareness, that arose during the in-

terviews is the evolution of a dependency which created REQ17. Because of

putting dependencies as CI’s it’s possible to find a history of how that depen-

dency has evolved. With traceability of the evolution of a dependency and

the dependency models, it’s also possible to see what dependency related

changes that have been made between two versions of a system. The au-

thors believe based on the interviews and ideas taken from some dependency

application sources ([6] [17] [22]) that to be able to find what dependencies

between two versions that have been changed and history of the dependen-

cies could be useful if an unknown error has occurred.

REQ17: It shall be possible to present a list of dependencies that was

changed from the previous version of the dependency model and in detailed

view of a dependency get the history of older versions.

UC1: Pre-change analysis of a system, UC2: Analyzing the impact of

a change and UC3: Notify parties of a behavioral change are all in need

of functionality to look up which components are dependent on a selected

component. For UC1 it is important to know what is dependent on a com-

ponent and with what types of dependencies before a change. For U2 a list

will help track the potential error. For U3 knowing what is dependent on

a component after a change has been made will help communicate those

changes. The components that depend on a selected component have an

arrow to it, an example of the set of components are highlighted in figure

5.3(b).

REQ18: It shall be possible to acquire a list (with name and version)

of all components that depends on a selected components and what type of

dependency that is used.

Since one of the types are Alternative, describe in table 5.2, if there are al-

ternative type dependencies to components in the list it should be presented

which alternatives belong to the same group.

52

Chapter 5. Requirements Design

REQ18.1: If components in the list provided by REQ18 are of the type

Alternative, it shall also show components that belongs in the same group.

For a tool to assist with the problem about build requirement and UC7:

Sending over a module for review there is a need to easily acquire information

about what components a selected component depends on (an example

is visualized and highlighted in figure 5.3(c)). This to easily know what

modules are required to build and try the selected component.

REQ19: It shall be possible to acquire a list (with name and version) of

components that a selected component depends on.

There shall be functionality to acquire the same list as in REQ18 but

only showing the components that are connected to the selected component,

directly and indirectly, through mandatory dependencies. This is needed to

easily identify the minimum set of components required to try out a selected

module, again related to UC7.

REQ19.1: It shall be possible to acquire a list (with name and version)

of mandatory (REQ13 with status ’Yes’) components that a selected com-

ponent depends on.

To deal with problems about testing like UC8: Testing after a substantial

change the tool shall be able to return a list with all components connected to

the selected component. As well as the dependencies that connect to them.

Example highlighted in figure 5.3(d). This because it is not enough to test

each component that is connected to the selected component but also make

sure tests are done to test the actual dependencies/communication between

components/integration tests as well.

REQ20: It shall be possible to acquire a list (with name and version) of

all component that depends on a selected component, components that the

selected component depends on and all dependencies linked to the selected

component.

53

6
Discussion and Related work

This chapter will discuss some of the phases of methodology for this the-

sis as well as its results. It will start off by bringing forth some of the

thoughts about the strengths, weaknesses, and lessons learned of the re-

sulted methodology and how this derived from the one that was planned

when beginning this process. After that, some of the validated aspects of

the result will be presented. This section will also be answering questions

of what was acknowledged during the validation? and what is missing with

the results and are there any possible new results that could be complements

to the requirements?. This discussion will revolve mainly around ideas that

have emerged during or after the requirements were set and validated. After

discussing the results, some aspects that can be seen as threats to validity

will be presented.

To present how this research relates to others regarding scope and findings

there will be a section that presents some related work. This section will

discuss some of the aspects were the related research and similar findings

and where they differ. At the end of this chapter, some ideas that can be

used for possible future work in the area of dependency management will be

presented.

55

Chapter 6. Discussion and Related work

6.1 Evaluating methodology

One major difficulty with managing dependencies is how dependencies are

identified and to recognize changes in them. This was thought of early on

in this thesis and strengthen by pre-analysis of previous research [19] [10].

Today there are several ways of identifying dependencies, but they are of-

ten language specific and works on a detailed level by code analysis. Since

research question 1 was to elicit the core problems around dependencies be-

tween components, there was an incentive to gather information from several

different companies and projects. This meant not having a specific project in

mind when managing dependencies and less value in finding suitable identifi-

cation tools for each project, which would have taken a considerable amount

of time. This lead to identification being left out of the primary scope of this

thesis and the goal set to exploring dependency management in a general-

ized context, leaving it up to each project to realize their type of dependency

identification. Furthermore, since this thesis set out to manage dependencies

in a generalized way some presented types of dependencies can not easily be

identified automatically. For example Sequence of flow and Configuration

dependencies. Validation interviews showed that a manual identification

of dependencies can still be a viable solution if the dependencies that are

managed are high-level and thereby within a reasonable amount.

An important part of this thesis was the interview process used to elicit

information about the problems around dependencies. The methodology

of this process, described in section 3.2.2, was set as a range of three dif-

ferent types of companies and project managers, configuration managers,

architects and developers to get different viewpoints of the problem. This

methodology was realized as planned except for not talking to an as wide

range of companies as intended. There were nine interviews in total at three

different companies and some independent people. The number of inter-

views was appropriate although more is always better. It would be better

if these interviews were spread out over more than three companies to get

a better to get a wider spread of input. That would be better to assert

56

Chapter 6. Discussion and Related work

that the found problems exist at more places and to assert that as many

problems as possible are considered.

To explore dependency management in a generalized way a lot of time

was spent during this thesis to gather and explore a lot of previous research

and different company contexts. In hindsight, this methodology gave a solid

foundation and understanding of the subject and its applications, but it did

leave less to get an in-depth solution, for example, a proof-of-concept. If

instead the thesis only had one software project in mind it would be pos-

sible to show dependency management in practice. The more generalized

route was chosen for two reasons. It made more sense to look at the prob-

lem generally before trying out a practical solution. It also seemed like a

hard sell to a real software team to spend time trying out something rather

unexplored.

This choice to explore rather than go in-depth in a practical setting also

affected the collaboration with Softhouse Consulting and the mentors for

this thesis. During the first two months, there were continuous solid contact

and consultation with Softhouse. The problem of dependency management

is of course not a problem exclusive for Softhouse, but their consultants had

detected the problem at many different clients project and therefore worked

as a stepping stone for this thesis. The consultation with the mentors at

Softhouse helped clarify the subject of dependencies and guide this thesis to

a path that had a possibility of leading to results. After the initial two to

three month when the interview period was over, and analysis started, the

communication with Softhouse declined. If this thesis was to be done again,

it might be preferable to keep a more steady communication to exchange

ideas not only in the first half but also during the analysis and validation

phases. The reason communication declined was because analysis took a

lot of effort as well as preparing and partake in the SNESCM-conference,

conducting validation and not to mention writing the report.

There were a lot of different approaches to how one best would present the

results in this thesis where the decision finally landed on presenting prob-

57

Chapter 6. Discussion and Related work

lems, use-cases, and requirements. The problems were presented because

research question 1 was to elicit the problems. They did end up being very

general and not so self-explanatory therefore they were complemented with

use-cases to give further description of them and their context. The choice

to present the solutions to the problems through requirements was made

mostly because the initial idea was to show the result with a simple tool as

a proof-of-concept. The motivation for wanting to create a tool was to show

the results of a general and abstract subject in a practical and concrete way.

But the deviation from making a tool was necessary because it became clear

that it was an unrealistic time cost to build a decent enough tool and also

such a result would be very context dependent. Instead, presenting require-

ments for a tool was a way to show the results in a similar way as a tool

would have.

As mentioned in section 3.4 validation was primarily done in two dif-

ferent ways. Qualitative interview and a workshop during the SNESCM-

conference. The workshop wasn’t in the original methodology since the

opportunity to partake in the conference appeared after the planning for

this thesis was done. The workshop took place when initial findings and

some results were set. Meaning there was an opportunity to get initial vali-

dation on these. As far as the setup of the workshop there was little room to

changes from, a small introductory presentation was done to advertise the

thesis and then the one hour workshop took place. A lesson learned from

the workshop is that one hour goes by quickly when ten interested people

are to discuss a wide subject. In hindsight, it would have been even better

to narrow down the discussion to two or three key points.

In regards to the validation interviews, they were intended as qualitative

interviews with discussion as mentioned and motivated in 3.4. The goal was

to perform 3 of these interviews, but as they had to be held in July, there

were scheduling difficulties. It ended up being one longer validation inter-

view which went through most results and ideas presented in this thesis. It

resulted in good feedback and especially brought up valid concerns about

some results that would not be viable in a large company setting.

58

Chapter 6. Discussion and Related work

A larger scale validation would bring more validity to the results but the

choice to not make a questionnaire type validation still seems reasonable. A

questionnaire around this type of theoretical results would require 20 pages

of explanation before asking questions, and that would be an unfeasible cost

of time for limited extra value.

6.2 Validation of results

After analysis and requirements extraction the results were presented and

validated through another interview and the SNESCM-conference with peo-

ple from both industry and academia, further described in section 3.4. Over-

all during the validation, it’s been elicited that dependencies have been no-

ticed by most parties, but the idea of generalizing dependencies, managing

and utilizing them to this extent is a new angle to solve the found prob-

lems. The dependency related problems that came from the interviews were

highly correlated to problems that were found during the literature search.

Every problem was also something that validation acknowledged and could

relate to. In fact, there was only one problem that wasn’t found in any

literature but existed in two of the three interviewed companies, Problem 6:

Alternative targets. These following paragraphs discuss around information

gathered from the validation (interview or SNESCM), and the last one will

bring forth some aspects of threats to validity.

One of the most interesting areas of the validation interview is if our way

of dependency management would be possible to implement in the context

of a company. Even if the main principles and utilization areas would have

been possible to implement there is one problem that has risen. To be able

to rely completely on the different utilization areas there is a need for a

large percentage of the existing dependencies to be identified and put in the

dependency model. Otherwise, if the dependency model isn’t complete some

of the functionality requirements (presented in section 5.3) isn’t complete

this might become more of a burden than an aid. This brings out a need for

59

Chapter 6. Discussion and Related work

a process around how to introduce dependency management into a project.

This process is something that needs to be researched, tested and evaluated

but a proposed process could be the following. When introducing depen-

dency management into a new project, this problem does not occur as long

as dependencies are documented continuously as they’re created or changed.

If dependency management is introduced to an existing project with a lot of

undocumented dependencies a suggestion is to have an introduction phase

where people responsible for a component has responsibility for creating the

dependencies their component has. Even after this phase, it will probably

exist some dependencies that will be added as they are identified, but it

will provide a set of dependencies to start utilizing. Note, however, that if

in the future identification of these kinds of dependencies is automated, an

introduction phase won’t be necessary.

The most essential problem was the problem of creating a correct change

impact (P1). By utilizing dependencies, it’s possible to find what compo-

nents that a change may affect [6][21]. With the information in the attributes

about the purpose, type and utilization of the dependency it was suggested

in the analysis and acknowledged during validation to provide a deeper un-

derstanding of how a change might affect other components in a system. As

this change-impact analysis can be utilized both before and after a change,

its purpose can be used in most projects, if not as a part of pre-change

control as a part of finding the set of components where a change might

affect.

Everyone that was contacted during this thesis was aware of the exis-

tence of dependencies between components in their systems but not to a

large detail. One of the main advantages with dependency management is

the increasing awareness in not only that dependencies exist but what de-

pendencies exist. During the SNESCM validation it was mentioned that

knowledge of dependencies within a system is known but often by a lim-

ited amount of people, and due to not documenting dependencies it’s hard

to spread this knowledge. That the knowledge of dependencies exists only

60

Chapter 6. Discussion and Related work

strengthen our findings, with the possibility of documenting and visualiz-

ing dependencies awareness of both dependencies and how a system works

can be accomplished and spread. A possible new result was also mentioned

during the validation of one aspect that could aid in the problems revolving

awareness, how components are connected to functionality (or specific re-

quirements in a requirement specification). This was left out of scope earlier

in the thesis but will be seen as future work (motivation can be found at the

end of section 4.1). But it is believed to open up many possibilities to aid

in awareness related problems, including coordination between teams and

give more insight to management fields (like requirement handling). During

validation, it was extracted a new requirement that would aid in the prob-

lem of awareness, the attribute of ”linked dependency”. This would give

the related dependencies with a definition of if one changes, the linked de-

pendency changes as well. These dependency ’pairs’ exists in software and

being aware of them in a dependency management tool would be a great

addition to the existing requirements.

In some aspects awareness and communication are highly connected. It

was validated that by creating a generalized way of documenting dependen-

cies it enhances awareness but also creates the possibility of communicating

around dependencies with names and attributes. Almost every developer

has encountered communication problems within a software developing team

and managing dependencies might be a step in the right direction by adding

more possible ways of directly communicating around the behavior of a sys-

tem. If components are developed by different teams, it also gives a quick

way of finding whom to contact when a change has been made. Though,

in a large system, it might be many people that want to be notified of a

change that isn’t responsible for a dependency. This creates a complemen-

tary result of a functionality of adding additional notification participants

to a dependency.

From the validation interview it’s elicited that to use the test optimization

functionality there is a need to automate it. This creates the need for linking

61

Chapter 6. Discussion and Related work

each test-case to either a component or dependency and integrating testing

into a tool that only runs the necessary tests. During validation, it was

agreed on the entities that needed testing after a change. This knowledge

is based on a paper which future work also includes creating a tool and test

in a cooperative environment, so there is a need for further verification and

testing of this knowledge before seen as complete.

An aspect that the authors did not find a similar solution too is the

awareness and management of alternative targets. The functionality of how

the system works needs to be structured and handled in the code. Validation

strengthened that by adding a type, Alternative, creates a more complete

and accurate view of the system and helps in some aspects of awareness and

change-impact as it becomes possible to see when and why an alternative

component is used. So as a clarification, the requirement of an alternative

type does not facilitate the implementation of alternative components, only

makes it possible to visualize and increase awareness of its existence.

The problem of finding out corner cases does not have any set solutions

to it. During the first iteration of interviews, it was discussed that with a

complete and correct set of dependencies it would be possible to predeter-

mine all possible corner cases as every relationship between components are

documented. During validation, it was elicited a complementary result of

integrating a new attribute of limitation. This attribute would keep track

of the limitation of a dependency has to know When does this dependency

fail?. This information together with purpose and utilization of surrounding

dependencies would create one opportunity of investigating how one com-

ponent might be used to limit another.

One problem that was given to the authors before the interviews to start

with was the possibility of checking consistency within a composition of

components. Functionality was thought out based on a tree structure of

components and logical values of AND, OR and XOR dependent on the de-

pendency between components were a primary idea of solving this problem.

During the first iteration of interviews, it was never mentioned that a sim-

62

Chapter 6. Discussion and Related work

ilar problem had risen and due to the methodology of extracting problems

that were encountered at the contacted companies this was not a problem

in need of solving. Therefore not mentioned as a problem in this thesis.

Some of the requirements stated in the last chapter have some aspects

to it that are quite abstract e.g. procedures correlated with CI’s, QA and

Operational/Maintenance in the dependency lifecycle. Dependency man-

agement has the possibility to benefit many different kinds of companies

that use different company structures and processes. The idea was that

the flexibility of customizing how these aspects will be performed to fit the

contextual company benefits in how easy to adapt dependency management

will become. This flexibility can also create uncertainties in the aspects that

can hinder the utilization of dependency management

As mentioned throughout this thesis it is difficult (but not impossible) to

detect all mentioned dependencies automatically. This leads to a disconnec-

tion between the system that is being worked on and the dependency model

that describes that system. If future work can figure out how to identify

new and updated dependencies 100% of the time this disconnection won’t

have to exist. Apart from just being less accurate, having a disconnected

dependency model leads to difficulties if changes are made to an older ver-

sion of the system and updating the dependency model along with those

changes. There will be no suggested solution to this problem in this thesis

just a recognition that it exists and is a downside of managing dependencies

along with a system.

The results of this thesis have been validated through two phases with

different people to a different extent. An aspects of threats of validity is

that it was hard to schedule validation interviews. This lead to only one

interview being held with only with one person (from one company), this

only gives new insights from one part, leaving out many possible aspects and

comments on this work. Related to this is also that the interviewed person is

someone that was used in the first iteration of interviews, therefore the result

is partly based on the answers that they gave during the first interview. It

63

Chapter 6. Discussion and Related work

was intended to carry out 2-3 interviews where preferably 1-2 would come

from companies, new to this thesis.

6.3 Related work

Trosky B. Callo Arias and Pieter van der Spek looked into this when they

did a systematic review of dependency analysis [7] with the conclusion that

awareness and utilization of dependencies shows a lot of promise. Which was

encouraging when starting on this thesis. In their review, it was believed

dependencies could be categorized as either, structural, behavioral or trace-

ability dependencies. In this thesis, there are more types of dependencies

presented, but there are several similarities between the types in this thesis

and the structural and behavioral of Callo Arias and van der Spek. On their

level of dependencies, they found that impact analysis, system understand-

ing, traceability and fault localization are some of the areas that can benefit

from dependency analysis. Which further strengthen this thesis claim that

impact analysis and system understanding are some of the core problems.

The review points out that no existing technique is capable of identifying all

kinds of dependencies, but they present the kind of dependencies that each

technique identifies.

Robert L. Nord et al. did an in-depth study on a safety-critical system

that had to undergo extensive refactoring due to the increased complexity

in finding root-causes of a problem [19]. A dependency model of the system

was created by examining how system components interacted. This led to

alternative ways of presenting information about dependencies built upon

what it should be used for which lead to the need to categorize dependencies

into types. Categorizing dependencies was something thought of early on

in this thesis as well. Although Nord et al. categories are many, they don’t

use all of them. Their categories are also at a more detailed level because

their primary need is to use the dependency model for root-cause analysis.

This thesis has categories that are on a higher level to satisfy the issues of

64

Chapter 6. Discussion and Related work

for example system overview and communication. One of the motivations

for their study is that ”Research continues to focus on more tooling and

automation to assist with dependency analysis rather than interim, easier-to-

adopt solutions” [19]. This claim is something that this thesis acknowledges

and adds substance to managing dependencies.

In a doctoral dissertation by Cleidson R. B. de Souza from 2005, an empir-

ical research of software dependencies resulted in the design of a tool called

Ariadne [10]. De Souza claims that the problem of dependencies between

components is more of a problem about coordination than it is about soft-

ware architecture. Which is something this thesis have embraced as well.

De Souza also claims that there are two prominent limitations to managing

dependencies. The first being identification of dependencies which is some-

thing this thesis acknowledges as well. The second being that research often

look at dependencies as a framework and not from the point of view of a

developer. This is something this thesis has tried to deal when suggesting

functionality by taking into consideration developer needs and limitations.

The tool, Ariadne, aims to facilitate managing dependencies, for software

developers. This tool is used specifically for the Java language and is ac-

cessed as a plug-in for the Eclipse IDE [13]. The limitations of existing tools

are brought up as lack of facilitating cooperative efforts, e.g., answering the

question: what changes affect me?.

Besides language specific tools as Ariadne there are som conceptual depen-

dency analysis techniques. Judith Stafford and Alexander Wolf developed

one of these called chaining [23]. This paper lifts the difficulties with a

general, automated dependency analysis on a system model made from an

architecture description language. The technique is built on applying some

algorithms to an architectural description that is inserted by the user. This

is one similarity that has been found in most of the conceptual techniques

including the work made in this thesis, the need of manual input and knowl-

edge from a user. The paper takes use of three types of chains that describe

different relationships between elements: affected-by, affects and related.

65

Chapter 6. Discussion and Related work

These are the same groups of relationships that are utilized to solve some

of the problems of this thesis e.g. change impact and communicate changes.

The paper and this thesis both have the idea of creating a concept of man-

aging dependencies in a way that is not programming language specific but

as the analysis in the paper creates a system model from another type of

language it creates another language dependency.

When visualizing dependencies there are many alternative techniques to

choose from. Bixin Li et al. has written a paper on a categorization of

the existing dependencies and the qualities and applications of representing

them in a matrix [17]. The categorization (or types as it’s called in this

thesis) is similar in some aspects, but the paper creates a set of types that

represent relations that can exist through an open interface. Findings from

the interviews motivated the wider approach in this thesis because of the

many problems that arise in relations other media than open interfaces e.g.

protocols or software-to-hardware communication. There are many advan-

tages of being able to quickly determine the relation-classes of relates-to,

depends-on and depended by. One of the difficulties of using matrices is

representing a large amount of metadata that is connected to the depen-

dency. The paper only gives a dependency one attribute (type), and the

large amount that was added to the dependency structure of this thesis

motivated choosing graphs for representation instead of matrices. It could

be motivated to combine the two techniques for systems with plenty of de-

pendencies, visualizing dependencies with the help of a graph and doing

calculations of relation-classes from a corresponding matrix.

6.4 Future work

This thesis has presented an overview-oriented way of performing depen-

dency management. The area of dependency management is relatively un-

explored and has a lot of potential in development. Most of the future work

has been mentioned throughout the report as a part of out-of-scope prob-

66

Chapter 6. Discussion and Related work

lems due to the time limit of the master’s thesis; others are ideas that were

thought of too late in the process without time to take it into consideration.

Some of the future work include:

• Integrate this process into the context of a company for further testing

and validation of the results. Since this thesis is general and theoretical

a good way to further validate the findings and analyze the results

would be for a future thesis or other interested to try out this type of

dependency management in a real project.

• Implement a tool that handles storing, documenting and utilization

of dependency management. The theoretical nature of this thesis will

also work well as background material and a stepping stone for building

a tool with the functionality described in this thesis.

• Investigate the best way to integrate dependency management into an

existing development process.

• Find the connection and connect dependencies to functionality and

requirements to create a new overview-oriented aspect. There is a

strong correlation between dependencies and functionality which is

often stated in the system requirements. This came up throughout

the thesis, and it would be an interesting and worthwhile subject to

try and get requirements into dependency management.

• Further investigate if different views of dependencies can be used for

different purposes (similar idea as the 4+1 view model of architecture

[1]). In dependency management, this would involve looking into what

dependencies and functionality are important for different kinds of

stakeholders in a company or project.

67

7
Conclusion

When developing a system with a modular architecture, the existence of

dependencies is inevitable. During interviews, it was elicited that the pres-

ence of dependencies is often known due to the problems that they bring.

Most often are they dealt with after the problems already have occurred.

Some specific activities e.g. the build process of systems do manage their

dependencies, but in general, dependencies are not handled nor taken into

consideration for future development.

The first research question was to establish what dependency related prob-

lems that existed. Here the results show that companies are aware of several

different problems at different stages of development, but a majority of them

are not managed because of technical or practical limitations. Areas which

were seen as most prioritized to solve were:

• Awareness and communication problems between developers or others

within the development.

• Change impact and calculating cost-of-change for changes that spans

over several components. Mainly to be able to prevent costly and

complex quick fixes. This was said to be especially difficult when

multiple teams were involved.

• Creating a way to represent and define dependencies and the be-

69

Chapter 7. Conclusion

havioural structure of a system.

The second research question asked how to manage dependencies to tackle

above mentioned problems. Analysis gave that it would be most beneficial to

manage dependencies in a generalized way to easily gain an overview of the

dependencies within a system. Managing dependencies cannot be too time-

consuming for developers for it to be included in their daily work. The results

suggest a definition of what a dependency is, how it could be documented

and utilized to solve stated problems, its life-cycle and how it could be

included in the development process. During validation, it was elicited that

the aspect of dependency management is highly desired, but the biggest

limitations of these results are recognized to be identifying dependencies

and the difficulties of proving completeness.

70

Bibliography

[1] The 4+1 view model of architecture. IEEE Software, Software, IEEE,

IEEE Softw, (6):42, 1995.

[2] Agile planning and development methods. 2011 3rd International Con-

ference on Computer Research and Development, Computer Research

and Development (ICCRD), 2011 3rd International Conference on,

page 488, 2011.

[3] 610.12-1990 IEEE Standard Glossary of Software Engineering Termi-

nology. Piscataway, NJ : IEEE / Institute of Electrical and Electronics

Engineers Incorporated, n.d.

[4] Manoj K. Agarwal, Karen Appleby, Manish Gupta, Gautam Kar,

Anindya Neogi, and Anca Sailer. Problem Determination Using Depen-

dency Graphs and Run-Time Behavior Models, pages 171–182. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2004.

[5] S Agarwal and Agarwal P A. An empirical study of control dependency

and data dependency for large software systems. Confluence The Next

Generation Information Technology Summit (Confluence), 2014 5th In-

ternational Conference, 2014.

[6] Aaron Brown, Gautam Kar, and Alexander Keller. An active approach

to characterizing dynamic dependencies for problem determination in a

distributed environment. In Integrated Network Management Proceed-

ings, 2001 IEEE/IFIP International Symposium on, pages 377–390.

IEEE, 2001.

[7] Trosky B. Callo Arias, Pieter van der Spek, and Paris Avgeriou. A

practice-driven systematic review of dependency analysis solutions.

Empirical Software Engineering, 16(5):544–586, 2011.

71

Bibliography

[8] Zhenqiang Chen, Baowen Xu, and Jianjun Zhao. An overview of meth-

ods for dependence analysis of concurrent programs. SIGPLAN Not.,

37(8):45–52, August 2002.

[9] A Cockburn. Writing effective use-cases. Humans and Technology, 2001.

[10] Cleidson Ronald Botelho De Souza. On the Relationship Between Soft-

ware Dependencies and Coordination: Field Studies and Tool Support.

PhD thesis, Long Beach, CA, USA, 2005. AAI3200278.

[11] Peter Feiler. Configuration management models in commercial environ-

ment. Technical Report CMU/SEI-91-TR-007, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA, 1991.

[12] Philip WL Fong. Reading a computer science research paper. ACM

SIGCSE Bulletin, 41(2):138–140, 2009.

[13] The Eclipse Foundation. Open source community website. http://

www.eclipse.org/, 2017. Accessed: 2017-06-21.

[14] Vahid Garousi, Lionel C. Briand, and Yvan Labiche. Analysis and

visualization of behavioral dependencies among distributed objects

based on uml models. Model Driven Engineering Languages Systems

(9783540457725), page 365, 2006.

[15] Google. Google scholar search tips. https://scholar.google.com/

intl/en/scholar/help.html, 2017. Accessed: 2017-06-26.

[16] A. Keller, U. Blumenthal, and G. Kar. Classification and computation

of dependencies for distributed management. In Proceedings ISCC 2000.

Fifth IEEE Symposium on Computers and Communications, pages 78–

83, 2000.

[17] Bixin Li, Ying Zhou, Yancheng Wang, and Junhui Mo. Matrix-based

component dependence representation and its applications in software

quality assurance. SIGPLAN Not., 40(11):29–36, November 2005.

72

http://www.eclipse.org/
http://www.eclipse.org/
https://scholar.google.com/intl/en/scholar/help.html
https://scholar.google.com/intl/en/scholar/help.html

Bibliography

[18] J. López-Mart́ınez, R. Juárez-Ramı́rez, C. Huertas, S. Jiménez, and

C. Guerra-Garćıa. Problems in the adoption of agile-scrum methodolo-

gies: A systematic literature review. In 2016 4th International Confer-

ence in Software Engineering Research and Innovation (CONISOFT),

pages 141–148, April 2016.

[19] R. L. Nord, R. Sangwan, J. Delange, P. Feiler, L. Thomas, and

I. Ozkaya. Missed architectural dependencies: The elephant in the

room. In 2016 13th Working IEEE/IFIP Conference on Software Ar-

chitecture (WICSA), pages 41–50, April 2016.

[20] P. N. G. Perera, A. R. D. C. Atapattu, H. T. Dias, N. T. Liyanage,

R. O. C. Silva, P. S. Rupasingha, S. G. S. Fernando, and C. D. Man-

awadu. The impact of effective configuration management usage in

software development firms in sri lanka. In 2013 8th International Con-

ference on Computer Science Education, pages 691–696, April 2013.

[21] A. Podgurski and L. A. Clarke. A formal model of program dependences

and its implications for software testing, debugging, and maintenance.

IEEE Trans. Softw. Eng., 16(9):965–979, September 1990.

[22] A. Podgurski and L. A. Clarke. A formal model of program dependences

and its implications for software testing, debugging, and maintenance.

IEEE Trans. Softw. Eng., 16(9):965–979, September 1990.

[23] Judith A. Stafford, Debra J Richardson, and Alexander L. Wolf.

Architecture-level dependence analysis for software systems. Inter-

national Journal of Software Engineering and Knowledge Engineering,

11(4):431–452, August 2001.

[24] Constantine L.L Stevens W.P, Myers G.J. Structured design. IBM

Systems Journal, 13(2):115–139, 1974.

[25] Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques for testing

component-based software. In Proceedings Seventh IEEE International

Conference on Engineering of Complex Computer Systems, pages 222–

232, 2001.

73

Appendices

74

A
Interview Questions

The interviews started of with a short description of the goal of this thesis

and about the interviewers (authors). The interviews were performed in a

semi-structured manner and the following questions are created as a base to

make sure that the interview keeps on track and that all areas are touched.

Below each question is a short motivation of what information that is meant

to be elicited from the question. Some motivations also include possible

ideas to create follow-up questions if needed.

• What is your role in the development process?

Context about who we’re interviewing and to see is some problems are

more significant to some roles than others.

• How many employees do you have in this company that is connected

to software development?

To gain knowledge if it’s a large o small company. Makes it possible

to see if there’s a correlation between some problems and the size of

the company.

• How many different roles do you have that take an active part of the

development process?

Architects, developers, testers etc. This is to find a possible correlation

if some problems arise in separate groups of people that shall perform

a specific task.

75

Appendix A. Interview Questions

• How do you utilize components in your projects?

Gain knowledge about of the company sees the area of components.

• How is the overall structure of the projects that utilize a component-

based structure?

Do they utilize Modules, microservices, hardware components, other

components? Are these components from internal or external parties?

• What is the pros and cons by utilizing a component-based structure?

What is the reason of why they utilize this structure? Are there some

dependency related problems that they’ve noticed? Do some of these

problems occur more often than others?

• How many different systems do you develop simultaneously?

One or more is the core question. To find a possible correlation between

some problems and multiple systems.

• How large are these systems and how many components are normally

included?

Deeper understanding of the structure of the systems. Is there a large

difference between companies of how many components they utilize to-

gether?

• Do you have different teams working on different components?

Structure of teams and how they are divided between the components.

1 team - 1 component? 1 team - many components? Gives a ground

to if communication between teams is a possible problem

• When working with a specific component, are you aware of the existing

dependencies of that component?

– How did you gain knowledge about these dependencies?

– What different kind of dependencies do you recognize?

To what content are they aware of dependencies, examples of differ-

ent dependencies that they are aware of and when in the development

76

Appendix A. Interview Questions

process they gained this knowledge (when a problem occurred, design

documents, other?).

• How does the test process look?

– How would you prefer it looked like?

Different test-stages that is used. If only one component is changed do

they test the entire system or parts of it?

• What different dependency-related problems have you encountered?

– What problems do you rate as the most crucial or most hindering

when developing software? Why?

– What problems are hardest to find?

The problems that arise with not managing dependencies. Examples

of what the problem is and when it arise. A core question, continue to

extract information about relevant and interesting points that is given.

• Do you know if a composition of modules works together before build-

ing the system?

– Is this something you would like to do? Why/Why not?

An idea of checking consistency within a component-based structure

before building it with the help of dependencies. Is there a need of this

functionality?

• Are there some components that is used in several different systems?

– Is the component copied into the new system or is it the same

component that is shared?

– Has this brought up any new problems?

Reusing components shall be one advantage with a modular architec-

ture. What happens with the dependencies of a component when moved

to another project? Is there a need of knowledge about its dependencies

for it to be possible to reuse?

77

Appendix A. Interview Questions

• Are there some entities regarding dependencies that is included into

the version-control of the project?

To what extent have they managed and documented dependencies or

dependency related items?

• Is there any documentation made of existing dependencies?

Design documents, In code, other?

• What tools and processes do you use to simplify development of a

component-based structure?

What existing tools and processes are used. Do some companies have

a tool or process that eliminates problems.

• Do you believe knowledge about dependencies and including them in

the CM-process would benefit development?

Do they believe in what we’re trying to do with this thesis.

• What CM-processes are practised when a change is about to be made

to the system?

To what extent is a change pre-analyzed. Change-requests, CCB (or

other meetings), change impacts, cost-of-change calculations.

78

	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	Introduction
	Problem Description
	Research Questions

	Background
	Problem motivation
	Component-based Structure
	Configuration Management
	Target Audience

	Methodology
	Thesis work methodology
	Information gathering
	Literary Research
	The interview process

	Analysis
	Problem Statements
	Creation of Use-cases
	Requirement extraction

	Validation

	Analysis
	Problem Statements
	Analysis of Use-cases
	P1: Change impact and P3: Communicating Changes
	P2: Awareness and P7: Corner case study
	P4: Build Requirement
	P5: Test Optimization
	P6: Alternative targets

	Requirements Extraction

	Requirements Design
	Documentation & Process Requirements
	Dependency Structure
	Version Control consideration

	Functionality Requirement

	Discussion and Related work
	Evaluating methodology
	Validation of results
	Related work
	Future work

	Conclusion
	Bibliography
	Appendices
	Interview Questions

