
© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Introduction to
Software Configuration Management

Part I: The Team

Lars Bendix
bendix@sneSCM.org

https://cs.lth.se/~bendix/Teaching/1-ECTS-SCM/

Specialist Network of Excellence
in Software Configuration

Management
(sneSCM.org)

Department of Computer Science
Lund University

Sweden

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Outline of this ”week”
• Team – lecture
• Team – exercises
• Team – collaboration lab

• Company – lecture
• Company – exercises

Groups (3-4 people):
• Exercises
• Collaboration lab

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Learning goals

After this first part the student will:
• understand co-ordination problems
• understand some important versioning concepts
• understand basic co-ordination strategies
• know some basic CM concepts
• be able to use a version control tool

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

History of SCM

customer

company

projects

developers

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

What is SCM?

Software Configuration Management:
is the discipline of organising, controlling and
managing the development and evolution of
software systems. (IEEE, ISO,...)

The goal is to maximize [programmer] productivity
by minimizing [co-ordination] mistakes. (Babich)

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Problems
Identification:
You should be able to identify the single components and
configurations.

• This worked yesterday, what has happened?
• Do we have the latest version?
• I have already fixed this problem. Why is it still there?

Change tracking:
Helps in tracking which changes have been made to which
modules and by whom, when and why.

• Has this problem been fixed?
• Who is responsible for this change?
• This change looks obvious - has it been tried before?

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Problems
Software production:
Construction of a program involves pre-processing, compilation,
linking, etc.

• I just corrected this, has something not been compiled?
• How was this binary produced?
• Did we do all the necessary steps in the right order?

Concurrent updating:
The system should offer possibilities for concurrent changes to
components.

• Why did my changes disappear?
• How do I get these changes into my version?
• Are our changes in conflict with each other?

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Excuses for not using CM?

• CM only applies to source code
• CM is not appropriate during development
 because we use rapid prototyping
• It’s not that big a project
• You can’t stop people from making a quick patch
• We lower our cost by using only minimum-wage
 persons on our CM staff because CM does
 not require much skill ;-)

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

How does a programmer spend his time?

• 50% interacting with other team members

• 30% working alone

• 20% non-productive activities

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

(Software) development

• re-use things
• sharing things
• memory/history

• collaboration
• co-ordination
• communication

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

SCM Hall of Fame

Wayne Babich, 1986:
Software Configuration Management –
Coordination for Team Productivity

Team co-ordination problems:
• shared data
• double maintenance
• simultaneous update

“An ounce of [diff] is worth
a pound of analysis”

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Wayne Babich I

Sometimes it is embarrassing to be a computer programmer. What
other profession has such a remarkable rate of schedule and cost
overrun and outright failure? [...]

Our failures are not of the individual contributors; most of us
design, code and debug adequately or even well. Rather, the failure
is one of coordination. Somehow we lack the ability to take 20 or
30 good programmers and meld them into a consistently productive
team.

Wayne A. Babich, 1986

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Wayne Babich II
The term configuration management derives from the hard
engineering disciplines [...], which use change control techniques
to manage blueprints and other design documents. The term
software configuration management has traditionally been applied
to the process of describing and tracking releases of software as the
product leaves the development group for the outside world.

I use the term in a more expansive sense. I include not just the
formal release of software to the customer, but the day-to-day and
minute-by-minute evolution of the software inside the development
team. Controlled evolution means that you not only understand
what you have when you are delivering it, but you also understand
what you have while you are developing it.

Wayne A. Babich, 1986
© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Shared data

File server

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Solution 1

File server

WORKSPACE

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Double maintenance

WS1 WS2

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Solution 2

“copy-write”

REPOSITORY

WS1 WS2

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Simultaneous update

REPOSITORY

WS1 WS2

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Co-ordination

Working in isolation:
 • local dynamicity
 • global stability
 • problems:
 - double maintenance

Working in group:
 • global dynamicity
 • problems:
 - shared data
 - simultaneous update

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Solution 3

1 2 3 4

“copy-write” => “copy-add”

VERSIONING

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Model

Principle: components are immutable

copy

add

change

global
shared
repository

local
private
workspace

Babich:
• shared data
• double maintenance
• simultaneous update

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Concepts

Repository Version group

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Workspace/repository

copy

add

Project repository Private workspace

checkin, commit, submit

checkout, get, update

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Solution 3

1 2 3 4 5

“copy-add”

Concurrency check

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Parallel work

Concurrency strategies:
• pessimistic (locking)
• optimistic (copy-merge)

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Locking

LOCK

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Copy/merge work model

Can we lock the things we want to work on? NO!

So we copy everything to our workspace ...
... and everyone else copy to their workspaces ...
Þ double maintenance !!

o

Fortunately ”update” has a built-in merge facility:
• We get stopped from adding by the ”concurrency check”
• We then merge from the repository into the workspace
• Then we check and fix possible problems
• Finally we commit (add safely) to the repository

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Copy-merge

“MERGE”

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

3-way merging

A little brown fox
jumped over the fench
and ate the rabbit

Once upon a time.
A little green fox
jumped over the fench
and ate the rabbit

A little brown fox
jumped over the fence
and ate the rabbit
and got killed

Once upon a time.
A little green fox
jumped over the fence
and got killed

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Branching

1 2 3

3.2.1

3.1.1

BRANCH/COPY

(WS1)

(WS2)

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Branching

1 2 3

3.2.1

3.1.1

4

3.2.2

UPDATE/MERGE

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Branching

1 2 3

3.2.1

3.1.1

4

3.2.2

5

“ADD”

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Split-combine

read only

read only

split

split combine

combine

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Long transactions
We do our change as a logical unit, we want this logical

unit to be kept/recorded:
Þ if there is anything that ”conflicts”, we must abort

the whole commit (long transaction/atomic commit)
also known as the “all or nothing” principle

So far we have looked only at one type of ”conflicts”:
• people changing the same file in parallel

© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Strict long transactions
But we are interested in whole systems/configurations:
• should we merge systems/configurations?
• yes, but never into the repository!

From physical conflicts to logical conflicts:

No new configurations should be created in the repo
New configurations should be created in the workspace
New configurations should be tested in the workspace
Then they should be “copied/added” to the repository

What can we do if the tool does not have SLT?
© Lars Bendix – sneSCM.org Software Configuration Management, 1-ECTS, Ver. 0.96

Working together
I might still not want things to change:
• baseline (freezing a configuration)

I might want to know who is affected by my changes:
• traceability

I might want to know exactly how a system was built:
• software bill of material (SBoM)

