

SCM

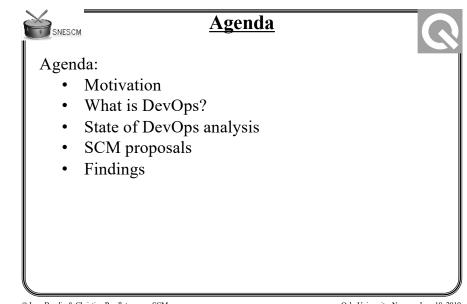
Premise:

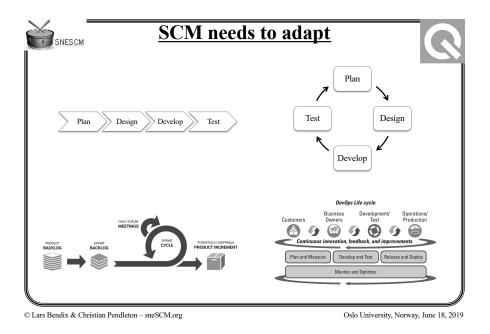
- it might not be called SCM
- it might not be carried out by SCM people
- so, from the outside it might seem like SCM is absent in DevOps

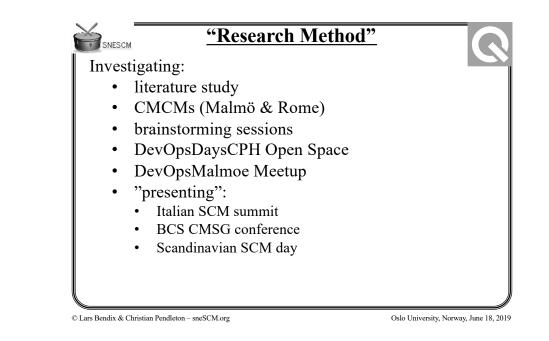
Preamble

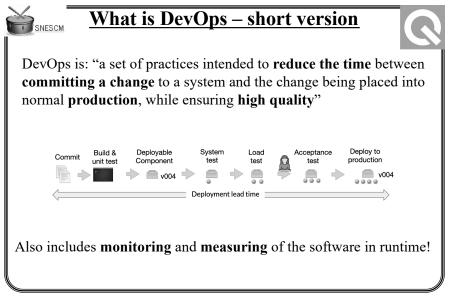
• no project can be (successfully) carried out without

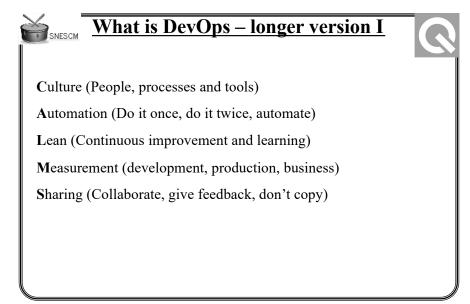
© Lars Bendix & Christian Pendleton - sneSCM.org


Oslo University, Norway, June 18, 2019




Research Questions


RQs: What are the relations between SCM and DevOps?


- what things from traditional SCM are not needed in a DevOps context?
- what new thing need to be added to the SCM toolbox?
- how should "old principles" be cast in a DevOps context?
- how could SCM sell itself to DevOps?
- why should DevOps buy SCM?

© Lars Bendix & Christian Pendleton - sneSCM.org

What is DevOps – longer version II

Goals:

- improved deployment frequency
- lower failure rate of new releases
- shortened lead time between fixes
- faster mean time to recovery

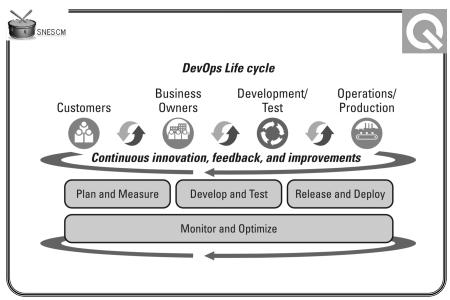
Aims to maximize the **predictability**, **efficiency**, **security** and **maintainability** of operational processes.

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

What is DevOps – longer version III

How does DevOps differ from Agile/Scrum/XP?


What more is DevOps than "just": Dev + Ops?

Idea => backlog => development => production => used by people

In order to get as fast as possible from idea to use we take a **small** (part of an) idea and work **continuously** on it in a **cross-functional** way until it is in production and then we **monitor** what happens when it is used to get **feedback** that creates new small ideas that

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

© Lars Bendix & Christian Pendleton - sneSCM.org

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

DevOps evolution in stages

The five stages of DevOps evolution:

- Stage 0: Build the foundation (facilitate sharing of ideas, metrics, knowledge, processes and technologies)
- Stage 1: Normalize the technology stack (agile, version control, continuous integration)
- Stage 2: Standardize and reduce variability (reduce overall complexity, reduce errors from inconsistencies)
- Stage 3: Expand DevOps practices (deployments are a huge pain, provide predictability and reliability)
- Stage 4: Automate infrastructure delivery (automation of system configuration and provisioning)
- Stage 5: Provide self-service capabilities

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

SCM-related DevOps activities I

Foundational practices:

- Monitoring and alerting are configurable by the team operating the service
- Deployment patterns for building applications or services are reused
- Testing patterns for building applications or services are reused
- Teams contribute improvements to tooling provided by other teams
- Configurations are managed by a configuration management tool

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

SCM-related DevOps activities II

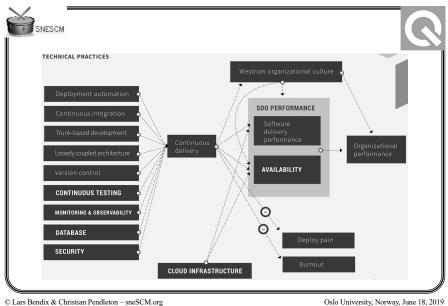
Various practices:

- Application development teams use version control
- Put application configurations in version control
- Put system configurations in version control
- Infrastructure teams use version control
- Source code is available to other teams
- Teams use continuous integration
- System configuration is automated
- Provisioning is automated
- Success metrics for projects are visible

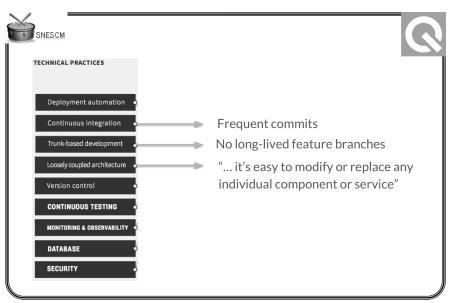
SCM-related DevOps activities III

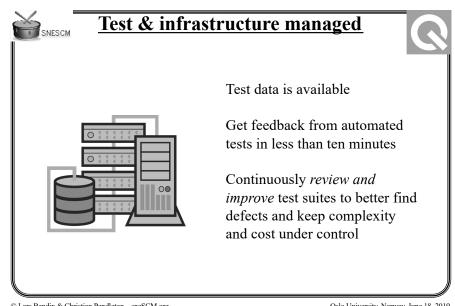
Automate system configurations

- Some teams have a goal of automating all change, giving them completely repeatable, rebuildable systems.
- Consistency: Automated tasks follow a set process and thus produce predictable results.
- Documented behavior: Tasks now have a defined way they are supposed to work, so are easier to troubleshoot.

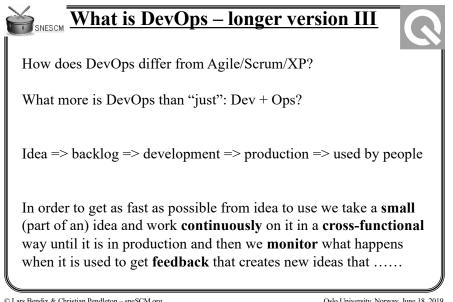

Application configurations are in version control

- Should be versioned, auditable, contain history, and ideally, the reasons why they changed.
- Separating code from configuration data allows for more rapid deployments, updates and validation.


Software delivery and operational performance:	
PERFORMANCE METRICS	
SOFTWARE DEVELOPMENT SOFTWARE DEPLOYMENT SERVICE OPERATION	
Lead Time Change Fail Availability	
Deployment Frequency Time to Restore	

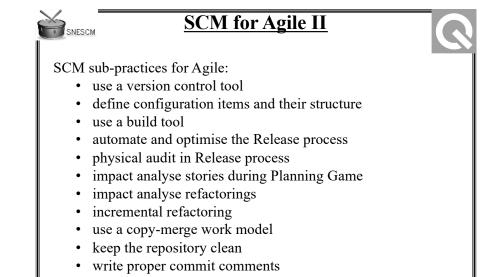

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

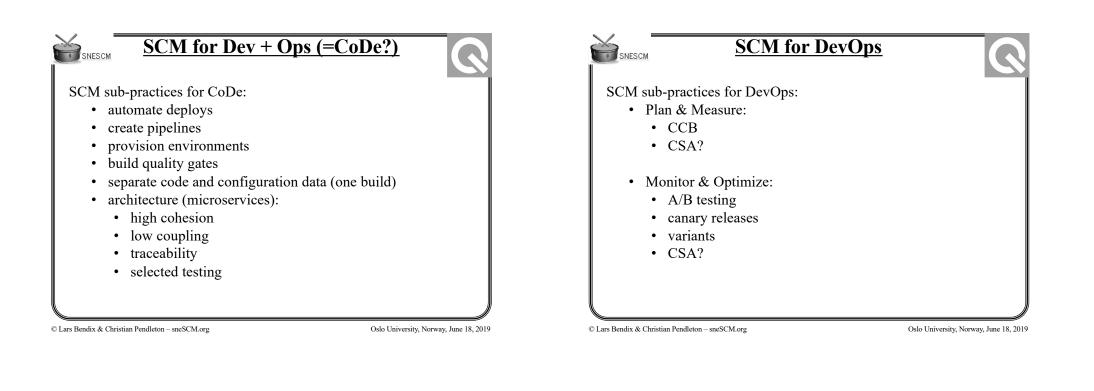


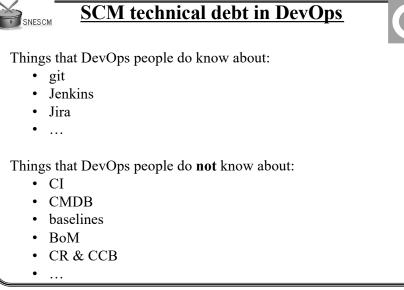
Oslo University, Norway, June 18, 2019

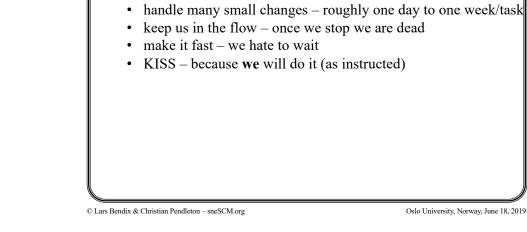
© Lars Bendix & Christian Pendleton - sneSCM.org



© Lars Bendix & Christian Pendleton - sneSCM.org

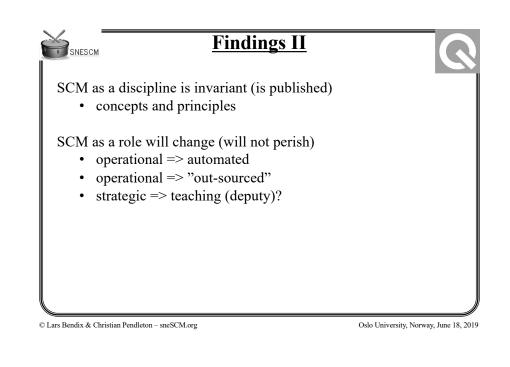

Oslo University, Norway, June 18, 2019


SCM for Agile I SNESCM SCM-related Agile practices: Collective Code Ownership **Continuous Integration** Test-Driven Development Frequent Releases Planning Game • Refactoring Oslo University, Norway, June 18, 2019



trace changes to stories

SNESCM



DevOps change requests to SCM: • help us – please ;-)

Findings I

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

SNESCM

"Research Method"

Searching further:

- brainstorming sessions
- literature studies
- DevOps CPH Meetup
- interviews:
 - "zero to DevOps" companies
 - "hardware to DevOps" companies
- questionnaire
- white paper

© Lars Bendix & Christian Pendleton - sneSCM.org

Oslo University, Norway, June 18, 2019

SNESCM <u>Kelerences</u>	Ŋ
Software Configuration Management and Continuous Software Engineering: http://fileadmin.cs.lth.se/cs/Personal/Lars_Bendix/Research/SCMnCSE/	
Lars Bendix, Torbjörn Ekman: <i>Software Configuration Management in Agile Development</i> , in the book Agile Software Development Quality Assurance, February 2007.	
Ulf Asklund, Lars Bendix, Torbjörn Ekman: <i>Software Configuration Management</i> <i>Practices for eXtreme Programming Teams</i> , in proceedings of the 11th Nordic Workshop on Programming and Software Development Tools and Techniques - NWPER'2004, Turku, Finland, August 17-19, 2004.	
Ulf Asklund, Lars Bendix, Torbjörn Ekman : <i>Configuration Management for</i> <i>eXtreme Programming</i> , in proceedings of the Third Conference on Software Engineering Research and Practise in Sweden, Lund, Sweden, October 23- 24, 2003.	

Deferences

X