Visualizing Software Metrics for increased
Refactoring

Paul Steneram Bibby Fredrik Palmquist
adaO8pst@student.lu.se datllfpa@student.lu.se

March 7, 2016

Keywords: Agile Development, Code Complexity, Refactoring

Abstract

Refactoring is a practice which is supposed to reduce code complexity
in software, but lack of motivation or knowledge can cause developers to
skip it in favor of “more important” tasks. Code complexity is a problem
in any large scale software development and the goal of this study is to
see if a visualization of code complexity can inspire developers to refactor
more. The main code complexity metric we’ll be focusing on will be the
cyclomatic complexity, and the goal will be to keep it as low as possible. At
the end of the course EDA260 Software Development in Teams, the team
this study was performed on had the second lowest cyclomatic complexity
of all teams in the course by a slight margin.

1 Introduction

Refactoring is a practice which is supposed to reduce code complexity in soft-
ware, but lack of motivation or knowledge can cause developers to skip it in
favor of “more important” tasks. An attitude of “If it’s not broken, don’t fix
it”, where they don’t see the need to refactor code if it’s working as intended,
is not unheard of either.

Code complexity is a problem in any large scale software development.
Changes made upon bug fixes made upon other changes can cause the code to
deteriorate over time. Although high complexity in code that is rarely changed
might not be a problem, it can cost a lot of time in areas where changes are
made frequently.

The goal of this study is to see if a visualization of code complexity can
inspire developers to refactor more. Measuring code coverage during testing
can motivate developers to write more tests in order to increase the coverage.
Not only can it be satisfactory to see the coverage percentage increase, it can
also point out what parts of the code has not yet been covered by tests. We
would like to extends this idea to code complexity, where the visualization can
help indicate problem areas in the code, and motivate the developers to try and
keep it as low as possible by refactoring the problem areas.

This study is done during the course EDA270 Coaching of Programming
Teams which runs in parallel with the course EDA260 Software Development in



Teams at LTH. Teams of IT students will be tasked with developing a timing
system for a motor bike race called Enduro. The code will be written in Java,
and developed in the environment called Eclipse. Eclipse is easily customizable
by the use of downloadable plugins, and the developers in our team will be
instructed to download and install a plugin called CodeCity, which will be used
to visualize the complexity in the code. We will then compare the complexity
in our code with the complexity in the other teams code to see if the tool has
helped keep the complexity down.

In the Background section, we explain the complexity metrics measured by
our tool, refactoring as well as our hypothesis. The section Methods describes
the tool we’ve chosen, followed by the Results section where we document our
finding. After that we discuss and reflect on our results in the Discussion section,
followed by a Conclusion where we summarize our findings. Lastly there is also
a short section about recommendations for future research.

2 Background

In this section we will discuss the background for our study. First we will explain
what the Enduro project is followed by a section about code complexity. We will
also go into more details about the three code complexity metrics we’ve chosen
to measure using our tool. There will also be a section about refactoring, and
finally a description about our hypothesis.

2.1 The Enduro Project

Each year at LTH the course EDA260 aims to teach software development in
teams. Undergraduate students are put together in teams of roughly eight(8) to
twelve(12) developers. They are given the task of developing a time measuring
program for the dirt bike race known as Enduro. During this time they will
have at least three(3) releases, but most teams will do four(4). Each team are
given two(2) senior students that will act as coaches to help them during their
six(6) weeks long development cycle. The senior students are taking a course in
coaching for software development in a team, EDA270.

Each week consists of a two hour planning session and an eight hour devel-
opment session. Besides the scheduled time the developers also have four hours
of spike time, two of which should be dedicated to an XP focus and the other
two hours should be used for something beneficial to the team.

During the project the team will have a contact person that act as a customer
for the project. The customers are fictive and acted by various professors at the
faculty of computer science at LTH.

2.2 Code Complexity

We had initially planned to use the CK Metric for measuring the code com-
plexity of our code. The CK metric was developed by Shyam Chidamber and
Chris Kemerer in 1993, and is a suit of six different metrics [6]. It takes into
consideration number of methods in a class, the depth of an inheritance tree,
the number of children of a class, the coupling between objects, the response for



a class, and the cohesion between methods. Details about the CK metric can
be read in Section 8.1 in the Appendix.

We found the CK metrics attractive due to it being able to measure different
forms of complexities. Complexity does not take one single form that can be
solved by measuring one metric. However we had to scrap this idea due us not
being able to find any plugin with the ability to measure the CK metric that
was compatible with the version of Eclipse found on the computers at LTH.
Instead we chose to measure the cyclomatic complexity, duplicated code and
lines of code per class.

2.2.1 Cyclomatic Complexity

The cyclomatic complexity is the number of
linearly independent paths through a func-
tion. An if-statement introduces two possi-
ble paths: one where the predicate is true, @
and one where the predicate is false. Cy-
clomatic complexity are usually only used to
measure the complexity of functions. Using \
it on a whole program is unfeasible as there <
could be thousands upon thousands of inde-
pendent paths through the code.

To demonstrate we’ll give a quick exam- \
ple. In Figure 1 you can see a flow graph for (

a function. You could imagine it’s a function
that prints a header based on a boolean, and
then iterates through a list of drivers. Cal- \
culating it’s cyclomatic complexity is easy. <

The formula is as such:

E = number of edges A ‘

N = number of nodes
M=E—-N+2

The variable M represents the cyclomatic @
complexity. In the graph in Figure 1 we
count the number of edges to nine(9), and
the number of nodes to eight(8). Using
the formula we can calculate the cyclomatic Figure 1: Function graph
complexity to:

M=9-8+2=3

Which means that there are three(3) independent paths through the graph.
This value can also be used to determine the minimum amount of tests needed
to fully test the function. However this is not part of the study.



2.2.2 Duplicated Code

Duplicated code is when a sequence of code appears multiple times. This is
usually caused by developers copying and pasting code from one place to another
due to laziness or bad code practice. Duplicated code should be avoided as it
causes double maintenance; changes made to one of the copies will have to be
applied to the others, and they need to be applied exactly the same way.

2.2.3 Lines of Code

Lines of code is simply the number of lines of code in a class. Huge classes
does not necessarily have to mean it’s complex, however avoiding large classes
is usually recommended.

2.3 Refactoring

”Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that minimizes the chances
of introducing bugs. In essence when you refactor you are improving the design
of the code after it has been written.” [3]

If the team remembers to do small refactorings before and after each single
task, the need for major refactorings is often non-existent in PVG projects.
However, very few (no?) teams do that, so after a couple of iterations the code
is so ”"patchy” that a major clean-up is need to be able to move ahead.

Refactoring aims to bring order from chaos. A lot of projects stop being
engineering jobs and start being hacks. If this happens that is usually a very
good indication that your project is in need of a major refactoring.

2.4 Hypothesis

Code complexity and refactoring are closely associated with each other. The
need for refactoring is always present but becomes more and more relevant
the more complex your program becomes. We will investigate if by visualizing
the complexity for the PVG-team will encourage small refactoring, to keep the
complexity low and thereby eliminate the need to big refactoring altogether.

3 Method

To visualize different software metrics to the team we went with a plugin for
eclipse called CodeCity. Each developer have access to produce and analyze the
graphs at any time. But during each iteration we have a stand up meeting to
discuss the graphs together with the whole team and arrive at conclusions about
what possible problem areas are, and where they need to look out for code that
is in need of refactoring.

After each release, the code produced by all the nine(9) teams was down-
loaded to be used for analysis. This gives us three(3) data points for each project
to use when comparing the projects software metrics to each other.

For refactoring the teams was encouraged to read a book on refactoring
[3]. They recently went through a course which aimed to teach them proper



software patterns. So the book was aimed as a reminder about how to apply
that knowledge.

3.1 Tool

The goal of our study was to see if the use of visualized code complexity metrics
would encourage the developers to refactor in order to reduce said complexity.
The developers in our team were using Eclipse, which is a development environ-
ment for Java which can easily be customized by the use of plugins. We wanted
to find a plugin that could calculate the complexity for classes and methods
and then display it for the developers. There are several different tools that
can be downloaded as plugins to Eclipse. For most of them, calculating code
complexity is only a part of it’s full functionality. One will have to be chosen
to be used during the EDA260 course, as using more than one feels excessive.
Comparing the tools aren’t part of this deep study.

We initially chose to use a plugin called Eclipse Metrics which was supposed
to calculate various metrics for the code and print warnings in the Problems
View in Eclipse. Unfortunately we were unable to successfully install it because
of the version of Eclipse available at LTH:s computers. Instead we chose to use
a plugin called CodeCity.

3.1.1 Codecity

CodeCity is an integrated environment for software analysis developed by Richard
Wettel and is limited to non-commercial use [8]. We chose CodeCity because it
was able to visualize different metrics in one simple graph. We thought if it was
kept simple it would be easier to motivate the developers to use it. If the it was
required to first create a release, then run it through some external software and
then visualize the results by some other tool, it is unlikely anyone would have
been bothered to do it at all. It’s hard enough to get them to run the unit tests
before pushing, if measuring the code complexity required that many steps it
would have been skipped for more important things, such as more stories.

CodeCity visualizes metrics by the use of bars, see Figure 2 for Team 08’s
third release. It’s not hard to figure out why it’s called Codecity. These bars
are able to show three types of metrics at the same time by their width, height
and color, and there are several different options available to select from. The
obvious choice for us was cyclomatic complexity, as it’s a fairly good metric
for measuring code complexity. However, selecting the other two options were
not as obvious. The list was sadly lacking most, if not all, of the metrics from
the CK metric suit. Some options didn’t really feel relevant or important, and
some of them we didn’t understand. Our goal was also to keep it simple, so
researching and then explaining some of the metrics to the developers didn’t
feel like a good idea. In the end we chose duplicated code, as it was simple to
understand and easy to correct, and finally lines of code as avoiding large classes
is also a simple way of reducing complexity. See Table 3.1.1.

Drawbacks to this plugin is that it requires the developers to actively gen-
erate the graphs and look at them. Compared to the JUnit suit were you get
instant feedback after the push of a button this requires more thought and intent
from the developers.



Height | Lines of Code
Width | Dublicated Code
Color | Cyclomatic Complexity

Table 1: Codecity metrics.

Legend

Cyclomatic Complexity

Settings

Width & Length represents:

Duplicated lines of code v

Height represents:

Loc A

Color represents:
Cyclomatic Complexity -
Color scheme used:

grayscale v

Background scheme:

bright A

N\

Details

Figure 2: CodeCity for Team 08.



Team \ Release 1b \ Release 2 \ Release 3

1 14 14 17
2 13 44 60
3 8 19 10
4 No Ant 14 17
5 Won’t compile | 17 15
6 8 21 17
7 12 33 44
8 4 13 11
9 5 38 40

Table 2: Highest cyclomatic complexity for each team.

4 Results

Here we present the results from our studies. Data was collected from all teams:
cyclomatic complexity was measured using a program called cyvis, and a form
about how many stories were implemented and what architecture they used was
sent out and answered by the most of the team coaches.

4.1 Cyclomatic Complexity

Table 2 shows the highest cyclomatic complexity for each of the teams during
this course. To calculate the cyclomatic complexity a program called cyvis [9]
was used. Fach release was downloaded and the complexity calculated and
then put into the table. Test classes were excluded in the check. A few of
the programs were excluded in the calculations due to either not compiling or
there being no build script available for the program. This was however only a
problem during the first release, after that all programs could be built without
any problems.

Table 3 shows number of classes with cyclomatic complexity >= 7 divided
by the total number of classes in the program. Test classes were excluded during
the count. Since a low or high complexity is not the only thing that shows how
complex a program is. If a lot of classes with semi high complexity is spread
out in the program, it might be just as hard to understand as a program with
one class with super high complexity. Due to the realization that this metric
could be useful first after the first release we don’t have any metrics to present
for that release.

Some noteworthy cases are team 2, 7 and 9. Their complexity seem to
indicate that they have implemented some of the later stories such as the net-
work solution. Since the developers have not yet read any courses in real time
programming there solutions are probably more complex then they needed to
be.

5 Discussion

By just looking at the numbers the team that used a tool to keep their com-
plexity down managed to keep it at a reasonable level. They were not the team



’ Team \ Release 1b \ Release 2 \ Release 3
1 - 1/15 8/36
2 - 4/20 6/19
3 - 2/35 3/35
4 - 8/22 10/28
5 - 5/21 7/24
6 - 8/20 8/23
7 - 6/23 7/23
8 - 1/18 3/18
9 - 6/19 6/20

Table 3: # of classes with CC >= 7 divided by the total # of classes.

with the lowest cyclomatic complexity. To our knowledge other teams did not
use any program to check the complexity of their programs but this might very
well be the case that they did through spike time or during each iteration.

We observed that the team did not use the tool as much as we had anticipated
that they would. Generating the graphs was a time consuming and repetitive
job, so if we had adhered to the XP principles we should have automated this
task a lot more then it was and thus the developers might have been more
inclined to use the tool.

The numbers would suggest that the tool was useful and helped the develop-
ers to keep the program less complex. However it’s worth noting that cyclomatic
complexity does not take into account all areas of well written code. Even if
the complexity is low the algorithms could still be poorly constructed or bad
naming conventions could also keep the code from being easy to understand or
modify. Which would be cause for major refactoring in the future.

The team had to go through one major refactoring of the code. This seems
to be the cause of two factors. One we introduced the tool fairly late to not clog
down the developers with to much new information in the beginning. The second
reason it was only during the end of the second iteration that all developers
started to have a firm grasp of what the program was actually supposed to do
and what its intended purpose was. which caused the programs architecture to
change direction a few times without actually refactoring the code.

It’s also hard to asses what changes were done as a result of them using the
tool. Due to developer inexperience the architecture of the first version of the
program was very dubious. This inexperience might also have prevented them
from effectively identifying problem areas of the code. As well as not being able
to identify the correct way to refactor this problems when found. A bad code
smell that was very prevalent during most of the iterations was shotgun surgery,
it was only after a lot of spike time on refactoring that the team successfully
found the code smell and managed to correct it through refactoring.

6 Conclusion

Visualizing code complexity appears to motivate developers in trying to reduce
it. Our team had the second lowest cyclomatic complexity of all teams, only
Team 3 had a lower score but only with one point. It is unclear whether they



also visualized the code complexity in some way.

CodeCity was able to create an easy to understand graph of the code com-
plexity for the whole system. However, because it required effort to use it was
probably not used to the extent that we’d hoped. Concern for the code com-
plexity was not as high as the concern for implementing more stores, and most
developers felt it more important to start on a new task than worry about code
complexity.

7 Future Research

This research could be conducted again put from a longer time perspective to
get a more clear result if helps with cyclomatic complexity. Due to developers
inexperience with developing software it’s hard to gain evidence in such a short
amount of time. It would also be interesting to see if it possible to add hooks
to Git that prevents complex code and duplicated code from being pushed to
the repository. This leaves the developers no choice but to refactor the code in
order to commit their changes.



References

[1] A. Watson, T. McCabe, (1996), Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric

[2] K. Stroggylos, D. Spinellis, (2007), Refactoring — Does it improve software
quality?

[3] M. Fowler, (2002), Refactoring, Improving the Design of Existing Code

[4] M. C. Robert, (2003), Agile Software Development - Principles, Patterns,
and Practices

[5] R. Subramanyam, M. S. Krishnan, (2003), Empirical analysis of CK metrics
for object-oriented design complexity: implications for software defects

[6] S. Chidamber, C. Kemerer, (1993), A Metrics Suite For Object Oriented
Design

[7] S. A. Mohammed, T. M. Yahya, H. A. Wegdan, A. N. Mohammed, Y. Jarar-
weh, (2015), Accumulated Cognitive Approach to Measure Software Complex-
ity

[8] R. Wettel, (2015), CodeCity, http://wettel.github.io/

[9] Leepoint, (2007), Java: Computing Cyclomatic Complexity
http://www.leepoint.net/principles_and practices/complexity/
complexity-java-method.html

10



8 Appendix

8.1 CK Metric

The CK metric is a metric suit which was developed by Shyam Chidamber and
Chris Kemerer. The suit consists of six classes of metrics: WMC, DIT, NOC,
CBO, RFC and LCOM1 [6].

WMC Weighted Methods per Class
DIT Depth of Inheritance Tree
NOC Number of Children

CBO Coupling Between Objects
RFC Response For a Class

LCOM Lack of Cohesion in Methods

Weighted Methods per Class

The WMC is calculated by multiplying the individual complexity of every
method in a class. If all the method complexities are unity, then the WMC
is equal to the number of methods in the class [6].

Depth of Inheritance Tree

The DIT is calculated by measuring the depth of inheritance of a class. If the
class has multiple classes extending it, then the DIT takes the value of the
longest line of inheritance [6].

Number of Children

The NOC is calculated by counting the number immediate sub-classes to a class
[6]. Tt differs from DIT as it measures the breadth of the inheritance tree.
Coupling Between Objects

The CBO is calculated by counting the number for classes a class is coupled
with [6]. A class is considered coupled with another class if it uses one of it’s
methods or attributes.

Response for a Class

The RFC is measured by counting the number of methods in the class and the
number of remote methods directly called by methods of said class [6].

Lack of Cohesion in Methods

The LCOM is calculated by counting the number of pairs of methods in a class
that don’t have any fields in common [6].

11



