
The Role of Configuration Management in
Outsourcing and Distributed Development

Lars Bendix
Department of Computer Science

Lund University
Lund, Sweden

Email: bendix@cs.lth.se

Christian Pendleton
Softhouse Consulting AB

Malmö, Sweden
Email: Christian.Pendleton@softhouse.se

Abstract in English—The use of distributed development teams is
becoming more common and for many good reasons. Some of the
advantages are that it makes it possible to outsource parts of the
development effort, gives access to a larger pool of talents and
specialists, facilitates the integration of mergers and acquisitions,
and allows for more flexibility in scaling up and down projects.
However, distributed development also brings many new
problems to be dealt with on a project. It is more complex to
manage, tends to create silos between groups, and there is a risk
of loss of control over remote groups or people. Traditionally
Configuration Management is seen as the infrastructure that
allows for the co-ordination of the various activities on a project
and it makes sure that work products flow smoothly through
different stages of the development process.

In this paper, we want to investigate to what degree
Configuration Management concepts and principles can provide
an infrastructure for distributed development teams too and help
address some of their special challenges. We first look at what
challenges distributed development teams face and categorize
them according to how closely related they are to the
Configuration Management domain. Then we sketch
Configuration Management solutions to some of the related
challenges. It turns out that surprisingly many distributed
development challenges can be dealt with or made less
problematic by simply applying well-known concepts and
principles from Configuration Management. Furthermore, a
number of other challenges can be alleviated by creative thinking
in the implementation of Configuration Management and/or the
collaboration between the Configuration Management activity
and other activities.

Keywords – distributed development; outsourcing; virtual
teams; challenges; configuration management; best practices;
categorization; ontology

Abstract in Russian—Abstract in Russian should be up to 1000
characters in length. For English-speaking authors conference
organizers will assist with transiting their abstracts to Russian.
(Abstract)

Keywords-component; formatting; style; styling; insert (key
words)

I. INTRODUCTION
The modern globalization means that products are no

longer produced close to where they are consumed and modern
specialization means that they may even be assembled from
pieces produced in different parts of the world. These factors
have also had an impact on the way software is produced
where the use of globally distributed development teams is
becoming more widespread. Early on in the globalization entire
development projects were completely outsourced to low-
salary countries to bring down the cost of producing software.
Handling outsourced software development projects is not
without problems and recent years have seen a shift towards
projects where only parts are outsourced or projects where
teams are put together from the best people without regards to
their physical location.

There are many good reasons for being able to work with
virtual teams of people that are globally distributed since it
gives advantages in various situations. It makes it possible to
outsource only parts of a project and to insource it again at a
later time if needed. It gives access to a much larger pool of
talents and specialists since we are no longer bound to the local
supply and, in general, allows companies in “outback”
locations to continue to recruit people that may be reluctant to
relocate. When companies buy up other companies, the
integration of these new business units is facilitated since it is
possible to form teams across the limits of these business units.
It allows for a much smoother transition between development
and maintenance, that in some companies are carried out by
separate teams, and, in general, gives more flexibility in scaling
up and down teams according to the actual needs of the project
at any given time.

On the other hand, distributed development is generally
considered to be rather problematic and difficult to handle. The
group dynamics are much more complex to manage and most
management techniques rely on communication, which is
inherently difficult in a distributed setting. It tends to create
silos from the various distributed groups, which makes it
difficult to cross the borders. There is a perceived risk of losing
control over remote groups or people since the manager is not
in close contact and, in general, literature reports many
challenges of various kinds.

Since its invention in the early 60s, Configuration
Management has proven a valuable and indispensable
infrastructure to traditional co-located projects. Being
Configuration Management experts we were curious to find out
what was so special about distributed development projects and
what should be the role of Configuration Management in that
context. In a previous paper [5], we tried to understand what
were the particular challenges posed by distributed
development and how these challenges relate to Configuration
Management. Doing an extensive literature review we
collected a set of 61 challenges in distributed development
reported one or more times. We did an initial categorization of
these challenges with respect to their relation to the field of
Configuration Management. From our analysis it turned out
that quite a number of challenges are strongly related to
Configuration Management (meaning that it can provide tools
and techniques to manage the challenge), quite a few
challenges were weakly related to Configuration Management
(meaning that it can be part of a solution to the challenge),
some challenges were not related at all to Configuration
Management - and a surprisingly high number of challenges
reported could be categorized as pure negligence of standard
Configuration Management concepts and principles.

In this paper, we want to go one step further. Now that we
have a basic understanding of the special challenges in
distributed development and how they relate to Configuration
Management, we want to dig deeper into the categorization and
also start sketching solutions for some of those challenges
where an implementation of the solution requires something
more than ordinary Configuration Management thinking. The
problem with our initial categorization [5] was that the
granularity of the reported challenges was too varied to be
practical and that the sheer number of reported challenges was
difficult to manage. Furthermore, our initial focus was to
identify and classify the challenges to understand their nature
rather than to come up with solutions to actually handle the
challenges.

So this next step will focus on simplifying the classification
and making more solid the proper relationship that challenges
have to Configuration Management, thereby making it simpler
to understand and easier to use. Furthermore, this next step will
add proposed solutions to a number of challenges where the
implementation of a solution is not straightforward and similar
to solutions that work in the co-located case. This will make
the work more useful in particular to the Configuration
Management practitioners that will have to deal with the
Configuration Management related challenges. We have
established a wide range of different real-life cases that are
used to provide a context for our discussion for both the
categorization and for the sketched solutions. The direct
intended users of our work are on one hand the decision
makers that have the power and resources to ask for having
proper Configuration Management implemented on a
distributed development project and on the other hand the
Configuration Management practitioners that will have to carry
out the actual implementations. Indirectly we also target all
developers involved in distributed development projects,
making them know that there are solutions to some of the
experienced challenges and who they should ask for fixes.

In the following, we will first present the background for
our work. Then we establish the new categorization and sketch
best practice solutions to selected challenges. We will then
discuss the consequences of our results and suggest further
work before we finally draw our conclusions.

II. BACKGROUND
In order to make it easier for the reader to follow the

analysis and discussions in the subsequent sections, we will
provide some background on the research methodology we
have used and also provide a brief introduction to the field of
configuration management.

A. Research methodology
Our previous study [5] was carried out as a literature review

to establish what distributed development challenges had been
reported (our primary sources were [13] and [17]). Originally
we had also established a number of cases of distributed
development and had intended to use these to carry out a case
study to identify challenges and problems. However, it turned
out to be more cost-effective to find challenges through
literature review and the cases were primarily used to verify
and understand challenges. For this next step, where we dig
deeper into the nature of the challenges and their relationship to
Configuration Management there is little help to get from
literature since very little has been published (primarily [7] and
[16]). For this in-depth analysis it has been very helpful to be
able to put the various challenges in specific contexts for our
discussions. Furthermore, we now also focus on providing
solutions to the challenges and the specifics about such
solutions are often very dependent on a specific context. So to
get a broader view of the different possibilities it has been very
valuable to have a wide variety of cases to use in our
discussions. In the following, we give short descriptions of the
cases that have been used as references for the analyses and
designs reported in sections 3 and 4.

Case I: Company A is a large development company (>150
developers at this unit), where distributed development is quite
common. They hired consultants from company B, which is
distributed on two sites within one country with the consultants
working from their “home” office. Four development teams at
company B are working remotely (three at one site and one
team in a separate, all in all about 30 developers). The
deliverables from company B consists of source code files. To
solve the distribution situation, company A offers a remote
desktop connection solution, making the consultants connect
from their local offices to terminal servers inside company A.
The remote desktop solution gives access to the whole
development environment at company including tools for
version control, code review, system integration, test etc.

Case II: A big international software company with several
offices at many different locations of which four are involved
in this case study: two in Sweden, one in Germany and one in
India. The main location manages the whole product. All
source code is stored in the main repository, and the product is
built here. All four sites develop product components and
deliver them to the main location for integration with the
product builds. There are two kinds of deliveries. One where

the source code is stored in a local repository, and the delivery
is a binary component. In the other, source code is delivered
and merged with the shared code in the main repository. The
product is built on a daily basis at the main location and is
tested daily at another location. Build and development tools
are the same across the whole project, whereas different sites
use different tools for versioning.

Case III: The base of this case is an international company
present in many countries around the world. The product in this
case has been developed by a team consisting of a dozen
people at a site in Ireland and a single person in Latvia. The
project has been developed using an agile methodology and the
project has used a single shared continuous integration model
to avoid any branches. The project has now been ramped up
with about 20 people at a site in India. The original group will
continue to be in charge of the development, and the India
group will be responsible for any consolidation work and bug
fixing on the ongoing release. All developers share a common
repository, which they access remotely.

Case IV: A division of an international consumer
electronics developer spanning several sites across different
continents. The major offices are located in Tokyo, Beijing,
Lund (Sweden) and San Francisco. The software development
organization in this division numbers 1000+ people. Teams are
organized around products, components or features as the
situation dictates. Product and component responsibility will be
located at one site, but development activities can be assigned
to teams in other sites. Software development is regularly
outsourced and off-the-shelf components can also be included
in finished products. The development environment inside the
company is very homogeneous with centralized build resources
and tool management. For outsourced teams, an SDK is
provided in most cases, but if so required, a remote desktop
solution is also offered.

Case V: This is a small to medium company that has been
successful and grown organically over the years. In recent
years it has become increasingly difficult to attract new people
to the outback location of the company, which has forced the
company to open small branches in 4 major (university) cities.
The company tries to keep projects as co-located as possible
and in most cases manage to keep projects on one site, maybe
with one or two people from other sites participating. However,
in some occasions projects have to be manned with 1-3 persons
from each of 3-5 different sites.

Case VI (anti-case): This case is the complete opposite of
the other cases as it describes an extremely co-located setup
where everyone on the project team is in the same room at the
same time. The purpose of this case is to uncover CM solutions
that are implemented differently on a DD project and CM
solutions that are simply “implemented by communication” on
a co-located project. A group of 8-10 students has to produce
an application to manage motorcycle competitions [11]. They
work closely together with a customer, develop following
eXtreme Programming and are being coached by two older
students who have done the project previously. The team has
its own room where all project activities takes place and
everyone works in the room at the same time. Each iteration
starts with a two-hour planning game and ends with an eight-

hour programming session. In between up to four hours of
individual work per student can be spent on spikes (e. g.
looking through the code for bad smells/missing unit tests,
looking into how to use Ant for the release, baking cake - or
whatever the team feels they need in preparation for the
programming session). The project runs for 6 iterations and the
final (and fourth!) release is complete with applications, user
manuals, source code, and technical documentation.

B. Configuration Management basics
In this sub-section, we give a short introduction to the most

important concepts and principles in CM. It serves as a
reminder to the knowledgeable readers and will make it easier
for the uninitiated reader to follow our subsequent discussions
and reasoning.

Configuration Management

Traditionally CM is considered as consisting of four
activities: identification, control, status accounting and audit
[14].

The purpose of the Configuration Identification activity is
to make sure that all the important parts of a project are
identified and put under configuration control. These
Configuration Items are described and defined and it is decided
how the Configuration Items should be named and structured
to allow easy retrieval and recognition/identification. Defined
groups of Configuration Items can make up configurations
(like a requirements specification) and Configuration Items can
be related to other Configuration Items to give traceability (like
tracing a requirement to its tests and implementation).

In Configuration Control focus is on managing changes to
configurations. Once a given configuration is stable a Baseline
is defined for that configuration. The only way to make
changes to a baseline is to create a Change Request (problem
report, deviations, waivers are synonyms) and take it through
the change management process. The central part of that is the
Change Control Board that makes decisions about whether to
accept or reject a Change Request based on information
provided and that subsequently follows the status of the
Change Request through to its closure.

Configuration Status Accounting is the activity that can
provide all sorts of information to all sorts of people.
Traditionally it is looked at as producing printed paper reports
of information about the status of the change management
process for the project manager with regular intervals.
However, more generally the status accounting activity can
make available also more dynamic information (like “who is
changing this file”) through other types of media (like a wiki)
and for other types of “customer” (like testers).

Finally, Configuration Audit has the purpose of making
sure that we are ready to deliver what has been promised and is
done in a more formalized way prior to release. The Functional
Configuration Audit is a sanity check on whether the
prescribed change management process has been followed –
have all the accepted Change Requests gone through all steps
of the process to end up in the “closed” state. The Physical
Configuration Audit checks whether all the physical parts (like
memory card, user manual or help files) of the product are

there and correspond to their description. The Configuration
Audit activity can benefit very much from information
provided by the Status Accounting activity.

Software Configuration Management

When you are working with products that are digital
information it is very easy to obtain a copy of the whole
product and work on that instead of just the sub-part(s) that
need to be changed. This way of working has many
advantages. It becomes possible to test your change or
contribution in the proper context, it is sometimes necessary to
implement cross-cutting features or bug-fixes, and it creates a
stable working environment that protects you against the
Shared Data problem [2].

However, there are also a number of potential problems
with this way of working. As Babich points out, the creation of
copies of the product gives rise to the Double Maintenance
problem where changes or contributions to one copy have to be
implemented also in the other copies [2]. This is an error-prone
process since changes or contributions may be physically
overlapping (modifying the same pieces of information) or
logically overlapping (modifying related or dependent pieces
of information). The co-ordination and integration of these
parallel changes may also give rise to the Simultaneous Update
problem where part (or whole) of a change or contribution
becomes overwritten and disappear [2].

If co-ordination and integration is not always an easy task
in a co-located setup where oral communication is possible, it
becomes even more difficult for a virtual team in a distributed
setting where oral communication is difficult or impossible.
Piri et al. document that a number of parameters suffer from
distribution amongst others co-ordination. This may possibly
be due to a degraded performance on parameters like
communication, team trust, mutual support and effectiveness
[15].

Version control tools implement a number of concepts and
principles that can be used to counter co-ordination problems
[8]. The concepts of a workspace and a repository can be used
to avoid the problem of Shared Data. The Double Maintenance
problem is handled by the merge functionality of the tool and
can be made more flexible and powerful if the change set
model is supported. The Simultaneous Update problem is more
tricky and needs much care. A concurrency checking
mechanism makes sure that information in the repository will
not be overwritten by mistake in case of physically overlapping
changes, but the merge functionality may still overwrite
information in the workspace. Long transactions (or atomic
commits) make sure that all of the intended change or
contribution goes into the repository, thus avoiding inconsistent
states in the repository. Finally, strict long transactions ensure
that we will not get logically overlapping changes into the
repository unless they have been integrated and co-ordinated
into the workspace first. Our assumption is that version control
tools are good collaboration tools too and used in the right way
can make it easier to co-ordinate changes and contributions in
the absence of oral communication in a virtual team.

III. CATEGORIZING CHALLENGES
In this section, we will elaborate on the initial

categorization that we have made previously in [5]. It served
well for our original primary purpose – to find the challenges
that exist when dealing with distributed development and to get
a first impression of how much configuration management
could do to help with those challenges. However, working
down into the details and trying to look more at the
configuration management solutions to some of those
challenges the limitations of this initial categorization became
clear. We needed better and more precise working definitions
of the relationships to configuration management, we needed to
bring down the number of challenges to a manageable number
and to make them more homogeneous in size, and we needed
to work more on the classification of the resulting challenges as
it turned out from our initial analysis and discussions that there
were many “grey zones”. Here we report on the results of that
work.

A. Challenge relationships to Configuration Management
We maintain the four relationships from our previous work,

but give more extensive and precise definitions. This will make
it more clear what is meant and in turn make it easier to
categorize the different challenges.

Strongly related: This type of relationship is characterized
by a responsibility from Configuration Management since it
regards a challenge that is either completely within the domain
of Configuration Management (as defined in section 2) or
where the majority of the problem can be solved by applying
Configuration Management concepts and principles. This
means that for this category of challenges Configuration
Management should be the driver in creating a solution and
carry out the core part of the work, but may in some cases need
some help from other fields. In some cases Configuration
Management will have to “think out of the box” since a
solution to the challenge in the distributed development case
will be different from what would work in the co-located case.
The negligence of a strongly related challenge will often have
severe consequences on a distributed development project as it
is negligence of configuration management.

Weakly related: For this type of relationship, we intend
challenges that are not a Configuration Management
responsibility and that do not lie within its domain. Since
Configuration Management is about providing infrastructure
for all types of projects, it will sometimes have data or
functionality that is primarily used for Configuration
Management purposes, but which might also be useful in other
contexts. In such a case some other field is responsible for
addressing the challenge and be the active driver,
Configuration Management will then act at the passive
provider of data or functionality that can be part of a bigger
solution. From a Configuration Management point of view, the
negligence of a weakly related challenge will not have severe
consequences, though it may have so from other perspectives.
In some cases it may also happen that Configuration
Management activities are affected by a weakly related
challenge.

Related, but not particular to distributed development:
Challenges in this category have caused us many discussions.
On the one hand they are core activities of – or close to –
Configuration Management (thus being strongly related), on
the other hand we, as Configuration Management practitioners,
did not see why they had to be any more a challenge to a
distributed development project than to a co-located one. Most
of our discussions and clarifications were not so much on how
related challenges were to Configuration Management, but
rather on whether there was anything in particular for the
distributed development case. So in this sense, the alternatives
to placing a challenge in this category are not the weakly or not
related categories, but the strongly related category (though
there may be some border cases). Challenges are put in this
category if: the probability or risk that we will experience the
challenge does not increase when going from a co-located
setup to a distributed development one; the challenge does not
get more difficult (or different) to fix and implement when
moving from a co-located to a distributed development setting.

This category serves as a "reminder" to everyone (decision
makers, Configuration Management practitioners, developers)
involved in a distributed development project to always
remember to address these "standard Configuration
Management issues" not just on co-located projects, but in
particular on distributed projects. Apparently some seem to
miss out on these issues since they have been reported in
literature as challenges – they are not and should not be. It is
plain ordinary stuff and does not require you to think out of the
box – just to do as you were taught. However, the fact that such
issues are indeed reported might indicate that the consequences
of ignoring them are more severe on a distributed development
project than on a co-located project.

Not related: These are the least interesting from a
Configuration Management point of view. The involvement
that could be expected from Configuration Management is very
little or none at all. Likewise the impact the challenge could
have on the practice and implementation of Configuration
Management is negligible. This does not remove the fact that
challenges belonging to this category might be important and
have big effects on a distributed development project. It just
means that someone else than Configuration Management will
have to be involved in addressing it.

B. Normalization of challenges
From the previous literature review we did, we managed to

collect 61 challenges of widely varying granularity. We
categorized them into the four different categories above
according to their relationship to Configuration Management.
However, it soon turned out that there were too many and too
heterogeneous challenges for the categorization to be useable
and useful. So we decided that we had to refactor the
categorization, to unify similar or identical challenges from
different sources, to rename (and redefine) a couple of
challenges to match better Configuration Management
terminology, to remove challenges that were not real and to
aggregate smaller challenges into larger, coherent chunks.

Unified challenges: The easy part of the refactoring was to
“remove duplets” by identifying challenges that had identical

or similar names or meaning. In some cases we had to edit
slightly the terminology for brevity and fit. This unification
effort gave the following challenges: co-ordination, one SCM
environment, communication, collaboration (which in one case
was called co-operation), knowledge management, lack of
baselines, process support, and risk management.

Other challenges needed a little more editing before they
could be unified. Those were “overall visibility” and “group
awareness” that were unified to “(virtual) team awareness”
which takes care of all aspects of providing information about
project status to the team. We unified “project planning” and
“project and process management” into “project management”
handling all aspects of managing a project from a manager’s
perspective. Finally, “scope and change management” was
edited to “change management” which is a standard
configuration management activity.

Removed challenges: We also decided to remove some
challenges from the list for various reasons. First of all
“software configuration management” as we do not see that as
a challenge – rather it is the “tool” that we want to apply to
manage the challenges. It may seem like a challenge to get it
right to outsiders, but it is no more difficult than any other field
in software development. The “time zone differences”,
“physical distance” and “cultural differences” we see as
general characteristics of distributed development and in turn
they give rise to the other challenges and are covered by those.
We also see “language barriers” as a too general challenge and
something that is often also a challenge on co-located projects.

Aggregated challenges: Coming from four different
sources, it could be expected that the challenges would have
different granularity and that challenges would have
overlapping definitions. However, even from the same source
challenges would range from very specific and narrowly
defined challenges to much more broad-sweeping and fuzzily
defined challenges. So we decided to aggregate challenges that
we judged to belong to a more general challenge and in some
cases split a challenge into two different aspects that were then
in turn aggregated to the challenges they belonged to.

The challenge “project management” was extended to
include “task allocation”, “schedule management”, tracking
and control” and “quality and measurement” that we consider
activities a project manager has to handle when running a
project. We included the challenges “tracking and control” and
“dispersed software teams do not get information on what other
teams are doing” in the definition of the “(virtual) team
awareness” challenge to reflect the kind of information that
developers could be interested in. For the “change
management” challenges, we extended it with “re-plan
activities due to scope floating across teams”, “the definition of
modifications or problems to be handled is unclear”, “delay
and increased time required to complete change requests” and
“change requests are handled at various levels in the project”
so it would now reflect all aspects related to the change
management activity. The challenges “synchronizing work
between distributed sites”, “artefacts with different versions
and content at each site”, “minimizing dependencies between
distributed teams” and “dependency” we considered to be
different aspects of “co-ordination”. The challenge “different

knowledge levels or knowledge transfer” got included in the
more general challenge “knowledge management”. Finally,
“one SCM environment” was extended to include the challenge
“project should define one build co-ordinator” and the
configuration management tool aspects of the challenges
“differences in technologies used” and “tool selection”.

C. Resulting categorization
The work we did in restructuring the original challenges to

make them more uniform also caused changes in the
categorization we had previously made. Some challenges were
moved to another category based on a more careful analysis
making use of the cases from section 2. However, most of the
moves between categories were caused by the definitions of the
challenges becoming more precise and explicit – in some cases
that would extend the “domain” of the challenge in other cases
it would restrict the “domain” and exclude some things that
were related to configuration management. Still, we have to
point out that there are some border cases where it is not
obvious whether a challenge strictly belongs to one category or
another.

A: Strongly related: This category of challenges either
belong to tasks that are considered core configuration
management activities or where configuration management
will be able to work as driver and supplier for most of the
solution(s) to the challenge.

This category consists of the following challenges (in un-
prioritized order):

• co-ordination

• one SCM environment

• communication

• collaboration

• change management

• knowledge management

• (virtual) team awareness

B: Weakly related: The challenges in this category do not
belong to the responsibility of configuration management.
However, since configuration management collects data and
provides infrastructure on projects, it can be part of a solution
created by other people.

This category consists of the following challenges (in un-
prioritized order):

• project management

• trust

C: Related, but not particular: Much to our surprise as
configuration management practitioners, there were a number
of challenges that we considered pure negligence of well-
known configuration management concepts and principles.
Ignoring those would create a challenge to any project, whether
distributed or co-located. So these challenges should not really
have been there in the first place.

This category consists of the following challenges (in un-
prioritized order):

• lack of baselines

• all CIs required for a build should be put under CM

• establish and clarify CM before starting project

• CM engagement in the beginning should be prioritized

• difficult to know the traceability of each module

D: Not related: We did not do very much work on
“normalizing” challenges in this category. Apart from the easy
unifications (“process support” and “risk management”), once
we had established that a challenge was not related to
configuration management we did not do any more work on it.
The list contains challenges like “need of office space”,
“different stakeholders”, “code ownership” and “process
support”. It was an interesting and pleasant surprise to us that
in the end this category only contained 19 (counting out the
unifications) out of the original 61 challenges – less than one
third.

IV. BEST PRACTICES (FOR TEAM AWARENESS)
In this section, we will present and discuss three different

cases. We will both present the case setup, describe the
processes and tools used, analyse what kind of problems they
ran into, discuss ideas for why they ran into problems and
sketch how these problems could be countered. Analysis and
discussion of problems and solutions specifically related to the
cases will be given here, whereas a more generalized analysis
and discussion of problems and solutions related to co-
ordination and integration will be given in the next section.

A. Multinational software company
This is a multinational company with development sites

around the world (case IV from section 2). The systems are
very large and spans over several repositories. The systems are
based on hardware platforms and operating systems from
different vendors and the repository setup is inherited from the
vendors. The company avoids working with virtual teams as
much as possible, but the setup sometimes require multi-site
teams for certain feature implementations.

The version control is handled with git, a tool that
implements long single transactions. But due to the size of the
systems and the inheritance from the vendors, this effect is lost
when the implementation of a change spans over several
repositories. It becomes difficult to keep track of when a
change is fully delivered. The solution is to add metadata in the
systems for issue tracking and requirements handling. A more
severe problem, although less frequent, is to foresee the effect
when a change that spans over several repositories is removed
from one of the repositories.

Large systems in combination with distributed organization
and virtual teams makes it difficult to trace how the systems
evolve and the reason for certain changes. In practice, it is
solved by “heroes” in the organization taking a major co-
ordination responsibility, acting as information hubs where
they spend a lot of their time answering questions and helping

others. It makes the projects vulnerable when it comes to
resource handling.

Communication about changes often takes place in the code
review system which means that the discussion occurs after the
code is created. When working in virtual teams across physical
distances this, in combination with cultural differences and
time zone differences, creates a couple of problems. One is that
since you don’t know the person that will review your change,
you don’t want to look bad by making bad looking changes
(there are also cultural issues in this area). This gives that
developers will want to make their changes complete before
submitting to anyone else for review and the changes that are
uploaded for review becomes rather big and difficult to review.
Another problem is that the solutions are not reviewed until a
lot of time has been invested in creating code and developers
are therefore reluctant to do major changes to the solution after
reviews.

B. Student projects
At Lund University students do a software development

project following an agile method at their second year of study
at the Department of Computer Science [11] (case VI in section
2). The students are strongly encouraged to work co-located
and thus not use their spike-time for programming. Usually
students do as they are told, but there is one situation in
particular where we have discovered that they "break the rule"
– when doing major refactorings. Small refactorings are
usually done as part of the stories or tasks, but sometimes they
have the need to do a major refactoring. It can be either
because they have ignored the small refactorings and built up
too much technical debt – or because they have arrived at story
18 which introduces a new type of competition forcing them to
change their basic data structure and thus refactor most of their
code. We have during the years identified three different ways
that our students address major refactorings: the good, the bad,
and the ugly.

The ugly way: We often hear horror stories from groups
that have “broken” our restriction that no programming should
take place outside the Monday sessions. To gain time – and
maybe with the good intention of not disturbing the others –
some groups decide during the Wednesday planning game that
they need a major refactoring of the code base and the task is
assigned to a pair to do during the spike-time so there will be a
clean, refactored code base to work on on Monday morning. In
reality the group now shifts from working co-located in the
same time-zone to experiencing all the thrills of time-zone
differences. The pair doing the refactoring has no problems.
They start from a working code base (compiles, passes unit and
acceptance tests) and carefully carry out the refactoring step-
by-step making sure that everything still works after each step.
And in the end they deliver a code base that works (compiles,
passes unit and acceptance tests) and is refactored (either
having removed all bad smells or having implemented the new
data structure and modified the code accordingly). On Monday
morning they happily report that they have done their work and
that everything works – and the group starts working. When
the first pair does an update – either immediately because they
want the refactoring or later when they have finished their task
– disaster strikes and they get a lot of merge conflicts because

large parts of the code they have changed to implement their
task was also changed during the refactoring. Gradually as also
other pairs do updates progress slows down and comes to a
grinding halt – complete chaos. We have heared of different
ways of getting things back on track, but most often what
happens is that after some hours of confusion and unsuccessful
attempts to solve the merge conflicts, they give up, abandon
their messy workspaces and check out a new clean workspace
– effectively erasing all the work they had done on their tasks.
The worst case of “ugly” is when some of the pairs – maybe in
an attempt to solve (or have solved) the merge conflicts –
commit to the repository. Then they have to figure out how to
return to the “good configuration” they had on Sunday evening
just after the refactoring.

The bad way: Some groups adopt the habit of committing
their workspaces at the end of each programming session.
Maybe because they have heard of the huge merge conflicts
from refactorings, maybe because they don’t trust their
workspaces to be there when they return a week later. In their
case they will not experience merge conflicts since the
refactoring is not done in parallel with other work. However,
they will break the important configuration management
concept that each commit should be a coherent and complete
logical change. If they commit whatever they have at the end of
the day, these commits will often be half-done tasks that do not
pass all the unit tests and might not even compile. Our students
don’t look back, so for them it is not important to identify past
logical changes in the repository. However, they will still suffer
from the confusion caused by the many half-baked tasks that
suddenly appear in their workspace when they check it out on
Monday morning. In fact, sometimes pairs doing the
refactoring complain that they also have to complete some of
these half-done tasks to make sense of their refactoring.

The good way: This year we studied one team that
“eliminated” the problem of “time-zone distance” and did it the
right way. They designed the refactoring during the spike-time
and split it up into 6 smaller tasks, but the actual refactoring
coding was done during the Monday lab with all the other pairs
present and working in parallel. Whenever a task was tested
and verified, it was committed and all other pairs were asked to
update and integrate. In all the refactoring took 5 hours to
implement and caused no problems. There were two small
merge conflicts: one insignificant that was solved in a couple
of minutes by the pair that was hit; one that hit another pair and
took about 5 minutes of communication between the two pairs
to put right (4th and 6th step respectively). Given the ease with
which the steps in the refactoring were integrated indicate that
at least in this particular case they would also have been able to
handle the time-zone differences of a virtual team. Had the 6
tasks of the refactoring been committed to a separate branch,
each pair could have integrated them step-by-step when they
started working on Monday morning. However, in case of
major problems this will not be possible to do without
communication and might in some cases cause some of the
refactoring steps to be re-done in the light of the resolution of
the conflict.

C. Consulting company
A consultant company with a mix of on-site assignment and

in-house development assignments (case I in section 2). The in-
house projects are usually quite short and typically engage 2-5
developers. The teams are co-located but when the project
ends, the consultants move on to other assignments. When
maintenance work or an upgrade project is started, it is quite
common that the allocation is solved with other consultants
than in the first project.

Here it becomes difficult to communicate since the work is
spread out in time rather than in physical location but the effect
when it comes to communication is similar. Since consultants
continuously move in and out of projects, it is important that
the processes do not rely on physical meetings even though the
organization believes in agile methods.

Small organizations tend to document their work less than
large ones since it is often easy to get hold of the person that
holds some specific knowledge. But when the organization
changes heavily over time, documentation becomes essential to
maintain knowledge about the products and processes. It is
unlikely though, that the developers in a small team feel the
urge to document their work for people that may want to read it
in the future. Here we can apply the same thoughts as in the
student case. Since communication is impossible due to
changes in the team constellation over time, the refactoring
problem pattern from the student case is present here in a larger
scale. The need to be able to follow a chain of changes rather
than getting a major “big bang change” can be essential to
understand the work of a developer that is not available to
explain the change.

V. DISCUSSION
In this section, we widen and generalize the analysis we

have done for the single cases in the previous section. We will
also discuss how our findings relate to other people’s work.

The general lesson from cases B and C is that putting each
single, small step as an explicit commit (or change set) is better
than having one big commit since it gives the possibility to
integrate step-by-step in each distributed workspace. Having to
integrate a big change into a mainline that may have undergone
big changes too, as in figure 1 (a), will according to the Double
Maintenance problem [2] run a high risk of getting serious
problems. In fact in case B many student projects have suffered
from that experience. In particular when we are dealing with
time-zone differences, it becomes important to leave this
possibility – and to actually do the integration step-by-step, as
in figure 1 (b). Often people are tempted to go directly to the
final version on the branch (the end result) and integrate that
version since it is already available. This, however, will
effectively work as if they were taking in the big commit, as in
figure 1 (a) and create the same problems. The right approach
would be to integrate changes step-by-step and put possible
minor problems right before taking the next step.

One potential problem with this approach in a time-zone
difference setup is, that in case it starts to “go wrong” we
cannot give feedback to the team working on the branch so
they can “change direction” – they have long since done their

work and cannot change course. In most cases we should be
able to work our way out of it since the compounded change on
the branch is supposed to have been tested and work. If not,
there is always the possibility to branch the branch and finish
the implementation in more synchrony with the task that had
problems. This, on the other hand, will create a more complex
situation if other people have already co-ordinated with the
original branch. So it will be a trade-off what would be the
better option.

Figure 1. Big vs. small commits

However, an added bonus from doing small commits is,
that it allows for much better understanding of what has
happened since it can be understood step-by-step instead of
having to study only the compounded change. This will
become even easier if traceability information is present to
other valuable information like commit comments, change
request or requirement, or other documentation. This is
particularly important in the case of time-zone differences
where the possibility of oral communication (dialogue) is
difficult or impossible, which to some degree is present also in
case A.

A variant on the big commits from figure 1 (a) is that of big
integrations. In big and formal organizations you often see a
division of labor and responsibility. Programmers are
responsible for programming a change, integrators are
responsible for integrating changes from programmers and
testers are responsible for testing the integration. This setup
combined with distributed teams has a tendency to develop into
big-bang integration, as in figure 2 (a). Contributions queue up
and wait for the integrator to pick them up. The big-bang
integration has the same potential problem as the big commits,
that it increases the possibility of integration problems. These
problems can, to some degree, be countered by being very
careful to ensure that all contributions are physically and
logically separate. Otherwise, a better approach is to
continuously integrate contributions as they become available,
as in figure 2 (b), an approach that has proved its worth in the
context of agile development methods [3]. Taken to the
extreme, contributions are not just integrated continuously but
also tested and delivered continuously [12]. In this way, we can

make sure that the “integration bottleneck” is not just shifted a
little further down the line, but that each and every contribution
is deployable.

Figure 2. Big-bang vs. continuous integration

Other people have done work that is related to what
developers can do to co-ordinate their efforts. Gupta et al.
found that people rarely communicate and collaborate in
planned ways but most often make ad-hoc decisions [10]. This
may indicate the need for a collaboration framework that is
based on asynchronous collaboration through a knowledge
base. A configuration management database could provide at
least part of such a more flexible framework. This
configuration management database could also be used to build
trust in a virtual team by increasing the information and
awareness about what is going on in the project. Piri et al. point
out that lack of trust is one of the problems that have to be dealt
with on a virtual team in a distributed setup [15].

Alyahya et al. address the problem that distribution makes
it hard to create awareness about what changes go on and at
what point they are [1]. This affects developers’ understanding
of development progress. They propose a holistic approach to
manage the development progress where they monitor Unit
Testing, Acceptance Testing, Continuous Integration and
Source Code Versioning. This is quite similar to what happens
in the Configuration Control activity after a Change Request
has been approved and assigned [14]. They state that it can be a
problem that developers can forget to update the status when it
has to be done manually, but following traditional
configuration management standards such misses will be
caught by the Configuration Audit. Finally, the overall
awareness they aim at with their proposal is little more than
what is (or could be) provided by traditional Configuration
Status Accounting [14].

In the case of time-zone differences there was much focus
on the usefulness of small commits to allow for easy
integration. In the case of physical distance, on the other hand,
we are working in parallel with and at the same time as others.

Therefore the focus will shift to that of needing awareness of
what else is going on and – more importantly – how that might
possibly conflict with and influence what we are doing.
Traditionally awareness has been limited to what happens in
the repository and additional traceability information from the
configuration management system since there was no access to
personal workspaces. However, with the advent of distributed
version control systems we now have the possibility to more
closely follow that other people are doing almost in real-time.
So we would be interested in continuously doing “virtual
merges” [4] to discover physical, syntactical, semantical or
logical conflicts as soon as possible. Guimarães et al. propose
such real-time integration done in a special merge workspace
with the possibility to notify developers of possible problems
[9]. Brun et al. carry out “speculative analysis” on all the
possible combinations of the state of the repositories of all the
developers on a project [6]. Based on this they can supply the
developers with information about actual, present conflicts and
their severity. This allows developers to act and remove
possible conflicts before they grow too big.

Figure 3. Expanded vs. compressed history

The awareness of what is going on in the project will also
be improved by the use of small commits as recommended
above. However, a general drawback of the small commits is
that the version history becomes too detailed, as seen in figure
3 (a). All this detail is for only one change or contribution and
it is easy to see that it does not scale without people loosing
“the big picture”. It is often seen that the way people try to
create overview is by “removing” the intermediate versions.
This is not only a violation of one of the most important
principles of version control, it also removes the possibility to
later understand what was done or to later integrate step-by-
step the change to another context. The proper way of dealing
with the problem would be for the version control tool to allow
to view the version tree at two different levels of detail – one
for the detailed description of each single commit (and merge)
and one for maintaining an overview of the important results,
as seen in figure 3 (b).

VI. CONCLUSIONS
It has surprised us as configuration management experts

and practitioners that so many “related, but not particular”
challenges have been reported for distributed development.
These are things that would bring even a co-located project into
troubles if neglected. To us that is an indication that
configuration management might be easier to ignore on co-
located projects because there are other mechanisms for
communication and knowledge exchange.

However, on a distributed project a responsible project
manager may use our categorizations to gain knowledge of
what challenges he can bring to the configuration manager to

solve – either completely or in part. Likewise, developers on
distributed project can look up an experienced challenge on the
list and if it happens to be strongly or weakly related to
configuration management they could request help in dealing
with it.

Configuration managers can use the lists to get a better idea
of in which ways they can help out distributed projects. What
challenges will be considered their responsibility and what
challenges will they be able to help out with. For the solutions
to the challenges they will in most cases consist of plain
implementations of well-known configuration management
concepts and principles, in other cases more creativity is
required for the implementation.

From our analysis of the challenges on distributed
development projects reported in literature, it turns out that
most of those – almost three quarters – are either strongly or
weakly related to configuration management and therefore
have solutions.

So, distributed development does not have to be all that
challenging after all.

ACKNOWLEDGMENT
We would like to thank Jan Magnusson, Sony Mobile

Communications, Sweden, Marc Girod, Ericsson, Ireland,
Torben Poulsen, Thy:data, Denmark and Ulf Steen, ABB,
Sweden for comments, ideas and provision of cases.

REFERENCES
[1] S. Alyahya, W. K. Ivins, W. A. Gray: “Co-ordination Support for

Managing Progress of Distributed Agile Projects”, in Proceedings of the
First Workshop on Global Software Engineering for Agile Teams,
Helsinki, Finland, August 15, 2011.

[2] W. A. Babich: “Software Configuration Management – Coordination for
Team Productivity”, Addison-Wesley Publishing Company, 1986.

[3] L. Bendix, T. Ekman: “Software Configuration Management in Agile
Development”, in I. G. Stamelos, P. Sfetsos (Eds.) “Agile Software
Development Quality Assurance, IGI Global, February 2007.

[4] L. Bendix, P. Emanuelsson: “Requirements for Practical Model Merge -
an Industrial Perspective”, in Proceedings of the 12th International

Conference on Model Driven Engineering Languages and Systems -
MODELS '09, Denver, Colorado, October 4-9, 2009.

[5] L. Bendix, J. Magnusson, C. Pendleton: “Configuration Management
Stories from the Distributed Software Development Trenches”, in
Proceedings of the 7th International Conference on Global Software
Engineering, Porto Alegre, Brazil, August 27-30, 2012.

[6] Y. Brun, R. Holmes, M. D. Ernst, D. Notkin: “Proactive Detection of
Collaboration Conflicts”, in Proceedings of ESEC/FSE, Budapest,
Hungary, September 7-9, 2011.

[7] S. S. M. Fauzi, P. L. Bannerman, and M. Staples: “Software
Configuration Management: A Systematic Map”, in Proceedings of the
17th Asia Pacific Software Engineering Conference, Sydney, Australia,
November 30 – December 3, 2010.

[8] P. H. Feiler: “Configuration Management Models in Commercial
Environments”, Technical Report, CMU/SEI-91-TR-7, Carnegie-Mellon
University, Pennsylvania, March 1991.

[9] M. L. Guimarães, A. Rito-Silva: “Towards Real-Time Integration”, in
Proceedings of CHASE’10, Cape Town, South Africa, May 2, 2010.

[10] M. Gupta, J. Fernandez. “How Globally Distributed Software Teams
Can Improve their Collaboration Effectiveness”, in Proceedings of
ICGSE, 2011.

[11] G. Hedin, L. Bendix, B. Magnusson: “Teaching Software Development
using Extreme Programming”, in the book "Reflections on the Teaching
of Programming" (J. Bennedsen, M. E. Caspersen, M. Kölling (Eds.)),
Lecture Notes in Computer Science, Vol. 4821, Springer Verlag, May
2008.

[12] J. Humble, D. Farley: “Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation”, Addison-Wesley
Signature Series, August, 2010.

[13] M. Jiménez, M. Piattini, and A. Vizcaíno: “Challenges and
Improvements in Distributed Software Development: A Systematic
Review”, Advances in Software Engineering, Volume 2009, 2009.

[14] A. Leon: “Software Configuration Management Handbook”, (second
edition), Artech House, 2005.

[15] A. Piri, T. Niinimäki: “Does distribution make any difference?”, in
Proceedings of the First Workshop on Global Software Engineering for
Agile Teams, Helsinki, Finland, August 15, 2011.

[16] L. Pilatti, J. Audy, R. Prikladnicki: “Software Configuration
Management over a Global Software Development Environment:
Lessons Learned from a Case Study”, in Proceedings of the International
Workshop on Global software development for the practitioner,
Shanghai, China, May 23, 2006.

[17] F. Q. B. da Silva, C. Costa, A. C. C. França, and R. Prikladnicki:
“Challenges and Solutions in Distributed Software Development Project
Management: A Systematic Literature Review”, in Proceedings of the
5th International Conference on Global Software Engineering,
Princeton, New Jersey, August 23-26, 2010.

