
Configuration Management support for
Distributed Software Development

Lars Bendix
Department of Computer Science

Lund University, Sweden
bendix@cs.lth.se

Jan Magnusson
Sony Mobile Communications

Lund, Sweden
Jan.Magnusson@sonymobile.com

Christian Pendleton
Softhouse Consulting

Malmö, Sweden
Christian.Pendleton@softhouse.com

ABSTRACT
In an ever more globalized world, there are many advantages from
doing distributed development. However, geographically
distributed development is generally recognized as being much
more challenging than traditional co-located development and
therefore companies are often hesitant to “go distributed”.
Configuration management is a basic service that provides the
infrastructure for projects and organizations. In this paper, we
analyse the role that configuration management can play in the
context of distributed software development. From a configuration
management point of view a good part of the challenges from
distributed development can be dealt with by applying traditional
configuration management concepts and techniques, many
challenges can be alleviated by extended support from
configuration management – and then there is a group of
challenges left that will have to be dealt with in other ways.

Keywords
Configuration Management, distributed development, challenges,
experience.

1. INTRODUCTION
Distributed software development is becoming more and more
popular and for many good reasons. It gives a larger pool from
which to recruit talents and specialists, allows cooperation
between companies and/or departments, facilitates integration for
mergers and acquisition, allows around the clock work, and gives
more flexibility in scaling up and down projects. However, the
coin also has a flipside and companies that do practice distributed
development report problems of many different kinds.

So apparently something bad happens when we move from co-
located development to distributed development. Something that
means we lose control over our projects when we do “business as
usual” like the distributed project was a co-located one. Why is
that so and what is it that goes wrong?

We, as configuration management experts and practitioners, were
rather puzzled with that fact. In our view, configuration
management (CM) was put into the world exactly to handle
certain aspects of distribution on traditional projects. On
traditional waterfall projects developers are often distributed.
Rarely requirements engineers, designers, testers and
programmers are sitting at the same place at the same time. CM
principles and techniques make sure that all the “handovers”
between the different groups are controlled and done in an orderly
way [6]. Even programmers are rarely at the same place at the
same time and often work in parallel – and CM principles and
techniques keep the team productive all the same [1]. CM even

handles when development and maintenance makes work
distributed in time. So, what is the big deal about this distribution?

Was there something that we did not understand – or was there
something that others had overlooked [2]? We decided to look
into the reported challenges by reviewing existing literature and to
investigate to what degree they could be handled by using
traditional CM principles and techniques. For this analysis we
exploited our own expertise in CM as well as a number of
practical cases from the project [2]. Finally, we wanted to explore
if, extending and building on the concepts of what CM is, we
could provide further help to distributed projects. This led to the
categorization of challenges into three groups of strongly, weakly
and not related to CM. For the latter category of challenges CM
cannot help, whereas for the other two CM is able to solve or
alleviate the challenge.

In the following, we first detail our research method and discuss
related work. We then present the results of our analysis and
discuss the motivations before finally drawing our conclusions.

2. RESEARCH DESIGN AND RELATED
WORK
Our primary goal was not to look for challenges in general for
distributed software development, but rather to identify how CM
can help – directly or indirectly – to support distributed
development efforts. For that reason we looked to literature for
establishing what challenges are particular for distributed efforts
in comparison to co-located efforts. We ended up with da Silva et
al. [8] and Jiménez et al. [5] as the most substantial studies. There
are many others, most of them reporting on single cases, but they
could not add anything significant to the compound list from [8]
and [5].

Jimenez et al. base their compilation on the review of 78 other
studies and come up with 10 different challenges that are rather
broad-sweeping in nature and therefore more difficult to handle
when going into details. da Silva et al., on the other hand, come
up with a rather detailed list of 30 specific challenges compiled
from a review of 54 other studies. Obviously there is some
overlap between the two reviews, but they also complement each
other well. In addition da Silva et al. also present mappings
between best practices and challenges, and between tools and
challenges. However, we find it problematic (from a CM point of
view) that they can only map the “deploy a configuration
management system” best practice to the “effective
communication” and “trust” challenges – and that the “change
management tool” (apparently they do not consider configuration
management tools) only maps to the “cooperation” and “scope
and change management” challenges. The challenges per se,
though, seem to fit nicely with those reported by others.

We also looked for prior art about CM in the context of
distributed software development, but apart from reports from
singular cases we were able to find only the studies by Pilatti et al.
[7] and by Fauzi et al. [4]. Pilatti et al. report on 4 cases they have
studied, whereas Fauzi et al. review 24 different reported studies.
Both studies add more – potentially configuration management
related – challenges to the compound list from [5] and [8].
However, we find problems in their claimed scope and in how
they handle CM concepts and principles. We find that “all
configuration items required for a build should be put under CM”
[7] and “lack of a planned baseline” [4] should not be challenges
since they are CM fundamentals that, if ignored, will leave any
project – distributed or co-located – challenged. Furthermore,
some of the reported challenges are more closely related to CM
than others – while other challenges (like “lack of coding
standards” [4]) are not related at all.

The compound list of distributed development challenges was
then analysed from a configuration management point of view to
find which challenges were strongly related to CM, which were
weakly related to CM and which were not related to CM at all.
Each of the authors has more than a decade of experience from
CM. We also had 6 practical cases to refer to so we were able to
discuss most challenges in practical contexts. Our primary focus
was on the categorization of the challenges and not on finding
solutions.

3. RESULTS AND DISCUSSION
In this section, we present the categorization of their relationship
to CM that resulted from our analysis of the compound list of 61
challenges we found in literature. For the categorization we
decided on three categories (strongly, weakly and not related to
CM), though there can be no clear-cut division of the challenges
since their degree of relationship to CM is not binary, but rather a
continuous scale. So to get the detailed picture you need to read
also the fine print [3]. However, the overall picture from the
categorization will give a good idea of which challenges can to a
large part be solved by CM, which you can get more or less help
for – and which are outside the domain of CM (but may be
solvable by others).

In the following, we will present a couple of examples of
challenges from each of the three categories, motivate why they
belong to a certain category and briefly discuss the CM principles
and techniques involved. More examples and more details can be
found in [3], but this brief overview should demonstrate how it
works.

3.1 Strongly Related to CM
The main message of this sub-section is that CM is there and for
some of the challenges it can actually solve the problem – you just
have to use it. That a challenge is strongly related to CM means
that it is mostly or for large parts a CM responsibility and already
known to CM. The solution to the strongly related challenges is
the more or less straightforward application of well-known CM
principles and techniques.

Effective communication [8]: In order to communicate
effectively, a group must share common concepts and definitions.
If every piece of information must be built up from first
principles, the signal will contain a lot of noise. CM can help in
many areas by establishing a system for identities, names,
versions, terms and hierarchies (taxonomies), etc, in order to
enable precise communication. It is also the foundation for many
other activities. For example, change management is not really

possible unless you can describe what the change should be
applied to. Likewise, how do you allocate tasks without a well-
defined way of describing what item the task concerns. A well-
designed framework for managing changes to the items defined
can also help to reduce the amount of data that must be
transmitted in every message. If you find yourself having
problems describing tasks, changes or if a release requires long
descriptions of what to send where, you are having CM issues.

Dispersed software teams do not get information on what other
teams are doing [4]: In a distributed team setup, information about
on-going activities will not naturally be passed from developer to
developer across sites. If the only interactions with remote
developers happen through the code repository when artefacts are
retrieved or stored or the repository is queried, developers will be
quite reliant on real time communication in order to avoid or
resolve conflicts. Strategies with well defined tasks and exclusive
areas of responsibility, are only valid if the architecture of the
software worked on is such, that there are well-defined
components with a clear and shared understanding in the
organization of their scope and functionality and when adding two
pieces of seemingly unrelated functionality, the probability for
them to be dependent is low. Even if those two architectural
requirements are fulfilled, the result is not mainly improved
awareness of remote developers activities, but instead a way to
reduce the risk that the communication deficit resulting from a
large and/or distributed development organization affects on-
going development. Another commonly used strategy to tackle the
risk of unnoticed dependencies interfering with on-going work, is
simply to limit the amount of work-in-progress, where continuous
integration would be an example. Strategies aimed at improving
awareness should encourage sharing rather than isolation.

3.2 Weakly Related to CM
This sub-section is probably the most interesting and promising
since this category of challenges has most potential for getting
supportive help from CM – something that apparently has been
overlooked so far. Weakly related challenges are not really a CM
responsibility, but since CM takes care of the repository many
aspects of information and visualization can be supported by CM
if planned and requested. Alleviating such challenges will in many
cases require creativity and out-of-the-box thinking from CM in
the implementation.

Different knowledge levels or knowledge transfer [8]: Great
differences in knowledge levels make collaboration difficult
whether a project is distributed or co-located. It means that there
is the need to transfer knowledge from one party to another and in
the distributed case there are many obstacles to the quick and easy
transfer. These obstacles can be caused physical distance between
sites or the timely distance between the development effort and
the maintenance effort. CM does not deal directly with knowledge
or knowledge transfer, but in the absence of face-to-face meetings
one possibility is to capture the knowledge and make it persistent
so it can be shared. CM routinely captures certain data related to
the configuration items they manage and if needed this data (and
much more) could be elaborated and put together to turn it into
knowledge and made shareable through the repository. One
example could to elaborate the dependency and history
information already present in the CM repository and through that
make program comprehension much easier.

Intellectual property issues/confidentiality and privacy [8]: It may
seem farfetched that intellectual property issues could be related
to CM. However, if a company should get sued for improperly

using code or stops paying the licensing fee, then we want to be
able to identify the code in question and find all the places it is
used. Traceability in general is a core CM principle and even
though traceability for intellectual property issues is not a
standard in CM it can easily be provided if needed.
Confidentiality and privacy issues are closer to CM. Setting up
and handling access rights is a CM responsibility and many
different schemes can cater for situations where, for example, a
remote site can change only certain parts of the items and maybe
not even see other parts. However, setting up firewalls and other
measures to make sure that code and data do not get outside the
company is not a CM responsibility.

Quality and measurement [5]: CM is not directly responsible for
quality even if CM in many companies has been initiated by
request from the quality assurance people. Responsibility remains
with the quality assurance group, but CM can capture and provide
much of the data they need to evaluate the quality. To protect
certain or all configuration items in the repository, CM can set up
quality gates that will have to be passed before changes can be
submitted. CM will always be heavily involved in measurements
and metrics. CM responsibility covers all activities related to the
repository and the change management process – which means
that large parts of what happens on a project. CM must be capable
of catching data and setting up any required metric. It is, however,
the responsibility of others to decide exactly what metrics are
needed.

3.3 Not Related to CM
In this sub-section we will give a few of examples of distributed
challenges that we do not consider as being related to CM. More
examples and extended analyses can be found in [3]. For the
challenges in this category, the line or project manager will know
that he should not bother the configuration manager for help, but
look somewhere else. The configuration manager will know that
the solution to these challenges lie outside of his
competence/expertise and can politely tell the manager to go
away.

Risk management [5]: Risk management can be interpreted as
many things and some people claim that part of what goes on in
the change management is handling of risk. We do not agree with
that and see risk management as a much more formal thing that
deals with analysis of critical paths and consequences of delays
with respect to missing market windows. CM may supply a part of
the data used as input for risk management, but has no part in it
besides that.

Lack of coding standards [4]: The definition of coding standards
is completely outside the scope of CM. The fact that checking for
compliance with coding standards often happens through setting
up quality gates when code is checked into the repository does not
mean that it becomes related to CM. CM can, in general, set up
check-in quality gates, but is not involved in the specific contents.

4. CONCLUSIONS
In a certain sense our initial suspicion was confirmed – distributed
development does not necessarily have to be that particular. In
fact, we found that quite a few of the challenges reported in
literature are due to bad or missing CM. For these challenges there
is an easy fix – as line or project manager, be aware that this

should be the responsibility of the configuration manager and hold
him accountable for it (and if you are a configuration manager,
you now know what you will be held responsible for – so ask your
boss for the resources and support in doing so). For many other
challenges, they are not a direct responsibility of the configuration
manager, but because the configuration manager sits on the
repository where all the important assets of a project are kept, he
can provide you (the manager or the developer) with just about
any kind of information if it is already there or collect it if it is
not. Ask him to do so if you experience such a challenge and be
prepared to possibly pay for it. Finally, there is a limit to what
configuration management principles and techniques can solve –
and for such challenges you know that you will have to ask for
help elsewhere than the configuration manager.

5. ACKNOWLEDGMENTS
We would like to thank Marc Girod, Ericsson, Ireland, Ulf Steen
ABB, Sweden and Torben Poulsen, Thy:data, Denmark for
comments, ideas and provision of cases.

6. REFERENCES
[1] Babich, W. A. Software Configuration Management –

Coordination for Team Productivity, Addison-Wesley
Publishing Company, 1986.

[2] Bendix, L., Magnusson, J. and Pendleton, C. Configuration
Management Stories from the Distributed Software
Development Trenches, in Proceedings of the 7th
International Conference on Global Software Engineering,
Porto Alegre, Brazil, August 27-30, 2012.

[3] Bendix, L., Girod, M., Magnusson, J. and Pendleton, C.
Configuration Management in the Context of Distributed
Software Development, Technical report, Department of
Computer Science, Lund University, Sweden, forthcoming.

[4] Fauzi, S. S. M., Bannerman, P. L. and Staples, M. Software
Configuration Management: A Systematic Map, in
Proceedings of the 17th Asia Pacific Software Engineering
Conference, Sydney, Australia, November 30 – December 3,
2010.

[5] Jiménez, M., Piattini, M. and Vizcaíno, A. Challenges and
Improvements in Distributed Software Development: A
Systematic Review, Advances in Software Engineering,
Volume 2009, 2009.

[6] A. Leon, A. Software Configuration Management Handbook,
(second edition), Artech House, 2005.

[7] Pilatti, L., Audy, J. and Prikladnicki, R. Software
Configuration Management over a Global Software
Development Environment: Lessons Learned from a Case
Study, in Proceedings of the International Workshop on
Global software development for the practitioner, Shanghai,
China, May 23, 2006.

[8] da Silva, F. Q. B., Costa, C., França, A. C. C., and
Prikladnicki, R. Challenges and Solutions in Distributed
Software Development Project Management: A Systematic
Literature Review, in Proceedings of the 5th International
Conference on Global Software Engineering, Princeton, New
Jersey, August 23-26, 2010.

