
Software Configuration Management Issues with
Industrial Opensourcing

Lars Bendix
Department of Computer Science

Lund University, Sweden
bendix@cs.lth.se

Tero Kojo
Nokia

Helsinki, Finland
tero.kojo@nokia.com

Jan Magnusson
Sony Ericsson Mobile Communications AB

Lund, Sweden
jan.magnusson@sonyericsson.com

Abstract—The industrial involvement in Open Source Software
projects is increasing. More and more companies are turning
their proprietary code into open source, contribute actively to the
development of Open Source Software projects or/and use Open
Source Software products as (part of) their own products.
Software Configuration Management provides the infrastructure
that is the foundation for any type of software project. It
facilitates the co-ordination and communication between the
various participants on a software development team. Many
problems and challenges from industrial involvement in Open
Source Software projects have been identified in experience
reports and research papers. A good part of these can be related
to either absence of Software Configuration Management or a
mismatch between what is done and what is needed for a
particular setup. Many companies are used to Software
Configuration Management in a homogeneous and localized
setup and are confused about how to behave when the setup
changes to a heterogeneous and distributed setting. In this short
paper, we investigate Software Configuration Management
lessons learned from the industrial participation in Open Source
Software projects of two major telecommunications companies.
We address what challenges can appear and discuss strategies to
deal with these challenges.

Open Source Software; Software Configuration Management;
industrial experience

I. INTRODUCTION
Open Source Software (OSS) has always had a lot of

attention from industry. However, in recent years the character
of this attention has changed. In the beginning OSS products
were looked at as competitors to proprietary products – or as
products that you could use free of charge. Lately more and
more companies have started to look at OSS as a software
development method – a method that can also be adopted and
used by commercial companies.

The origin and history of open source is open for debate
[17]. However, it seems to start in the early eighties from
Richard Stallman’s Free Software movement whose aim is to
promote the universal freedom to create, distribute and modify

computer software [16]. In the nineties the term OSS comes
into use and is represented by key projects like Apache and
Linux. Key OSS projects from the start of this millennium like
Eclipse and Firefox1 have their origin in code produced and/or
sponsored by commercial companies – and one of today’s
flagship OSS projects, Android, seems to be a primarily
commercial participation project. The plethora of more or less
permissive “free to modify and distribute” OSS licenses will
not be dealt with in this report. We will leave these legal
aspects to others and focus on the fact that the source code is
open – and therefore possible to modify.

Today the direct and indirect involvement of industry in
OSS projects is quite high. More and more companies are
turning their proprietary code into open source [18]. About one
third of the 300 most active projects on SourceForge2 had
industrial involvement in 2007 (and one third of those projects
were founded by a company) [5]. And more than 75% of the
contributions to the Linux kernel come from (people who get
paid by) companies [6]. OSS has moved from a community of
individual developers towards a community of commercial
organizations as industry has adopted the OSS development
method in a way that has been coined “opensourcing” [18].

Software Configuration Management (SCM) is one of the
fundamental capabilities that should be in place in any software
development project and a pre-requisite for being able to carry
out better all activities on a software project [12]. It is
traditionally considered to consist of four activities
(configuration identification, configuration control,
configuration status accounting, and configuration audit) [7]. It
is looked at as a management tool that can help in guiding a
project, maintain the integrity of the product and keep the
quality under control [11]. However, there is a different, but
very related, perspective where it is seen as a developer-centred
discipline that focuses on how to maximize the productivity of

1 Firefox is an OSS project, which delivers a “professional” product that

even naïve end-users can download, install and automatically update.
2 As of May 2011 SourceForge hosts close to 300.000 OSS projects.

a team of developers by providing support for the co-ordination
and communication within the team [3]. Exactly what kind of
SCM is needed on a project and in particular how it should be
implemented depends very much on the specific context.

A good part of the problems and challenges that have been
identified with industrial involvement with OSS development
[14], [15] can be related to issues with SCM. In a previous
work, Asklund et al. have investigated SCM and OSS [2].
Their work was an analysis of how different SCM activities
were carried out by the OSS community at the turn of the
millennium and what lessons industry could learn from that to
apply on their own projects. Many things have happened in the
past decade and in this paper we re-visit SCM and OSS. This
time with special emphasis on what has changed with the
involvement of industry in OSS projects. We analyze
experience from the involvement of two major
telecommunications companies in open source projects from
both usage and participant sides. Between them the two
companies cover a wide spectrum of “participation modes”.
Furthermore, we supplement this by including experience
reported in experience reports and research papers.

Now that they have embraced OSS as a development
method, industry needs to know how SCM should be
performed in this development method. In the following, we
first categorize different ways of industrial involvement is OSS
projects, then we report on experience and strategies for the
different categories and discuss advantages and drawbacks of
different strategies before we finally draw our conclusions
about the lessons learned.

II. INDUSTRIAL PARTICIPATION IN OSS PROJECTS
Industrial involvement in OSS projects can come in many

forms and ways – from doing a little testing to managing a
whole project, from using a single component as-is to
customizing a whole project. In this short paper, we do not
want to discuss ontologies or taxonomies, but we need a
framework to structure and organize the presentation and
discussion of our experience and strategies.

In this section, we will briefly sketch our categorization of
different forms of industrial involvement in OSS. The
categories fall in two main dimensions: contributions to OSS
projects and usage of OSS code/products. Bonaccorsi et al. list
(without much further explanation) three levels of involvement
in OSS projects: collaboration to code development; provision
of code or protocols; and project co-ordination [5]. We will use
their categorization more or less unchanged for our
contribution dimension. There are other aspects, like the size
and complexity of the project or the velocity and size of
changes to the code, which might also be used for
categorization. However, we find that the sketched structure
serves our purpose and will include other aspects where we
find them relevant for our discussion of suitable strategies.

A. Service participation
In Bonaccorsi et al. this type of participation is

“collaboration to code development in different phases and at
different events, like bug fixing, testing or offering services”
[5]. It is a very simplified type of participation that is

characterized by being passive (like testing) or contributing
only very limited amounts of code (like bug fixing). You do
not have commit privileges to the code repository and submit
code changes as patches.

Even if you contribute many bug fixes over a longer period
of time we will consider your contributions as service
participation. Our division is not so much by the quantity of
contributions or the duration of the participation but by the
nature of what and how you contribute. For this reason you will
need and use the same tools and processes no matter how often
and how long your participation lasts.

B. Development participation
“Provision of code or protocols; for example

communication protocols used to share information among
different devices” is how Bonaccorsi et al. characterize this
type of participation [5]. We put emphasis on the fact that what
is contributed is substantial amounts of new code that
implements some new functionality. If you contribute a re-
write of some existing functionality we would be inclined to
consider that as “service participation”. The reason is that there
is already (as is also the case for bug fixes) a precise
“specification” of what has to be done (the existing code) and
test cases should already exist. When we are talking about new
functionality, we are also talking about new “requirements”
that have to be specified and all that follows (test cases etc).
You are a much more active participant and in some cases you
may have direct commit access to the source repository – in
other cases you may still have to submit your contributions as
patches even though it is new functionality.

There is no obvious, clear-cut distinction between the
“service participation” and “development participation”
categories. In some moments you might participate by
contributing services while in other moments your
contributions (and way of working) will be that of
development.

C. Owner participation
This type of participation is characterized as “project co-

ordination” by Bonaccorsi et al. [5]. In the standard OSS
terminology that would be more like a moderator or a module
owner – or in traditional software engineering terminology a
project manager or a product owner. Your role is to see to that
there is an agreed upon road map for the project. You will not
have fixed, stable resources to manage as a traditional project
manager, but will have to co-ordinate the resources that are
offered to you at any given time by the volunteers.

Moderators can be organized in a hierarchy for big OSS
projects. Sometimes a moderator role will be carried out by the
same person for a long(er) period of time – other times
moderators, especially at lower levels of the hierarchy, will
change at irregular intervals. Sometimes a moderator will also
contribute code or bug fixes – most of the time they will
neither have the time nor the interest. Owner participation
might be a misleading term since nobody actually owns the
code since it can be easily cloned. We were considering “co-
ordination participation” as a better term, but settled on “owner
participation” since it puts more emphasis on the project than

on the code. In fact the owner of the project (the moderator or
coordinator) is the one who decides what gets accepted into the
project and what is rejected. If people do not agree, they are
free to clone the project and start a new one where they become
owners.

D. As-is usage
For this type of usage, the code of the used OSS modules is

not changed in any way and is used as it is. In reality you do
not even need the source to be open, as you could have used
the binary, but it is convenient to be able to actually read the
source code for “documentation”. Sometimes you will have to
write some “glue code” to use the modules as part of a larger
product other times the modules interface without any “glue”.

Using open source products off-the-shelf will not be
covered since it is similar to buying a normal product – just
“cheaper”. To complete the “spectrum” of usage, there could
also be the “no-use” type of usage. You do not have to actually
“use” things from an OSS project to contribute – you may
want to contribute to “push” certain issues. Since you will not
have any “usage” (SCM) problems we leave out this category.

E. Modified usage
Here you exploit, on a smaller or larger scale, the

possibility to go into the source code and change it. In effect a
local variant of the project is created, which corresponds very
much to what happens if the original OSS project is cloned and
has to a large degree the same consequences. Sometimes you
would like go off on your own “tangent” and leave the original
OSS project behind – other times you would like to still have
the original OSS project’s additions, modifications and
improvements to the code that you do not modify.

III. SCM EXPERIENCE AND STRATEGIES
In this section we will present, analyse and discuss our

experience from practical industrial involvement in several
OSS projects. We will draw on experience from all
contribution types as well as from all usage types.

In general you will have to familiarize yourself with the
tools and processes that are used on a particular OSS project. It
will be the owner of the project who, together with the active
community on the project, decides what tools to use and how
the processes should be.

A. Service participation
One of the services that you may render an OSS project is

testing. If there is no easy way to download and install the
binary for the product, you will have to get the source code and
build the binary yourself. The way “outsiders” carry out testing
in an OSS project varies a lot. Some people will perform a very
careful test of the product including both black-box and white-
box (since the source code is open) testing techniques – others
will just use the product, experience a problem and report that.
In either case, there should be a bug reporting system where
you can report the results of your testing. The fact that the
source code is open gives “outsiders” the possibility to give
more information on the possible cause of the reported bug.

Ideally, it should also be possible to contribute test cases for
everyone else to use (similar to the unit- and acceptance tests
from agile projects).

Another service you can perform is code review, which is
often not done as an explicit activity on “traditional” OSS
projects, but is more explicitly used on “industrial” OSS
projects. More often than not there is no tool for doing the
actual code review. However, there should be a structure in
place that will tell you what modules and versions are in need
of a review and make it possible for you to contribute the result
of your review.

However, the most common service that you can offer is
the contribution of bug fixes. There are two slightly different
reasons for contributing bug fixes: fixing a problem you have
experienced, and fixing a problem the project has experienced.
In the first case you experience a problem when using the OSS
product and since the source is open you might be able to fix
the problem. It may be convenient to know if someone else is
working on fixing the same problem, but it is not essential. In
the second case, there should be a bug tracking system in place.
In that system you can see what bugs are prioritized by the
project owner, and you will have the complete information
available that allows you to work on and fix the bug.

Since you usually will not have direct commit access to the
repository, you should familiarize yourself with how to create a
patch for the change that you have made and how to send it to
the right moderator.

Asklund et al. found that the moderators on an OSS project
very easily become a bottleneck [2]. This means that if you
want to get your bug fix into the code, it is not sufficient that
your fix is of good quality – equally as important is that it is
easy for the moderator to apply, review and test your patch.
One common problem reported was that very often patches are
dropped if they cause merge problems – you can avoid that by
staying as close as possible to the latest version of the project.

B. Development participation
Contribution of new functionality differs from contribution

of bug fixes in the way that the latter are quite easily accepted
(if they are of good quality) even if they are not discussed and
prioritized beforehand. Most often new functionality will have
to be discussed before it is even worth trying to contribute.
Asklund et al. found that an important reason for moderators to
reject contributions with new functionality was that it did not
take the project in the right direction [2]. So you will have to
familiarize yourself with the OSS project’s communication
infrastructure, use that for proposing your idea for some new
functionality – and take part in the discussions it will create.
Sometimes you will find new functionality that has been
proposed – and “accepted” as wanted – but no-one has come
around to implementing it yet. Such a “requirement” would be
easy to get through if the implementation is of good quality.

When you have completed the implementation of the new
functionality you are ready to submit. If you do not have direct
commit access to the source repository, your situation is quite
similar to the one in “service participation”. However, if you
have commit privileges, you will have to merge your changes

with the latest version of the code. In either case your
contribution will have to be integrated with the rest of the code.

Since there will be many people working in parallel on the
same project, there will be the “double maintenance problem”
identified by Babich [3]. In effect the work of each single
developer will form an independent line of work. Experience
shows that the longer these lines exist, the more they will grow
apart – and the more they grow apart, the more difficult they
will be to merge because of the possibility of conflicting
changes. A simple solution to that problem would be to adopt
the strategy of “continuous integration” [10] to avoid as much
as possible difficult merge situations. This strategy was also
identified by Asklund et al. as the one used and encouraged by
the OSS projects they analyzed [2]. In Deshpande et al. [8] it
was hypothesized that OSS projects had picked up the
“continuous integration” strategy from Extreme Programming
[4] and the agile movement. They investigated differences in
commit size and frequency pre- and post-1998 (when the
Extreme Programming idea first came out) and found no
significant differences. Their conclusion was that the OSS
community had not picked up “continuous integration” as a
way of working. We find that very improbable and tend
towards the alternative, which they discard with no further
motivation, that the OSS community was already using the
“continuous integration” strategy way before it was
popularized by the agile community. We find support for that
claim by the fact that the “copy-merge” working model
together with the “long transaction” model [9] in CVS, which
is an OSS product used (in particular previously) to support
OSS projects, actually penalizes you if you do not use an
integration strategy similar to “continuous integration”.

When you are contributing some new functionality, you
may be tempted to “throw in” a couple of bug fixes as well – in
particular if you discover some bugs during the implementation
of the functionality. It is discouraged to mix functionality and
bug fixes in the same contribution as it is also discouraged to
put more than one bug fix in a single contribution. It will
increase the probability that your contribution is rejected. First
of all because the moderator’s task will become more difficult
if he is not able to keep things logically and physically
separate. Second, because a problem in one part of the
contribution will cause the whole contribution to be rejected.
Finally, if you put more things into your contribution it will
take longer to produce and you will become more prone to the
double maintenance problem.

C. Owner participation
The owner of the OSS project will have to set up the

tooling and processes used on the project. In general you
should make the “entrance fee” as cheap as possible for the
other participants. Unlike in a company where people might
work for years, people who participate in OSS projects work
for much shorter periods of time – sometimes even as little as a
one-off contribution. When that is the case, it is not possible to
justify a lot of work from people in trying to understand how
things work and are organized on this particular project. That
tends to lead towards a preference for simple and easy to
understand tools and processes and towards tools that people

might already be familiar with and processes that they might
already be used to from other OSS projects.

The owner should also provide people who can follow the
incoming contributions and make sure that they are prioritized
(in case of bugs and new requests) or properly integrated (in
case of bug fixes or new functionality). These people will be
the moderators and in the case of a company starting an OSS
project the first moderators might come from inside the
company, but in the long run moderators will be selected from
the community based on shown merits. A moderator will
receive contributions from people and integrate them into the
project if the contribution is deemed good. In effect the
moderator will act both as the chairman of the Change Control
Board of a traditional project and as the technical integrator of
the code [2]. So it is easy for a moderator to become the
bottleneck and everything should be done to make him work as
efficiently as possible. It should be easy for him to apply the
patches and to run a quick “smoke test” to see if they work.

Figure 1. Ways of working.

There are many different ways the parallel work of
contributors can be organized. In figure 1a, it is shown how a
low velocity project could be organized. Each contributor
branches off a separate line of development that is later on
merged back to the mainline – either by the developer of by the
moderator. The advantage of this model is its simplicity and it
will be supported by just about any version control tool.
However, as the volume and velocity of changes grow the way
that people tend to work does not follow this simple pattern.
They will often need to collaborate temporarily with other
people as shown in figure 1b. One might want to get some code
(bug fix or functionality) from someone else before it has been
integrated in the mainline. This way of working looks more
complex and will create merge problems for many version
control tools, but tools with powerful merge tracking will be
able to handle this situation.

A company that owns an OSS project must know how to
act as an owner. If the company is afraid of “letting go of
control” it will run the risk of scaring away contributors [13].
Real care should be taken to “respect” the spirit of the OSS
community in the day-to-day management, including handling
the requirements process and the long-term goals of the project.

D. As-is usage
Even if you use the code “as-is” there will be new versions

of the code that you use. You will have to decide on a strategy

for whether you want to update to the new versions or not –
and if you want to update, then how often. If you decide to
update, you will have to test/review to see whether your “glue
code” and the rest of your code still works as expected with the
new versions of the OSS component that you use.

E. Modified usage
In the case that modifications are minor localization, tools

like CVS are perfectly capable of handling that by the use of
the “import” command. In effect the OSS project is imported
on a vendor branch and the localization changes are placed on
the main trunk, as shown in figure 2. When a new version of
the OSS project is imported, it will be possible to merge it to
the mainline and in effect have the localizations applied to the
new versions. Sometimes you will experience merge conflicts
if the localization touches code that has also been modified in
the new version of the OSS project.

Figure 2. Handling “private” adaptations.

In a more realistic usage scenario you are not only making
localization changes, but also changes that for some reason are
not contributed back to the OSS project (they may have been
rejected or not accepted yet). In this scenario the simplicity of
figure 2 will break down. Depending on the extent and the
number of changes it might be handled by more sophisticated
branching strategies [1]. However, a better strategy is to use a
version control tool that supports the change set model [9] (like
git). In that case your localization – and other – changes
become logical changes that can be (re-)applied to a given
version of the OSS project to create your “personalized”
product. This is particularly useful when we are dealing with
code changes (eg. bug fixes) that will eventually make it into
the OSS project and therefore would have to be removed from
the main trunk in figure 2 – an operation that is very difficult in
most version control tools, but very simple in a tool that
supports the change set model.

IV. CONCLUDING REMARKS
Now that industry has embraced the OSS development

method by participating in and/or running projects the “open
source” style they also need to adopt and understand the SCM
strategies that go with the OSS development method.

When setting up an OSS project processes and tools that are
familiar from other OSS projects are important so potential
contributers have a low “entrance fee”. Equally important is to
realize that the moderator is a key person. He works as the
chairman of the Change Control Board and does the integration
of the contributions. He must have excellent technical skills
and design skills and big projects might need several
moderators organized in a hierarchy to avoid bottlenecks.

Participants in OSS projects should know how to create and
send patches to the moderator(s). Contributions should be kept

small and logically separate to make it easier for the moderator
to check and integrate contributions.

When you use an OSS project, you should try to contribute
your changes back to the project. This will give you goodwill
in the community and will make it easier for you to maintain
your own product as it will deviate less from the OSS project.

REFERENCES

[1] B. Appleton, S. P. Berczuk, R. Cabrera, and R. Orenstein, “Streamed
Lines – Branching Patterns for Parallel Software Development” in
proceedings of the 1998 Pattern Languages of Programming Conference,
Monticello, Illinois, August 11-14, 1998.

[2] U. Asklund and L. Bendix, “A Study of Software Configuration
Management in Open Source Software Projects”, IEE Proceedings –
Software, Vol. 149, No. 1, February 2002.

[3] W. A. Babich, Software Configuration Management: Coordination for
Team Productivity, Addison-Wesley, 1986.

[4] K. Beck, “Extreme Programming Explained: Embrace Change”,
Addison-Wesley, 1999.

[5] A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi, “Business Firms’
Engagement in Community Projects – Empirical Evidence and Further
Development of the Research”, in proceedings of the First International
Workshop on Emerging Trends in FLOSS Research and Development,
Minneapolis, Minnesota, May 21, 2007.

[6] J. Corbet, G. Kroah-Hartman, and A. McPherson, “Linux Kernel
Development – How Fast it is Going, Who is Doing It, What They are
Doing, and Who is Sponsoring It”, Linux Foundation White Paper,
December 2010.

[7] M. A. Daniels, “Principles of Configuration Management”, Advanced
Applications Consultants Inc., 1985.

[8] A. Deshpande and D. Riehle, “Continuous Integration in Open Source
Software Devekopment”, in proceedings of the International Conference
on Open Source Systems, Milan, Italy, September 7-10, 2008.

[9] P. H. Feiler, “Configuration Management Models in Commercial
Environments”, Technical report, CMU/SEI-91-TR-7, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, March 1991.

[10] M. Fowler and M. Foemmel, “Continuous Integration”,
http://martinfowler.com/articles/originalContinuousIntegration.html,
September, 2000, accessed July 20, 2011.

[11] ISO 10007:2003, “Quality management systems – Guidelines for
configuration management”, 2003.

[12] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Crissis, “Capability
Maturity Model for Software, Version 1.1”, Technical report, CMU/SEI-
93-TR-24, February 1993.

[13] M. Shaikh and T. Cornford, “’Letting go of Control’ to Embrace Open
Source: Implications for Company and Community”, in proceedings of
the 43rd Hawaii International Conference on System Sciences, Kaui,
Hawaii, January 5-8, 2010.

[14] K.-J. Stol and M. A. Babar, “Challenges in Using Open Source Software
in Product Development: A Review of the Literature”, in proceedings of
the Third International Workshop on Emerging Trends in FLOSS
Research and Development, Cape Town, South Africa, May 8, 2010.

[15] K. Ven and H. Mannaert, “Challenges and strategies in the use of Open
Source Software in Independent Software Vendors”, Information and
Software Technology, Vol. 50, Issue 9-10, August 2008.

[16] Wikipedia, “Free Software Foundation”,
http://en.wikipedia.org/wiki/Free_Software_Foundation, un-dated,
accessed July 20, 2011.

[17] Wikipedia, “Open Source Software”, http://en.wikipedia.org/wiki/Open-
source_software, un-dated, accessed July 20, 2011.

[18] P. Ågerfalk and B. Fitzgerald, “Outsourcing to an Unknown Workforce:
Exploring Opensourcing as a Global Sourcing Strategy”, MIS Quarterly,
Vol. 32, No. 2, June 2008.

