
Analysis of Issues with Industrial-Strength
Composition for Component-Based Systems

Lars Bendix1, Jacob Gradén1, Anna Ståhl1, Andreas Göransson2

1 Department of Computer Science, Lund University, S-221 00 Lund, Sweden

2 Sony Ericsson Mobile Communications AB, Nya Vattentornet, S-221 88 Lund, Sweden

bendix@cs.lth.se, graden@gmail.com, aannastahl@gmail.com,
andreas.goeransson@sonyericsson.com

Abstract. A component-based approach can reduce time and costs for creating
new products. However, the flexibility in composing products from a base of
components is not without problems. Complexity increases in the composition
process when combining many components to one large system – in particular
because components may also exist in several versions or variants. Further-
more, there are many different stakeholders involved in the creation of new
products and they all work at different levels of granularity of the product.

We identify use cases for each involved stakeholder. From those we derive a
set of issues to a high-level common model (and tool) that can be used by the
many different people involved in creating, handling and using products. In this
way it will be possible to unify their different needs in a common framework.

Keywords: High-level composition, configurations, common model, use cases,
configuration management.

1 Introduction

In today’s market many products have a short lifetime and companies have to come
up with “new” products with a high frequency. Such a number of products cannot be
made from scratch and a high degree of reuse is needed. One way to obtain this reuse
is to develop components and have a base of such components that can be composed
in different ways to obtain different products.

However, it is no easy task to create products from such a component base. It
could easily contain tens of millions of lines of code in thousands of components and
each component might exist in dozens or even hundreds of versions and/or variants.
Blindly combining components produces an exponential explosion in the potential
number of products because of the multiple ways in which components and their
versions can be combined. A configurator tool that intelligently uses data regarding
the components and is based on a general composition model would be able to help a
user manage the complexity of that explosion.

Verification and validation of the composed product is usually a very slow, cum-
bersome, error-prone and labour intensive process if we have to use the traditional

compose-compile-link-load-test process. There is a need for a process that is easier,
more flexible, and can provide more immediate feedback. Furthermore, composition
is not just a purely technical matter – also business and legal aspects of the products
and their components will have to be considered. The user would need to be able to
work and reason at a higher level than the components and their detailed source code.

In an organization there are many different groups of people who are involved in
creating configurations or using and working with configurations created by others.
The present state means that each stakeholder works at a different level of granularity.
Some, like the developers, are looking at details like lines of code, while others, like
customers, look at the product as one single entity with some desired properties. This
creates many problems when different representations have to be kept synchronized
or converted between each other. We should therefore look for a common representa-
tion and model that all involved stakeholders can use.

An analogy is that of meals in a restaurant: There are distinct components (ingredi-
ents) which need each other to work properly, and from the same set of components,
many different configurations (dishes) can be built. There are also relationships be-
tween components (fish should be served with one wine and red meat with another;
fish and red meat should not be served together). Dishes are also the common termi-
nology shared by the cook, the waiter, the client, and the person buying ingredients.

Figure 1. The configuration process.

The configuration process investigated in this paper is not about connecting com-
ponents at the micro-level of ensuring that type and number of parameters of methods
correspond. Rather, we are interested in what issues have to be dealt with in creating a
common configurator that can be used by all stakeholders at the macro-level as shown
in figure 1. Components are entered into a component base from which the stake-
holder (user interaction) picks a number of components and with the help of the con-
figurator, that uses a set of rules, a product (or configuration) is created and worked
on. Can such a configurator be built and what are the issues that need to be addressed?

The specific context that we have based our work on is the mobile phone industry.
This is a field where there is a high pressure for new product and where products
often have to be customized. However, we believe that our findings are general and
can be used in any context that has to create a high number of different products.
Furthermore, we have a background in software configuration management and want
to explore “our established models” [4] for creating workspace configurations from a
repository in the context of creating products from a component base.

In this paper, we first identify the different roles that are involved in the production
of products and for each role we present the tasks they have to perform as use cases.
Next, we analyze these use cases to arrive at the issues of an industrial-strength com-
position system. Then we discuss our results before finally drawing our conclusions.

2 Use Cases

In a company there are many different groups of people involved in the production of
a new product, ranging from developers over testers to sales and even the customers
that in the end buy the product. The present situation is that almost each group has its
own representation of a product and each time they have to communicate, this repre-
sentation has to be “translated” with the risk of loss of information and misunder-
standings. In order to avoid that, we want to investigate the possibility of using a
common representation for all the involved stakeholders.

The first step towards that is to identify who are the stakeholders and what are their
needs. We interviewed different people in the organization to get an idea of who
might – directly or indirectly – be involved in the creation of new products. From that
information we established a list of user roles. We then talked to representatives for
these user roles to get an idea of what their tasks were and what they would want a
configurator tool to be able to do to help them.

2.1 Sales

Sales create new configurations to explore possible future products – and they inves-
tigate how “expensive” new products are going to be. For this role we have the fol-
lowing use cases:

Configuration creation. Sales would be interested in creating configurations of
new products that can be put on the market. They want to be able to work in different
ways: bottom-up, where they select component from the bottom up to create a given
product; top-down, where they specify some functionality and explore which compo-
nents are needed to create the product; and mixed modes. It is implicitly included that
they can “save” a created configuration and work on it at a later time.

Configuration verification. Sales want to verify that a given configuration of a
product is complete and consistent. Sales use that to “explore” the potential conse-
quences of new hypothetical products. What functionality is missing to complete the
desired product, are there components that are in conflict with each other, are there
any violations of business or legal rules?

Configuration inspection. The inspection of properties of a configuration (or a
component) is another sought after possibility. To be able ask questions about the
state or other properties of components and configurations – there are a number of
standard queries, but they also want to be able to handle ad-hoc queries.

Configuration quotation. Sales wish to create and save an invalid or incomplete
configuration, and then ask development and/or design what would be the cost to
have it produced.

2.2 Configuration Management

One of the primary tasks of Configuration Management is to provide different kinds
of people with proper workspaces where they can carry out their work. For this role
we have the following use case (see also role 2.6 below):

Create configuration. Configuration Management has to set up a working envi-
ronment (workspace) for many different groups of people and in different ways for
the same group of people. Part of such a working environment may be specified with
components that come from the component base and part of it may be specified with
files that come from the source code repository. Some people (developers) would like
to work with partially bound configurations where the version selection is left open
for some parts. Other people (testers) would like to work with completely bound con-
figurations where all version selection has been resolved. Configuration Management
will need flexibility to be able to cater for working environment needs of all groups.

2.3 Designer

The designer works with the overall design and architecture of the products (and is
sometimes called architect). For this role we have the following use cases:

Set up configuration. Apply and use as working environment a configuration that
has been defined by others.

Problem resolution. Designers would get a (hypothetical) configuration that they
need to analyze for what is needed to make it work – it might be incomplete or incon-
sistent. There might need to be created new components or existing components could
be modified. In some cases it could be that additional testing of (parts of) the
configuration was needed.

Create placeholder components. When new components are designed they are
first created as a placeholder component that has no actual contents. The developers
will then eventually create the contents for the component. However, it should still be
possible to use placeholder components (maybe in restricted ways in some situations)
in the creation of configurations.

Manage rules. Designers sometimes introduce new business rules or register legal
rules. Maintain and create rules to ensure that, for example, only one component is
selected from a specific layer – or other architectural or design rules.

2.4 Developer

Developers work with source code, however, their work is in the context of configura-
tions. For this role we have the following use cases:

Set up configuration. Apply and use as working environment a configuration that
has been defined by others.

Build product (or configuration). Developers will need to build an actual product
from a configuration so they can see that their code runs and performs like it should.

Record dependencies. Technical dependencies between components are set by the
developers who are the people that have this information.

2.5 Tester

A tester gets a configuration and is supposed to test whether it passes the designated
test cases or not. For this role we have the following use cases:

Set up configuration. Apply and use as working environment a configuration that
has been defined by others.

Build product (or configuration). Testers would be interested in getting a com-
pletely bound configuration and build the product they have to test from that. In alter-
native they could have gotten an already built executable to test.

Create configuration. Testers sometimes want to modify their given configuration
in case something does not test and they want to see if it tests in a slightly
(newer/older/alternative version of a given component) different configuration.

2.6 Component Management

This is a new role that materialized during our work. In the current setup most of
these tasks are taken care of by Configuration Management, but it might be useful to
keep it a separate role though it might be taken care of by the same people as Con-
figuration Management. For this role we have the following use cases:

Component administration. There are many administrative tasks around the
component base and its contents. New (or versions of existing) components need to
be added. Deprecated or faulty components should be cleaned out or at least marked
accordingly. The (meta-)data for components has to be changed or updated. Further-
more, it should be possible to run checks on the component base to see that it is still in
“good health” (that components are still fairly independent so they can be combined
in flexible ways). As it works today with source code, Configuration Management
adds new versions to the repository at the request from developers.

Manage rules. Besides the architectural rules that are managed by the designer,
there are also business and legal rules that have to be managed. Because these rules
can come from many different places, it is Component Management’s responsibility
to add and/or change such rules. Component Management should also be in charge of
making sure that rules are consistent.

2.7 Customer

The customers who buy products from the company are primarily mobile phone op-
erators (like Telia and Vodaphone). In turn they re-sell the products to the real end
users. For this role we have the following use cases:

Create configuration. The customer wants to be able to create new configura-
tions. In some cases they are interested in seeing what they can get based on existing
components and to “order” a new product. In other cases the customer in interested in
getting the price for a “hypothetical” product that is not yet ready/possible – that
could be for special customization of some component(s). Often the customer will do
this work on his own, but sometimes it is done together with Sales.

We also identified some use cases that it was not possible to place on any user role:
Notification, Statistics, Quality aid, and Requirements fulfilment.

In the next section, we will carefully analyze the use cases to extract and identify
what problems need to be solved and what kind of functionality the configurator sys-
tem (the whole setup) should provide to be able to support all user roles and all user
tasks.

3 Analysis

This section presents an analysis of the problems found in the use cases above and
suggests possible solutions. For more details, please refer to [5].

From the use cases in section 2 and many discussions with people we identified a
number of issues that have to be dealt with in order to develop a common model that
can be used for a configurator tool.

There are many technical aspects to consider regarding the configurator, but be-
cause the tool is intended for several disparate groups of users, usability concerns are
also very important. The configurator must be simple enough to be used by persons
with little or no technical understanding of composition, but at the same time power-
ful enough to allow savvy users complete freedom. Different modes of operation
could be a possible solution to this, depending on the role the user has.

It is also important to note that due to the complexity of the problem, the configu-
rator must be able to give quick and exact feedback. In other words, as soon as a
component is selected or deselected, the entire configuration should be re-evaluated.
If new components are made available or unavailable as a result of an action, this
should also be updated at once – the configurator should operate in real-time. It would
be detrimental to user understanding if this were not the case.

The technical aspects of composition are detailed below. They fall under the cate-
gories of Components, Configurations, Component base, Properties and Rules.

3.1 Components

Component-based systems are built from individual, stand-alone components, which
interact using well-known interfaces. A typical component could be an application or
the operating system.

Components are developed over time, and changes cause components to come in
new revisions or new variants. Revisions and variants are collectively called versions.
They create possibilities, but also complexity. Components may also need other com-
ponents to work properly (relationships), can be combined into suites of several com-
ponents, can provide features, and can additionally have properties (section 3.4).

Relationships. In their most general form, relationships are connections between

two components, which say something about how they affect each other technically.
When components affect each other in non-technical ways, rules are used instead of
relationships (rules are explained in section 3.5).

Relationships always relate to components or versions thereof, whereas rules can
be more general and relate to components, properties of components, other rules or
relationships, etcetera. It also makes sense to manage the technical relationships in
close connection to the components they relate to, whereas rules are handled on a
higher level of abstraction and are bound less tightly to components.

Relationships are specified with one of two basic premises: Either two components
are allowed to be combined unless there is a relationship between them stating the
opposite; or two components may be combined only if it is explicitly permitted. The
second approach is better at guarding against poor combinations, but the cost is that if
most components can be freely combined, which is often the case, this leads to a
staggering amount of relationships. The premise that all combinations are allowed
does not suffer from this drawback, and also encourages separation of components,
which leads to a greater number of possible configurations.

The most fundamental relationships are requires and conflicts. If component A re-
quires component B, then A will not work without B – B, however, will work without
A. If A conflicts B, then A will not work with B; nor B with A.

Less fundamental but still rather common are replaces and breaks. Replaces is
commonly found when one component is deprecated in favour of another, and even if
one component replaces another it does not necessarily mean that they cannot work
together. If they cannot, breaks is the better relationship. In many situations, the two
complement each other.

Some relationships can be found automatically, while others need to be added
manually. Requires is among the easier to find, since it is often made explicit, for
example in the form of include statements. It is however not trivial, since knowledge
of the source language is required, and not always possible to find automatically.
Most of the excluding relationships must be found manually, for example through
testing – conflicts and breaks are prime examples of this.

Component suites. Sometimes, components are strongly connected and commonly

used together as entire component suites. This is a powerful way of simplifying ad-
ministration: instead of having to select several different components, one single suite
can be selected. A clever way of providing suites is to create a new component – the
suite itself – which has no code and provides no functionality. Instead, the suite has
relationships with its constituent components. Selecting the suite means the configura-
tor will automatically select all required components referred to by the suite. While
not as problem-free as one might imagine, this is a powerful tool and a great help to
the persons creating configurations.

Feature dependencies. Sometimes, it is less interesting exactly which component

is used, and more interesting to make sure that a certain function is available. For
example, if component A requires the feature Foo, and B and C both supply that fea-
ture, then A will require either B or C, but just one of them, to function properly.

Two important characteristics of feature dependencies are that they allow for
choosing one of several supplying components, and that a direct relationship is trans-
formed into an indirect one. This means that A’s dependency on Foo needs not be
updated if a new supplier is added; all that has to be done is to specify that the new
component, say D, provides Foo, and A will be able to rely on B, C or D.

A great advantage with feature dependencies is that there is no need for A to have
relationships with specific versions of the other components – so long as they supply
the Foo feature, they are usable. For the same reason, components can be freely up-
dated with new revisions or variants, or deprecated, and no relationships need to be
updated. This means that feature dependencies are very useful in limiting complexity.

A complication is that even features may be developed over time – Foo may for
example be upgraded to Foo version 2, which must be tracked. Sometimes, but not
always, a component providing Foo 2 also provides Foo 1. Another complication is
that in some cases, only one component providing a feature must be chosen, whereas
in other situations, it can be perfectly acceptable to select two or more components.
This depends on the specific feature, and is best handled by using the conflicts rela-
tionship when the situation calls for it.

A final note regarding components is that they can belong to different groups, such

as Operating system or Application. Such groups are not set in stone, and there could
realistically be situations where one component belongs to several groups. In the
simplest cases, groups are built on top of each other (applications clearly run on top of
the operating system, for example) and are then called layers, but it is also conceiv-
able that groups have more exotic relationships.

An important aspect of groups and layers is that they can help with the structure of
components; and also that some layers are absolutely necessary and at least one com-
ponent from such a layer must be present. Without an operating system, for example,
no other components will work properly.

3.2 Configurations

In component-based systems, configurations are top-level objects – they are products.
A configuration is in essence a collection of components, and by varying the compo-
nents, different product variants can be created. However, since components have
relationships, versions and properties, collecting them poses challenges. Configura-
tions themselves can also exist in different versions – namely when the collection is
changed as components are added or removed – and have properties of their own, in
addition to properties that come with the components.

Configurations do not need to consist of many components, although they normally
do. An empty configuration (containing zero components) is normally useless1, but a
configuration with only one component may be useful: This is a way of transforming
just that component into a product. The same goes for small configurations, contain-
ing only a few components (partial configurations), and for configurations, which
represent entire systems with all the necessary components (full configurations).

It is worth noting that component suites are technically equivalent to configura-
tions. The only difference is that suites are used internally, when configurations are
created, whereas configurations (products) are used externally, when configurations

1 There are cases where even an empty configuration is useful, for example in planning con-

figurations. An empty configuration can then be created and given properties and rules, and
only afterwards be filled with components. See [5] for more details.

have been created and are being distributed as products. There is no technical differ-
ence between them, and they could be handled in the same way.

Creating and working with configurations is not trivial. There are issues of com-
pleteness, consistency and identification to consider, and also the optimality of com-
ponent selection.

Completeness. A configuration is complete if it contains all needed components.

There are several reasons a component may be needed, corresponding to different
kinds of completeness. Relationship completeness is a technical problem and the most
fundamental completeness. There is also rules completeness, which can be broken
down in several sub-categories, depending on the types of rules.

Relationship completeness is the condition that all components are present which
are required by other components. If component A is selected, and A requires B and
C, then a configuration containing only A would not be relationship complete; nor
would a configuration containing A and B, or A and C. Only if all three are included
will relationship completeness be achieved.

Rules completeness is the condition that all rules are obeyed which call for the in-
clusion of components. The situation is basically the same as for relationship com-
pleteness, but the mechanism is different. The reasons for rules to require components
may vary widely – layer requirements may be one reason, business logic another.

Layer completeness is the requirement that components from certain layers must
be present – typically, the operating system is required to be able to use components
from any other layer. Required layers differ between configurations: partial configura-
tion may have no required layers at all, whereas full configurations do. Certain layers
simply must be present for the system to work. The reason is that if there is no operat-
ing system, all the applications of the world can be part of the configuration and it still
will not be usable.

Consistency. Consistency is similar to completeness in that it is a sort of sanity

check for configurations. If a configuration is inconsistent, some components will be
unable to function – applications may for example not start. As for completeness,
there is relationship consistency and rules consistency.

Relationship consistency is based solely on the relationships between the compo-
nents in a configuration, and a configuration is said to be consistent if all anti-
dependencies of all components are respected – that is, no components in the configu-
ration are in conflict with each other. Depending on the specific configuration, there
may also be other relationships, which must be considered, for example if compo-
nents break or replace each other.

Rules consistency is based on rules between components and their properties. A
configuration can be relationship consistent and still make no sense from a business
perspective – for example if two components are included which technically work
together, but which are targeted for two different customers.

There are additional consistency problems too, such as how to handle shared libra-
ries. If component A requires version 1 of library L, and B requires version 2 of L, the
configurator must either include both versions or inform the user that different ver-
sions of the same library are disallowed, depending on the rules in effect. A similar
situation is if two selected component suites reference the same fundamental compo-

nent, perhaps in two different versions – that component should not be included twice
just because it is referenced by two suites, but it may have to be included in both its
versions to satisfy the requirements of both suites.

Optimality. In several cases, more than one version of a component may be avail-

able, for example if component A requires B version 2.0 or greater. B may exist in
many revisions greater than 2.0, but only one of them must be chosen. A common
tiebreaker is to pick the latest component, but there are other issues to consider first.
Do all versions of B have the same relationships, and are they all satisfied? Have all
versions of B been tested and accepted, separately and together with all other compo-
nents in the configuration? Are there more open bugs in any of them than in others?
Are they all roughly the same size or are some larger than others, thus costing more in
time and transfer fees than others? All else being equal, choosing the latest version is
still a good tiebreaker, but “all else” must first be verified as being equal.

An important guideline is to select specific versions as late as possible. The ration-
ale is that when a specific version is selected, the set of possible component combina-
tions is limited, and that set should be kept as large as possible to ensure flexibility for
the user. Figure 2 shows a typical example of late binding. Component A requires B,
versions 2 or 3. Component C also requires B, versions 1 or 2. If A is selected and B
v. 3 is automatically added, then C is unavailable for selection. Using late binding,
selecting A would instead mean also selecting B, “any version”. Only when C is also
selected would the version of B become unambiguously known, since only B v. 2
works with both A and C.

Figure 2: Late binding.

In some cases, there may be not only several versions of a component, but more
than one component as well. For example, component A may depend on a feature and
there may be many components available which supply that feature. In such a case,
not only is the set of candidates greater (many components in many versions, instead
of one component in many versions), but different components may differ more from
each other than do different versions of the same component.

3.3 Component base

The component base is the complete set of all components and all their versions. This
also includes the properties of each component version, the relationships between
components, and even the created configurations, since configurations can be used as
components – remember: technically, component suites are configurations.

The question of exactly which form the component base and its storage should take
is left open, but there are several very important high-level aspects of the component

base, which must be addressed regardless of the actual implementation. Specifically,
the capabilities, evolution, clean-up and how to handle consistency when new com-
ponents are added (commit checks) require attention.

Capabilities. Regardless of the form the component base takes, there is one basic

capability it must have, namely support for proper versioning of items. There are also
a great many capabilities, which users may wish that it had, such as allowing for vari-
ants and concurrent work [3]. The distinction between capabilities of the component
base itself, and of tools working with the component base – such as the configurator –
is somewhat blurry, since tools can often simulate many aspects even if the compo-
nent base does not support them directly.

Without versioning capability, however, development on many different compo-
nents over time cannot be accommodated, and the component-based aspect collapses.
Depending on how complex configurations become and how many persons work on
them, there might even be an interest in providing features like branches of compo-
nents (variations on the same basic component, existing simultaneously).

In addition to versioning, the component base could provide support for answering
questions such as Who added component A, What was changed between revisions X
and Y, What does the entire history of changes look like for configuration Z, etcetera.
These capabilities are not strictly required, because the same questions can be an-
swered by performing manual work, but would be valuable to improve efficiency.

One important thing to note about the component base, which is very relevant for
the configurator, is whether components are stored as source code or as binaries.
From a composition perspective, it is much easier to manage binaries. Source code
must be compiled, which means that every such component requires the compiler, and
that the compiler version, all compiler flags, etcetera, must be stored for future refer-
ence. This is not necessary for binaries, and the focus can therefore be exclusively on
composition.

It should be noted that irrespective of whether source code or binary components
are added to the component base, this is not a place where active source code devel-
opment will take place. Rather, all day-to-day development will take place in a dedi-
cated source code repository, and once a component reaches a certain stage it will be
added to the component base from the source code repository.

Evolution. When a component base is created it is normally small and it is pos-

sible – even easy – to get a complete overview. Over time, however, as new compo-
nents are added, and revisions and variants complicate the picture, the component
base becomes larger and more complex. The overview is lost and achieving a full
understanding of even a single component may require considerable effort. Mecha-
nisms must be in place from the very beginning to help counter this problem and keep
the component base usable.

A typical example of this is a method to trace all configurations where a given
component is used, to quickly see if it is used at all, and whether or not those configu-
rations are still active. Sorting and filtering capabilities are also a bonus, to facilitate
administrative tasks. Whether this is technically carried out by the component base
itself or the configurator is less interesting.

Clean-up. When more and more components and versions thereof are added, to-
gether with relationships, large webs of component interdependencies risk being cre-
ated. This limits the configurations, which can be created, and endangers the basic
premise of component-based systems: that components are mainly independent.

A simple solution to this is to regularly remove old components, which should no
longer be available to ordinary users. Since it is still desirable to be able to recreate
old configurations, the components should not actually be deleted from the compo-
nent base, but instead marked as not being available when new configurations are
created. This will keep the amount of components available for daily use limited,
thereby helping the user to retain an overview.

A more demanding clean-up is also possible, in the form of architectural decisions.
It should be possible to identify newly developed or updated components which rely
on old components, or components which have relationships with many others, and
consider whether their relationship webs can be pruned. While this costs in terms of
development effort, the benefit is a smaller and healthier system, which can be com-
bined more freely. At some point, entire component webs may even be marked as
deprecated, and replaced with newer solutions. Crnkovic and Larsson[1] present some
interesting thoughts about this, namely that development on a component is most
active in the beginning and end of its useful lifespan, eventually reaching a point
where it is better to start on a new design than continue working on the old.

Commit checks. Whereas clean-up is performed on the contents already in a com-

ponent base, commit checks are run before any changes are allowed to be made to the
component base. The basic idea is to apply the same checks that are run when a con-
figuration is created, as well as checks performed during clean-up, and make sure
everything looks good. Commit checks allow for catching some structural problems,
such as incorrect anti-dependencies. In its most basic form, component A requires
component B, but at the same time, A and B are in conflict with each other. Compo-
nent B is usable, but component A can never be part of any complete and consistent
configuration. In practice, the problems caught by using commit checks are both
subtler and more complex.

3.4 Properties

Depending on the actual situation, a component (or configuration) may have any
number of properties; for example its name or the date it was created. There are two
classes of properties: Properties that are specific to the component or configuration
itself (static properties), and properties that depend on the components a configura-
tion contains (dynamic properties).

Static properties, such as name, are set directly and manually by a user, and should
generally never be changed. Dynamic properties on the other hand are calculated from
the configuration’s components and their properties, according to pre-existing rules.
Typical examples of dynamic properties are completeness and consistency. The effect
of dynamic properties is that when the set of components in a configuration changes,
that configuration may also have its properties changed, automatically.

Sometimes, static properties can be changed for a component. A typical example is
the property Test status. A component may start as untested, and after scrutiny by a
tester become accepted. This goes against the configuration management principle of
immutable components, but is a necessary evil for developers and testers to work with
the same component base.

It should also be noted that properties might affect the consistency2 of configura-
tions. For instance, if one component has the property Customer with a value of
ACME, and another component has Ajax as Customer, then the two components
cannot be used together in a configuration. This is because it makes no sense to target
a specific product at two different customers. Certain properties are of such a type that
all components in a configuration must have the same value for them, or must have no
value at all (be generic).

3.5 Rules

Rules are a way of explicitly stating what configurations are allowed to look like, in
terms of components, component versions, component properties, configuration prop-
erties, and so on. They form a general framework to enforce completeness and consis-
tency on configurations – not just from a technical point of view, but from every con-
ceivable other outlook as well.

There can be many different types of rules, corresponding to these outlooks. The
archetypal example is business rules, which state that regardless of the technical pos-
sibilities, certain component selections are mandatory or prohibited for reasons of
strategy, competitiveness, or any other business-oriented concern. The types of rules
can differ depending on the situation – sometimes, business rules is too vague a con-
cept and needs to be split into marketing rules, strategy rules, etcetera.

Functionally, rules are a mechanism – a form of logic, or expressions. Rules are
used to handle facts – components, properties, relationships, etcetera. For instance, if
component A requires B, that is a fact. A rule could then be “All components which
are required must be present for a configuration to be complete”3.

This allows a separation of concerns, and hides a lot of complexity inside the rules,
which means that ordinary users of the configurator have no need to understand those
intricacies. The complexity is contained in an isolated area, but it is not gone – some-
body has to maintain the rules.

The task of rules maintenance would fall on different user roles, depending on the
type of rules. Rules affecting the overall structure would likely require input from
architects and designers. Marketing rules would require input from the Sales depart-
ment, even if some other user role might be more likely to actually formalize the rules
and add them to the system. Rules that influence the selection of specific component
versions (see Late binding in section 3.2) would require input from configuration
managers.

2 Completeness is not affected by properties, but by relationships and rules. Rules, however,

may be affected by properties – so properties can indirectly influence completeness.
3 As a matter of fact, this is the preferable way to handle completeness and consistency.

Rules can perform many different functions. Placing constraints on the technical
structure of a valid configuration, as in the example above, is one. Another function
could be to ensure marketing strategy – for example by requiring that a certain com-
ponent is always included in products created during 2010. Regulating which user
roles are allowed to perform which duties could be yet another function – etcetera.

The practical design and actual implementation of rules and the system to actually
apply the rules, is an open area, which requires future work. Several questions need to
be investigated, such as:
• Should all rules be general for the entire configurator and all items in the com-

ponent base4?
• Should there be implicit rules in the configurator, which must always be adhered

to – for instance rules regarding how completeness is calculated?
• How should different versions of rules be handled?

 What should happen when an attempt is made to introduce a new rule,
which would invalidate existing configurations, or even components?

• What should the result be if different rules are in conflict – for instance a mar-
keting rule and a legal rule?
 Is there a need for prioritization of rules?
 Should all (active) rules always be followed, except possibly for certain

user roles?
Rules are an extraordinarily powerful way of simplifying the process of creating

configurations and ensuring verification and validation for very different user roles.

4 Discussion

In this section, we will discuss some related work and sketch a number of possible
future extensions to the work we have presented above.

4.1 Related work

To the best of our knowledge, there is no previous work that relates exactly to ours.
The perspective we have in this work is an industrial “this is what we need from a
composition framework”, whereas the mostly related work we have been able to find
has an academic perspective of “this is what is possible in component composition”.
The main difference is that even though it is also important for industry that micro-
level details of composition are dealt with, it is at least equally important that it is
possible to use a composition framework at a high level and that the representation is
shareable between very diverse groups of users. However, we have found three con-
tributions that in part relate to our work.

The work of Lau et al. [6] also emphasizes that a component model should cover
more phases. However, they use different tools in the different phases and do not

4 If not, each configuration, or each user role, or each user, could specify the rules, which

should be active. There could even be rules for specifying which rules should be active, de-
pending on which user and which configuration were involved.

obtain the same tight integration that we get from our common configurator. In Ober-
leitner et al. [7], they also add metadata to components with the purpose of validating
compositions. However, they “bake” their metadata into the binaries of the compo-
nents. We cannot allow such a thing since it changes the binary when metadata is
changed and because we under strict space restrictions for memory. Scheben [8]
works with a model that allows dynamic selection and late binding, which works in a
way that is very similar to our “feature dependencies” described in section 3.1. How-
ever, whereas she uses it to connect components in a flexible way at runtime, we are
more interested in using it to reason about flexible compositions at a higher level.

4.2 Future work

We are aware that the results reported in this paper are not final. Though it is a solid
first step more work needs to be done before we can have “the perfect configurator”.
We see several ways in which the work in this paper could be extended.

During our work, the role of a third party supplier surfaced. It was indicated that it
might become important in the future, but for now we consider this role to be covered
by other roles. However, an important difference from these roles is that a third party
supplier is an “outsider” and as such might not be granted the same access rights.

We also identified an End User role. The End User is the person who uses the pro-
duct (a mobile phone). It is left out for the time being as it has a completely different
nature from the others roles. However, it could have the following use cases: Update
configuration. Just like we get new updates to our computer’s applications or ser-
vices. We will get new versions of existing components in the configuration, but most
likely no new components or applications. Create new configuration. The new con-
figuration is the old one plus a new component (application) that should be added –
we should get the right version and be warned if the new configuration is not possible.

In the present work, we only considered software components. However, in our
context and in general, products also consist of hardware parts. A natural extension to
our work would be to include hardware components and the way they are handled by
Product Data Management [2]. So much more as there are many commonalities be-
tween Product Data Management and Software Configuration Management.

Finally, the results in this paper are based on interviews with people about their
work and visions for a future work context. Now that we have identified the important
issues to address, a demo or prototype configurator can be built so these people can
get more real hands-on experience than was possible from just looking at the design
sketched in [5]. This could be used to validate the use cases and would most probably
bring up some new issues now that the users see what they can actually do.

5 Conclusions

In this paper, we have addressed the problem of providing a common, high-level
composition model that can be shared by everyone involved in working with pro-
ducts. We have shown that it should indeed be possible to construct such a configura-

tor model and tool that can be useful for this large and varied group of users who need
to work with, share and exchange configurations.

Through interviews with various stakeholders in the company, we identified no
less than seven different user roles (plus two more indicated in future work) that are
more or less involved in creating and using configurations of products both inside and
outside the company. For each user role we also distinguished its relevant tasks and
sketched them as a number of concrete use cases.

We analyzed these use cases and identified a number of important composition is-
sues that have to be dealt with to build a common, high-level configurator model and
tool. Our analysis was primarily based on the use cases and interviews, but also drew
on our expertise in software configuration management. The issues were grouped into
five main categories: components, configurations, component base, properties, and
rules. For each category a number of more specific issues were identified and dis-
cussed in more detail.

Some of the identified issues seem to have straightforward solutions, while others
will probably need more research. Since there seems to be no prior work that directly
matches ours, an obvious future work would be to use a demo or prototype of the
configurator tool to conduct experiments with the users to validate our use cases.

We used one specific company as the object for our study. However, we did not
use anything that is special to this company, so our findings should generalize to the
whole sector of this company. Furthermore, the mobile phone industry probably has
to deal with more complex and exotic composition situations than “the average com-
pany”. This makes us confident that we did not overlook any important issues due to a
context that was too simple.

References

1. Crnkovic, I., Larsson, M.: A case study: Demands on component-based development. In:
22nd International Conference on Software Engineering, pp. 23-31, ACM (2000)

2. Crnkovic, I., Asklund, U., Persson-Dahlqvist, A.: Implementing and Integrating Product
Data Management and Software Configuration Management, Artech House (2003)

3. Dart, S.: Concepts in configuration management systems. In: 3rd Workshop on Software
Configuration Management, pp. 1-18, ACM (1991)

4. Feiler, P.H.: Configuration management models in commercial environments. Technical
report, Software Engineering Institute (1991)

5. Gradén, J., Ståhl, A.: Managing product variants in a component-based system. Master’s
thesis, Lund University (2009)

6. Lau, K., Ling, L., Elizondo, P.V.: Towards Composing Software Components in Both De-
sign and Deployment Phases. In: CBSE 2007. LNCS, vol. 4608, pp. 274-282. Springer,
Heidelberg (2007)

7. Oberleitner, J., Fischer, M.: Improving Composition Support with Lightweight Metadata-
Based Extensions of Component Models. In: Software Composition 2005. LNCS, vol. 3628,
pp. 47-56. Springer, Heidelberg (2005)

8. Scheben, U.: Hierarchical composition of industrial components. Science of Computer
Programming 56, pp. 117-139. Elsevier (2005)

