
A configuration management perspective
on composing software product lines

Lars Bendix
Department of Computer Science

Lund University
S-221 00 Lund, Sweden

bendix@cs.lth.se

Jacob Gradén
Department of Computer Science

Lund University
S-221 00 Lund, Sweden
graden@gmail.com

Anna Ståhl
Department of Computer Science

Lund University
S-221 00 Lund, Sweden

aannastahl@gmail.com

ABSTRACT
The high demand for more products has led industry in the direc-
tion of using software product lines. However, there are still many
issues to be solved before software product lines can be handled
and supported just as well as “normal” software development. We
have obtained some results by applying a software configuration
management perspective to a restricted set of problems from
product lines and identified a number of interesting open issues in
the intersection between product lines, composition and software
configuration management.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Software configu-
ration management, productivity, software quality assurance.

General Terms
Design, management, performance, standardization.

Keywords
Configuration management, component-based, product lines,
composition, variants.

1. INTRODUCTION
The requirements of new products from the modern consumer
market put many companies in a difficult situation. The lifetime
of a new product becomes shorter and shorter, meaning that you
have to create more products to remain in the market. On the other
hand, products become bigger and more complicated and expen-
sive to develop. One answer to these challenges has been to move
from single products to product lines in order to produce more
products cheaper and faster.
Moving from monolithic systems – which are often the result
when products grow into different variants – to component-based
ones has advantages, such as code reuse and flexibility in creating
product lines. In monoliths, variants are created by conditional
compilation or, in the worst case, a new copy is created for each
product. In component-based systems, this is done by selecting
different sets of components to create different products (compo-
sition). There are however also drawbacks, one of the more no-
ticeable ones being that component-based systems require more
design and attention to system structure.

One typical example of a more advanced use of product lines
could be the mobile phone industry, where there are both product
lines and customer (operator) variations. The component-based
approach is not the only way to produce product lines, but it is
promising. In this paper, we examine component-based product
lines from a software configuration management perspective.
In the next section, we give a more detailed description of the
background and specific context for our work into how SCM can
provide support for software product lines. Then we present the
parts of our results that are most relevant for this workshop and
end the paper by giving an outline of a number of open questions
that could provide interesting discussions for the participants.

2. BACKGROUND
A product line can be defined as a common core plus a part that
varies between instantiations [10]. The same product line can give
rise to many different instantiations; all of which share certain
characteristics, but differ in others. Instantiations are often called
variants, or simply products. Generally, variants are created by
assigning specific values to so-called variation points – places in
the product line where choices can be made on what the particular
product should be like and that are different from the common
core.
There are many ways to manage product lines: aspects, services,
components, variation points, and more. Our premise in the fol-
lowing is that of component-based product lines, meaning that we
restrict ourselves to looking only at that approach to product lines.
Software configuration management (SCM) is a general support
discipline for software development [1]. SCM covers a wide range
of topics from versioning and traceability over reproducibility to
more formal activities as configuration audits. SCM has had a
look at support for variability management in general before [2, 5]
but without much luck or progress. However, this time we only
look at supporting a limited part of variability management (com-
position of product lines) and with focus on one specific technique
(component based systems).
One very central activity in SCM is that of composing configura-
tions [3]. This is mostly done for creating developer workspaces,
but there is little or no difference between creating a configuration
for a workspace, and creating a configuration for use as a product
to be shipped.
There are different ways offered by SCM techniques to represent
variants, notably single source variation and variant segregation
[9]. Single source variation keeps everything in one large con-
tainer and extracts the particular parts which are needed to instan-

tiate a certain product – a method commonly used in monolithic
systems. Variant segregation maintains different versions of each
part, and simply combines the appropriate parts when the product
needs to be instantiated – which is a suitable method for compo-
nent-based systems. Both methods, however, have advantages and
drawbacks.
In the context where we have carried out our investigation (the
mobile phone industry), we deal not only with lines of products,
but each single product (a specific model of a mobile phone) may
also have some parts or components that are tailor-made customi-
zations. This means that a product can in itself also be a product
line. In fact, this can happen in many steps: A very general plat-
form can be considered a product line, which is instantiated to
create both high-end and low-end products. The high-end instan-
tiation can then be considered a product line, which instantiates to
different phone models, which are in turn instantiated, until an
actual, physical phone is completed.
We have a working context – and industry case – where software
development creates a number of components in a number of
versions (variants and revisions). They are compiled into binaries
that are combined with a description (meta data) and put into the
component repository, as depicted in Figure 1.
For monoliths, there is normally just one repository where all
source code is stored, and products are created directly from it by
compiling the relevant source code – which, for large systems,
may take a lot of time. In this context, there are two repositories:
one used for the development of source code (corresponding to
the items managed by Software developers in Figure 1); and one
repository where components are stored as pre-compiled items
(the Repository to the right, managed by Configuration manag-
ers).

Figure 1. Component creation

The component repository holds all components in all their ver-
sions, and can therefore be used to create every possible variant of
the system. In essence, the component repository corresponds to
the product line. When a particular variant needs to be created, the
corresponding components are then extracted and combined.
There is no need for compilation at this stage, which keeps the
time required to instantiate products down – even creating many

different products at the same time can be done very quickly. The
process of instantiation is show in Figure 2 below.

Figure 2. The composition process

There is much complexity inherent in configuration composition.
This complexity stems from three sources.

• The components to choose from – different applications,
for example.

• The revisions of these components – such as new ver-
sions of a specific application.

• Variants of components – different alternatives of the
same component, which serve slightly different pur-
poses. This can be seen as “internal” product lines, in-
side the components.

In fact, there is even more complexity, since there are relation-
ships between components. Relationships restrict which compo-
nents can be combined, and in what way – and relationships may
even change between different versions of the same components.
The goal is to compose complete and consistent configurations –
essentially, to only instantiate useful variants of the product line.
If components were truly independent there would be no problems
with consistency, but completeness (having all functionality)
would still be an issue. However, even if components are techni-
cally independent there may be legal requirements on how they
may be combined, or simply business considerations. A configu-
ration can therefore be complete and consistent from different
perspectives, depending of the context.
Once we have obtained this goal, we want to be able to actually
work with the configurations. It would be useful to be able to ask
questions about the configurations, to quickly create mock-ups of
possible configurations, and to perform sanity checks on configu-
rations – for example to make sure that all components can in fact
be used, that there are no duplicate components, etcetera.

3. RESULTS
We studied the context described in the previous section to ana-
lyze the potential and problems in composing products from com-
ponent-based product lines and sketch how that could be done.
The results most relevant to the workshop themes are the follow-
ing:

• The composition of components from component-based sys-
tems into product variants can be assisted by introducing a
support tool to manage the considerable complexity.

• Such a tool can also reduce the lead times, increase effi-
ciency and lessen the risk of human error, by automating
tasks which would otherwise have to be performed manually.

• As many decisions as possible should be taken automatically
by the tool. Ambiguous or undefined decisions must be han-
dled by humans.

Additionally, several mechanisms can be identified, which should
be part of this kind of tool.
Relationships. Components should remain mainly independent of
each other, but sometimes there are good reasons for allowing
dependencies1 between them. A component can require or conflict
another; or may recommend or suggest one. Components can also
replace or break each other; and for the dynamic composition
problem, pre-requires is necessary. The abstract concept of rela-
tionships is in practice handled by rules.
Metadata. Components can have properties. So too can configu-
rations, services, layers and rules. Properties can be either static or
dynamic. The former are set by a user and are absolute; the latter
are calculated by the system when required. For instance, the
property “last modified” on a configuration may dynamically
depend on the corresponding properties of its constituent compo-
nents. Calculating dynamic properties requires knowledge of rela-
tionships and can reduce unnecessary work – for instance by pre-
dicting that a configuration will not work, based on the test status
of its components, thereby precluding the need for testing the
configuration.
Layers. Components can have very different roles in a compo-
nent-based system, and a suitable way of structuring the compo-
nents is a layered system. Components on one layer are allowed to
require that other components on the same layer, or lower layers,
are present, but must not require that higher-layer components are
present. This facilitates a good system structure and helps to de-
termine if a configuration is complete. Examples of layers could
be operating system, service layer, applications and customiza-
tions; but many more can be envisaged.
The exact number of layers may vary for different configurations,
as may the requirements on each layer – for instance that exactly
one component from the lowest layer is included in a configura-
tion, and that more than zero components from a higher layer are
included.
Rules. Rules are used to express relationships between compo-
nents, to evaluate which components must or must not be included
in a configuration, and to state what traits a configuration must
exhibit. Generally, a rule consists of one or more conditions and
one or more consequences.
A condition can refer to a configuration – or one or more specific
versions (variants and revisions) thereof; a component (in any
given version); a service (in any given version); a layer; a rule (in
any given version); current date and time; a property of a configu-
ration, component, service or rule; and more.
A consequence can be to require that a component or service must
or must not be included in the current configuration; that a prop-
erty must or must not have a specific value, or that a property is
assigned a value; that a rule is or is not to be evaluated; and more.

1 Similar to Debian’s notion of dependencies.

Rules belong to different categories, being for example technical,
legal or business-related. They can also have priorities, to decide
the order in which they are evaluated. A considerable amount of
work is required to produce good rules, but the benefit is that im-
plicit knowledge is codified and can be used by the support tool to
automatically perform work that would otherwise have to be done
manually – for example checking consistency or automatically
completing a partial configuration.
Completeness. A configuration is complete if it contains all com-
ponents which are needed, in correct versions. A component can
be needed because of a relationship from other components (tran-
sitive closure); from fulfilling layer requirements; as a conse-
quence of a rule; or directly because the user of the support tool
asked for it.
Consistency. A configuration is consistent if all rules are adhered
to. Specifically, no components should be in conflict with each
other; and only certain cases of replace and break are allowed.
Also, all property consequences must be followed.
Sanity. A configuration is sane if all included components fulfill a
useful purpose. A configuration containing only an operating sys-
tem and nothing else may be both complete and consistent, but
can be used for no sensible task; or a service may be used by no
component, in which case the service should probably not be in-
cluded.
Repositories. We find a need for two different repositories – one
for source code, in the ordinary fashion, and one for components
and configurations, where greater control is exerted before com-
mits are allowed. Each repository has its own purpose and differ-
ent people using it in different ways. Making the distinction ex-
plicit will simplify many things and make it easier to implement a
special repository that suits the needs for composing configura-
tions from a set of components.
Commit checks. The latter repository can be expected to grow
over time, in both space and time (variants and revisions). To
maintain some level of cleanliness, changes to the repository need
to be screened – or the contents risk ending up with unnecessary
relationships or even mutually incompatible rules. At best, this
will lead to a bad architecture, and at worst, composition will be
rendered impossible.
Commit checks can typically involve making sure that the com-
mitted component version can be used, at all, in a configuration2;
that all existing rules are still valid after the commit; that new
rules are consistent with existing ones and with current configura-
tion and component data; and otherwise maintain a sane state of
the repository. Not all problems can be caught using this mecha-
nism, but the structural problems can be, leaving only the dynamic
problems of actually creating a configuration.

More results and more details about the results above can be
found in [4].

4. FUTURE WORK
Our odyssey into the world of constructing configurations and
products from a base of components has uncovered just about as
many new questions as it has provided answers – if not more. In
the following, we outline a number of interesting new questions

2 It is possible to set up rules in such a way that a component is in

conflict with itself, for example using cyclic anti-dependencies.

that are still to be explored more closely – some related to SCM,
some to composition, some to software product lines – but most of
them have aspects from all three.
The discussion questions have been grouped into two themes:
Once a configuration has been constructed by completion, what
kind of information can help us with how we verify that it is also a
valid composition – and how can we capture that information?
Could we use composition information in the construction phase
so it becomes more than just a simple completion – or are there
other ways to compose configurations from software product
lines?
The two proposed discussion themes are not necessarily com-
pletely disjoint.

4.1 What can we do with configurations?
Constructing configurations is a complex thing. People will mess
it up, so they need tools to help them. Once a configuration has
been created we need to help them verify a number of things
about the configuration: completeness (whatever is the definition
of that), consistency (we can think of several variants of a defini-
tion for that), metrics, and more.
Rules. The foundation for rules is presented in section 3 “Re-
sults”, but many questions remain. What, for instance, is the best
way to represent rules – separation of facts and logics; Turing-
complete languages; simpler, more pre-defined mechanisms; or
entirely different approaches? In addition to these questions, many
of the problems outlined below can probably be handled by using
rules. Should the rules be set up “globally” for the verification
system or should it be possible to have “personalized” rules for
each user/product? What new advantages and challenges does this
bring? How can products be reproduced if rules change? Should
it be possible to dynamically add/modify rules during the selec-
tion and/or verification process?
Status. Can a configuration’s status be automatically determined
from constituent component statuses, their relationships and rules?
How should this be done? What advantages would this bring? One
use we have in mind is for determining the test status of a con-
figuration, but are there other areas where this idea can be applied
to assist product composition?
Relationship automation. Can relationships between components
be found automatically – and if so, how, when, under which cir-
cumstances, and by whom? Which relationships can be found, and
which cannot? Which tools are available for finding them (code
analysis, automated smoke testing with different components,
statistical analysis, reviews of component histories), and how
reliable are they?
Repositories. The commit checks, mentioned in section 3 “Re-
sults”, are merely one aspect of repository management. The
number of components, versions and variants of components will
grow by time. Do repositories need to be cleaned out from time to
time? If that is the case – when, how, and by whom? Can reposi-
tory contents ever be allowed to be truly deleted, or should they
be archived somewhere (for example for traceability reasons)?
What are the advantages and drawbacks? How large can reposito-
ries be allowed to become, and how should this be measured –
which metrics are most pertinent? Do the same rules apply for
different kinds of repositories – requirements, design, source
code, binary components and configurations? And what kinds of
repositories are there, anyway?

Layers. Is a layered structure, as the one we propose for our spe-
cific context, also a support in general when working with com-
ponent-based system to produce products in a product line? Can a
layered structure also work as a support for not letting the reposi-
tory of components evolve towards a monolithic system? Or can a
layered structure harm the evolution of new features by forcing
components to be in a fixed structure? Is the layered model even a
good structure? Would a two-dimensional (or more) structure be
more functional? Are layers more than just having “classifica-
tions” of components and a rule stating that we must have exactly
one component of classification OS?

4.2 How to build configurations?
Can composition information in the construction phase be used so
it becomes more than just a simple completion? What is really a
product line? How should it be represented – and what about the
products in the product line? How do we get from the product line
to the product(s)?
Configurations in repositories. Assuming that configurations are
stored in a repository, what information must be saved? Should
each and every version of every configuration be stored in full
detail and with full information about all properties, or are subsets
of this data sufficient? What should the change process for con-
figurations look like? Can several people modify the same con-
figuration at the same time, and how should this be handled?
What models and policies should be in effect? Are these the same
as for source code?
Static vs. dynamic component selection. We can have loosely-
coupled components that do not need a specific component, but
rather a specific service that can be provided by a number of dif-
ferent components – in this case, is dynamic or static composition
the best alternative? What are the impacts of statically requiring a
component to use a certain component, or enabling it to choose
among components dynamically at runtime? Should the system
maintain the list of services of each component, or should there be
a common interface which components can use to query each
other? What are the advantages and drawbacks?
Variation points. Variation points were not the primary concern
in our work so far, component-based development was – but
variation points can be used even “inside” components, so they
become interesting also in a component-based context. The grow-
ing used of variation points for product lines could bring back the
old – and little understood – fragment system [8] that was built on
the concept of “syntax-directed” modularization [7] and could be
used for aspect-oriented programming [6]. Could these concepts
be taken to new levels of use, now that people have caught on to
variation points?
End-user composition. Though we have worked in a “producer”
context so far, we should also more generally look at the “cus-
tomer” context, where new services/applications are downloaded
to an “environment” that we have little or no control over. What
components will work in a specific environment? What other
things does it require (that may or may not be there)? What ver-
sion of the component should we get – and does that require that
we get newer versions of other (depending and dependent) com-
ponents? What other new challenges does this brings?
Components of components. What advantages are there by being
able to display a set of components as one component and have
different views of the components in different situations (as seen
in Figure 3)? What happens to the relationships and properties of

components inside the component? Is it useful for the compound
component to inherit relationships and properties from its in-
cluded components? What advantages and drawbacks are there
from this? Are there other ways to do this? Should the relation-
ships and properties be classified as internal and external proper-
ties?

Figure 3. Perspectives on components

Configurations as “first class objects”. In many situations we
could be interested in treating configurations as first class objects.
To be able to treat them in the same way as we do with compo-
nents. What are the advantages of being able to treat a group of
components in the same way as a component? Should it be possi-
ble to work with bound configurations only or should we also
allow partially bound configurations? What relation do the un-
bound components in such a “configuration” have to the concept
of variation points?
Variation points in components. Since a component can be a set
of components, can such a component have un-bound variation
points? How does this affect completeness and consistency
checks? Is it still possible to specify a set of rules to assist in the
verification of completeness and consistency?

5. CONCLUSIONS
We approach this workshop with a hammer (SCM) in our hands
and are curious to explore how much of what the workshop deals
with is actually nails (issues that can be solved of alleviated by
SCM techniques). Furthermore, we would be interested in finding
out which nail-like things (issues) there are around and how they
– or our hammer – could be restricted or modified to create work-
able solutions. Where and how is it that nails (and screws) are
used in product lines and when is it that glue would work better –
and when and how to use the hammer appropriately?
We believe that our SCM perspective on component-based com-
position and the results we have obtained so far will generalize to
aspects, services and other ways of dealing with software product
lines – at least on the level of the SCM problems faced.

However, the authors also expect to learn something from the
“composition” and the “software product line” communities that
we can feed back into our continued development of SCM support
for software development in general and of product lines in par-
ticular.
One final addition – we have started to look deeper into adding
the version and/or variant dimension that has not been very
prominent in our work so far [4]. How to handle that evolution
may change the structure of the “base product” – or how to handle
that the system model changes in Feiler’s “composition model”
[3].

6. REFERENCES
[1] Wayne A. Babich: Software Configuration Management –

Coordination for Team Productivity, Addison-Wesley, 1986.
[2] Lars Bendix: Software Configuration Management Problems

and Solutions to Software Variability Management, Proceed-
ings of the ICSE Workshop of Software Variability Man-
agement, 2003.

[3] Peter H. Feiler: Configuration management models in com-
mercial environments, Technical report, Software Engineer-
ing Institute, 1991.

[4] Jacob Gradén, Anna Ståhl: Managing product variants in a
component based system, Master’s thesis, Department of
Computer Science, Lund University, November 2009.

[5] Andreas Hein, John MacGregor: Managing Variability with
Configuration Techniques, Proceedings of the ICSE Work-
shop of Software Variability Management, 2003.

[6] Jørgen Lindskov Knudsen: Aspect-Oriented Programming in
BETA using the Fragment System, Proceedings of the As-
pect-Oriented Programming Workshop at ECOOP'99, 1999.

[7] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B., and
Nygaard, K.: Syntax Directed Program Modularization, in:
Interactive Computing Systems (ed. P. Degano, E. Sande-
wall), North-Holland, 1983.

[8] Ole Lehrmann Madsen: The Mjølner BETA Fragment Sys-
tem, in J. Lindskov Knudsen, M. Löfgren, O. Lehrmann
Madsen, B. Magnusson (eds.): Object-Oriented Environ-
ments: The Mjølner Approach, Prentice Hall, 1994.

[9] Axel Mahler: Variants: Keeping things together and telling
them apart, in Walther F. Tichy, editor, Configuration Man-
agement, John Wiley & Sons, Inc., 1999.

[10] Klaus Pohl, Günter Böckle, Frank J. van der Linden: Soft-
ware Product Line Engineering: Foundations, Principles
and Techniques, Springer Verlag, 2005.

