
A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 167–180, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Requirements for Practical Model Merge – An
Industrial Perspective*

Lars Bendix1 and Pär Emanuelsson2

1 Department of Computer Science, Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden

bendix@cs.lth.se
2 Ericsson AB,

S-583 30 Linköping, Sweden
par.emanuelsson@ericsson.com

Abstract. All the support tools that developers are used to must be in place, if
the use of model-centric development in companies has to take off. Industry
deals with big models and many people working on the same model. Collabora-
tion in a team inevitably leads to parallel work creating different versions that
eventually will have to be merged together. However, our experience is that at
present the support for model merge is far from optimal. In this paper, we put
forward a number of requirements for practical merge tools, based on our
analysis of literature, merge tool evaluations, interviews with developers, and a
number of use cases for concurrent development of models. We found future
work to do for both tool vendors and academic research. Fortunately we also
uncovered a few tips and tricks that companies using model-centric develop-
ment can implement on the short term while waiting for better times.

Keywords: Model merge, diff, version control, parallel work, team co-
ordination, industrial experience.

1 Introduction

In industry, the use of models in development is gaining momentum. However, from
our experience there are still a number of obstacles that have to be overcome before
the use of model-driven development can really take off. Models can be used in many
different ways ranging from simple visualization of code to a pure model-centric
approach where the model is the sole focus of attention and executable code is gener-
ated directly from the model and never looked at or manipulated. For the past couple
of years Ericsson AB has started to use the model-centric approach on more and more
of its projects and has had some successful experience, but has also suffered from
being an early adopter of a “technology” that for some aspects is still not fully mature.

Industrial use of model-driven development means not just creating big and com-
plex models, but more importantly also the involvement of many people working on
the same model. A key factor in the adoption of model-centric development is the
presence of mature tools that can support the developers when they carry out their

* Empirical results category paper.

168 L. Bendix and P. Emanuelsson

tasks. The most basic set of tools necessary consists of a model editor and a model
compiler. This will allow the single developer to create and manipulate a model and
to compile it into running code. However, this will not scale to an industrial project
where many people are involved. Effective collaboration in a team requires that peo-
ple can share information and the existence of groupware that can help groups com-
municate, collaborate and coordinate their activities [11].

On a more traditional development project where textual programming languages
like C, Python or Java are used, version control tools and functionality often work as the
groupware that helps a team manage its coordination. They will address problems like
“shared data”, “simultaneous update” and “double maintenance” [4] that are intrinsic
parts of team collaboration and cannot be avoided, but instead have to be managed to
allow the team to work efficiently and without making mistakes. The version control
tool supplies a workspace to manage the “shared data” problem and concurrency detec-
tion to help manage the “simultaneous update” problem. Merge functionality – that may
or may not be part of the version control tool – helps manage the “double maintenance”
problem by allowing for easy conflict detection and resolution. Finally, diff functional-
ity allows the developer to get information about how two versions in the repository – or
a version in the repository and the version in the workspace – differ.

Our experience at Ericsson AB was that the version control support worked pretty
well, though not optimal, when working on model-centric projects. However, the
merge/diff tool support was far from optimal. From an informal tool evaluation we did
in early 2007, it emerged that even for extremely simple examples, the merge results
could often be counterintuitive or downright wrong – in some cases the merge result
produced would not even load in the model editor. In a different study covering more
tools the authors even went so far as to conclude that the “state of model merge tools is
abysmal” [5]. It was decided to investigate more carefully the maturity of model merge
with three objectives. First, to find solutions that could be implemented immediately
by developers and projects. Second, to discover results from research that could be
integrated in the tools provided by vendors. Third, to distinguish and define problems
that need to be researched to provide more mature support for model merge.

In a previous paper, we reported on our results from an initial literature survey of
academic research on model merge and an initial analysis of similarities and differ-
ences between text merge and model merge [6]. In a later paper, we proposed and
discussed the consequences of a number of use cases for text and model merge, based
on problems and suggestions that emerged from interviews with developers at more
sites within Ericsson AB [7]. In this paper, we first present the context for the experi-
ence reported and clarify the terminology we have chosen to use. Then we give a
more thorough analysis of relevant use cases from [7] with the aim to distil a number
of requirements for a practical model merge tool. These requirements are then
grouped into related themes that are discussed in more detail, and finally we draw our
conclusions. This paper is based on a recent more thorough evaluation of model
merge tools [18] and further interviews with developers.

2 Background

In this chapter, we will first describe the context in which we have obtained the ex-
perience we report, then we give a brief review of previous work done in this field

 Requirements for Practical Model Merge – An Industrial Perspective 169

followed by a clarification of the terminology that we use in this paper and finally the
delimitations that will hold for the subsequent analysis and discussion.

Context. Ericsson AB has developed several large systems with millions of lines of
code using UML in a model-centric way. This means that executable code is gener-
ated directly from the models and only models are considered for work, whereas gen-
erated code is never looked at or manipulated. We are able to obtain good reliability
of systems and execution speed and code volume is acceptable. Furthermore, we have
seen positive effects on code comprehension and on system complexity. As such the
use of model technology has proved a success for industrial use and Ericsson AB
would like to continue.

However, there are still a number of unresolved problems on the collaborative
level because of the immaturity of tool support. We often work in big projects with up
to 100 people working on the same model. On some projects people are even distrib-
uted on more than one site, making collaboration even more difficult without proper
tool support. Without this support people resort to doing manual merges using three
screens for the two alternatives and the result; instead of having tool-supported 3-way
merge. Or they use a text merge tool on the textual representation of the model; which
works in some cases, but requires knowledge of the representation format.

These “solutions” make it possible for the project teams to survive the use of
model-centric development, but we would like to see better direct support from tools
and processes.

Previous work. For textual documents there has long been mature merge tool support
and early on the software configuration management (SCM) research community
started to look at widening merge support. Early attempts were on structured docu-
ments in the context of structure-oriented environments [22] and syntax-directed
editors [3]. However, since neither structure-oriented environments nor syntax-
directed editors caught on that line of research died out. Interest has more recently
resurfaced with the widespread use of structured texts and documents and thus the
need to be able to provide support for collaboration for such structures. One line of
research focuses on hypertext systems [17] whereas another line looks at models in
general and UML models in particular [19].

People from outside the SCM community have also shown interest in looking at
how to support the collaborative work on models. Early research focused on the de-
tection and visualization of differences [23], [13] of diagrams to allow people to un-
derstand and analyze the evolution of changes to diagrams. More recently this has
been extended to include merging of diagrams [14], [24] to support also the recon-
ciliation of parallel work. This interest from the model community has grown into two
lines of interesting workshops – one that looks more specifically at the technical ver-
sioning aspects of models [9], [10] and one that treats more general aspects of model
evolution [15], [16].

Terminology. Reading through the literature from the model community we encoun-
tered some problems with terminology that made it difficult to know precisely what
was being talked about and caused us some initial confusion. To avoid similar confu-
sion in the readers of this paper, we find it proper to clarify the terminology we use

170 L. Bendix and P. Emanuelsson

here. There is a line of research on model merge that has a much more theoretical and
mathematical approach [1], [2], [21], [20] and [8] than the more technical approaches
mentioned above. Most of that work – though not all – focus on merge of different
types of models and not of different versions of the same model. They “borrow” much
from the mathematical world and work on defining and using the algebraic properties
of operators on models. So we end up with many operators that sometimes have dif-
ferent meanings for the same operator. Here we define our meaning of four of these
operators:

diff vs. compare: diff computes the differences between two versions of the same type
of model (eg. class diagram); compare computes the differences between two models
of different types (eg. class diagram and sequence diagram)

merge vs. union: merge integrates two (parallel) versions of the same type of model
(eg. class diagram) and usually (in this paper) is a 3-way merge with a common an-
cestor; union integrates two models of different type (eg. class diagram and sequence
diagram) and usually is 2-way without a common ancestor

Premise. What we present in this paper does not pretend to be general. It is based on
the experience from one company – though from several independent branches – and
the analysis and discussions are targeted at the specific needs of that company. How-
ever, since we believe that model-centric development and its problems do not vary
much from company to company, we are confident that most of our findings – even
with the delimitations below – will be generally applicable and of interest also to a
wider audience.

In this paper, we treat diff and merge only as we are interested in working on dif-
ferent versions of the same type model. We detail only (mostly) merge as we consider
diff to be a part of and a pre-requisite for a merge and therefore it shares similar prob-
lems. We have version control of models so historic versions are available and 3-way
merge always possible. We talk about UML – and not models in general – and we can
(and do) have UUIDs. All people on a team will use the same tools and processes and
we value tools that integrate with other tools over integrated frameworks because that
allows for more flexibility in setting up a working environment. Finally, we have a
bias for feature-oriented development, which means that more feature teams will have
to modify the same (parts of a) model at the same time.

3 From Use Cases to Requirements

In this chapter, we analyse a number of the use cases that were presented in [7]. We
use them to distil more detailed requirements for practical model merge support. We
briefly describe and motivate each use case. This is followed by an analysis of the use
case, where we relate the model case with the traditional support in the text case.
Finally we state and briefly discuss the use case’s consequential requirements.

At this point we do not discriminate between requirements that are targeted at the
version control tool, the model merge tool, the model language or the model work
process. A more detailed discussion of the interrelations and dependencies between
and the consequences of the requirements will be given in chapter 4 below. The use
cases are intended to give the context in which model merge will have to live and as

 Requirements for Practical Model Merge – An Industrial Perspective 171

such hints at how it should work and what the requirements are if there is to be the
same support for model merge as for text merge.

Some of the use cases from [7] are not used here for several reasons. Use case
3.1.b: Work in isolation, because it was meant to highlight collaboration in general
and is not relevant to a specific analysis of merge support. It is part of what is
supplied by the version control tool through the concept of a workspace – the conse-
quence of which is that we may need to merge the parallel work done in more work-
spaces. Use case 3.1.c: Integrate work, is covered by and detailed in use cases 3.2.c-e
that will be treated below. Use case 3.1.f: Create awareness, is outside the scope of
this paper – it is usually part of the support supplied by the version control tool and is
not specific to merge support. Use cases 3.2.a: Architecture model development and
3.2.b: Design model development are also left out here, because their primary purpose
was to show the need for a compare operation and the varying number of people
working in parallel – in this paper, we focus on the design setup.

3.1 Put Model under Version Control

Description and motivation: The version control system is the primary source of
groupware support for a team. Furthermore, we would be interested in recording the
history of evolution of our model.

Analysis: Traditionally when we put a project under version control, we have to select
the configuration items (CI), which are the artefacts that we want to version. Usually
version control systems handle files as CIs, so we need to supply the system with a set
of files that make up the model. One extreme would be to have the whole model in
one single file, another extreme to have each single model element in a file of its own.

Requirements: We will need the modelling language to have a mechanism for split-
ting up a model so it can be placed in several files, and we will need the version con-
trol system to support flexible units of versioning:

• flexible unit of versioning (UV). The UV is used by the version control
system for concurrency detection. The finer the UV, the better the version
control system can decide if parallel changes touch the same or different
parts of the model. However, the finer the UV, the more fractioned the
model will appear to the developers and the more work they will have in
managing the version control. It is important for the developers to have
flexibility for the UV, so they can tailor it to their specific needs.

• modularization mechanisms. The model language must have a mechanism
for physically splitting up a model in smaller parts. If that is not the case,
everyone will be working on the same artefact and all parallel changes
will create a concurrency conflict triggering a merge situation for the
artefact.

3.2 Investigate History

Description and motivation: When we have the historical evolution of a model pre-
served in the version control system, we would like to investigate that history to dis-
cover what changed between two specific versions. More generally, we would like to

172 L. Bendix and P. Emanuelsson

know what is the difference between any two versions of an artefact whether they are
in the repository or in the workspace.

Analysis: We use the version control system to keep track of the versions we create of
an artefact and that are committed to the repository. This will give us an overall pic-
ture of the evolution of an artefact. In case we want to know the details, we need an
operation that given two versions from the repository can tell us exactly how they
differ. Such an operation can also be used to tell the difference between a particular
version in the repository and the version we have in our workspace. In all cases we
will have a 3-way diff as there will always be a common ancestor – also to the work-
space version as it has been checked out from the repository. For such a diff to be of
practical use, it should present the differences in a way that makes sense to the user.

Requirements: We will need a diff operation, attention to presentational issues, a work
process that focus on logical tasks, and flexibility in the unit of comparison:

• diff operation. Because we work in a context where we have the same
type of model, we do not need a compare operation that can tell the differ-
ences between different types of models. The diff operation should be
detached from the version control system to allow us more flexibility in
selecting tools. Since we are not working on text files, the diff operation
should be tailored to the type of model that is addressed.

• presentational issues. In order not to create information overflow, only
important differences should be shown. For our context we do not
consider layout changes to be significant. However, a good filtering
mechanism will allow the user to define what he wants to see at any given
moment.

• work process that commits logical tasks. Once the tool has shown the dif-
ferences between two versions, we have to make sense of the details. To
try to recreate the logical intention behind a number of detailed changes.
This task is greatly helped if the work process prescribes that only com-
plete tasks are committed and if each commit has a short log text associ-
ated with it.

• flexible unit of comparison (UC). Just as for the presentational issues, we
need flexibility in the unit of what is compared. In the textual case we do
not want to be told that a file has changed; we want to know what line was
changed and sometimes even what changed on that line. Likewise in the
model case. Flexibility in the UC will allow us to tailor the diff operation
to give us information at the level of detail that we are interested in at the
moment.

3.3 Model Update without Merge

Description and motivation: When parallel development has happened we want to
synchronize the work at some point. In the case where work has not been done on the
same artefacts, we do not need to carry out a merge but can simply take the sum of
changes to be the result.

 Requirements for Practical Model Merge – An Industrial Perspective 173

Analysis: The normal way of working of a version control system is that when we
want to commit our changes, it first carries out a concurrency check. If something
new has arrived in the repository since we last updated our workspace there is a
physical conflict on some of the artefact, and we will need to update our workspace
version to avoid getting the “simultaneous update” problem [4]. However, if the arte-
facts that we changed have not changed in the repository, we can do a commit and
add a new version. However, this is not always enough to ensure that we will have
consistent configurations in the repository as there may be logical conflicts that are
not detected by this mechanism.

Requirements: We will need a transaction mechanism that takes into account logical
consistency:

• strict long transactions. The long transaction model [12] works as de-
scribed in the analysis above and thus opens up for inconsistencies. How-
ever, the strict version of long transactions does the concurrency check at
the logical level where we perform the commit. If anything has changed in
the repository since we last updated our workspace we are not current
anymore and must update – even if changes in the repository only regards
artefacts that we have not changed in our workspace. Strict long transac-
tions do not detect inconsistencies, but force us to update and create a new
“configuration” in our workspace instead of directly in the repository.
This means that we have the possibility to check for inconsistencies in the
updated configuration before we finally commit it to the repository. For
strict long transactions to be practical, we should be able to commit – and
thus carry out concurrency checks – at other levels than the top level.
Otherwise we will always be forced to do an update even when changes in
the repository regard completely unrelated parts of the system.

• flexible unit of versioning (UV). This will allow the developer to decide
the granularity of concurrency detection. In the textual case the UV is al-
ways the file, but the developer decides what to put into the file. If that is
not the case for models, then we would need the UV to have more flexi-
bility.

3.4 Model Update with Automated Merge

Description and motivation: When work has been carried out in parallel on the same
artefact(s), there will have to be performed a merge of the changes as part of the
model update. In the simple case, the merge tool will be able to automatically resolve
the changes and produce a successful merge result.

Analysis: The issues of concurrency detection were dealt with in the previous use case
3.3, so in this use case there is actually a physical conflict at the level of unit of ver-
sioning for at least one artefact. To be able to automatically resolve the conflicting
changes we need to go more into details. We look at the internal structure of the unit
of versioning to see if there are conflicting changes at the level of the unit of compari-
son. If not, we will have the same situation as for use case 3.3, but at the level of a
single artefact and not of a whole configuration – this includes both the capability of
producing a merge result, and the possibility of this result being logically inconsistent.

174 L. Bendix and P. Emanuelsson

Requirements: We need to be aware of the semantics of the merge operator and we
need flexible unit of comparison to allow better conflict resolution:

• flexible unit of comparison (UC). The granularity of the UC decides the
level at which we can do conflict resolution. The finer the granularity, the
better and more precise we can distinguish differences and decide on how
to automatically resolve the merge. If the level of granularity is a class,
then changes to different methods by different people will create an ir-
resolvable merge conflict. Likewise, if “action code” is the unit of com-
parison then any modification to the “action code” will flag the whole
“action code” as changed. It would be more helpful if “action code” had a
UC at the level of a line of text, as we could then distinguish exactly what
lines were changed and have better possibilities for resolving parallel
changes to the “action code”. However, if the level of granularity becomes
too fine, then we can suffer performance penalties – and “incorrect” se-
mantic behaviour at the level of the unit of versioning as discussed below.

• semantics of merge operator. Now that we – or rather the automated
merge – actually change the internals of our model, it is important that it
is clear in which way these changes are done. In the traditional text merge
tools the semantics of the merge operator is very simple. If a line of text is
changed in one of the alternatives, then it is also changed in the result. For
model merge tools the situation will be much more complex. In many
cases there will be more than one possibility and only explicit semantics
of the model merge operator will make it clear for the user what happens.
Furthermore, the text merge tool only guarantees to produce a “correct re-
sult” according to its own semantics – which is “lines of text” – even
though the real semantics of the contents of the merged artefact is often
quite different. From this perspective, it is perfectly reasonable for the
merge tool to produce a result in the case where the declaration and use of
an identifier has been removed in one alternative and a new use of that
identifier added to the other alternative. It is obvious that what is correct
semantics for the text merge tool will not be correct semantics for the Java
compiler. It is not clear whether it will be possible – or practical – to
avoid such a mismatch in semantics for model merge.

3.5 Model Update with Merge Conflict

Description and motivation: When work has been carried out in parallel on the same
artefact, there will have to be performed a merge of the changes as part of the model
update. In the complex case, the merge tool will not be able to automatically resolve
the changes and will announce a merge conflict.

Analysis: From the analysis of use case 3.4 above, it is clear that we have the same
needs for clear and explicitly defined semantics in this case. Likewise, the granularity
of the unit of comparison is equally important for the possibility or impossibility to
automatically resolve merge conflicts. The only difference to the above use case 3.4 is
that in case both alternatives have changed the same unit of comparison, it will not be
possible for the merge tool to choose which alternative to use – a merge conflict will
have happened and the user will have to manually resolve it.

 Requirements for Practical Model Merge – An Industrial Perspective 175

Requirements: We will need clear semantics, flexible unit of comparison, and defini-
tion of how to present conflicts:

• flexible unit of comparison (UC). Identical to use case 3.4 above, so we
refer to that discussion.

• semantics of merge operator. When we deal with the simple semantics of
the text merge operator, it is clear that parallel changes to the same UC
(line of text) will have to create a conflict. However, for model merge the
case might not be that simple. However, in the model case there is much
more information available than just “some text has changed” and the
UCs might not always be of the same type. So it might in some cases be
possible to define a reasonable merge result – or a preference to one alter-
native over the other – even when both alternatives have been changed.

• presentational issues. We need to deal with the presentation of merge
conflicts at two levels. First, the presentation of the conflict has to be in
such a way that it is clear to the user what the conflict consists of. As
stated above, the richer semantics of the model merge operator should
make it possible to provide that information. Second, the representation of
the conflict has to be in such a way that the merged result can be loaded
and modified in a model editor. This means that the underlying represen-
tation of the model will have to be able to handle and represent conflict
markers. In text merge such conflict markers are not a problem for the
editor, as they are text too – and standardization of the conflict markers
have even made it possible to present conflicts in graphical editors.

3.6 Verify and Validate Merge Result

Description and motivation: Once we have produced an automated merge result, we
would like to verify and validate its correctness.

Analysis: It will have become evident from the discussions in use cases 3.3, 3.4 and
3.5 above, that it will be virtually impossible to guarantee always 100% correct merge
results. In text merge, that is a well-known fact and it is common practice to always
check the result by doing a “build-and-smoke” test after an announced successful
merge. Because that test is relatively fast and easy to do for the textual domain, users
tend to have a preference for a high recall at the cost of a lower precision in the merge
results. When discussing verification and validation of merge results, it is important to
notice that also in the case of use case 3.3 above, there is actually performed a merge.
The merge is not done at the level of the unit of comparison as in use cases 3.4 and
3.5, but at the level of unit of versioning.

Requirements: We should be able to verify the syntax and semantics and to validate
the model logic:

• verification of “syntax and semantics”. In text merge this is a simple
compilation of the program. If our model merge operator is not able to
guarantee that the result always respects the syntax and semantics of the
model language, we need to do a similar compilation for models too.

176 L. Bendix and P. Emanuelsson

• validation of “program logic”. For text merge it is common practice to
have a small suite of test cases that will catch the most blatant mistakes. It
is much faster than complete testing and experience has shown that in
most cases it is sufficient for finding merges that mistakably are an-
nounced as successful merges. A similar process should be adapted for
model merge.

4 Discussion

In this chapter, we will discuss in more detail the requirements that we have identified
in the preceding chapter. For ease, we have grouped the requirements into three re-
lated themes – semantics of model merge, division of responsibility and presenta-
tional issues – that are discussed for possible consequences of the requirements and
for what should be taken into consideration when implementing them.

4.1 Semantics of Model Merge

This is in our opinion the most important and also controversial aspect of model
merge. The semantics of text merge are really simple, if a line of text has changed it
has changed. If the same line of text has changed in both alternatives, there is a con-
flict. There have been attempts at more fine-grained unit of comparison by looking at
the syntax and semantics of the contents. However, lines are still what rules for text
merge in practice.

For models the situation is not that simple. It is indeed possible to exploit the un-
derlying textual representation of the model and use a textual merge tool. However,
even minor changes to the layout of a model can have big consequences for the order
in which things are stored, which will cause insurmountable problems for a textual
merge tool. So we see no way around using the implicit structures dictated by the
model language for a model merge tool. Furthermore, such an approach will also
benefit from the possibility of defining a “richer” semantics, since we will have sev-
eral different “types” of units of versioning and not just one (lines of text) as in tex-
tual merge. There have been early attempts to define such “rich” semantics for merge
of structures [3] and [22], that revealed several cases where the desired merge result
was open for discussion. The work of [8] is a first step towards model merge seman-
tics, though they are more focused on the algebraic properties and compare and union
operators.

That defining model merge semantics is not that easy can be seen from figure 1.
One developer restricts the multiplicity of the class’ relation to “0..2”, while the other
developer in parallel restricts it to “1..10”. Now what should be the merged result of
this: “1..2” (the most restrictive), “0..10” (the least restrictive) – or something third?
In our opinion, the developer should never be left guessing, so in case the merge is
automatically resolved, the result should never be a surprise – otherwise a merge
conflict should be flagged. A recent tool evaluation [18] revealed other “unpleasant”
surprises. One setup was that in both alternatives a new class with the same name as
the existing class was added and the two alternatives were merged. One tool decided
that the names were the same and therefore merged the two classes into one. The

 Requirements for Practical Model Merge – An Industrial Perspective 177

other tool decided that the two classes were different and kept both classes in the
merge result. One can argue for the correctness of both approaches. In the first case,
the merge tool made its decision based on the “similarity” of the two classes whereas
the second tool made its decision based on the different UUIDs of the two classes
(ignoring that they had the same name). This shows that in some cases model merge
semantics are very open for interpretation. Therefore it is very important that the tool
vendors make these semantics very explicit – and that the users continue to meticu-
lously read the manuals until common standard semantics are agreed upon.

Fig. 1. Simple model merge dilemma

4.2 Division of Responsibility

The merge tool in itself is only a part of the groupware support for collaboration. In
the great picture of support for the parallel work of a team we need more than just the
physical merge of two artefacts – and we need to decide which tool should take care
of which tasks. For parallel work there are two tasks: the concurrency detection and
the conflict detection and resolution.

Concurrency detection is the discovery that parallel work has happened. That can
be carried out in many different ways, but usually it is the responsibility of the version
control tool to do that. It keeps track of the addition of new versions to the repository
and should know the status of the files in the user’s workspace. Based on that infor-
mation it is easy to decide whether parallel work has been performed or not. There are
different strategies for when to consider parallel work to have happened. The most
“relaxed” is to look at each single file and decide on a file-to-file basis. That is, how-
ever, a very unsafe strategy as changes to different files in the same commit are usu-
ally related. Most common is therefore the long transaction strategy [12] where a
concurrency conflict is announced – and the commit aborted – if not all single
changes can be committed. Concurrency detection is tightly connected to the unit of
versioning. The more fine-grained it is, the easier it is to decide if parallel work has
happened on the same artefact.

Conflict detection, on the other hand, is the discovery of an unsuccessful merge of
work that has been carried out in parallel on the same artefact (unit of versioning).
And conflict resolution is when the outcome of the merge is successful. Conflict de-
tection and resolution is usually the responsibility of the merge tool. As input is gets
the two alternatives and their common ancestor from which it tries to create a merge.
Conflict detection and resolution is tightly connected to the unit of comparison. The
more fine-grained it is, the easier it is to distinguish if the same “thing” has changed
in both alternatives, in which case there is a real conflict that might be difficult for the

178 L. Bendix and P. Emanuelsson

merge tool to automatically resolve. However, the richer set of units of versioning in
model merge might provide more information that could allow automated merges
even in these cases of apparent conflict, as discussed above.

Both unit of versioning and unit of comparison are very dependent on the nature of
what is being versioned and merged. In the traditional textual case, unit of versioning
is a file and unit of comparison is a line of text. For models we will have to use the
file as unit of versioning if we use traditional version control tools, but depending on
the modularization mechanisms of the model language, we can have more or less
flexibility in what we are allowed to put into a single file. For the unit of comparison,
we are bound by the decision of the merge tool, which in turn will be highly influ-
enced by the syntax and semantics of the model language. A supportive model merge
tool should have as fine-grained unit of comparison and as rich and well-defined se-
mantics as possible.

4.3 Presentational Issues

Presentational issues are important also for text merge, but takes on even more impor-
tance for model merge. We have to present merges (and diffs) and in particular con-
flicts to the user in a way that he can understand the nature of the conflict (or change)
and such that irrelevant details are left out. We also need to consider how the presence
of merge conflicts should be represented in the model itself.

Even in the simple case of text merge, we often have presentational issues. Merge
tools are not very good at handling these and users have to aware of that and behave
in a way to avoid getting conflicts that are grounded in “irrelevant” layout. A typical
example is the indentation of programs that is a frequent cause of “stupid” merge
conflicts until people agree on a common setup of their editor. For model merge we
would like the tool to be able to ignore layout changes, as they are not our primary
focus and can obscure more important changes. This does not mean that a model
merge tool should always ignore layout changes, as they may indeed be important too.
Just that because it is virtually impossible to avoid layout changes when working with
models (as opposed to text), the merge tool has be more supportive and allow us the
flexibility to ignore – or consider – layout changes in the merge.

The standard behaviour of text merge tools is to work in batch mode. The tool tries
to produce merge results for all files that have to be merged and leaves conflict mark-
ers in the files where it does not manage to resolve the merge conflicts. This works
well for text, as we are able to open, read and understand the resulting files in our text
editor. However, that is not the case for model merge. If we would leave conflict
markers in the resulting merged model, we would not able to load it into our model
editor – and we would be pretty stuck. Therefore, current model merge tools work in
interactive mode and ask the user to manually resolve all the conflicts one by one
before the result is created. For some cases that may be a good way of working, but if
we would like to leave some flexibility to the user, we should allow for the batch
mode as well. This can be done if we include conflict representation into the meta-
model, such that models with conflict markers become valid models for the editor.
We should also be aware that, since model editors are based on the syntax of the
modelling language, they cannot cope with syntactically incorrect merge results in
general, so extreme care has to be taken in constructing the merge result.

 Requirements for Practical Model Merge – An Industrial Perspective 179

5 Conclusion

The experience at Ericsson AB from using models – and in particular UML– for
model-centric development has been predominantly positive. The technology is ma-
ture and we get less complexity and good performance when using models. However,
the support from engineering tools is not yet mature. In particular support for collabo-
ration like merge and diff tools.

Based on a recent tool evaluation [18], we can conclude that model merge tools
have improved since our initial evaluation and that of [5]. In this paper, we have iden-
tified and discussed a number of requirements for making them even better. At the
present state it looks like there is too much diversity in principles and mindset for
different model merge tools. Such diversity does not exist for text merge tools – and
the fact that the principles are most often implicit makes the problem even bigger.
However, we see that as a natural thing at this early, immature state and hope that
“state of the practice” will now start to converge.

From our analysis and discussion of merge and diff problems a number of re-
quirements emerged that can be dealt with on the long, medium and short term by
various actors:

• long term: research issues and challenges
o semantics of model merge
o meta-model conflict representation
o modularization mechanisms

• medium term: research to tool transfer possibilities
o semantics of model merge
o presentational issues

• short term: MDD process best practices
o use a strict long transaction model
o merge often to avoid irresolvable conflicts
o verify and validate each merge result
o educate users in the model merge tool semantics since it is so much

more complex and not as “uniform” as for text merge

References

1. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

2. Alanen, M., Porres, I.: Basic Operations Over Models Containing Subset and Union Prop-
erties. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 469–483. Springer, Heidelberg (2006)

3. Asklund, U.: Identifying Conflicts During Structural Merge. In: Proceedings of NWPER
1994, Nordic Workshop on Programming Environment Research, Lund, Sweden, June 1-3
(1994)

4. Babich, W.A.: Software Configuration Management – Coordination for Team Productiv-
ity. Addison-Wesley, Reading (1986)

5. Barrett, S., Chalin, P., Butler, G.: Model Merging Falls Short of Software Engineering
Needs. In: [16]

180 L. Bendix and P. Emanuelsson

6. Bendix, L., Emanuelsson, P.: Diff and Merge Support for Model Based Development. In: [9]
7. Bendix, L., Emanuelsson, P.: Collaborative Work with Software Models – Industrial Ex-

perience and Requirements. In: Proceedings of the Second International Conference on
Model Based Systems Engineering – MBSE 2009, Haifa, Israel, March 2-6 (2009)

8. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A Manifesto
for Model Merging. In: Proceedings of the International Workshop on Global Integrated
Model Management, Shanghai, China, May 22 (2006)

9. Proceedings of the International Workshop on Comparison and Versioning of Software
Models, Leipzig, Germany, May 17 (2008)

10. Proceedings of the International Workshop on Comparison and Versioning of Software
Models, Vancouver, Canada, May 17 (2009)

11. Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware – Some Issues and Experiences. Commu-
nications of the ACM (January 1991)

12. Feiler, P.H.: Configuration Management Models in Commercial Environments, Technical
Report SEI-91-TR-7, Software Engineering Institute (March 1991)

13. Girschick, M.: Difference Detection and Visualization in UML Class Diagrams, Technical
Report TUD-CS-2006-5, TU Darmstadt (August 2006)

14. Mehra, A., Grundy, J., Hosking, J.: A Generic Approach to Supporting Diagram Differenc-
ing and Merging for Collaborative Design. In: Proceedings of the 20th International Con-
ference on Automated Software Engineering, Long Beach, California, November 7-11
(2005)

15. Proceedings of the Workshop on Model-Driven Software Evolution, Amsterdam, The
Netherlands, March 20 (2007)

16. Proceedings of the Second Workshop on Model-Driven Software Evolution, Athens,
Greece, April 1 (2008)

17. Nguyen, T.N., Thao, C., Munson, E.V.: On Product Versioning for Hypertexts. In: Pro-
ceedings of the 12th International Workshop on Software Configuration Management,
Lisbon, Portugal, September 5-6 (2005)

18. Nåls, A., Auvinen, J.: Model Merge Study, internal Ericsson Technical Report (April
2009)

19. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: a Flexible Version Control System for
UML Model Elements. In: Proceedings of the 12th International Workshop on Software
Configuration Management, Lisbon, Portugal, September 5-6 (2005)

20. Selonen, P.: A Review of UML Model Comparison Approaches. In: Proceedings of Nordic
Workshop on Model Driven Engineering, Ronneby, Sweden, August 27-29 (2007)

21. Störrle, H.: A formal approach to the cross-language version management of models. In:
Proceedings of Nordic Workshop on Model Driven Engineering, Ronneby, Sweden, Au-
gust 27-29 (2007)

22. Westfechtel, B.: Structure-Oriented Merging of Revisions of Software Documents. In:
Proceedings of the 3rd International workshop on Software Configuration Management,
Trondheim, Norway, June 12-14 (1991)

23. Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-Oriented Design Differencing.
In: Proceedings of the 20th International Conference on Automated Software Engineering,
Long Beach, California, November 7-11 (2005)

24. Zito, A., Diskin, Z., Dingel, J.: Package Merge in UML 2: Practice vs. Theory? In: Pro-
ceedings of the 9th International Conference on Model Driven Engineering Languages and
Systems, Genova, Italy, October 1-6 (2006)

	Requirements for Practical Model Merge – An Industrial Perspective
	Introduction
	Background
	From Use Cases to Requirements
	Put Model under Version Control
	Investigate History
	Model Update without Merge
	Model Update with Automated Merge
	Model Update with Merge Conflict
	Verify and Validate Merge Result

	Discussion
	Semantics of Model Merge
	Division of Responsibility
	Presentational Issues

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

